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ABSTRACT

We consider a multistage variant of the classical stochastic capacitated facility location problem under
facility disruption uncertainty. Two solution algorithms for this problem class are presented: (1)
stochastic dual dynamic integer programming (SDDiP), the state-of-the-art algorithm for solving
multistage stochastic integer programs, and (2) shadow price approximation (SPA), an algorithm
utilizing trained parameters of the linear value function approximation to minimize an upper bound
on the optimal objective value. Numerical investigations demonstrate SPA consistently outperforming
SDDiP across all instances from an additional dataset adapted from renowned library ORLib.

Keywords Multistage Stochastic Facility Location; Approximate Dynamic Programming; Shadow Price Approxima-
tion; Stochastic Dual Dynamic Integer Programming

1 Introduction

Facility location problem (FLP) is a well-studied problem in operations research aiming to optimally locate facilities in
order to provide services to and satisfy demands of customers. There have been many variants of the classic FLP to
respond to the diverse needs of different industries and firms; among them are location models in a continuous space
(1), stochastic location models (2), location of hubs (3), healthcare facilities (4), public sector facilities (5), and location
for humanitarian logistics (6).

In this article, we consider facility location decisions accounting for facility disruptions. Incidents like power outages,
industrial accidents, problems with the transportation infrastructure, and natural catastrophes disrupt facilities and may
cause facility failures (7). The impact of these events and the probability of their occurrences are difficult to estimate
due to lack of high-quality historical data (8). Facility location decisions are long-term and difficult to rectify. Thus, it
is important to take into account future disruption uncertainties to assure that facility location decisions are sufficiently
robust to avert significant costs in the future.

Although there exist a stream of literature covering this subject - reliable facility location models - they only cover
single- and two-stage models (9). Some disruptions may occur multiple times across the planning horizon and
some facilities need to be re-opened when disruptions are overcome. To the best of our knowledge, the multistage
case of facility location under facility disruptions has only yet been explored in (10). We present the multistage
stochastic facility location problem under facility disruptions as multistage stochastic mixed-integer program (MSIP).
On solution methodology aspect, this problem class has only been recently tackled due to its complexity and difficulty
to solve. Stochastic dual dynamic integer programming (SDDiP) is the current state-of-the-art to solve MSIP problems
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Figure 1: Timeline of a multistage stochastic facility location under facility disruption uncertainty.

presented in (11). It requires MSIP to be reformulated as a dynamic program and can obtain an optimal policy that is
computationally tractable.

A novel technique to solve this problem is the shadow price approximation (SPA). SPA trains the parameters of a linear
value function approximation by minimizing an upper bound on the optimal objective value.

A comparable methodology to SPA is the parametric cost function approximation (CFA) presented in (12). Although
both algorithms rely on tuning parameters, SPA and CFA work with different model formulations. While SPA chooses
parameters of a linear value function approximation thereby working with a decomposed form of the decision problem,
parametric CFA chooses parameters of a lookahead model.

We present numerical results of these two approximate dynamic programming algorithms, SDDiP and SPA, to solve an
instance of the MSFLP.

To summarize, this paper strives to accomplish three main objectives. Firstly, it introduces a broader class of problems,
expanding the scope of FLP as presented in (10), which mainly addresses a specific scenario. Secondly, it aims to
enrich the available datasets for problem benchmarking. These additional datasets are derived from the esteemed ORLib
repository (13) but are tailored to encompass multiple stages and stochastic elements. Lastly, the paper delves into the
calibration of SPA, a facet not explored in depth in (10), providing further insights into this aspect.

2 Formulation of Multistage Stochastic FLP under Facility Disruption

We begin by introducing the multistage stochastic facility location problem under facility discruption as a multistage
stochastic integer program and present its reformulation as a dynamic program with binary state variables.

2.1 Multistage Stochastic Integer and Dynamic Programming Formulations

The multistage stochastic mixed-integer problem (MSIP) is given by

min
u1,y1∈X1

{
v⊤1 u1 + w⊤

1 y1 + Eξ[2,T ]|ξ[1,1]

[
min

u2,y2∈X2(u1,ξ2)

{
v⊤2 u2 + w⊤

2 y2 + . . .

+ Eξ[T,T ]|ξ[1,T−1]

[
min

uT,yT∈XT (u1:T−1,ξT )

{
v⊤T uT + w⊤

T yT

}]
. . .

