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Abstract
A key factor towards a low-carbon society is energy efficient heating of

private houses. The choice of heating technology as well as the decision for
certain energy-efficient house renovations are made mainly by individual
homeowners. In contrast, municipal energy network planning heavily de-
pends on and strongly affects these decisions. Further, there are different
conflicting objectives for finding optimal network designs, e.g., low carbon
emissions opposed to low investment and maintenance costs. This work
presents a framework for an energy supply network model that integrates
these homeowner micro-decisions in the multi-objective optimization pro-
cess to aid macro-level decision-making for energy supply network planning.
Furthermore, numerical experiments are carried out in order to illustrate
our framework.

Keywords. Energy supply networks, mixed-integer nonlinear programming, multi-
objective optimization, mathematical modelling.

1. Introduction
Energy used for constructing, heating, cooling, and lighting homes and businesses is
responsible for one-third of the global energy consumption and accompanying emissions
[20]. Transforming the building sector to low-carbon heating is essential for reaching
Net Zero Emissions by 2050, which is formulated into the European Climate Law
[30]. This is crucial, as fossil fuels currently dominate, providing nearly two-thirds
of heating energy [12, 20]. In [12] two key strategies for that transformation are
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named. Firstly, renewable energy conversion in the sense that one replaces existing
fossil fuel heating systems with those utilizing renewable sources. Secondly, energy
efficiency improvements by reducing energy demand while maintaining comfort levels,
e.g., temperature. Naturally, this can be achieved by various measures [16, 19]. For our
work, we use the term energy-efficiency renovations (EER) to refer to and summarize
these measures.

The decision to adopt such strategies, including the associated financial investment,
ultimately rests with individual homeowners/consumers. Their choices play a vital
role in achieving a low-carbon future. Consequently, there is a lot of research about
understanding these decisions [12].

In [3, 35] the authors investigate the reasoning behind homeowners’ choices regard-
ing EER. Similarly, in [6, 17, 23, 27, 29], the homeowners’ reasoning for (not) investing
in sustainable heating technologies for their houses is explored for different countries.
The authors of [22] examine how renewable heat policies influence homeowners’ deci-
sions, while the ones of [28] focus on homeowner satisfaction with low-carbon heating
technologies, emphasizing the potential impact of word-of-mouth effects. In [11] po-
tentials for supporting the decision-making processes of homeowners in the direction
of EER are studied. For example, this can be done by setting up subsidy programs
[8, 15]. Furthermore, in [13, 31] so-called choice experiments are conducted to find out
the homeowners’ preferences regarding energy retrofits. All of these findings can be
used for modeling, predicting, or simulating the homeowners’ decision processes. For
instance, in [33] the authors set up an agent-based model from an end-user perspec-
tive to mimic the behavior of Norwegian homeowners’ decisions on heating systems. In
[37] the authors model quantitatively why and how homeowners decided for EER. A
significant consideration for homeowners is the trade-off between upfront investment
costs and anticipated savings from reduced energy consumption [2]. Using such terms
and quantitative data one can determine the homeowners’ willingness to pay (WTP)
for EER [34]. All of the above-mentioned research focuses on individual homeowners’
choices concerning EER and sustainable heating technologies. Throughout this work,
we refer to these individual choices as micro-decisions, emphasizing the individual level
at which they are made.

In [7, 14] the authors investigate the potential impact of individual choices (micro-
decisions) on achieving the Net Zero 2050 goal. They do this by exploring different
scenarios that translate micro-level decisions to their broader (macro-level) effects.
The study [14] calculates the potential for carbon reduction achievable through indi-
vidual actions that are economically feasible. However, the results reveal that these
actions alone are insufficient to reach the 2050 target. Accordingly, in [32], the authors
claim that „quantification of costs and benefits, from economic, social, and ecological
perspectives, is a necessary first step to investment in solutions that take more local
and global ecological and economic conditions into account.“ This is in line with the
idea of the present paper. We use an energy supply network model [9, 25] designed to
find cost-optimal network designs on the district level. In [24], this model was enriched
with a second objective function, namely reducing the accompanying carbon emissions
of the respective network plans. Having several conflicting objective functions, there
is not only one optimal network plan anymore but several so-called optimal compro-
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mises (or Pareto optimal points) between the objectives. Proceeding like that and
including several objective functions can aid the macro-level decision process in terms
of providing (a selection of) optimal compromises.

Although micro-decisions are implicitly included in the model, during the optimiza-
tion process they are made from the macro-perspective, i.e., these micro-level choices
are made which are best for the current macro-preferences. Obviously, by doing so
there is no consideration of the homeowners’ preferences. As a first step in this di-
rection, we aim to integrate the likelihood of individual homeowners accepting the
proposed micro-decisions in this work. We call this social acceptance of the proposed
network plans. To account for homeowner acceptance, we consider their expected
savings and carbon emission reductions as factors influencing their willingness to pay
for low-carbon measures. This gives rise to an individual investment budget for each
homeowner which we incorporate in two ways into the model. Firstly, as a strict in-
vestment cap, i.e., as a constraint, meaning that no micro-decision overrunning the
respective investment budget is viable. Secondly, to make the effect of possible sub-
sidies visible, as part of an additional objective function minimizing the overrun of
these budgets. Both approaches yield a modeling framework that can be used for an
in-depth analysis of the interplay between micro- and macro-level decisions. To the
best of the authors’ knowledge, this is a novel approach. However, conducting such an
analysis is not the goal of the present work as that would require a very careful choice
and reasoning of the respective network parameters.

The remainder of this paper is structured in the following way: we introduce the
relevant basics of the underlying energy supply network model in Section 2. We give a
brief overview of the aspects necessary to the here-discussed extensions of this model.
All details regarding the model can be found in [9, 25]. In Section 3, we explain how
the notion of homeowner acceptance of the proposed micro-decisions is included in the
model. We clarify the notion of willingness to pay and define the individual investment
budget for the homeowners. This is then incorporated into the model in two ways:
Firstly, a constraint approach yielding a single-objective optimization problem and
secondly, an objective approach yielding a multi-objective one. In Section 4 we present
some numerical experiments on a given network instance for both of the aforementioned
modeling approaches. Finally, in Section 5 we conclude the respective capabilities of
the modeling approaches.

