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Abstract

Reducing inefficient truck movements, this research investigates the potential of freight consol-
idation through carrier collaboration. Considering the financial benefits of consolidation and
the additional cost arising from collaboration, we propose a cooperative game to explore under
which circumstances carriers can collaborate. We show that stable cost allocations are not
always possible, affecting stability and thus hindering collaboration, though stability is guar-
anteed under certain conditions. Numerical experiments indicate, however, that sustainable
collaboration is likely outside of the extreme cases.

Keywords: Transportation; Cooperative Game Theory; Freight consolidation; Capacity
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1. Introduction

The rise in e-commerce, generally associated with smaller individual shipment sizes, has led to
an increase in less-than-truckload (LTL) shipping, requiring higher levels of coordination be-
tween shipments in order to keep costs low (Investopedia, 2022b). However, within the dynamic
e-commerce environment, it is often difficult to achieve such high levels of coordination between
orders of a carrier due to short delivery timelines, resulting in inefficient truck movements that
do not make good use of the available capacities. Freight consolidation through carrier collab-
oration offers a promising avenue, in this context, to achieve overall higher shipping volumes
without significantly increasing delivery times (Investopedia, 2022a). Although examples of this
type of collaboration already exist (see, e.g., CT Logistics (2024); Hub Group (2024)), large-
scale implementation is still hampered by a lack of trust as well as other practical challenges that
prevent data and capacity sharing between companies (Basso et al., 2019; Karam et al., 2021).
Emerging technologies, such as Blockchain or the Internet of Things, are helping to alleviate
some of these challenges by paving the way for improved data sharing, real-time tracking, and
secure and transparent data exchange (Hribernik et al., 2020; Ferrell et al., 2020; DHL, 2022).
Investing in these new technologies can, however, be expensive and thus might hinder possible
collaborations between carriers.
This paper aims to address this issue by investigating under which circumstances carriers are
interested in collaboration, considering both the financial benefits of consolidation and the ad-
ditional costs arising from collaboration. For this purpose, we study a setting where multiple
carriers must deliver to the same final location, passing via several intermediate locations (e.g.,
a hub). In this setting, the carriers can choose to operate independently, solely paying a cost for
every unit of goods transported, or to collaborate, using spare capacity to consolidate shipments
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with other players and achieve better resource utilization. Despite its potential benefits from an
operational perspective, this consolidation may also trigger additional costs as carriers need to
invest in new and often expensive technologies (e.g., secure and transparent data sharing and/or
real-time tracking), pay for insurance, and purchase handling equipment to facilitate the trans-
fer of goods between collaborators. We refer to all these costs as transfer, which include both a
variable and a fixed component, where the former depends on the number of units transferred.
At the same time, the latter presents a more general investment cost that is independent of the
amount of goods shared. Formulating this situation as a cooperative game, we then investigate
under which type of cost structures carrier collaboration is stable. We do this by studying the
core of our game, which presents the set of all allocations that divides the joint costs amongst
the carriers so that no group of carriers has reasons to leave the collaboration. In this context,
we demonstrate that collaboration is not always stable, so some carriers might prefer to leave
the collaboration even if the joint cost reduction is positive (i.e., if the benefits of consolidation
outweigh the initial investment costs). At the same time, however, we show that collaboration
is stable if fixed transfer costs are very low, very high, or symmetric. In addition, our extensive
numerical experiments indicate that collaboration is likely to be sustainable outside of these
extreme cases, although exceptions might exist.

1.1. Some related literature

Given its potential for practice, collaboration in transportation systems has received quite some
attention within the scientific literature (see, e.g., the literature reviews of Pan et al. (2019)
and Ferrell et al. (2020)). This includes the discussion on how parties should compensate each
other financially in case of collaboration, which is usually addressed using cooperative game
theory (Guajardo and Rönnqvist, 2016). In this context, it is common for studies to investigate
the core of the considered cooperative game, corresponding to a specific transport situation in
which different parties collaborate. Examples of such situations are the assignment of demands
to routes owned by collaborators (Hu et al., 2013; Agarwal and Ergun, 2010), the sharing of
vehicle capacity as well as the creation of routes satisfying the joint delivery planning (Lozano
et al., 2013; Özener and Ergun, 2008; Gansterer and Hartl, 2018, 2020). Based on the properties
of the considered situation, some studies focus then on proving core non-emptiness for specific
subclasses (e.g., Agarwal and Ergun (2008); Markakis and Saberi (2003); van Zon et al. (2021)).
In contrast, others present a numerical investigation of the core and its behavior under different
properties (e.g., Lozano et al. (2013); Lai et al. (2022)). Our work combines these two by proving
core non-emptiness for several subclasses while studying its properties numerically outside of
these subclasses.
Outside of the transportation context, the setting in our paper has the most overlap with
commodity flow games (see, e.g., Agarwal and Ergun (2008), and Markakis and Saberi (2003)).
In these games, there is an underlying network in which players own capacity on the arcs and a
set of commodities, for which the transfer of a single unit leads to a player-specific profit. Players
can collaborate by sharing arc capacity and transporting only the most profitable commodities
through the network. Our work differs in this aspect as we assume that players need to transport
all orders. Moreover, instead of maximizing profit, we minimize the cost associated to transport
and transfers, by accounting for a fixed cost that needs to be paid whenever orders are transfered
between parties. This fixed cost can break the collaboration, whereas collaboration is guaranteed
in commodity flow games, which do not incur such fixed costs.

