
A graph-structured distance for heterogeneous datasets
with meta variables ∗†

Edward Hallé-Hannan ‡ Charles Audet § Youssef Diouane ¶

Sébastien Le Digabel ‖ Paul Saves ∗∗

May 20, 2024

Abstract
Heterogeneous datasets emerge in various machine learning or optimization ap-
plications that feature different data sources, various data types and complex
relationships between variables. In practice, heterogeneous datasets are often
partitioned into smaller well-behaved ones that are easier to process. However,
some applications involve expensive-to-generate or limited size datasets, which
motivates methods based on the whole dataset. The first main contribution of
this work is a modeling graph-structured framework that generalizes state-of-the-
art hierarchical, tree-structured, or variable-size frameworks. This framework
models domains that involve heterogeneous datasets in which variables may be
continuous, integer, or categorical, with some identified as meta if their values
determine the inclusion/exclusion or affect the bounds of other so-called decreed
variables. Excluded variables are introduced to manage variables that are either
included or excluded depending on the given points. The second main contri-
bution is the graph-structured distance that compares extended points with any
combination of included and excluded variables: any pair of points can be com-
pared, allowing to work directly in heterogeneous datasets with meta variables.
The contributions are illustrated with some regression experiments, in which the
performance of a multilayer perceptron with respect to its hyperparameters is
modeled with inverse distance weighting and K-nearest neighbors models.
Keywords. Machine learning, numerical optimization, heterogeneous datasets,
distances, meta variables.
AMS subject classifications. 62J02, 62R07, 68P01, 68T09, 90C30

∗GERAD and Department of Mathematics and Industrial Engineering, Polytechnique Montréal.
†DTIS, ONERA and Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, France.
‡edward.halle-hannan@polymtl.ca
§https://www.gerad.ca/Charles.Audet
¶https://www.polymtl.ca/expertises/diouane-youssef
‖https://www.gerad.ca/Sebastien.Le.Digabel

∗∗paul.saves@onera.fr

1

https://www.gerad.ca/en/people/edward-halle-hannan
https://www.gerad.ca/Charles.Audet/
https://www.gerad.ca/en/people/youssef-diouane
https://www.gerad.ca/Sebastien.Le.Digabel/
https://scholar.google.com/citations?user=yVohWjcAAAAJ
mailto:edward.halle-hannan@polymtl.ca
edward.halle-hannan@polymtl.ca
https://www.gerad.ca/Charles.Audet
https://www.polymtl.ca/expertises/diouane-youssef
https://www.gerad.ca/Sebastien.Le.Digabel
mailto:paul.saves@onera.fr
paul.saves@onera.fr


Funding: this research was funded by a Natural Sciences and Engineering Research Council
of Canada (NSERC) PhD Excellence Scholarship (PGS D), a Fonds de Recherche du Québec
(FRQNT) PhD Excellence Scholarship and an Institut de l’énergie Trottier (IET) PhD Excellence
Scholarship, as well as by the NSERC discovery grants RGPIN-2020-04448 (Audet), RGPIN-2024-
05093 (Diouane) and RGPIN-2018-05286 (Le Digabel). The work of Saves is part of the activities of
ONERA - ISAE - ENAC joint research group, and has received funding from the European Union
Horizon Program under grant agreement n◦ 101097120.

1 Introduction
Problems that deal with heterogeneous datasets face inherent challenges that arise from sev-
eral reasons, such as the generation of data from different sources, the presence of various
types of variables , and data with different groups of variables. In heterogeneous datasets,
data may not necessarily share the same variables, and these variables may be of vari-
ous types, i.e., continuous, integer and categorical. In practice, such datasets are often
partitioned into multiple subsets of homogeneous data of similar types that are easier to
tackle: this approach is undesirable when the amount of data is limited or expensive-to-
generate [3, 21, 26]. The main motivation of this work is to exploit all accessible hetero-
geneous data in order to improve the performance of machine learning and data-driven
optimization methods. This paper proposes a modeling framework that simultaneously con-
siders all heterogeneous data and a distance function that compares mixed-variable data that
do not necessarily share the same variables.