2. The decentralized energy supply network problem
In the following, we briefly describe the model of decentralized energy supply networks
which is fundamental for considering social acceptance of the proposed network plans.
All details regarding the model can be found in [9, 25].

The underlying structure of the model is a directed graph (V,E), where V denotes
the set of nodes and E the set of arcs. There is one special node called source node,
where the energy for the whole network gets injected. The injected energy is then
distributed through the network along the arcs. The energy flow along the arcs is
modeled using simplified flow equations. One arc (i, j) ∈ E represents agglomerations
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of inhabitants like, e.g., residential houses along a street. Thus, an arc is sometimes
simply called consumer and/or homeowner in the following. The nodes can then be
interpreted as street crossings. With this picture in mind, it is natural to locate energy
demand on the arcs. The model considers two energy carriers, electricity and natural
gas. For any arc (i, j) ∈ E the inquired yearly amount of electricity and gas is given
by the variables sEsum

i,j and sGsum
i,j , respectively.

The values of these variables can vary depending mainly on two decisions which
are made individually for each consumer (i, j) ∈ E – the so-called micro-decisions in
line with [12]. These two individual decisions on the consumer level represent the
decentralized character of the model. Firstly, each consumer can decide which energy
carrier (electricity or natural gas) is used for heating. Secondly, each consumer can
decide to execute energy-efficient renovations (EER) to lower the heating demand.

In the present model, each homeowner can choose between three different Micro
Energy Conversion Technologies (MECTs). MECTs are local and small-sized energy
generators and all of them either convert electricity or natural gas into heat. The
details can be seen in Figure 1. Since the so-called Combined Heat and Power Unit

Natural Gas

Electricity

CB

CHP

HP

Heat

Electricity

Figure 1: Energy conversion of the three considered MECTs: CB (condensing boilers),
CHP (combined heat and power unit) and HP (heating pump), [25, Fig-
ure 3.1].

(CHP) uses gas to produce heat and electricity, electrical and gas grids are coupled
and cannot be considered separately in the model.

For each consumer (i, j) ∈ E, there are binary variables

xcb
i,j , x

chp
i,j , xhp

i,j ∈ {0, 1},

each of which equals one if technology t ∈ T := {cb, chp, hp} is chosen by consumer
(i, j). Naturally, each consumer can only choose one MECT, i.e.,∑

t∈T

xt
i,j = 1

for each (i, j) ∈ E. As already indicated, the demands for the different energy carriers
differ depending on the installed technology. These different yearly demands are given
by the model parameters SUMELOADt

i,j and SUMGLOADt
i,j where t ∈ T and (i, j) ∈

E. For each t ∈ T , the annualized investment and maintenance cost for a time horizon
of 20 years is given by γt. Note that all costs occurring in the model are either yearly
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costs or annualized investments over a time horizon of 20 years. Thus, the technology
investment costs for consumer (i, j) ∈ E are given by

Ctech
i,j =

∑
t∈T

γtxt
i,j , (1)

and the one for the whole network is then given by the sum of all consumers.
Another option to change the yearly demand is to carry out EER to reduce the

heating demand. For example, one could invest in double-glazed windows or wall
insulation. As there are a bunch of possible different measures of energy-efficient
renovation [16, 19] and therefore their precise modeling would be very complex, a
simplified modeling is chosen. The impact on reducing carbon emissions per invested
monetary unit is assumed to be a concave function, i.e., there are several relatively
cheap (effective) possibilities to reduce carbon emissions and some relatively expensive
(less effective) ones. This concave utility function is then approximated by a piecewise
linear function consisting of two line segments. In the model, this leads to a so-
called two-stage energy-efficiency renovation, where the first stage consists of the more
effective measures and full renovation leads to a heat demand reduction rate of µ1 ∈
(0, 1). The second stage instead consists of the less effective measures whose completion
results in a reduction of the heat demand of µ2 ∈ (0,min{µ1, 1 − µ1}). Note that if
suitable data is available, it is possible to individualize the parameters µ1 and µ2 to
the homeowners (i, j) ∈ E, i.e., for each (i, j) ∈ E one can choose individual µi,j

1 , µi,j
2 .

In that case, one can also set µi,j
1 = µi,j

2 = 0 for some homeowner (i, j) ∈ E for whom
one assumes that no EER are carried out – no matter what incentives are present.
However, in order to keep the notation as simple as possible, we use uniform µ1 and
µ2 for the whole network in the present paper. Given the technology t ∈ T and the
consumer (i, j) ∈ E, the progress of the two stages is represented by the variables
x1,t
i,j , x

2,t
i,j ∈ [0, 1]. Thus, for each consumer (i, j) ∈ E, we obtain

sGsum
i,j =

∑
t∈T

SUMGLOADt
i,j

Ä
xt
i,j − µ1x

1,t
i,j − µ2x

2,t
i,j

ä
(2)

for the yearly gas demand. Obviously, for the electricity-based technology HP, there
is no gas demand at all, and therefore SUMGLOADhp

i,j = 0. On the other hand, this
leads to a higher electricity demand sEsum

i,j for all consumers (i, j) ∈ E choosing HP. In
contrast, for CHP, there is a reduced electricity demand compared to the original one,
since electricity is produced during the heat generation from gas. We refer to [9] for
the detailed equations covering each case. This gives rise to the energy cost calculation
under consideration of the possible EER given by the following formula