1.2. Outline of the paper

The remainder of the paper is organized as follows. In §2, we introduce the transfer and
transport situation addressed in our paper before introducing the corresponding cooperative
game in §3. In §4, we then explore sufficient conditions that lead to core non-emptiness, while §5
provides the results of a numerical experiment, exploring core non-emptiness based on multiple
parameters. Finally, concluding remarks are provided in §6.
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2. The transfer and transport situation

We consider a transportation environment with a set N ⊆ N of carriers, in which each carrier
i ∈ N needs to transport a specific volume Di ∈ R≥0 between two points, by passing through a
set of points (e.g., a hub location, or a distribution or consolidation center). In this context, we
assume that all carriers travel via the same starting, intermediate, and final points. In practice,
these points do not need to be precisely the same but may be sufficiently close (e.g., in an urban
context, they might be located in the same neighborhood or district of a city). We denote the
set of points by Pf = {1, 2, . . . , n, n + 1} with 1 representing the starting point and n + 1 the
final point, while the remaining points are intermediate points.
In addition, we assume that each carrier i ∈ N has capacity Qp

i ∈ R≥0 available to transport
demand from point p ∈ Pf\{n + 1} to p + 1, and the cost of transporting one unit of volume
equals cpi ∈ R≥0. For notational convenience, we let P = Pf\{n + 1} be the set of points
where transfers can occur since there is no need to transfer volume once the destination has
been reached. Moreover, we assume carriers always have sufficient capacity to serve their own
volume (i.e., Di ≤ Qp

i for all i ∈ N and all p ∈ P ). Yet, instead of transporting their own
volume, carriers may transfer all or part of their volume at any point p ∈ P to another carrier,
depending on available capacity. Transferring between parties, however, incurs costs which need
to be taken into account. We distinguish between two types of transfer costs, namely a variable
cost spij and a fixed cost tpij . In this case, the variable cost refers to the handling costs when
transferring the goods from one truck to another, while the fixed cost presents an investment
cost, e.g., for secure and transparent data sharing and/or real-time tracking. The amount of
volume transferred from carrier i ∈ N to carrier j ∈ N at point p ∈ P is denoted by xpij ∈ R≥0,
whereas the amount of volume that carrier i ∈ N decides to keep and transport to the next
point by itself is denoted by xpii ∈ R≥0. The costs associated with this internal transfer also
consist of a variable component spii ∈ R≥0 and a fixed component tpii ∈ R≥0. Figure 1 presents
a stylized representation of the situation.

Carrier 1

Carrier 2

Carrier 3

Starting point
(p=1)

Intermediate point
(p=2)

Intermediate point
(p=3)

Final point
(p=4)

Figure 1: Representation with three carriers, three transfer points, and the final point, with n = 3. Note that
transfers are not considered at the final point.

It should be noted that our model is also able to deal with situations where some carriers
enter their volume later in the network (e.g., at point 2), which can be integrated by setting
transportation costs and internal variable and fixed transfer costs of these carriers equal to
zero up until their point of entry in the system, while external variable and fixed transfer costs
should be sufficiently high in order to not be considered.
The carriers aim to jointly determine how to transport and transfer the entire volume such that
the associated cost is minimized. This optimization problem, which we will refer to as Problem
(1), can be formulated as the following mixed integer linear programming problem:
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min
∑
p∈P

∑
i∈N

(
cpi
∑
j∈N

xpji +
∑
j∈N

(spjix
p
ji + tpjiz

p
ji)
)

(1a)

s.t.
∑
j∈N

xpji ≤ Qp
i ∀i ∈ N ∀p ∈ P (1b)

∑
j∈N

xpji =
∑
j∈N

xp+1
ij ∀i ∈ N ∀p ∈ P\{n} (1c)

∑
j∈N

x1ij = Di ∀i ∈ N (1d)

xpij ≤ Mzpij ∀i ∈ N ∀j ∈ N ∀p ∈ P (1e)

xpij ∈ R≥0 ∀i ∈ N ∀j ∈ N ∀p ∈ P (1f)

zpij ∈ {0, 1} ∀i ∈ N ∀j ∈ N ∀p ∈ P (1g)

In this formulation, the objective function (1a) aims to minimize the total cost, while con-
straints (1b) represent the available capacity per carrier to transport demand between points.
Constraints (1c) ensure that the entire volume transported by a carrier is transferred to the
next intermediate point, and constraints (1d) enforce that the entire volume of each carrier is
assigned at the starting point. The big-M constraints (1e) ensure that a fixed transfer cost is
paid whenever some positive volume is transfered between carriers, with M ≥

∑
i∈N Di for all

i, j ∈ N and p ∈ P . Finally, all variables are non-negative, and zpij is binary.

We refer to our setting as a transfer and transport situation θ = (N,P,D,Q, c, s, t) with D =
(Di)i∈N , Q = (Qp

i )i∈N,p∈P , c = (cpi )i∈N,p∈P , s = (spij)i∈N,j∈N,p∈P and t = (tpij)i∈N,j∈N,p∈P , and
denote the set of all transfer and transport situations by Θ.
Table 1 presents an overview of all the parameters of θ and variables used.

Table 1: Sets, parameters, and variables

Sets

N Set of carriers
P Set of points

Parameters

Di Demand that carrier i has to deliver
cpi Cost of transporting a unit of demand for carrier i from point p to point p+ 1
Qp

i Transport capacity of carrier i from point p to point p+ 1
spij Variable costs for transferring from carrier i to carrier j at point p

tpij Fixed costs for transferring from carrier i to j at point p

M Big-M (i.e., a sufficiently large number)

Variables

xpij Volume transferred from carrier i to j at point p

zpij 1 if there is a positive volume transferred from carrier i to j at point p, 0 otherwise

Relatively to Problem (1), since there is no cost incentive to transport or transfer more than
needed through the network, it is possible to relax equality constraints (1c) and (1d) of Problem
(1) without changing its optimal value. We describe this formally in Observation 1.

Observation 1. In Problem (1), ”=” constraints (1c) can be relaxed into ”≤” constraints and
”=” constraints (1d) can be relaxed into ”≥” constraints, without changing its optimal value.

From now onwards, when referring to Problem (1), we refer to the optimization problem in
which constraints (1c) and (1d) are replaced by inequality constraints (as in Observation 1).
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In the following, we present an illustrative example of our setting, for which the parameters do
not necessarily represent reality but are selected to keep calculations simple and easy to follow.

Example 1. Consider a transfer and transport situation θ ∈ Θ with N = {1, 2, 3}, P = {1, 2},
and the remaining parameters being equivalent to the values shown in Table 2.

Table 2: Parameters of the problem of Example 1.

i 1 2 3

Di 6 4 3
(a) Carriers’ demands

Qp
i i =1 2 3

p=1 7 8 7

2 7 6 7
(b) Carriers’ capacities

cpi i = 1 2 3

p = 1 6 1 9

2 9 2 4
(c) Carriers’ costs

t1ij , s
1
ij j =1 2 3

i =1 0,0 4,2 6,1

2 9,4 0,0 7,1

3 5,4 5,3 0,0
(d) Fixed and variable costs on the first point

t2ij , s
2
ij j =1 2 3

i =1 0,0 6,4 9,4

2 5,4 0,0 5,3

3 9,3 5,2 0,0
(e) Fixed and variable costs on the second point.