1.1 Scope of the work
In the present work, data heterogeneity is intrinsic to the problems addressed. More precisely,
a dataset is generated from points of a domain X that has two characteristics that implies
heterogeneity: 1) it is mixed-variable, i.e., a point x ∈ X is composed of finitely many
variables from any type amongst categorical (cat), integer (int) or continuous (con), and 2)
two points x, y ∈ X do not necessarily share the same variables and/or are not necessarily
subject to same bounds. A point x ∈ X is arbitrary, whereas a data point x(i) ∈ X is a
point that is known and part of a dataset. The form of the dataset depends on the sort of
problem, but it is always related to a domain X . In supervised learning or optimization, a
target function f : X → R is addressed with a dataset {(x(i), f(x(i)))}N

i=1 of N ∈ N data
couples. In unsupervised learning or clustering, the dataset {x(i)}M

i=1 consists of M ∈ N data
points. This works primarily studies domains rather than datasets. The characteristics,
properties and forms of datasets are seen as byproducts of the domains from which they
are generated. Data fusion techniques that integrate multiple data subsets into a single
heterogeneous dataset [14, 39] are not covered.

The particularity that two points in a domain X do not share the same variables, dimen-
sion or bounds is a consequence of the so-called meta variables [7]. These special variables
determine if other variable(s), called decreed, have to be excluded or included in a point of
the domain X , or determine their admissible values. In addition to their variable type, each
variable is assigned a role, such as meta or decreed, that reflects either how it influences the

2



dimension, structure or bounds of the domain X , or how it is subject to the influence of
other variable(s). Variables that neither influence nor are influenced by other variables are
assigned the neutral role, and they are always included in a point. The notion of roles of
variables is taken from the modeling framework introduced in [7]. These roles are further
developed in the present work, notably meta-decreed variables are introduced. These vari-
ables are meta variables whose own inclusions or admissible values are determined by other
meta variables. The roles of variable may be illustrated on a machine learning example in
which the hyperparameters of a multilayer perceptron (MLP) must be chosen, as shown by
the graph structure from Figure 1.

Choice of optimizer

meta
# of hidden layers

meta-decreed

# of units in a layer

decreed

HPs of the optimizer

decreed
Learning rate

neutral

Figure 1: Graph structure for visualizing the roles of variables (hyperparameters) and the influence
between hyperparameters (HPs) in the MLP example.

In the MLP example, the choice of the optimizer is a meta variable that determines
the number of hidden layers that can be selected. Moreover, each optimizer has decreed
variables associated to it, e.g., ADAM is specifically associated with the running average hy-
perparameters. The optimizer is not a meta-decreed variable, since neither its inclusion nor
its admissible values are determined by other variables. The number of hidden layers is a
meta-decreed variable since its admissible values are determined by the optimizer and its
value determines how many variables are present to characterize the units in the hidden
layers. The variables characterizing the numbers of units are decreed but not meta as their
values do not influence any other variables. The learning rate is a neutral variable since it is
present in all points, and does not influence nor it is not influenced by other variables. Note
that the inclusion or the admissible values of a meta-decreed variable can be determined
by another meta-decreed variable: there may be several instances of meta-decreed variables.
Moreover, the roles meta, meta-decreed, decreed and neutral must not be confused with the
variable types, since each variable has both a type and a role.

In the MLP example, data heterogeneity emerges from two sources: 1) the diversity of
variables types, e.g., the optimizer that is categorical, whereas the learning rate is continuous;
and 2) the meta and meta-decreed variables that determines which variables are included in
point x ∈ X , and the admissible values of other variable(s). The example is further detailed
in Section 2.