Cenergycost
i,j =

(
αe
p + βe) sEsum

i,j

+ tadvβ
e
Ä
SUMELOADi,j − SUMELOADchp

i,j

ä Ä
xchp
i,j − µ1x

1,chp
i,j − µ2x

2,chp
i,j

ä
+

(
αg
p + βg) sGsum

i,j ,

(3)

where sEsum
i,j and sGsum

i,j are the demands of electricity and gas, respectively, according
to the proposed micro-decisions as explained before (see, e.g., (2)). The parameters
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αe
p and αg

p denote the before-tax prices for electricity and gas per kWh, respectively.
By βe and βg we denote the tax costs for electricity and gas, respectively. Since CHP
produces electricity, which equals the difference between the pure electricity demand
SUMELOADi,j and the one given that CHP is installed, it has to be taxed as well, but
with a tax advantage factor tadv ∈ (0, 1). As before, the variables xt

i,j ∈ {0, 1} indicate
whether technology t is chosen by consumer (i, j) and the parameters SUMELOADt

i,j

and SUMGLOADt
i,j stand for the technology-dependent demand of electricity and gas,

respectively.
The annualized costs per demanded heat unit of first- and second-stage renovation

are given by ν1 and ν2, respectively, resulting in the renovation cost calculation for a
consumer (i, j) ∈ E given by

Crenovation
i,j =

∑
t∈T

SUMHLOADi,j

Ä
ν1x

1,t
i,j + ν2x

2,t
i,j

ä
, (4)

where SUMHLOADi,j represents the pure heat demand of consumer (i, j).
As there are some real-world limitations regarding the possibility of installing, e.g.,

heating pumps or laying gas pipes at some places, it is important to consider also grid
extensions in the model. It is assumed that the electricity grid is fully available, i.e.,
there is no need to connect any arc to the electricity grid. In contrast to that, there is no
available gas grid yet. Thus, the model has to decide where to build gas pipes to provide
the necessary gas to consumers with positive gas demand sGsum

i,j > 0. The incurred
costs for such grid extensions are represented by the variable Cgrid

g . Furthermore,
to meet the hourly peak demands of gas and electricity, so-called allocation costs
Callocation have to be paid to the public energy supplier.

In [9, 25] all arising costs are summarized in a single so-called cost objective function
which is minimized. This function is given by

C = Cgrid
g + Callocation +

∑
(i,j)∈E

Ä
Cenergycost

i,j + Crenovation
i,j + Ctech

i,j

ä
. (5)

Additionally, as done in [24], the corresponding carbon emissions are shifted to another
objective function which is also minimized. By doing so, we enter the setting of
multi-objective optimization in terms of multiple conflicting objective functions [10].
The goal of multi-objective optimization is to find the so-called optimal compromises
(or nondominated points, Pareto optimal points) between these conflicting objectives.
Basic notions of multi-objective optimization are presented in Appendix A.

3. Social acceptance via modeling investment budget
In [9, 25] as well as in [24] the cost optimization process focuses only on the macro
decisions, i.e., in the objective function the sum of all appearing costs is minimized. As
explained in the previous section, this includes also the investments of the homeowners
where the optimization process proposes certain micro decisions. However, while one
can quantify the homeowner investments accompanying the proposed optimal network
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plans, there is no consideration of the respective homeowner acceptance during the
optimization process. In the following, we describe a framework that allows us to
assess possible network plans based on how likely homeowners are to approve the
proposed micro-decisions.

The underlying idea of that framework is the use of utility-based decision theory
[5] which has its origins in the seminal work [36]. Expected utility theory assumes
that individuals choose one alternative among others that maximizes a certain utility
function. In [1], utility theory is related to the cost/investment of certain alternatives
resulting in the so-called willingness to pay (WTP). For the following, we use the
notion of willingness to pay presented in [18]. Let u(x, y) be a utility function where
x ∈ R represents the wealth and y ∈ {c, d} possible states, namely the current state
c and the desired state d with c ̸= d. In particular, this means u(x, c) < u(x, d) for
any wealth x ∈ R. Then, the WTP according to the utility function u for reaching the
desired state d is defined as

u(x0, c) = u(x0 −WTP, d),

where x0 ∈ R represents the initial wealth. Furthermore, we assume the utility func-
tion to be strictly increasing in the wealth variable x, i.e., if x1 < x2 then also
u(x1, y) < u(x2, y) for any state y. Following the assumption of individuals choos-
ing the alternative having the higher utility, the above means that given that the
desired state d can be reached with some wealth x′ > x0 − WTP, then one decides
for action to reach the tuple (x′, d) rather than sticking with the current status (x0, c)
due to

u(x0, c) = u(x0 −WTP, d) < u(x′, d).

Applying the described utility theory to the homeowner micro-decisions regarding
investments in low-carbon measures, we obtain the following: Homeowner (i, j) ∈ E
decides in favor of investing in retrofits, denoted by the desired state d, if the necessary
investment cost is smaller or equal to its WTP for reaching d. If otherwise, the
necessary investment cost is larger than its WTP, the homeowner decides against the
retrofit. We therefore call the above-described WTP the homeowner’s investment
budget. Note that this allows us to model the homeowner micro-decisions about the
– from the optimization process proposed – investments solely knowing the respective
investment budget and the necessary investment cost.

For our calculation of the homeowner investment budget, we use two key figures,
namely:

• ιcost save: annualized willingness to pay per saving of one monetary unit regarding
the annual energy costs,

• ιemi save,ρ1 , ιemi save,ρ2 : annualized willingness to pay if a reduction of CO2-
emission of at least ρ1 (or ρ2, respectively) is realized where 0% ≤ ρ1 < ρ2 ≤
100%.