Using a standard solver package for solving integer linear programming problems, we can find
an optimal solution for this problem with an objective value of 120. We present this solution
in Table 3 and illustrate it visually in Figure 2.

Table 3: Optimal solution of the problem in Example 1.

x1ij j =1 2 3

i =1 2 4 0

2 0 4 0

3 0 0 3

z1ij j =1 2 3

i =1 1 1 0

2 0 1 0

3 0 0 1

x2ij j =1 2 3

i =1 2 0 0

2 0 6 2

3 0 0 3

z2ij j =1 2 3

i =1 1 0 0

2 0 1 1

3 0 0 1

Carrier 3

Carrier 2

Carrier 1

3

4

2

4(12)

3
(27)

8
(8)

2
(12)

3

6

2

2(11)

5

6

2

(20)

(12)

(18)

Point 1 Point 2

Figure 2: Optimal solution graph of Example 1. The numbers without brackets represent the volume flow, and
the numbers within brackets represent the costs related to that flow, which are omitted if there is no cost.

If the carriers decide to transport their volume individually, carrier 1 ends up with a cost of
90 (i.e., 6 · (6 + 9)), carrier 2 with a cost of 12 (i.e., 4 · (1 + 2)) and carrier 3 with a cost of 39
(i.e., 3 · (9 + 4)). Carriers can thus benefit from collaborating (i.e., transferring their volume to
others), as 90 + 12 + 39 > 120. △

This example demonstrates that carriers can benefit from coordinating transport. However, to
sustain such a collaboration, it is important that the associated costs (e.g., the 120 of Example
1) are allocated in a stable way (i.e., in a way that sustains the collaboration). In the upcoming
section, we use cooperative game theory to study this cost allocation problem.
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3. The cooperative game

We now associate to each transfer and transport situation θ ∈ Θ a transferable utility cooper-
ative game (N,Cθ). We call this game the Cooperative Transporting and Transferring (CTT)
game. In this game, N denotes the set of carriers, which we will now refer to as players, and
Cθ : 2N → R denotes the characteristic cost function associating a real value to any coalition
S ⊆ N , representing a subset of players. This cost function Cθ(S) reflects the optimal cost
value that can be achieved when the players in S decide to cooperate, i.e., the optimal value
of Problem (1) restricted to the players participating in coalition S. Defining Cθ(∅) = 0, and
coalition S ⊆ N,S ̸= ∅, we then obtain the following formulation based on the logic of Problem
(1) and the result of Observation 1:

Cθ(S) = min
∑
p∈P

∑
i∈S

(
cpi
∑
j∈S

xpji +
∑
j∈S

(spjix
p
ji + tpjiz

p
ji)
)

(2a)

s.t.
∑
j∈S

xpji ≤ Qp
i ∀i ∈ S ∀p ∈ P (2b)

∑
j∈S

xpji ≤
∑
j∈S

xp+1
ij ∀i ∈ S ∀p ∈ P\{n} (2c)

∑
j∈S

x1ij ≥ Di ∀i ∈ S (2d)

xpij ≤ Mzpij ∀i ∈ S ∀j ∈ S ∀p ∈ P (2e)

xpij ∈ R+ ∀i ∈ S ∀j ∈ S ∀p ∈ P (2f)

zpij ∈ {0, 1} ∀i ∈ S ∀j ∈ S ∀p ∈ P (2g)

The central question in this paper is whether Cθ(N) can be allocated in a stable way amongst
the players. In the literature, it is common to address this question by investigating the core of
the associated game, as the core represents the set of allocations for which no individual player,
nor a group of players (i.e., coalition) has incentives to break from the grand coalition (Shapley
et al., 1965). For our CTT game, the core is defined as:

C (N,Cθ) =
{
u ∈ RN |

∑
i∈N

ui = Cθ(N),
∑
i∈S

ui ≤ Cθ(S) ∀S ⊆ N, S ̸= ∅
}
. (3)

Example 2 shows a CTT game with an allocation in the core.

Example 2. Reconsidering the setting of Example 1, we know the value of Cθ({1}), Cθ({2}),
Cθ({3}), and Cθ(N) from the example. To determine the values of Cθ({1, 2}), Cθ({1, 3}), and
Cθ({2, 3}), we solve the associated optimization problem (see Problem (2)). The values of the
characteristic cost function are presented in Table 4, with the corresponding solutions reported
in Appendix A. We obtain u = (80, 5, 35) ∈ C (N, cθ)) and so the core is non-empty.

Table 4: Coalitional costs for the problem of Example 1.

S 1 2 3 1,2 1,3 2,3 N

Cθ(S) 90 12 39 86 129 42 120

△

However, not all CTT games have a non-empty core, which we demonstrate in Example 3.

Example 3. Consider a transfer and transport situation θ ∈ Θ with N = {1, 2, 3}, P = {1, 2},
and the other parameter settings as shown in Table 5.
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Table 5: Parameters of the problem of Example 3

i 1 2 3

Di 3 3 6
(a) Carriers’ demands

Qp
i 1 2 3

l = 1 7 7 9

2 6 5 9
(b) Carriers’ capacities

cpi 1 2 3

1 9 7 2

2 2 8 6
(c) Carriers’ costs

t1ij , s
1
ij j =1 2 3

i =1 0,0 9,4 5,1

2 7,2 0,0 7,2

3 8,1 8,2 0,0
(d) Fixed and variable costs on the first point

t2ij , s
2
ij j =1 2 3

i =1 0,0 7,2 8,4

2 5,1 0,0 8,4

3 4,1 7,2 0,0
(e) Fixed and variable costs on the second point.