1.2 Objectives and organization of the work
The overall objective of this work is to develop a distance function for mixed-variable domains
in which two points do not necessarily share the dimension, bounds or variables. To achieve

3



this objective, two steps are distinguished. The first step formalizes a modeling framework
that thoroughly models mixed-variable domains with meta, meta-decreed, decreed and neu-
tral variables. The framework is based on a graph structure that encompasses all information
regarding the roles of variables. In [7], meta-decreed variables are prohibited. The present
work generalizes the roles of variables. In the literature, some variants of graph-structured
domains are referred to as tree-structured [12], hierarchical [20] or variable-size [28]: the
modeling framework generalizes and unifies all these variants.

The second step constructs a mixed-variable distance function based on the modeling
framework. The distance, said graph-structured, is defined on the extended domain X ,
rather than directly on its corresponding domain X . The extended domain is an extension
of the domain that involves all included and excluded variables. Excluded variables are
those that are excluded for a given point x ∈ X , but present in another point y ∈ X . For
example, in Figure 1, the number of units in the second hidden layer is excluded, when there
is only one hidden layer. Excluded variables are taken into account by the distance, since
they simultaneously provide valuable information and facilitate the comparison of two points
that do not share the same variables.

The rest of the document is organized as follows. First, the remainder of this section
discusses related work in Section 1.3. Then, the MLP example is further developed and
detailed in Section 2. Next, the extended point x and the extended domain X are thor-
oughly defined via the roles of variables and graph theory in Section 3. Afterwards, the
graph-structured distance is defined on the extended domain X , which induces a distance
on the original domain X , in Section 4. Finally, computational experiments on the MLP ex-
ample are carried out in Section 5 to compare the performance of two approaches on simple
regression models. The first approach separates the regression problem into subproblems,
each with homogeneous data, and the second one is based on the induced distance on the
entire heterogeneous dataset.

1.3 Related work
Most literature on distances or similarity measures for heterogeneous datasets treats the
simpler case where heterogeneity comes strictly from the variety of variable types. In clas-
sification, variants of K-nearest neighbors, based on distances (or similarity measures) that
are built with combinations of continuous, integer or categorical distances, are commonly
studied [1, 4, 29]. Decision trees or random forests are also utilized for classification [35], and
even regression [22]. In regression, many kernel functions (similarity measures) have been re-
cently developed for constructing Gaussian Processes (GPs) [31] over heterogeneous datasets
with mixed-variable. Kernel methods are well adapted for mixed-variable problems, since
mixed kernels can be directly constructed with products or additions of well-documented
continuous [31], integer [17] or categorical kernels [27, 30, 33, 40].

An important reference for this work is the technical report [20], which proposes a mixed
kernel function for hierarchical spaces, each paired with a directed acyclic graph (DAG),
where the nodes are the variables. Variables with child nodes are required to be categorical.
The kernel is constructed from one-dimensional kernels for which pseudodistances takes into
account whether the variables are included or excluded. The inclusion of a variable is man-
aged by a designated Kronecker delta function that takes the values its ancestors. In [16], a

4



novel similarity measure, called the earth mover’s intersection, computes similarity measures
between sets of different sizes, similarly as the Jaccard index, but in a more technical fashion
based on the earth mover’s distance. In [28], GPs are constructed on said variable-design
spaces, which contain dimensional variables [25] that are essentially strictly discrete meta
variables that determines the inclusion or exclusion of other variables. In [11], feature models
manage and capture heterogeneity across data points through tree-structured models con-
sisting of features nodes and relationships arcs, that represent parent–child dependencies or
integrity constraints [5]. Recent advances in features models addressed complex dependencies
and constraints in large-scale heterogeneous datasets [9] with semantic logic.

This research is motivated by real-life machine learning and optimization applications.
In deep learning, hyperparameter optimization is a highly studied problem in which the
performance of a neural network is optimized with respect to its hyperparameters [15, 37, 38].
As mentioned previously, these mixed-variable problems includes the meta variable for the
number of hidden layers that determines how many variables are present to characterize the
units in the hidden layers. In [24], the optimization of a magnetic resonance device contains a
variable that determines the number of magnets, and each additional heat intercept involves
new design variables. In [13], an architecture design of an aircraft engine is optimized from
a surrogate model constructed from a heterogeneous dataset, in which part of the data
includes a fan and another part does not. More applications from various fields are also
covered, including software architecture design [2], statistical medical research [19], drug
discovery in heterogeneous datasets [36], multiple vehicle routing problem [18], and many
more.