Note that ρ1 and ρ2 are two parameters of the model that have to be carefully deter-
mined when doing a meaningful case study of real-world situations.
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To properly model the investment budget of homeowner (i, j) ∈ E using the data
above, we introduce the variables Scost

i,j and Scarbon
i,j representing the monetary and

emission savings of homeowner (i, j), respectively, after conducted retrofit measures.
Naturally, for each homeowner (i, j) ∈ E the monetary savings are given by

Scost
i,j = Ccost orig

i,j − Ccost after
i,j , (6)

where Ccost orig
i,j and Ccost after

i,j represent the yearly energy costs before and after retrofit
measures took place, respectively. Similarly, regarding the annual carbon emissions
for homeowner (i, j) ∈ E, we have

Scarbon
i,j = Ecarbon orig

i,j − Ecarbon after
i,j , (7)

where Ecarbon orig
i,j and Ecarbon after

i,j represent the yearly carbon emissions before and
after the retrofit measures took place, respectively. The two variables Ccost orig

i,j and
Ecarbon orig

i,j determine the status quo, whereas Ccost after
i,j and Ecarbon after

i,j represent the
respective values according to the proposed micro-decisions for homeowner (i, j) ∈ E,
i.e., the optimal solution of the optimization problem.

We start by clarifying the status quo variables. In general, having a meaningful
status quo depends heavily on the data one has at hand. Here, data means information
about the installed heating technologies and the progress of EER for each homeowner
considered in the network. Naturally, the developed framework should be able to
include such information. On the other hand, we cannot assume that such information
is publicly available. In that case, we have to define some more or less meaningful status
quo. In the following, we propose a framework that can deal with both situations.

We start with the status quo technology denoted by t⋆i,j ∈ T for homeowner (i, j) ∈
E. If one has information at hand, one simply fixes t⋆i,j to be the respective technology.
For any homeowner (i, j) ∈ E with no such information available, we assume that the
MECT being the cheapest w.r.t. to both installation costs and ongoing annual energy
expenses is installed. Based on (1) and (3) one computes this by

t⋆i,j = argmin
t∈T

¶
Ctech

i,j + Cenergycost
i,j | xt

i,j = 1, xt′

i,j = 0 ∀t′ ∈ T \ {t}
©
. (8)

Note that (8) can be computed by taking the minimum out of |T | numbers each of
which consists of the above-described easily calculated sums. Note further that we have
that xt⋆

i,j = 1 and xt
i,j = 0 for t ∈ T \{t⋆} for any homeowner (i, j) ∈ E independently of

information regarding t⋆i,j is available. Status quo means that no actions are proposed
by the optimization process yet. In particular, this means that for the calculation of
Cenergycost orig

i,j no EER measures are proposed yielding that xt,1
i,j = x2,t

i,j = 0 for any
MECT t ∈ T and any homeowner (i, j) ∈ E. The same holds for the calculations for
determining t⋆i,j in (8). Consequently, the value of Cenergycost orig

i,j is computed using
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(3) which collapses to

Cenergycost orig
i,j =

(
αe
p + βe

)
SUMELOAD

t⋆i,j
i,j

+ 1{chp}(t
⋆
i,j)tadvβ

e
Ä
SUMELOADi,j − SUMELOADchp

i,j

ä
+
(
αg
p + βg

)
SUMGLOAD

t⋆i,j
i,j .

(9)

For two sets A,B with A ⊆ B, the characteristic function 1A : B → {0, 1} is defined
as

x 7→
®
1, if x ∈ A,

0, otherwise.

Similarly, the status quo carbon emissions are given by

Ecarbon orig
i,j = κe SUMELOAD

t⋆i,j
i,j + κg SUMGLOAD

t⋆i,j
i,j , (10)

Although it does not influence the above computations directly – despite possibly dif-
ferent values for the energy demands –, status quo information regarding the progress
of EER also influences the model. The extent of EER measures that can be carried out
by homeowner (i, j) ∈ E starting from the status quo is represented by the parameters
µi,j
1 and µi,j

2 . To integrate possibly available information about the progress of EER,
one has to simply adjust these parameters. If, for instance, homeowner (i, j) ∈ E has
carried out all possible EER measures already, we have that µi,j

1 = µi,j
2 = 0. If other-

wise, no such information is available, we assume that no homeowners have carried out
any EER, and therefore a reduction in heat demand by the factor µ1 + µ2 is possible
for each homeowner.

Next, we examine the calculations used to assess the proposed retrofits. These
consist of the proposed micro-decisions for homeowner (i, j) ∈ E, i.e., the proposed
heating technology t̄i,j and progress of first and second stage EER x̄

t̄i,j ,1
i,j and x̄

t̄i,j ,2
i,j ,

respectively. Note that x̄t
i,j = x̄t,1

i,j = x̄t,2
i,j = 0 for all t ∈ T \ {t̄i,j}. Therefore, again

using (3) we calculate the after-renovation energycosts by

Ccost after
i,j =

(
αe
p + βe

)
sEsum
i,j

+ tadvβ
e
Ä
SUMELOADi,j − SUMELOADchp

i,j

ä Ä
x̄chp
i,j − µ1x̄

chp,1
i,j − µ2x̄

chp,2
i,j

ä
+
(
αg
p + βg

)
sGsum
i,j ,

(11)

and the after-renovation carbon emissions by

Ecarbon after
i,j = κesEsum

i,j + κgsGsum
i,j . (12)

Using (9), (10), (11) and (12), one can compute the respective savings Scost
i,j and

Scarbon
i,j given by (6) and (7). We are now ready to define the investment budget for

9



homeowner (i, j) ∈ E as

Binv
i,j =ιcost save Scost

i,j 1[0,∞) (S
cost
i,j )+

Scost
i,j 1(−∞,0) (S

cost
i,j )+

ιemi save,ρ1 1[ρ1,ρ2)

Ä
Scarbon
i,j /Ecarbon orig

i,j

ä
+

ιemi save,ρ2 1[ρ2,1]

Ä
Scarbon
i,j /Ecarbon orig

i,j

ä
.