S 1 2 3 1,2 1,3 2,3 N

Cθ(S) 33 45 48 68 66 85 110

Table 6: Coalitional values for the empty core example

The coalitional values for this example are reported in Table 6, while the solutions of the
associated optimization problem per coalition are reported in Appendix B.
Suppose now that C (N,Cθ) ̸= ∅, and u ∈ C (N,Cθ). Then by stability and efficiency, we know
that ui ≥ Cθ(N) − Cθ(N\{i}) for all i ∈ N . Hence, u1 ≥ c(N) − c({2, 3}) = 110 − 85 =
25, u2 ≥ c(N) − c({1, 3}) = 110 − 66 = 44 and u3 ≥ c(N) − c({1, 2}) = 110 − 68 = 42. Thus
u1 + u2 + u3 ≥ 25 + 44 + 42 = 111 > 110, which is a contradiction. Therefore, the core is
empty. △

Example 3 thus illustrates that a stable allocation of the joint costs is not always possible,
which may hinder potential collaboration.

4. Sufficient conditions for core non-emptiness

Given that the core of our CTT game can be empty, we now focus on identifying sufficient
conditions for which the core of CTT games is non-empty.

4.1. No fixed transfer costs

We start with a special class of transfer and transport situations ΘNF ⊂ Θ, namely the ones
without fixed transfer costs, i.e., tpij = 0 for all i, j ∈ N and p ∈ P . Note that for any θ ∈ ΘNF ,
constraints (2e) and variables (zpij)i,j∈N, p∈P are redundant. It turns out that any CTT game

(N,Cθ) with θ ∈ ΘNF can be recognized as a so-called linear production game. In a linear
production game, there is a group of players N ⊆ N with each player i ∈ N owning a vector

bi = (bij)
|R|
j=1 ∈ R|R| of resources, with R the set of resources. The resources are used to produce

a set K of products, with pk ∈ R being the price of product k ∈ K, and matrix A ∈ R|R|×|K|

representing the number and type of resources needed to produce specific products. Instead
of working independently, players can bundle their resources and make products together. If a
coalition S ⊆ N decides to bundle resources, the profit is given by

vLP (S) = max
∑
k∈K

pkyk s.t.
∑
k∈K

ajkyk ≤
∑
i∈S

bij for all j ∈ R and y ∈ R|K|
≥0 (4)

Proposition 1. Every CTT game (N,Cθ) with θ ∈ ΘNF is a linear production game.

Proof. First, we show that our game (N,CθNF ) is equivalent to game (N, c′) with the following
formulation for all S ⊆ N ,
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c′(S) = min
∑
p∈P

∑
i∈N

(
cpi
∑
j∈N

xpji +
∑
j∈N

spjix
p
ji

)
(5a)

s.t.
∑
j∈N

xpji ≤ Qp
i IS(i) ∀i ∈ N ∀p ∈ P (5b)

∑
j∈N

xpji ≤
∑
j∈N

xp+1
ij ∀i ∈ N ∀p ∈ P\{n} (5c)

∑
j∈N

x1ij ≥ DiIS(i) ∀i ∈ N (5d)

xpij ∈ R+ ∀i ∈ N ∀j ∈ N ∀p ∈ P, (5e)

where IS(i) is an indicator function, i.e., IS(i) = 1 if i ∈ S and 0 otherwise. To show equiva-
lence, we first prove that for the optimization problem of coalition S ⊆ N of game (N, c′) we
have xpij = 0 if i /∈ S or j /∈ S for all i, j ∈ N and all p ∈ P . From constraints (5b), we learn

that
∑
j∈N

xpji ≤ 0 for all i /∈ S and all p ∈ P . Combined with the fact that all variables are

non-negative, we can thus conclude that xpij = 0 if j ̸∈ S for all i ∈ N and all p ∈ P . Next, to
show that xpij = 0 if i ̸∈ S for all j ∈ N and all p ∈ P , we use that the optimization problem
of coalition S in game (N, c′) is a special instance of Problem (1), with Di = 0 for all i ̸∈ S
and Qp

i = 0 for all i ̸∈ S and all p ∈ P . Since the optimization problem is a special instance
of Problem (1), we can apply Observation 1, implying that inequalities (5c) and (5d) can be
considered as equality constraints. Using this, we will first show that x1ij = 0 if i ̸∈ S for all
j ∈ N and subsequently that xpij = 0 if i ̸∈ S for all j ∈ N and all p ∈ P\{1}. By formulating

constraints (5d) as equality constraints, we learn that x1ij = 0 if i ̸∈ S for all j ∈ N . Similarly,

by reformulating constraints (5c) as equality constraints, knowing that xp−1
ji = 0 if i ̸∈ S for all

j ∈ N and all p ∈ P\{1}, we observe immediately that xpij = 0 if i ̸∈ S for all j ∈ N and all
p ∈ P\{1}.
Hence, xpij = 0 if i ̸∈ S or j ̸∈ S for all i, j ∈ N . Consequently, there is no need to consider
these variables and we can thus replace all N ’s by S’s in the optimization problem of c′(S). As
this renders the indicator function obsolete, the optimization problem of c′(S) coincides with
the one of cθ(S). That is, game (N, cθNF ) and (N, c′) are equivalent.

Next, we observe that game (N, c′) can be recognized as a linear production game if (i) the
objective function is multiplied with a minus sign, (ii) the minimization problem is replaced
by a maximization problem, (iii) the constraints are presented in standard form, and (iv) the
following resource vectors (bi)i∈N with bi = ((bi,1j,p)j∈N, p∈P , (b

i,2
j,p)j∈N, p∈P\{n}, (b

i,3
j )j∈N ) for all

i ∈ N and

bi,1j,p =

{
Qp

i if i = j
0 otherwise

for all j ∈ N and all p ∈ P

bi,2j,p = 0 for all j ∈ N and all p ∈ P\{n}

bi,3j =

{
−Di if i = j
0 otherwise.

for all j ∈ N

are considered. Note, vector (bi,1j,p)j∈N, p∈P refers, in this case, to constraints (5b), while (bi,2j,p)j∈N, p∈P\{n}

refers to constraints (5c), and (bi,3j )j∈N refers to constraints (5d) for all i ∈ N . Consequently,

game (N, c′) is a linear production game. Moreover, as game (N,Cθ
NF ) and game (N, c′) are

equivalent, game (N,Cθ
NF ) is also a linear production game, which concludes this proof.