}]}
,

(1)

where ut is the state variable and yt is a local variable appearing only at stage t ∈ T , v⊤t and w⊤
t are the corresponding

cost at time t ∈ 1, . . . , T , and Xt is the feasible set. The stochastic data process (ξ1, . . . , ξT ) is modeled where ξ1 is
deterministic and ξ2, . . . , ξT will be revealed gradually in time.
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We can now write down the dynamic programming (DP) reformulation of (1). The optimal value function at stage t,
Vt(ut−1, ξt), is the optimal expected objective value given state (ut−1, ξt), and assuming that optimal action will be
taken at each stage t.

Vt(ut−1, ξt) = min
ut,yt

{v⊤t ut + w⊤
t yt + Vt+1(ut, ξt) : Btut−1 +Atut + Ctyt = bt}, (2)

for t = 1, . . . , T where Vt+1(ut, ξt) is the expected value cost-to-go function,

Vt+1(ut) := E[Vt+1(ut, ξt+1)|ξt]. (3)

If we assume ξt to be Markovian, i.e. it follows the Markov property or the memoryless property, the expectation
depends only on ξt rather than the whole history of the data process, with VT ≡ 0. Finally, let us define the optimal
policy as

π∗(ut−1, ξt) = argmin
ut,yt

{v⊤t ut + w⊤
t yt + Vt+1(ut, ξt) : Btut−1 +Atut + Ctyt = bt} (4)

for t = 1, . . . , T in set Π as the policy which specifies the decision to make for all possible states regardless of which
state at stage t.

2.2 Multistage Stochastic FLP under Facility Disruption (MSFLPD)

Following the formulations above, we propose the multistage stochastic facility location model under facility disruption
uncertainty as a multi-stage, discrete-time, stochastic-dynamic optimization problem, as follows

min

T∑
t

(

F∑
i=1

fityit+

F∑
i=1

B∑
j=1

dijxijt) (5)

s.t. uit = uit−1(1− ξit) + yit, ∀i = 1, . . . , F, t = 1, . . . , T (6)
B∑
j

xijt ≤ Ciuit, ∀i = 1, . . . , F, t = 1, . . . , T (7)

F∑
i

xijt = Djt, ∀j = 1, . . . , B, t = 1, . . . , T (8)

uit, yit ∈{0, 1}, ∀i = 1, . . . , F, j = 1, . . . , B, t = 1, . . . , T (9)
xijt ∈ Z, ∀i = 1, . . . , F, j = 1, . . . , B, t = 1, . . . , T. (10)

We define binary variable yit ∈ {0, 1} to denote facility opening decision and integer variable xijt to denote service
level as the local variables. We also define binary variable uit ∈ {0, 1} as our state variable to track the state of facility
i ∈ F at stage t ∈ T . We denote uit = 1 if facility i ∈ {1, ..., F} is open at stage t ∈ {1, ..., T}, and uit = 0 otherwise.
In addition, we observe a realization of the random variable ξit ∈ {0, 1} such that ξit = 1 if the facility i at stage t is
disrupted and ξit = 0 otherwise.

The objective (5) minimizes of the total cost which includes the fixed cost of opening facility i ∈ {1, ..., F} at stage
t ∈ {1, ..., T} and the transportation cost dij from demand point j ∈ {1, ..., B} to facility i ∈ {1, ..., F}. The local
variable decisions and transition of the state variable are governed by a series of constraints. Constraints (6) keep track
of the state of facility i ∈ {1, ..., F} as affected by random variable ξit across each stage. Constraints (7) impose
assigning of capacity Ci if and only if facility i ∈ {1, ..., F} is open. Constraints (8) impose that the total demand Djt

of customer j must be fully satisfied. Finally, constraints (9) and (10) show the decision variable domains.

3 Solution Methods

We present two solution techniques to solve MSFLPD - stochastic dual dynamic integer programming (SDDiP) and
shadow price approximation (SPA).