(13)

We now provide a detailed explanation of each component term within (13). The first
summand

ιcost saveScost
i,j 1[0,∞)(S

cost
i,j )

determines the WTP of homeowner (i, j) ∈ E expecting savings regarding the annual
energy costs of Scost

i,j . Note that the summand equals zero if there are no actual
savings, i.e., if Scost

i,j ≤ 0. If the annual energy costs after the proposed retrofits
increase compared to the ones of status quo, i.e., if Scost

i,j < 0, the second component
term becomes non-zero and equals Scost

i,j . For instance, such a situation may arise due
to the following: assume the status quo technology t⋆i,j of homeowner (i, j) ∈ E is CHP.
Then, the electricity demand SUMELOADchp

i,j given CHP is installed is smaller than
the sole electricity demand SUMELOADi,j due to local electricity production of CHP
while converting natural gas into heat. Now, if homeowner (i, j) carries out EER, the
demand for heat decreases and therefore also the amount of locally produced electricity.
In particular, SEsum

i,j increases towards SUMELOADi,j – and so do the annual costs
for electricity. If these additional costs overrun the savings coming from buying less
gas, one ends up with negative energy cost savings Scost

i,j . Note that this might lead to
a negative investment budget for homeowner (i, j) ∈ E. We will see later on why it
makes sense to not exclude such a case.

The third and fourth summand calculate the actual WTP coming from the reduc-
tion of carbon emissions. Our model incorporates that homeowners are only motivated
by significant reductions in carbon emissions when deciding on retrofits, i.e., carbon
emission reduction requires a more significant decrease to incentivize homeowner in-
vestments. This contrasts with annual energy cost savings, where each unit saved
results in a direct financial benefit. The third term

ιemi save,ρ11[ρ1,ρ2)(S
carbon
i,j /Ecarbon orig

i,j )

is non-zero if and only if there is a reduction in carbon emissions of homeowner (i, j)
of at least ρ1 and below ρ2. The reduction is calculated by the fraction of the actual
emission savings Scarbon

i,j over the status quo emissions Ecarbon orig
i,j . Similarly, the

fourth summand comes into play if there is a reduction of homeowner (i, j)’s carbon
emissions of at least ρ2. In some cases, choosing a different MECT might lead to
higher carbon emissions compared to the status quo. The possible impact of such
a situation on the investment budget is not considered in our model. Note further,
that one could also use individual WTP-factors ιcost save

i,j , ιemi save,ρ1

i,j and ιemi save,ρ2

i,j for
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each homeowner (i, j) ∈ E instead of the global ones used above. Doing so would not
increase the complexity of the model. However, this requires access to relevant data.

The above demonstrates one approach to model an investment budget for home-
owner (i, j) ∈ E, considering the anticipated annual savings in energy costs and carbon
emissions resulting from the proposed micro-decisions. We have also seen that – given
accurate and reliable data regarding the willingness to pay – according to utility theory
the acceptance of the proposed micro-decisions is more likely if the actual investments
are smaller than the willingness to pay for the expected outcomes. Subsequently, we
propose two ways of including the described concept of social acceptance in the energy
supply network model.

We start with the idea of adding social acceptance to the constraints of the model.
This means we only consider network plans where the homeowners are likely to accept
the respective proposed micro-decisions on retrofits. Therefore, retrofit costs must
stay within the designated investment budget. Concretely, this means that for each
homeowner (i, j) ∈ E, we add the constraint

(Ctech
i,j − γt⋆i,j ) + Crenovation

i,j ≤ Binv
i,j , (14)

where Ctech
i,j denotes the installation costs (1) of the proposed MECT, γt⋆i,j the MECT

installation costs for the status quo technology, and Crenovation
i,j the renovation costs

(4). Note that this approach goes in the direction of the study [14] where the authors
explore the potential carbon reduction achieved only by economically feasible retrofit
measures. Instead of the economic feasibility, we use the acceptance of micro-decisions.

A core principle of the above-described constraint approach is strict adherence to in-
dividual investment budgets, preventing any cost overruns for retrofits. This approach
might overlook opportunities for substantial carbon reduction that could be achieved
with a minor increase in investment budgets. Conversely, knowing about such scenar-
ios highlights a potential benefit of implementing subsidies for retrofit measures. By
providing financial assistance, such subsidies could help bridge the gap between invest-
ment budgets and actual costs. This, in turn, could increase homeowner acceptance of
micro-decisions that lead to significant carbon reduction. Making such scenarios visi-
ble is the idea of the second approach. Unlike the fixed investment cap, this approach
minimizes budget overruns by incorporating them as an additional objective function
that needs to be minimized. Therefore, for each homeowner (i, j) ∈ E, we add the
variable F inv

i,j representing fantasy money, e.g., possible subsidies. For each homeowner
(i, j) ∈ E we add the constraint

(Ctech
i,j − γt⋆i,j ) + Crenovation

i,j ≤ Binv
i,j + F inv

i,j . (15)

The additional objective function is then given by

F inv =
∑

(i,j)∈E

F inv
i,j . (16)

Permitting some flexibility in investment budgets allows for a more nuanced under-
standing of homeowner acceptance of proposed micro-decisions. Furthermore, one has
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to keep in mind that the proposed notion of social acceptance relies heavily on the data
ιcost save, ιemi save,ρ1 and ιemi save,ρ2 . As these are statistical terms, there is inherent un-
certainty. One could cope with that by using so-called fuzzy crossover points regarding
decision-making [21]. For the sake of model tractability, this work investigates only the
scenarios of exceeding the investment budgets. By offering a continuous measure of
social acceptance, this approach goes beyond the constraint approach, which only con-
siders network plans, where the costs remain within the budget. This leads to a more
comprehensive evaluation of homeowner willingness to participate in various micro-
decision scenarios. While having these beneficial aspects, it introduces an additional
layer of complexity by transforming the problem into a multi-objective optimization
problem, requiring the consideration of multiple goals simultaneously. In the case of
using the model from [24], one obtains an additional objective function, namely the
reduction of carbon emissions. Basic notions of multi-objective optimization can be
found in Appendix A. For a more detailed introduction, we refer to [10].