We want to stress that this result is not a direct consequence of the fact that the optimization
problem of a coalition is a linear programming problem, like the linear programming problem

8



in a linear production game. For instance, in a linear production game, the size of the objective
does not depend on the size of the coalition, while it does in CTT games.
Given that all CTT games (N,Cθ) with θ ∈ ΘNF are linear production games, we can now apply
properties of linear production games within our context. More precisely, from Owen (1975),
we know that the Owen set is a subset of the core of linear production games corresponding
to the set of optimal solutions of the dual of the grand-coalition problem. The dual of the
grand-coalition problem for our CTT game reads,

max
∑
i∈N

(Diηi)−
∑
i∈N

∑
p∈P

(Qp
i γ

p
i ) (6a)

s.t. φp−1
j − φp

i − γpi ≤ cpi + spji ∀i ∈ N ∀j ∈ N ∀p ∈ P\{1, n} (6b)

φn−1
j − γni ≤ cni + snji ∀i ∈ N ∀j ∈ N (6c)

ηj − φ1
i − γ1i ≤ c1i + s1ji ∀i ∈ N ∀j ∈ N (6d)

γpi , φ
p
i , ηi ∈ R+ ∀i ∈ N ∀p ∈ P (6e)

where any optimal solution (Diηi −
∑

p∈P (Q
p
i γ

p
i ))i∈N with ηi, γi for i ∈ N derived from solving

the dual formulation in Problem (6), presents a core element of (N, cθ) with θ ∈ ΘNF . We can
interpret ηi as the price a carrier i needs to pay for each unit of demand shipped, γi as a discount
received for the capacity provided by carrier i to support the coalition, while φp

i represents how
price and discounts are transferred among carriers given their costs and capacities.

4.2. Unlimited fixed transfer cost

In addition to games without fixed transfer costs, we also explore a class of transfer and transport
situations θUTC ⊂ Θ for which tpij > Di ·

∑
p∈P (c

p
i + spii) +

∑
p∈P tpii for all i, j ∈ N with i ̸= j

and all p ∈ P , i.e., where the fixed transfer costs are extremely high compared to the transport
costs. Because these transfer costs are so high, there is no reason for carriers to transfer units
amongst each other. As a consequence, every carrier is transporting its own demand. This also
leads to a CTT game for which the core is non-empty.

Proposition 2. Let θ ∈ ΘUTC . Then, the corresponding CTT game has a non-empty core.

Proof. Let the cost for a carrier to transport its own volume, i.e., Di
∑

p∈P (c
p
i + spii)+

∑
p∈P tpii,

be less than any tpij . In that case, transferring some units is more expensive than dispatching
the whole demand on the carrier-owned route. This leads to an optimal solution xpii = Di and
xpij = 0 for all i, j ∈ N with i ̸= j and all p ∈ P . Therefore, according to Problem (2),

Cθ(S) =
∑
i∈S

(Di

∑
p∈P

cpi ) =
∑
i∈S

C({i})

It is evident that (ui)i∈N = (C({i}))i∈N is a core allocation according to (3).

We want to stress that a similar argument can be used to argue that a CTT game with extremely
high variable transfer costs has a non-empty core.

4.3. Unlimited capacity with equal fixed and variable transfer costs

Finally, we discuss a class of transfer and transport situations ΘUCETC ⊂ Θ for which Qp
i >∑

i∈N Di for all p ∈ P and tpij = tpi′j′ and spij = spi′j′ for all i, i′, j, j′ ∈ N and all p ∈ P . This
describes a situation where due to the lack of capacity restrictions, in combination with the
equal (fixed and variable) transfer costs, the entire volume will follow the same transfer policy
after consolidation at point 1.

Proposition 3. Let θ ∈ ΘUCETC . Then, the corresponding CTT game has a non-empty core.
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Proof. Let S ⊆ N , while, for notational convenience, we denote the fixed transfer cost by t̄ and
the variable transfer cost by s̄. Then,

cθ(S) = (|S|+|P |−1)t̄+

(∑
i∈S

Di

)s̄|P |+
∑
p∈P

min
i∈S

cpi ,


which results from the fact that the entire volume is transferred to one carrier at point 1 and
stays consolidated until the final point. Note that this consolidated flow might (of course) be
transported by different carriers depending on the transport costs between points. We will show
that the core is non-empty by proving that vector u = (ui)i∈N is in the core, with

ui =

(
1 +

|P |−1

|N |

)
t̄+Di

s̄|P |+
∑
p∈P

min
i∈N

cpi

 .

First, we can observe that x is efficient since

∑
i∈N

ui =
∑
i∈N

(1 + |P |−1

|N |

)
t̄+Di

s̄|P |+
∑
p∈P

min
i∈N

cpi

 = cθ(N).

Next, we can observe for S ⊆ N

∑
i∈S

ui =
∑
i∈S

(1 + |P |−1

|N |

)
t̄+Di

s̄|P |+
∑
p∈P

min
i∈N

cpi


= |S|t̄+ |S|

|N |
|(P |−1)t̄+

(∑
i∈S

Di

)s̄ · |P |+
∑
p∈P

min
i∈N

cpi


≤ |S|t̄+ (|P |−1)t̄+

(∑
i∈S

Di

)s̄|P |+
∑
p∈P

min
i∈S

cpi


= cθ(S),

(7)

where the inequality follows from
|S|
|N |

≤ 1 and min
i∈N

cpi ≤ min
i∈S

cpi for all p ∈ P .

In this case, we have not only seen that the core is non-empty, but we have found a core
allocation based on the optimal path of each carrier and a division of the fixed costs.

5. Numerical experiments

In the previous section, we investigated sufficient conditions for core non-emptiness. In partic-
ular, we showed that the core is non-empty when the fixed transfer costs are very low, very
high, or symmetric. In this section we will investigate how much we can generalize core non-
emptiness when these conditions are not met. In the following, we first explain how we construct
the instances used for our experiments, specifying the parameters and the related transfer and
transport situations before presenting the results of these experiments in §5.2.

5.1. Instance design

For our experiments, we randomly generate instances with three, four, or five carriers (i.e., |N |∈
{3, 4, 5}) that need to transport their volume via three, four, or five points (i.e., |P |∈ {3, 4, 5}).
In this context, we assume that carriers can operate in two types of markets:

10



• A symmetric market, where all carriers need to transport demand volume drawn from
the same probability distribution; in our case, we set Di ∼ D = U[80, 120] for all i ∈ N .
In this case, all carriers have, on average, the same presence in the market.