3.1 Stochastic Dual Dynamic Integer Programming (SDDiP)

SDDiP is an extension of the celebrated stochastic dual dynamic programming (SDDP) method to solve MSIP problems
(11). Unlike SDDP, SDDiP uses Lagrangian relaxation to derive tight cuts of the cost-to-go functions of stochastic
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mixed-integer problems. SDDiP guarantees to find the exact optimal solution of any MSIP if the time-coupling decision
variables that define the state of the dynamic program are binary variables. This bodes well with MSFLPD’s binary
state variables uit - state of facility i ∈ {1, ..., F} at stage t ∈ {1, ..., T}.
Each iteration of SDDiP begins with sampling a subset of scenarios of the stochastic process. Then, SDDiP proceeds by
undertaking two key steps - forward simulation and backward pass.

In the forward simulation, the algorithm draws a sample of random realization from the stochastic process, (ξω2 , ..., ξ
ω
T ),

for ω ∈ Ω, and then solves the subproblems at each stage t of the dynamic program using the latest cutting plane
approximation of the cost-to-go function. Particularly, in every iteration k, the subproblem at stage t is of the form:

V̄ k
t (ut−1

k, ξωt ) := min
uit,xijt,yit

F∑
i=1

(fiyit +

B∑
j=1

xijtdij) + V̄k
t+1(ut)

s.t. uit = ui,t−1(1− ξit) + yit, ∀ i = 1, . . . , F, t = 1, . . . , T,

Eqs. (7)− (10),

(11)

for t = 1, . . . , T , where ξωt is the ω uncertainty realization at stage t. Each forward simulation, generates a sequence
of sample decisions, ((uk

it, x
k
ijt, y

k
it))

T
t=1 that are made based on the realized uncertainties of the sampled scenario

(ξω2 , ..., ξ
ω
T ).

The function V̄k
t+1(ut) is defined as a set of cutting planes (cuts) whose minimum approximates the true expected

cost-to-go function Vk
t+1(ut) from below. The function can be expressed as a linear program which is given by

V̄k
t+1(ut) := min θt

s.t. θt ≥ Lt

θt ≥ N−1
t+1

Nt+1∑
j=1

(αlj
t+1 + (βlj

t+1)
⊤ut) ∀l ≤ k − 1.

(12)

The backward pass begins from the final stage T . Given the solution uk
T−1 from iteration k and an uncertainty realization

from {ξjT , 1 ≤ j ≤ NT }, let P kj
T (uk

t−1, ξ
ω
t , V̄k

t ) be a relaxation of the forward problem V̄ k
T (uk

T−1, ξ
j
T , V̄

k+1
T ). Solving

P kj
T (uk

t−1, ξ
ω
t , V̄k

t ) for each j produces a cut defined by θ(αlj
T , β

lj
T ) which is valid for the value function VT (uT−1, ξ

j
T ).

Then, the cuts θ(αlj
T , β

lj
T ) are aggregated obtaining (12) which is valid for expected cost-to-go function Vk

T−1(uT−1).
Furthermore, the lower approximation of the expected cost-to-go function is updated from V̄k

T−1(ut) to V̄k+1
T−1(ut).

Backward pass then proceeds to stage T − 1. As the first stage computation is completed, and having solved a lower
approximation of the original problem, the optimal solution value of the first stage problem t = 1 is a valid lower bound
of the original problem.

SDDiP introduces a family of valid cuts, called Lagrangian cuts, which are able to obtain strong duality for mixed
integer programs. Like SDDP, SDDiP is also sampling-based algorithm and exhibits favorable scalability on solving
large-scale problems. The limiting assumption of SDDiP, as with SDDP, is that the random process has to be stagewise
independent. Some techniques to incorporate stagewise dependency are presented in (18).

3.2 Shadow Price Approximation (SPA)

SPA is an approximation algorithm proposed in (10). The main idea of SPA is to train the slope of a linear value function
approximation by minimizing an upper bound on the optimal objective value that can be obtained via Monte Carlo
simulation. These slopes are similar to the notion of shadow prices of the non-anticipatory constraints that connect
successive time periods - hence, the name of the algorithm.

Choosing the slope vector that minimizes an upper bound on the optimal objective value is effectively a nonconvex,
stochastic optimization problem that is known to be computationally intractable. Thus, SPA is cast as a policy search
strategy that can be supported by any method that is suitable for unconstrained (derivative-free) global optimization.

Instead of developing a stochastic model, SPA only needs access to independent time series, which can also be real
data. SPA thereby interacts directly with a simulation model of the resulting policy unlike many other approximate
dynamic programming techniques that rely on some form of backwards recursion. SPA can be easily integrated with
gradient-based and stochastic search methods which are widely used in machine learning and global optimization.