By incorporating all individual homeowner costs into the investment budget itself,
the cost objective function (5) might become redundant with respect to terms like
MECT installation costs Ctech, renovation costs Crenovation, and annual energy costs
Cenergycost. Thus, they can be removed and the cost objective function collapses to
only considering public costs, namely

C = Cgrid
g + Callocation. (17)

4. Numerical experiments
In this section, we present some numerical experiments using the previously introduced
notion of social acceptance. For that we use the pyscipopt-package [26] relying on
the SCIP Optimization Suite [4] on a machine with Intel Core i7-8565U processor and
32GB of RAM.

Note that the upcoming experiments are not intended to provide an in-depth anal-
ysis of different scenarios resulting in a meaningful conclusion about real-world situ-
ations. To do so, a much more careful discussion of various network parameters and
modeling assumptions would have to be done which is not the focus of the present
work. Rather, the present work and the upcoming experiments aim to demonstrate
the proposed framework’s capabilities for incorporating social acceptance. Further-
more, the differences between the single-objective and the multi-objective approach
are highlighted.

In general, real-world instances of energy supply networks are large and therefore
yield very large-scale models. However, for the following, we restrict ourselves to a
small network instance to keep the respective analysis as clear and brief as possible.
Figure 2 depicts the graph of the network instance in question. This network is part of
a network corresponding to the district Paradies in Konstanz, Germany. The source
node is the rightmost node, labeled v24227. As described before, the energy for the
whole network gets injected at this node. For all of the following experiments, we
assume an annualized willingness to invest per expected energy cost saving of one
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Figure 2: The underlying network graph.

monetary unit of ιcost save = 0.75. This means that the homeowners balance their
investment with the yearly energy cost savings after 15 of the 20 considered years.
Further, we assume an annualized willingness to invest for an individual carbon emis-
sion reduction of at least ρ1 = 20% of ιemi save,20 = 0.2 monetary units per demanded
heat unit, for at least ρ2 = 45% of ιemi save,45 = 1.5 monetary units per demanded
heat unit. Furthermore, we assume that each homeowner can reduce its heat demand
by 80%, where one-half can be achieved by first-stage and one-half by second-stage
renovations, i.e., µ1 = µ2 = 0.4. The corresponding renovation costs lie at ν1 = 0.27,
respectively ν2 = 2.7, monetary units per demanded heat unit. For applying the
proposed model to real world situations and deriving substantiated claims, the above
parameters are some of the network parameters that require very careful discussions,
which goes beyond the scope of this article.

Subsequently, we consider the single-objective approach, i.e., only optimizing public
sector costs (17), while not allowing any overrun of the individual investment budgets
together with different carbon reduction targets.

We start with a first carbon emission reduction target of at least 20%. Figure 3
depicts the corresponding optimal network plan. We first mention that there is no
feasible network plan without any overrun of the investment budget. Consequently,
we establish an upper bound on the sum of the granted subsidies written in (16) and
increase it successively by 1, 000 until the problem becomes feasible. This is the case
when we arrive at an allowed overrun of 10, 000 monetary units.

One can see that on the edges (v21598, v21593) and (v24259, v21967) there are
no heating pumps allowed. This information is provided by the network data and
can have, e.g., urban planning reasons. Furthermore, one can see that the edges
(v24227, v24210), (v24210, v21596), (v24210, v21598), and (v21996, v23137) have no
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Figure 3: Optimal network plan for a carbon reduction target of 20% and allowed
10, 000 monetary units overrun of investment budgets.

heat demand, i.e., these are just connecting edges where no consumers are located,
and therefore no MECT is installed on these edges. All other edges choose gas-fueled
MECTs – namely, condensing boilers or combined heat and power units – and therefore
have to be connected to the gas grid. There are four homeowners, (v21598, v24259),
(v24259, v21967), (v20918, v21996), and (v20302, v23136), who stick with the status-
quo technology CB. Interestingly, except (v21598, v24259), these are the homeowners
carrying out more EER – reaching a reduction of the heat demand above 30% –
compared to the homeowners who switched to CHP who do not reduce more than 17%.
In Table 1, one can see that there are only two homeowners, namely (v21598, v24259)

homeowner (i, j) retrofit costs Binv
(i,j)

F inv
(i,j)

homeowner share CO2 reduction
(v21598, v21593) 19,029 15,482 3,547 81.4% 20% ≤ x < 45%
(v21598, v24259) 0 0 0 – x < 20%
(v24259, v21967) 25,111 23,718 1,394 94.5% 20% ≤ x < 45%
(v21967, v20918) 2,855 816 2,039 28.6% x < 20%
(v20918, v21996) 27,076 24,056 3,020 88.8% 20% ≤ x < 45%
(v24259, v20302) 13,136 13,136 0 100% 20% ≤ x < 45%
(v20302, v23136) 14,409 14,409 0 100% 20% ≤ x < 45%
(v23136, v23137) 19,971 19,971 0 100% 20% ≤ x < 45%

Table 1: Retrofit cost analysis requiring a reduction network carbon of emissions of
20% allowing a total of 10, 000 monetary units of subsidies.

and (v21967, v20918), that do not achieve an individual carbon emission reduction
of more than 20%. These are exactly the ones who do not carry out any EER. The
remaining homeowners cover a relatively large share of their retrofit costs on their own
– some even up to 100% of the arising costs.
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In total, this yields a network carbon emission reduction of 20.2% and a cost ob-
jective function value of 19, 172 monetary units for the public sector with additional
10, 000 needed subsidies.