• A market with a dominant carrier, where one carrier i∗ ∈ N , referred to as the
dominant carrier transports on average around 50% of the total demand volume, so that
Di∗ ∼ (|N |−1) · D, while the demand volume of all other carriers follows the probability
distribution D as proposed in the symmetric market. In this way, we can study the impact
of an asymmetric market on core non-emptiness.

Moreover, to observe the impact of capacity on core non-emptiness, we consider instances that
range from settings where each carrier has sufficient capacity to serve all the demand to set-
tings where each carrier has little or no space to serve extra demand. As such, to obtain
the capacity Qp

i of carrier i ∈ N between points p ∈ P and p + 1, we first draw a number
from the demand distribution D and subsequently multiply this with a capacity ratio, which is
cap-r ∈ {1.1, 1.25, 1.5, 2, 2.5, 3, 6}. A low capacity ratio of cap-r = 1.1 would reflect a setting
where each carrier has little or no space to transport additional volumes, while a capacity ratio
of cap-r = 6 would reflect the case where each carrier can serve the entire volume in the sys-
tem. To avoid infeasibility, we set the generated demand of a carrier as a lower bound, so that
Qp

i ∼ max{Di,D · cap-r} for all i ∈ N and p ∈ P .

To investigate the impact of different cost structures on core non-emptiness, we consider variable
transfer costs as a reference and propose two ratio parameters that relate transportation costs
with variable transfer costs and fixed transfer costs with both demand and variable transfer
costs. To generate the variable costs of transferring one unit of volume from i to j at point
p ∈ P , we draw a number spij ∼ S = U[80, 120] for all i, j ∈ N and p ∈ P . Next, to generate
cpi , which represents the cost of transporting one unit of volume of carrier i ∈ N from p ∈ P to
p+ 1, we draw a number from S and multiply this value with a ratio trans-r ∈ {1, 10, 100}, so
that cpi ∼ trans-r · S for all i ∈ N and all p ∈ P . Differently from the transportation costs, we
want to scale the fixed transfer costs to both the variable transfer costs and the demands. Thus,
to generate tpij , i.e., the fixed transfer costs of transferring volume from i to j at point p ∈ P , we
multiply a number in the interval of the variable transfer cost (i.e., spij ∼ S) with a number in
the interval of the demand within a symmetric market (i.e., Di ∼ D) and subsequently multiply
this with a ratio fix-r ∈ {0.1, 1, 10, 100, 1000, 10000, 1000000}, so that tpij ∼ fix-r · S · D for all
i, j ∈ N and all p ∈ P . Furthermore, we consider two special cases for the fixed transfer costs
while referring to the one we have described so far as the “Standard” scenario:

• No internal fixed transfer cost, i.e., the setting with tpii = 0 for all i ∈ N and p ∈ P ,
while all other fixed transfer costs are generated in the same way as described earlier.
This describes the case where no extra investment is needed for internal transfering. We
call this scenario “No internal”.

• A group discount, which reflects a setting where carriers already collaborate and, thus,
the fixed transfer costs associated with them might be lower. To account for this, we
randomly divide the group of carriers N into two subgroups N1, N2, with N1 ∪ N2 = N
and |N1|= ⌈|N |/2⌉. Within the two groups, N1 and N2, we reduce the fixed transfer cost
between each pair of carriers, tpij with 50%. Formally, for all i, j ∈ N1, all i, j ∈ N2 and
all p ∈ P , we set tpij ∼ 1/2 · fix-r · S ·D. We assume that all other fixed transfer costs are
generated in the same way as before. We call this scenario “Group discount”.

Table 7 presents an overview of the configurations used to generate the instances for our exper-
iments. We create one instance for each possible combination of parameters in Table 7.
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Table 7: Parameter configurations used for our experiments.

Experimental Parameter Values

Number of carriers 3, 4, 5

Number of points 3, 4, 5

Demand distribution Symmetric, Big carrier

Fixed cost ratio (fix-r) 0.1, 1, 10, 100, 1000, 10000, 100000

Transportation cost ratio (trans-r) 1, 10, 100

Internal fixed costs scenario Standard, No internal, Group

Capacity ratio (cap-r) 1.1, 1.25, 1.5, 2, 2.5, 3, 6

5.2. Results

In Figure 3, we present in white bars the frequency of instances for which C(N) <
∑

i∈N C({i}),
which we refer to as “real collaborations”, and in the yellow bars we present the percentage of
these real-collaboration instances for which the core is non-empty. Based on this, we observe
that the majority of games with real collaboration have a non-empty core, with the highest per-
centage (99.9%) observed for instances with a fix-r ratio equal to 0.1 and the lowest percentage
(73.55%) observed for a capacity ratio of 2.5. These numbers indicate that stable collaborations
are still very likely, even without very low, very high, or symmetric fixed transfer costs. At the
same time, the impact of the number of carriers, the number of points, the transportation cost
ratio, and the market type seems to be minor in comparison to the impact of the capacity, the
fixed transfer costs as well as the considered fixed transfer cost scenarios on both real collabo-
rations as well as the frequency of non-empty cores.
Investigating the impact of capacity in more detail, we first observe a decrease in core non-
emptiness (from 99.75% to 73.55%) as capacity increases. This is followed by an increase,
which peaks at 94.5% for the case where each carrier has sufficient capacity to serve all demand
(cap-r = 6). These numbers indicate that the more extreme cases provide more stable con-
ditions for real collaboration, while the range in between creates conditions in which a stable
collaboration is less likely. The underlying reasoning for this drop might be that some coalitions
can transport their volume over the network without suffering from capacity constraints, while
others do not. That is, some coalitions find an optimal transport solution for which none of the
capacity constraints are binding, while for other coalitions some of these capacity constraints
are binding. Consequently, the coalitions without binding capacity constraints benefit more
from the collaboration than the others, which can break stability. This effect disappears when
capacity becomes sufficiently large (cap-r = 6) or very tight (cap-r = 1.1).
Focusing on different transfer cost settings, we observe that the absence of internal fixed transfer
costs considerably reduces the frequency of real collaborations (22.41% of the cases instead of
99.36% and 98.94%), in comparison to the “Standard” and “Group discount” scenarios. This
relatively low frequency of real collaborations follows from the fact that transporting volume
individually (which is not a real collaboration) is often cheaper. Despite real collaborations be-
ing sparse whenever no internal fixed transfer costs are considered, the core is often non-empty
in case of real collaborations with higher probabilities than in the “Standard” and “Group dis-
count” scenarios (99.66% instead of 87.68% and 86.25%, respectively). Looking in more detail
at the fixed costs ratio, we observe a decrease in the frequency of core non-emptiness as well
as real collaborations as fix-r increases, i.e., the core is non-empty in 99.9% of the cases for
fix-r = 0.1 and drops to 80.93% for fix-r = 100, 000, and real collaborations drop from 88.71%
for fix-r = 0.1 to 65.7% for fix-r = 1000. This is, however, not true if we only focus on the
fixed cost scenario ”No internal”. This is illustrated in Figure 4, where we present the results
separated by the considered fixed cost ratio scenarios, i.e., “Standard”, “Group” and “No in-
ternal”, while using a more detailed scale of fix-r (i.e., we reran our experiments with a more
detailed scale of fix-r ranging between 0.1 and 100). From Figure 4, we learn that the decrease
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Figure 3: Non-additive games (white bar) and non-empty core (yellow bar) frequencies in the first experiment.