2 Illustration on the MLP example: domain of the hy-
perparameters

This section describes a working example inspired from [7] that models the domain of the
hyperparameters of an MLP. The example is used to facilitate understanding of the contri-
butions of this work and to perform some computational experiments. The performance of
a deep model in function of its hyperparameters can be viewed as a mixed-variable function
with meta variables: let f : X → R be a function that outputs a performance score f(x) ∈ R
for a given set of hyperparameters x ∈ X , where X is the domain of the hyperparameters. In
practice, the performance score f(x) is typically a score of accuracy on a untested data set,
which is expensive-to-evaluate since the training, validation and performance test is done for
a given and fixed set of hyperparameters [23].

The hyperparameters of the MLP example are presentend in Figure 2. In order to restrict
the number of variables, some important hyperparameters are intentionally discarded, such
as the momentum or the batch size. The figure is composed of several tables, which are sep-
arated into different cases of optimizer variable values. The bounds of the hyperparameters
α1, α2, α3, β1, β2 and β3 are normalized for simplicity.

The choice of optimizer is important. First, depending on the optimizer o ∈ {ASGD, ADAM},
different hyperparameters are included in a point. For example, the decay α1 is only included
if o = ASGD. Second, the optimizer affects the architecture. Indeed, it influences simulta-

5



HP Variable Bounds

Learning rate r ]0, 1[
Activation function a {ReLU, Sig, Tanh}
Optimizer o {ASGD, ADAM}

HP Variable Bounds

Decay α1 ]0, 1[
Power update α2 ]0, 1[
Average start α3 ]0, 1[
# of hidden layers l LASGD

# of units hidden layer i ui UASGD

HP Variable Bounds

Running average 1 β1 ]0, 1[
Running average 2 β2 ]0, 1[
Numerical stability β3 ]0, 1[
# of hidden layers l LADAM

# of units hidden layer i ui UADAM

if o = ASGD if o = ADAM

HP Variable Bounds

Dropout ρ

ñ
0,

∑l
i=1 ui

2τmax

ô
Figure 2: Hyperparameters for the MLP example.

neously the bounds of the number of hidden layers Lo, and the bounds Uo of every number
of units ui ∈ Uo, where 1 ≤ i ≤ l. The subscript i in ui represents the i-th hidden layer.
The number of hidden layers l ∈ Lo is influenced by the choice of the optimizer, and, most
importantly, it determines the number of variables associated to the units. For example, if
l = 3, then there are three hyperparameters u1, u2, u3 for the units.

The number of hidden layers l and the number of units ui influences the bounds of the
dropout ρ, a regularization mechanism, via the following bounds dependencies

ρ ∈
ñ
0,

∑l
i=1 ui

2τmax

ô
⊆ [0, 0.5], (1)

where τmax is a constant that consists of the maximum sum of units that can be obtained
with the hyperparameters of the MLP in Figure 2, such that

τmax := max
®

l∑
i=1

ui : o ∈ {ASGD, ADAM}, l ∈ Lo, ui ∈ Uo for 1 ≤ i ≤ l

´
. (2)

The bounds dependencies of the dropout ρ ensure that more regularization is applied to
larger architectures with more units

3 Graph-structured domains
In this section, graph-structured domains that generate heterogeneous datasets are formal-
ized. In Section 3.1, the roles of variables are explicitly introduced. Then, excluded variables

6



and extended point, containing all variables whether they are excluded or not, are defined
in Section 3.2. In Section 3.3, some notions of graph theory are adapted for this work. Af-
terwards, the restricted sets, in which variables of the extended point belong, are detailed
in Section 3.4. Subsequently, the extended domain X is introduced in Section 3.5. Finally,
Section 3.6 models the MLP example with the content introduced in Sections 3.1 to 3.5.