We continue with a network carbon emission target of at least 30%. In order to
obtain feasibility of the optimization problem one has to set the allowed subsidies
to 100, 000 monetary units after increasing it by steps 10, 000. The resulting optimal
network plan is depicted in Figure 4. Again, each of the homeowners chooses an MECT

v23136

v23137

v24227

v24259

v21996

v20302

v21967

v24210

v20918

v21593

v21596

v215980.4

0.4 0.37

0.4

0.37

0.4

0.37 0.63

Gas
Electric
HP not allowed
CB
CHP

Figure 4: Optimal network plan for a carbon reduction target of 30% and allowed
100, 000 monetary units overrun of investment budgets.

which is fueled by gas but only homeowners (v21598, v24259) and (v2459, v20302)
stay with the status quo MECT condensing boiler. Consequently, each consuming
homeowner is connected to the gas grid. All homeowners carry out EER at least up to
a reduction of the heat demand of around 37%. In contrast to the others, homeowner
(v20302, v23136) even starts with second-stage renovation. In contrast to the scenario

homeowner (i, j) retrofit costs Binv
(i,j)

F inv
(i,j)

homeowner share CO2 reduction
(v21598, v21593) 30,931 16,150 14,781 52.1% 20% ≤ x < 45%
(v21598, v24259) 1,519 1,198 321 78.9% 20% ≤ x < 45%
(v24259, v21967) 44,848 24,860 19,988 55.4% 20% ≤ x < 45%
(v21967, v20918) 9,431 6,391 3,040 67.8% 10% ≤ x < 45%
(v20918, v21996) 43,720 25,199 18,522 57.6% 20% ≤ x < 45%
(v24259, v20302) 16,051 13,211 2,840 82.3% 20% ≤ x < 45%
(v20302, v23136) 128,998 101,735 27,263 78.9% 45% ≤ x%
(v23136, v23137) 34,053 20,807 13,246 61.1% 20% ≤ x < 45%

Table 2: Retrofit cost analysis requiring a reduction network carbon of emissions of
30% allowing a total of 100, 000 monetary units of subsidies.

before, each homeowner reaches an individual reduction of carbon emissions of at least
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20% – homeowner (v20302, v23136) even above 45% which can be seen in Table 2.
Furthermore, no single homeowner covers its retrofit on its own but at least a share of
50%.

In total, this yields a network carbon emission reduction of 30% and a cost objective
function value of 18, 019 monetary units for the public sector with additional 100, 000
needed subsidies.

Now, aiming for a network carbon emission reduction of at least 40% the corre-
sponding optimization problem one has to further increase the allowed subsidies. This
occurs when reaching an upper bound of 500, 000 monetary units after successively
increasing by 100, 000. Figure 5 shows the corresponding optimal network plan. Com-

v23136

v23137

v24227

v24259

v21996

v20302

v21967

v24210

v20918

v21593

v21596

v215980.4

0.460.74

0.69

0.4

0.75

0.78 0.63

Gas
Electric
HP not allowed
CB
CHP

Figure 5: Optimal network plan for a carbon reduction target of 40% and an allowed
overrun of investment budgets of 500, 000 monetary units.

pared to the optimal network plan before, we observe that still all homeowners decide
for gas-fueled MECTs, but only homeowner (v21598, v24259) sticks with the status
quo MECT whereas all others change to combined heat and power units. Further,
there are only two homeowners, namely (v21598, v24259) and (v21967, v20918), who
complete first-stage renovations but do not start with the second-stage ones. In Ta-
ble 3, one can see that starting second-stage EER but not reaching a carbon emission
reduction above 45% yields a comparably small own contribution to the retrofit costs
(see homeowner (v21598, v21593)). Furthermore, the more of second-stage EER is
carried out, the smaller the share of the homeowners’ own contribution.

In total, this yields a network carbon emission reduction of 40% and a cost objective
function value of 16, 313 monetary units for the public sector with additional 500, 000
needed subsidies.

If now, the public sector has more subsidies available, say an amount of 1, 000, 000
monetary units, one obtains the optimal network plan depicted in Figure 6. Here,
only the homeowners who are not allowed to build heating pumps, and the connecting
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homeowner (i, j) retrofit costs Binv
(i,j)

F inv
(i,j)

homeowner share CO2 reduction
(v21598, v21593) 62,634 16,411 46,223 26.2% 20% ≤ x < 45%
(v21598, v24259) 1,519 1,198 321 78.9% 20% ≤ x < 45%
(v24259, v21967) 258,237 166,952 91,285 64.7% 45% ≤ x
(v21967, v20918) 10,052 6,414 3,638 63.8% 20% ≤ x < 45%
(v20918, v21996) 301,622 168,649 132,973 55.9% 45% ≤ x
(v24259, v20302) 159,795 91,837 67,958 57.5% 45% ≤ x
(v20302, v23136) 128,998 101,735 27,263 78.9% 45% ≤ x
(v23136, v23137) 270,166 139,826 130,340 51.8% 45% ≤ x

Table 3: Retrofit cost analysis requiring a reduction network carbon of emissions of
40% allowing a total of 500, 000 monetary units of subsidies.
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v21967

v24210
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0.77

0.8

0.74

0.8

0.73 0.8

Gas
Electric
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HP

Figure 6: Optimal network plan for a carbon reduction target of 40% and an allowed
overrun of investment budgets of 1, 000, 000 monetary units.

homeowner decide for condensing boilers whereas the others decide for heating pumps
and therefore no gas grid connection is needed there. One can furthermore observe
that the connecting homeowner (v21598, v24259) is the only one carrying out full
first-stage EER but not starting the second-stage ones. For instance, homeowner
(v23136, v23137) is one of the homeowners deciding for installing a heating pump.
But, compared to the scenario before (cf. Table 3), the share of own contribution to
the proposed retrofit measures decreases significantly (cf. Table 4). Firstly, homeowner
(v23316, v23137) does not reach carbon emission reduction of at least 45%. Secondly,
the energy cost savings decrease compared to the scenario from Table 3. This is due
to the fact that the price as well as the carbon emission per unit of electricity is higher
than the ones of gas in the used network data. Again, this shows particularly the heavy
dependence of the results on the used network data and parameters and therefore
motivates a very careful selection of these parameters for a meaningful analysis of
such networks.
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homeowner (i, j) retrofit costs Binv
(i,j)

F inv
(i,j)

homeowner share CO2 reduction
(v21598, v21593) 207,211 17,053 190,158 8.2% 20% ≤ x < 45%
(v21598, v24259) 1,519 1,198 321 78.9% 20% ≤ x < 45%
(v24259, v21967) 301,953 167,028 134,925 55.3% 45% ≤ x
(v21967, v20918) 73,793 6,198 67,595 8.4% 20% ≤ x < 45%
(v20918, v21996) 345,614 167,808 177,806 48.6% 45% ≤ x
(v24259, v20302) 187,097 91,403 95,694 48.9% 45% ≤ x
(v20302, v23136) 210,371 101,656 108,715 48.3% 45% ≤ x
(v23136, v23137) 245,723 20,935 224,788 8.5% 20% ≤ x < 45%

Table 4: Retrofit cost analysis requiring a reduction network carbon of emissions of
40% allowing a total of 1, 000, 000 monetary units of subsidies.