The SPA algorithm, like SDDiP, undertakes two primary steps - forward simulation and shadow price updating. The
algorithm proceeds as follows:

4
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Step 1. Initialize iteration n = 0 and shadow prices λu,0
t = 0, for every t = 1, . . . , T .

Step 2. At each iteration n, we randomly select a scenario path (ξ̂n1 , . . . , ξ̂
n
T ).

[*Forward simulation*]

Step 2.1. Solve the dynamic programming recursion of the form

V̄ n
t (un

it−1, ξ
n
it;λ

u,n−1
it ) = min

un
it,x

n
ijt,y

n
it

F∑
i=1

(fiyit +

B∑
j=1

dijxijt) +

F∑
i=1

λu,n−1
it ui︸ ︷︷ ︸

Shadow Price

s.t. uit = ui,t−1(1− ξit) + yit, ∀ i = 1, . . . , F, t = 1, . . . , T,

Eqs. (7)− (10),

(13)

as a sequence of mixed-integer problems that encodes information on the cost-to-go only via the slope vector of the
linear value function approximation (the shadow prices).

Step 2.2. Obtain realized upper bound ˆ̄zn as follows,

ˆ̄zn(λu,n−1
it ) =

∑
t∈T

 F∑
i=1

(fityit(π̄
n(un

it−1, ξ̂
n
it;λ

u,n−1
it )) +

F∑
i=1

B∑
j=1

dijxijt(π̄
n(un

it−1, ξ̂
n
it;λ

u,n−1
it ))

 , (14)

a realization of the total cost for given slope vectors λu,n−1
it .

[Shadow price updating]

Step 3. With the obtained realized upper bound ˆ̄zn and parameters λu,n−1
it , the shadow price is updated using a generic

update function Un(·, ·), supported by a chosen global optimization method, that returns a new set of trial shadow
prices,

λu,n
it ← Un(ˆ̄zn, λu,n−1

it ). (15)
Various choices of global optimization methods include, but are not limited to, stochastic gradient descent (14),
covariance matrix adaptation - evolutionary strategy (CMA-ES) (15), and Bayesian optimization (16).

Step 4. At the end of iteration N , SPA returns a slope vector λu∗
it that approximately minimizes z̄

λu∗
it ∼ argmin

λuN
it

ˆ̄z(λuN
it ). (16)

Step 5. To obtain an approximate upper bound of the optimal objective value, we simulate the optimal policy z̄(λu∗
it )

z̄(λu∗
it ) = S−1

S∑
s=1

ˆ̄zn(λu∗
it ). (17)

Whether or not the chosen global optimization methods is able to find a good linear approximation depends on the
initial choice of parameters, the search region, as well as the number of iterations, and is likely to be problem-specific.
In the worst case, no improvement over the (initial) greedy policy, with λu,0

t = 0, for every t = 1, . . . , T , is possible. In
the best case, the method selects the best linear approximation which is optimal if the true cost-to-go function is linear
in the region of the state space that can be reached by the optimal policy.

As we will see below, a linear approximation can produce near-optimal results for the chosen problem. In which way
this result extends to other problems remains subject of future work.

4 Numerical Results

We present the results of employing both SPA and SDDiP to solve Problem (5)-(10). The case instance chosen, with
parameters shown in Table 1, is a multi-stage adaptation of the capacitated facility location problem, drawing its test
instances from (13), a renowned repository of test datasets spanning various facility location and other OR problems.
To include a greater depth of robustness in our model’s testing and the deployed solution methodologies, different levels
of disruptions were synthesized. These disruptions are denoted by S = {Low, Medium, High} levels. Additionally, in
a bid to intricately gauge the algorithms’ performance, we designated three incremental time limit criteria, represented

5
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Table 1: Parameters used for the numerical investigation (adapted from (13)).
Parameters Value
T - planning horizons 36, 52, 100
F - set of candidate facilities 16
B - set of customers 50
Cit - capacity 50
Djt - demand taken from (13)
fit - fixed cost of opening a facility taken from (13)
dijt - transportation cost taken from (13)
ξit - facility failure (uncertainty) Randomly generated