3.1 Roles of variables
The roles of variables are established from the the decree property that is generalized from [7].
The following definition allows a variable to simultaneously have the decree property, and
have its inclusion or admissible values determined by a decree dependency (by other variables
with the decree property): this is not allowed in [7].

Definition 1 (Decree property and decree dependency). The decree property is attributed
to variables whose values determine if other variables are included or excluded from a point
x ∈ X , or whose values determine the admissible values (or bounds) of other variables.
A decree dependency refers to the inclusion or admissible values dependency of a variable
with respect to an another variable with the decree property. Variables can have multiple
decree dependencies with different variables.

In Section 3.3, decree dependencies are viewed as parent-children dependencies, where
the values of a parent variable determines the inclusion or admissible values of its children
variables. In Figure 2, the optimizer o has the decree property, since it determines the
inclusion of, among others, the decay α1. The decay α1 has a decree dependency with
the optimizer o (parent), that is, the decay α1 is included when o = ASGD, and excluded
otherwise. In Section 3.4, the admissible values of a variable are determined by respecting
its decree dependencies for given values of its parent variables. The number of units in the
hidden layers also have the decree property, since they influence the bounds of the dropout ρ
as presented in (1). The dropout ρ is always included, but its bounds are influenced by the
values taken by the numbers of units and the number of hidden layers l. The dropout ρ has
multiple decree dependencies, one with each number of units ui and one with the number of
hidden layers l.

Definition 1 on the decree property and decree dependency establishes four possible cases,
which are formalized as the roles of variables in the following definition.

Definition 2 (Roles of variables). The role of a variable represents its relation to the decree
property. A variable is assigned one of the following roles:

1. meta (m), if it has the decree property, and has no decree dependency;

2. meta-decreed (md), if it has the decree property, and has at least one decree dependency;

3. decreed (dec), if it does not have the decree property, but has at least one decree de-
pendency;

4. neutral (neu), if it does not have the decree property nor decree dependency.

7



Recall that the role of a variable must not be confused with its variable type. Each
variable has its own variable type and is assigned its own role. In the MLP example, the
optimizer o ∈ {ADAM, ASGD} is a categorical variable that is assigned the meta role, since it
determines the inclusion and the admissible values of other variables (decree propriety), and
neither its inclusion nor its admissible values are determined by other variables (no decree
dependency). For convenience, a variable and its role are referred similarly as a variable and
its type, e.g., the optimizer is referred as a meta categorical variable. The number of hidden
layers l ∈ Lo is a meta-decreed integer variable, since its admissible values are determined by
the optimizer o (decree dependency), and it determines the inclusion of the number of units
u1, u2, . . . , ul (decree property). The decay α1 is a decreed continuous variable, since it does
not have the decree property, and its inclusion is determined by the optimizer o. Finally,
the activation function a ∈ {ReLU, Sig, Tanh} is a neutral categorical variable, as it does not
have the decree property, and it has no decree dependency.

3.2 Excluded variables and extended point
In [7], a point contains only variables that are included for the given values of variables with
the decree property. In this work, variables that are excluded are also considered, since 1)
it provides useful information for computing distances between two points of the domain X
that do not share the same variables, and 2) it facilitates the computations themselves. This
last remark leads to the following definition.

Definition 3 (Excluded variable). An excluded variable is a meta-decreed or decreed variable,
that, for the given values of the variables associated to its decree dependencies, is not included
in the given point x ∈ X , but is included in at least one other point y ∈ X . An excluded
variable is assigned the special value EXC and its variable type is conserved.

In the MLP example, the decay α1 is a decreed continuous variable since, it is excluded
when the optimizer o = ADAM, whereas α1 ∈ ]0, 1[ (included) when o = ASGD. Definition 3 is
introduced to allow the graph-structured distance to account every variable that is included
in at least one point of the domain, collectively referred as all the included and excluded
variables. The definition of an extended point formalizes the previous sentence.