In total, requiring a network carbon emission reduction of 40% and allowing subsidies
up to 1, 000, 000 monetary units yields an optimal network plan with a total of 12, 033
monetary units of public costs.

Apart from the difficulty of selecting appropriate network parameters like, e.g., ρ1
and ρ2, or the energy prices, we have seen that it is not straightforward to determine
a feasible setting in the single-objective case. That means when requiring a certain
carbon emission reduction it is not easy to determine an upper bound on the allowed
subsidies yielding a feasible problem. Furthermore, in general, the reason for a possible
infeasibility of the problem is not clear: Is it just a too-small upper bound on the
subsidies or is a certain carbon emission reduction simply unattainable due to technical
reasons?

Following a multi-objective approach, some of the above-described issues vanish.
For instance, using costs (17), network carbon emissions

Ecarbon =
∑

(i,j)∈E

Ecarbon after
i,j

relying on (12), and necessary subsidies (16) as objective functions, among others
one obtains the network plans that are the best w.r.t. one of these objectives. In
Figure 7 the optimal compromises between these three objectives with a tolerance of
1% are depicted. Details on the corresponding notions are provided in Appendix A.
In the visualization of the optimal compromises between the objectives in Figure 7
one can see that the network carbon emissions range from a little over 200, 000 to a
little over 120, 000 carbon emission units – resulting in a possible reduction of around
40%. The public sector costs range from a little under 12, 000 to 20, 000 monetary
units. The optimum in carbon emissions is attained with public sector costs around
15, 000 monetary units but one can come pretty close with public sector costs of 12, 000
monetary units. However, approaching the optimum of carbon emissions is strongly
connected to increasing subsidies. More precisely, one can afford a relatively large
carbon emission reduction of around 25% with a comparable small amount of subsidies
while reducing carbon emissions more yields a more or less linear increase in necessary
subsidies until 1, 800, 000 monetary units. These dynamics and relations are way more
easier to see using the multi-objective approach than the single-objective one with
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Figure 7: Optimal compromises between three objectives with a tolerance of 1%.

different constraint parameters. However, computing all depicted optimal compromises
takes around 1, 400 seconds while each of the three single-objective problems above is
solved in at most 20 seconds.

5. Conclusion
In the present paper, we introduce a framework for incorporating a notion of social
acceptance into energy supply network optimization. This notion mainly addresses
what we call micro-decisions of the individual homeowners, namely choosing a local
heating technology and conducting EER measures. Rather than conducting a proper
case study that allows to draw conclusions or give answers in one or another direction,
we focus on the general framework and the different possibilities of including social
acceptance into the model. To this end, we present two different ways – the first
one yields a single-objective optimization problem whereas the second one uses mul-
tiple objective functions. In Section 4, numerical experiments highlighting the (dis-)
advantages of both formulations are discussed. To summarize, one can say that the
single-objective approach outperforms the multi-objective one in computational time

19



as well as in clarity. But if one aims to find out the dynamics between the conflicting
objectives as well as to end up with a broad overview of the situation one should go
for the multi-objective approach.
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A. Basic notions of multi-objective optimization
In the following, we briefly provide basic notions of multi-objective optimization. For a
more detailed introduction, we refer to [10] and to [24] for a more concise but still self-
contained one. Throughout this section, we write x ≤ y for two vectors x, y ∈ Rk if for
any index i ∈ [k] := {1, . . . , k} we have that xi ≤ yi. A multi-objective optimization
problem is given by

min f(x) s.t. x ∈ S, (MOP)

where f = (f1, . . . , fk)
⊤ with fi : S → R for every i ∈ [k], denotes the vector of objec-

tive functions and S ⊆ Rk the feasible set. In general, one cannot assume that there
exists x⋆ ∈ S minimizing all k objective functions simultaneously. Hence, one needs
a suitable optimality concept, namely so-called nondominance or Pareto dominance.
Given two vectors x, y ∈ Rk one says that x dominates y if x ≤ y. This allows to
define the so-called efficient set of (MOP) by

E := {x ∈ S | there exists no x′ ∈ S such that f(x′) dominates f(x)} ,

as well as the so-called nondominated set or Pareto front by

N := {f(x) | x ∈ E} .

The nondominated set can be interpreted as the set of optimal compromises. This
means that for each feature vector f(x) belonging to the nondominated set, one cannot
improve a single feature without worsening another one. In general, multi-objective
optimization algorithms aim to compute an approximation of the nondominated set N .
For instance, in [24], the authors present an algorithm that computes an approximation
of the nondominated set of (MOP) consisting of so-called ε-nondominated points. One
calls a point x ∈ S an ε-nondominated point of (MOP) with respect to a vector e ∈ Rk,
if there exists no x′ ∈ S such that f(x′) + εe dominates f(x), where e = (1, . . . , 1)⊤ ∈
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Rk. Note that one could also use a vector representing the corresponding magnitudes
of the different objective functions in order to get a relative tolerance measure. In
Section 4 of the present work, we use an algorithm very similar to the one in [24]
and therefore also compute so-called ε-nondominated points. Furthermore, we use
the relative tolerance measure respecting differences in the magnitude of the objective
functions.
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