[High-60%, Medium-40%, Low-20%]

Table 2: Numerical investigation of MSFLPD using SDDiP and SPA.
Time Limit Criterion (×103)

Instance CAP44-A

Stages (T ) Runtime S SDDiP-LB SDDiP-UB SPA-UB SDDiP-Gap SPA-Gap

36 300s High 138994.0 139445.4 139395.9 0.32% 0.28%
Medium 133262.4 134092.1 133518.0 0.62% 0.19%

Low 127614.4 128619.3 127614.8 0.78% 0.00%

900s High 138994.0 139170.1 139083.6 0.13% 0.06%
Medium 133262.3 134043.7 133518.0 0.58% 0.19%

Low 127614.4 128595.6 127614.8 0.77% 0.00%

1800s High 138994.0 139088.0 139020.6 0.07% 0.02%
Medium 133262.4 133763.6 133518.0 0.38% 0.19%

Low 127614.4 128421.1 127614.8 0.63% 0.00%

52 300s High 109354.0 110594.0 109857.0 1.13% 0.45%
Medium 100611.2 102174.4 101551.2 1.54% 0.93%

Low 92297.0 93850.3 92925.7 1.67% 0.68%

900s High 109354.0 110254.3 109857.0 0.82% 0.45%
Medium 100611.2 102422.7 101482.7 1.78% 0.86%

Low 92297.0 93978.7 92925.7 1.81% 0.68%

1800s High 109354.0 110340.3 109857.0 0.90% 0.46%
Medium 100611.2 102175.9 101449.5 1.54% 0.83%

Low 92297.0 93955.6 92925.7 1.78% 0.68%

100 300s High 89966.6 94229.2 93537.2 4.63% 3.89%
Medium 73972.8 78148.8 77173.9 5.49% 4.24%

Low 57089.1 63360.7 60764.9 10.41% 6.40%

900s High 89966.6 93848.1 93391.8 4.22% 3.76%
Medium 73972.8 78306.5 76756.4 5.69% 3.69%

Low 57089.1 62813.4 60764.9 9.55% 6.24%

1800s High 89966.6 93678.5 93411.5 4.04% 3.74%
Medium 73972.8 78308.7 76887.7 5.69% 3.86%

Low 57089.1 62813.3 60722.8 9.55% 6.17%

as T = {300s, 900s, 1800s}, to serve as benchmarks. SPA resorts to CMA-ES (15) for its outer loop and both methods
use Gurobi 10 to solve the mixed-integer subproblems.

The findings from our expansive numerical exploration of MSFLPD via SDDiP and SPA are consolidated in Table 2.
Distinct columns are reserved for various metrics, including SDDiP lower bounds (SDDiP-LB), SDDiP upper bound
(SDDiP-UB), and SPA upper bound (SPA-UB). The percentage gaps delineated represent the %-difference between
SDDiP lower bound and SDDiP upper bound (SDDiP Gap), and the %-difference between SDDiP lower bound and
SPA upper bound (SPA Gap). From our analysis, SPA emerges as a more effective solution, consistently identifying
superior policies for MSFLPD across all case instances. This observation persists even when strengthened Benders
cuts are employed for SDDiP - these are valid, finite cuts wherein a generic Benders cut is augmented by solving a

6
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specific mixed integer program subproblem, where the solution mirrors a basic optimal LP dual solution. Such results
underscore the inherent complexity and challenge posed by MSFLPD, especially when considering the risk facility
failure.

5 Conclusion

In this paper, we present a multi-stage variant of the facility location problem under facility disruption (MSFLPD), a
new broader class of FLP. We model the problem as a multi-stage stochastic mixed-integer program, and discuss two
methods to solve the problem, stochastic dual dynamic integer programming (SDDiP) and shadow price approximation
(SPA). While SDDiP is an exact solution approach, it is also difficult to implement, whereas SPA is an approximation
method that is relatively easy to apply for anyone familiar with machine learning. We also present additional datasets
for benchmarking as adapted from the renowned ORLib respository. We conduct extensive numerical experiments
to compare the performance of the two methods in solving the problem. We find that, across all problem instances,
SPA emerges as the more effective solution, consistently identifying superior policies for MSFLPD than SDDiP. These
results underscore the inherent complexity and challenge posed by MSFLPD, especially when considering facility
disruption risk.
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