in core non-emptiness is only caused by the fixed cost scenario ”Standard” and ”Group”, while
the frequency of core non-emptiness for the fixed cost scenario ”No Internal” is always above
95% and relatively stable.
In summary, the numerical experiments indicate that collaboration is very likely, even without
very low, very high, or symmetric fixed transfer costs. However, exceptions exist, most often
due to partial capacity restrictions.
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Figure 4a: Fixed cost ratio (fix-r) with internal fixed cost scenario “Standard”
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Figure 4b: Fixed cost ratio (fix-r) with internal fixed cost scenario “No internal”
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Figure 4c: Fixed cost ratio (fix-r) with internal fixed cost scenario “Group”

Figure 4: Comparison of the impact of fix-r between the three discount scenarios.

6. Concluding remarks

In this paper, we studied a setting where multiple carriers deliver to the same final location and
thus may decide to collaborate, sharing the costs of shipping and transferring, including fixed
costs arising from potential investments. In this context, we show that a stable allocation of
the joint costs is not always possible, which affects stability and thus may hinder collaboration.
However, stability is guaranteed when fixed transfer costs are very low, very high, or symmetric.
Via numerical experiments, we discover furthermore that collaboration is very likely to be
sustainable outside of these extreme cases, although exceptions may exist, most likely related
to capacity restrictions.
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Appendix A. Coalitional solutions of Example 2

We repeat in Table A.8 the parameters of the CTT game of Example 2, which are the ones of
Example 1.

Table A.8: Parameters of the problem of Examples 1 and 2.

i 1 2 3

Di 6 4 3
(a) Carriers’ demands

Qp
i i =1 2 3

p=1 7 8 7

2 7 6 7
(b) Carriers’ capacities

cpi i = 1 2 3

p = 1 6 1 9

2 9 2 4
(c) Carriers’ costs

t1ij , s
1
ij j =1 2 3

i =1 0,0 4,2 6,1

2 9,4 0,0 7,1

3 5,4 5,3 0,0
(d) Fixed and variable costs on first point

t2ij , s
2
ij j =1 2 3

i =1 0,0 6,4 9,4

2 5,4 0,0 5,3

3 9,3 5,2 0,0
(e) Fixed and variable costs on second point.

In Table 4, we represent the coalitional costs of the cooperative game in Example 2. We de-

scribe here the solutions leading to those costs. We know that C({i}) =
∑
p∈P

((spii + cpi )Di + tpii).

Therefore,
C({1}) = (0 + 6) · 6 + 0 + (0 + 9) · 6 + 0 = 90,
C({2}) = (0 + 1) · 4 + 0 + (0 + 2) · 4 + 0 = 12, and
C({3}) = (0 + 9) · 3 + 0 + (0 + 4) · 3 + 0 = 39.
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For coalition S = {1, 2}:
x111 = 4, x112 = 2, x121 = 0, x122 = 4,
x211 = 4, x212 = 0, x221 = 0, x222 = 6,
z111 = 1, z112 = 1, z121 = 0, z122 = 1,
z211 = 1, z212 = 0, z221 = 0, z222 = 1.
So∑
p∈P

∑
i∈S

∑
j∈S

(
(cpi +spji)x

p
ji+tpjiz

p
ji

)
= (s112 ·x112+t112)+(c11∗

∑
j∈S

x1j1)+(c12∗
∑
j∈S

x1j2)+(c21∗
∑
j∈S

x2j1)+

(c22 ∗
∑
j∈S

x2j2) = (2 · 2 + 4) + (6 · 4) + (1 · 6) + (9 · 4) + (2 · 6) = 86.

For coalition S = {1, 3}:
x111 = 6, x113 = 0, x131 = 0, x133 = 3,
x211 = 6, x213 = 0, x231 = 0, x233 = 3,
z111 = 1, z113 = 0, z131 = 0, z133 = 1,
z211 = 1, z213 = 0, z231 = 0, z233 = 1.
So∑
p∈P

∑
i∈S

∑
j∈S

(
(cpi + spji)x

p
ji + tpjiz

p
ji

)
= (c11 ·

∑
j∈S

x1j1) + (c13 ·
∑
j∈S

x1j3) + (c21 ·
∑
j∈S

x2j1) + (c23 ·
∑
j∈S

x2j3) =

(6 · 6) + (9 · 3) + (9 · 6) + (4 · 3) = 129.

For coalition S = {2, 3}:
x122 = 4, x123 = 0, x132 = 2, x133 = 1,
x222 = 6, x223 = 0, x232 = 0, x233 = 1,
z122 = 1, z123 = 0, z132 = 1, z133 = 1,
z222 = 1, x223 = 0, z232 = 0, z233 = 1.
So∑
p∈P

∑
i∈S

∑
j∈S

(
(cpi +spji)x

p
ji+ tpjiz

p
ji

)
= (s132 ·x132+ t132)+(c12 ·

∑
j∈S

x1j2)+(c13 ·
∑
j∈S

x1j3)+(c22 ·
∑
j∈S

x2j2)+

(c23 ·
∑
j∈S

x2j3) = (3 · 2 + 5) + (1 · 6) + (9 · 1) + (2 · 6) + (4 · 1) = 42.