Definition 4 (An extended point). An extended point x contains all the included and ex-
cluded variables of a corresponding point x ∈ X . For r ∈ R := {m, md, dec, neu} and
i ∈ Ir := {1, 2, . . . , nr}, the i-th variable assigned to the role r is noted xr

i , where nr ∈ N is
the number of variables assigned to the role r.

The rest of this section discusses subtleties of Definition 4. First, the bar notation is
inspired by the extended set of real numbers R = R ∪ ±{∞}, referred to as the extended
real-valued set. The notation outlines that an extended point x is conceptually extended
to incorporate excluded variables. A point x ∈ X contains only included variables, but its
variables can be attributed roles, similarly as an extended point x.

Second, meta and neutral variables are always included, hence there is no distinction
between these variables whether they are part of an extended point x or of a point x, i.e.,
xr

i = xr
i for r ∈ {m, neu} and i ∈ Ir. The admissible values of meta and neutral variables are

8



also fixed. In contrast, meta-decreed xmd
i and decreed xdec

j variables of an extended point x
may be excluded from a point x, and/or their admissible values may differ between points.

Third, the framework in [7] with meta variables but without meta-decreed variables, is
a special case of the framework developed in this work. The special case can be recovered
easily by removing the meta-decreed variables: this is convenient as the special case pro-
vides a specialized framework for problems of great interests, such as most hyperparameter
optimization problems.

Fourth, decreed variables can be seen as bounds-dependent variables and, in that case,
the bounds of an excluded variable are restricted to the empty set.

Finally, both the roles and types of a variables carry important information for properly
computing distances between variables in Section 4. To avoid a cumbersome notation, vari-
able types are not explicit, but they are implicitly considered in the computation of distances
in Section 4.

Some graph theory is introduced in next Section 3.3, for further developing the variables
of an extended point and their sets in Section 3.4. The extended domain X is defined in
Section 3.5, which allows the presentation of the graph-structured distance distp : X × X →
R+ in Section 4.

3.3 Notions from graph theory
At this stage of the work, Definition 1 allows meta-decreed variables to impact each oth-
ers through decree dependencies. Consequently, decree dependencies between meta-decreed
variables can lead to circular reasoning or contradiction. Indeed, this can be shown with a
simple example with only two meta-decreed binary variables:

xmd
1 =

®
0 if xmd

2 = 1,

1 if xmd
2 = 0,

xmd
2 =

®
0 if xmd

1 = 0,

1 if xmd
1 = 1,

where xmd
1 = 0 ⇒ xmd

2 = 0 ⇒ xmd
1 = 1 ̸= 0 (contradiction). To avoid these problematic, and

uncommon situations, an assumption about the decree dependencies must be introduced.
Beforehand, the role graph, which among other things allows to formulate the assumption,
is defined below.

Definition 5 (Role graph). The role graph G = (V, A) is a graph structure, where

• V is the set of variables that contains all the included and excluded variables, repre-
sented as nodes,

• A is the set of decree dependencies that contains references for all inclusion-exclusion
and admissible values dependencies between all the included and excluded variables,
represented as arcs.

An arc a ∈ A, which refers to a decree dependency, connects a parent (variable) to a child
(variable), whose inclusion or admissible values are influenced by the parent. A parent is
either a meta or meta-decreed xr

i , and a child is either meta-decreed or decreed, such that
a = (xr

i , xr′
j ), where r ∈ {m, md} and r′ ∈ {md, dec}, with i ̸= j when r = r′ = md. A child

can have multiple parents, and vice versa.

9



Now that the role graph G is properly defined, the assumption that discards situations
with circular reasoning or contradiction is introduced.

Assumption 1. The role graph G is a directed acyclic graph (DAG).

Assumption 1 ensures that the nodes in the role graph G are (partially) ordered. Circu-
lar decree dependencies, as presented in the example with two meta-decreed variables, are
forbidden. To determine such a partial order, it suffices to apply a topological sort on the
role graph G.

Under Assumption 1, the role graph G is a data structure that: 1) contains all the
included and excluded variables in the set of variables V , 2) contains references for all
inclusion-exclusion or admissible values dependencies in the set of decree dependencies A,
and 3) establishes the roles of variables according to the positions of nodes in the DAG
structure:

• a meta variable xm
i is a root node;

• a meta-decreed variable xmd
i is an internal node with at least one parent and one child;

• a decreed variable xdec
i is a leaf node with at least one parent and no child;

• a neutral variable xneu
i is an isolated node.

Recall that meta-decreed and decreed variables are child variables whose inclusions or
admissible values are determined by the values of the parents that compose their decree
dependencies. The role graph G outlines that the inclusion and/or admissible values of a
variable can be determined by multiple different decree dependencies, that is, from multiple
parents. Hence, to determine the inclusion and/or the admissible values of a variable, it is
necessary to consider simultaneously all the values of its parents. In the working example,
the number of units ui must consider simultaneously the values of its parents the optimizer
o, for its admissible values, and the number of hidden layers l, for its inclusion. The following
definition introduces formally the notion of the parents in our context.

Definition 6 (Parents). For a given role r ∈ R and component i ∈ Ir, the parents parr
i of

the variable xr
i is the subset of variables for which there exists an arc from those variables to

xr
i , i.e.,

parr
i := {v ∈ V : (v, xr

i ) ∈ A} . (3)

The parents are used to handle the inclusion-exclusion or the admissible values of meta-
decreed and decreed variables in the next section. Note that although meta and neutral
variables have no parents, they are still defined (as empty sets) for these roles in order to
propose a concise expression for the extended domain X , as in Section 3.5.

For a given variable, the inclusion or admissible values of its parents can be determined by
their own parents (i.e., grandparents). In Section 3.4, the ancestors of a variable, representing
possible multiple generations of parents and grandparents, will be used to determine all the
values that such variable can take across all possible extended points. In the MLP example,
the bounds of the dropout ρ, as expressed in (1), justifies the need for ancestors. In fact,
the admissible values (the bounds) of the dropout ρ are determined by the given values

10



of its parents the number of hidden layers l and the number of units ui. However, the
constant τmax in (2), which influences all the possible values of the dropout ρ, is determined
by also considering the optimizer o (grandparent). Note that the bounds of the dropout ρ
do not have an explicit dependency with the values of the optimizer o since, for a given MLP
problem, the constant τmax is fixed. The ancestors can be defined recursively by starting
at the parents, then passing by the parents of the parents, and so on, until the roots are
reached.

Definition 7 (Ancestors). For r ∈ R and i ∈ Ir, the ancestors of the variable xr
i , noted

ancr
i , is the subset of variables that are either parents or recursively ancestors of parents of

xr
i , i.e.,

ancr
i := parr

i ∪

Ñ ⋃
xr′

j ∈ parr
i

ancr′

j

é
(4)

where ancr′
j denotes the ancestors of the parent variable xr′

j . The recursion in (4) stops at
the root nodes, i.e., with parm

j = ∅, ∀j ∈ Im.

Now that some notions of graph theory have been adapted to this work, the definition of
a graph-structured domain is formally established.

Definition 8 (Graph-structured domain). A graph-structured domain is a domain with at
least one variable with the decree property, i.e., at least one meta variable.

Definition 8 is one specific approach to formalize a graph-structured domain, yet there
exist several equivalent statements.

Theorem 1 (Graph-structured domain equivalences). Let X ̸= ∅, with G = (V, A) as its
corresponding role graph. Then the following statements are equivalent:

1. X is a graph-structured domain.
2. The set of decree dependencies is non-empty, i.e. A ̸= ∅.
3. There is a least one point containing a variable with a least one parent.

Proof. The theorem results are a direct consequence of Definitions 5 and 7.