For coalition S = {1, 2, 3}:
x111 = 2, x112 = 4, x113 = 0, x121 = 0, x122 = 4, x123 = 0, x131 = 0, x132 = 0, x133 = 3,
x211 = 2, x212 = 0, x213 = 0, x221 = 0, x222 = 6, x223 = 2, x231 = 0, x232 = 0, x233 = 3,
z111 = 1, z112 = 1, z113 = 0, z121 = 0, z122 = 1, z123 = 0, z131 = 0, z132 = 0, z133 = 1,
z211 = 1, z212 = 0, z213 = 0, z221 = 0, z222 = 1, z223 = 1, z231 = 0, z232 = 0, z233 = 1.
So∑
p∈P

∑
i∈S

∑
j∈S

(
(cpi + spji)x

p
ji + tpjiz

p
ji

)
= (s112 · x112 + t112) + (s223 · x223 + t223) + (c11 ·

∑
j∈S

x1j1) + (c12 ·∑
j∈S

x1j2) + (c13 ·
∑
j∈S

x1j3) + (c21 ·
∑
j∈S

x2j1) + (c22 ·
∑
j∈S

x2j2) + (c23 ·
∑
j∈S

x2j3) = (2 · 4 + 4) + (3 · 2 + 5) +

(6 · 2) + (1 · 8) + (9 · 3) + (9 · 2) + (2 · 6) + (4 · 5) = 120.

Appendix B. Coalitional solutions of Example 3

We repeat in Table B.9 the parameters of the CTT game of Example 3.
In Table 6 we represent the coalitional costs of the cooperative game in Example 3. We describe
here the solutions leading to those costs.

We know that C({i}) =
∑
p∈P

((spii + cpi )Di + tpii). Therefore,

C({1}) = (9 · 3) + (2 · 3) = 33,
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Table B.9: Parameters of the problem of Example 3

i 1 2 3

Di 3 3 6
(a) Carriers’ demands

Qp
i 1 2 3

l = 1 7 7 9

2 6 5 9
(b) Carriers’ capacities

cpi 1 2 3

1 9 7 2

2 2 8 6
(c) Carriers’ costs

t1ij , s
1
ij j =1 2 3

i =1 0,0 9,4 5,1

2 7,2 0,0 7,2

3 8,1 8,2 0,0
(d) Fixed and variable costs on first point

t2ij , s
2
ij j =1 2 3

i =1 0,0 7,2 8,4

2 5,1 0,0 8,4

3 4,1 7,2 0,0
(e) Fixed and variable costs on second point.

C({2}) = (7 · 3) + (8 · 3) = 45, and
C({3}) = (2 · 6) + (6 · 6) = 48.

For coalition S = {1, 2}:
x111 = 3, x112 = 0, x121 = 0, x122 = 3,
x211 = 3, x212 = 0, x221 = 3, x222 = 0,
z111 = 1, z112 = 0, z121 = 0, z122 = 1,
z211 = 1, z212 = 0, z221 = 1, z222 = 0.
So∑
p∈P

∑
i∈S

∑
j∈S

(
(cpi +spji)x

p
ji+ tpjiz

p
ji

)
= (s221 ·x221+ t221)+(c11 ·

∑
j∈S

x1j1)+(c12 ·
∑
j∈S

x1j2)+(c21 ·
∑
j∈S

x2j1) =

(1 · 3 + 5) + (9 · 3) + (7 · 3) + (2 · 6) = 68.

For coalition S = {1, 3}:
x111 = 0, x113 = 3, x131 = 0, x133 = 6,
x211 = 0, x213 = 0, x231 = 6, x233 = 3,
z111 = 0, z113 = 1, z131 = 0, z133 = 1,
z211 = 0, z213 = 0, z231 = 1, z233 = 1.
So∑
p∈P

∑
i∈S

∑
j∈S

(
(cpi + spji)x

p
ji + tpjiz

p
ji

)
= (s113 · x113 + t113) + (s231 · x231 + t231) + (c13 ·

∑
j∈S

x1j3) + (c21 ·∑
j∈S

x2j1) + (c23 ·
∑
j∈S

x2j3) = (1 · 3 + 5) + (1 · 6 + 4) + (2 · 9) + (2 · 6) + (6 · 3) = 66.

For coalition S = {2, 3}:
x122 = 0, x123 = 3, x132 = 0, x133 = 6,
x222 = 0, x223 = 0, x232 = 0, x233 = 9,
z122 = 0, z123 = 1, z132 = 0, z133 = 1,
z222 = 0, x223 = 0, z232 = 0, z233 = 1.
So∑
p∈P

∑
i∈S

∑
j∈S

(
(cpi + spji)x

p
ji + tpjiz

p
ji

)
= (s123 · x123 + t123) + (c13 ·

∑
j∈S

x1j3) + (c23 ·
∑
j∈S

x2j3) = (2 · 3+ 7)+

(2 · 9) + (6 · 9) = 85.

For coalition S = {1, 2, 3}:
x111 = 0, x112 = 0, x113 = 3, x121 = 0, x122 = 3, x123 = 0, x131 = 0, x132 = 0, x133 = 6,
x211 = 0, x212 = 0, x213 = 0, x221 = 3, x222 = 0, x223 = 0, x231 = 3, x232 = 0, x233 = 6,
z111 = 0, z112 = 0, z113 = 1, z121 = 0, z122 = 1, z123 = 0, z131 = 0, z132 = 0, z133 = 1,
z211 = 0, z212 = 0, z213 = 0, z221 = 1, z222 = 0, z223 = 0, z231 = 1, z232 = 0, z233 = 1.
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So∑
p∈P

∑
i∈S

∑
j∈S

(
(cpi + spji)x

p
ji + tpjiz

p
ji

)
= (s113 · x113 + t113) + (s221 · x221 + t221) + (s231 · x231 + t231) + (c12 ·∑

j∈S
x1j2) + (c13 ·

∑
j∈S

x1j3) + (c21 ·
∑
j∈S

x2j1) + (c23 ·
∑
j∈S

x2j3) = (1 · 3 + 5) + (1 · 3 + 5) + (1 · 3 + 4) + (7 ·

3) + (2 · 9) + (2 · 6) + (6 · 6) = 110.
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