Theorem 1 emphasizes that the different bounds or inclusion-exclusion of variables within
a graph-structured domain X is a consequence of interrelationships between variables, that
is, its decree dependencies (see Definition 1). Note that a variable with missing entries can
be modeled as a decreed variable whose inclusion is determined by an additional binary meta
variable.

11



3.4 Universal sets and restricted sets
As mentioned in Section 3.3, meta-decreed and decreed variables are subjected to the values
of their parents, since they must respect their decree dependencies for the given values of
their parents. In this section, the dependencies of a variable with respect to its parents are
modeled through its restricted set, that is obtained by conditioning its universal set with the
values of its parents. The universal set is defined next.
Definition 9 (Universal set). For r ∈ R and i ∈ Ir, the universal set X r

i of the variable
xr

i is the set that contains all possible values that the variable can take by considering all
possible values assigned to its ancestors ancr

i .
In the MLP example, the universal set of the number of units ui is U = UASGD ∪ UADAM ∪

{EXC}. The number of units ui can be excluded, depending on the number of hidden layers
l, hence its universal set must contain the special value EXC.

As discussed in the previous section, the values of the ancestors must be considered,
in addition to those of the parents, to determine a universal set. In the MLP example, the
universal set of the dropout ρ reduces to P = [0, 0.5], i.e., it is obtained when ∑l

i=1 ui = τmax.
Recall that, from (1), the bounds of the dropout ρ depends on its parents the number of
hidden layers l and the number of units ui. However, to determine its universal set P , the
constant τmax = max

{∑l
i=1 ui : o ∈ {ASGD, ADAM}, l ∈ Lo, ui ∈ Uo for 1 ≤ i ≤ l

}
must be

determined by considering the optimizer o (grandparent). Again, τ is a constant, hence the
dropout ρ has no decree dependency with the optimizer o.

The next step is to develop the restricted set of a variable. The restricted set of the
variable xr

i is the subset of the universal set X r
i such that xr

i respects the decree dependencies
for the given values of its parents parr

i , which are identified by arcs of the role graph G. The
formal definition of the restricted set is presented below.
Definition 10 (Restricted set). For r ∈ R and i ∈ Ir, the restricted set of the variable xr

i

is the universal set X r

i conditioned by the values of its parents parr
i , expressed as

X r
i /parr

i
:=
{

xr
i ∈ X r

i : ∀ (v, xr
i ) ∈ A, xr

i respects the decree dependencies for the values of v
}

.

Meta and neutral variables are always included and have no parent, hence their restricted
set is simply their universal set: X m

i /parm
i

= X m
i ∀i ∈ Im and X neu

j /parneu
j

= X neu
j ∀j ∈ Ineu.

The restricted set of a meta-decreed or decreed variable requires the values of its parents for
determining both its inclusion and its admissible values when it is included. If the decree
dependencies, given the values of parent variables, dictate that a child is excluded, then its
restricted set is {EXC}. In the MLP example, the restrictive set of α1 is {EXC} when the
optimizer o = ADAM. The notation for restricted sets uses a diagonal bar, instead of a vertical
bar commonly used in probability and statistics, to avoid any confusion with the logical OR
operator or abbreviation of “such that”. Furthermore, the parents are placed as subscripts
to outline the dependency.

3.5 Extended domain and transfer mapping
Now that the restricted sets have been detailed, the extended domain X is formally intro-
duced.

12



Definition 11 (Extended domain). The extended domain X is a graph-structured domain
constructed from a domain X , its corresponding role graph G = (V, A) and from the restricted
sets of all included and excluded variables. The extended domain X is expressed as

X :=
{

x : X r
i /parr

i
, ∀r ∈ R ∀i ∈ Ir

}
.

Definition 11 expresses that an extended point x ∈ X must respect all the inclusion-
exclusion or admissible values dependencies, i.e., decree dependencies, between its variables.
Recall that the main objective of this work is to equip the domain X with a distance distp :
X × X → R+ to facilitate optimization or machine learning tasks on domains that involve
heterogeneous dataset. This will be done by introducing the graph-structured distance distp :
X × X → R+ on the extended domain X , and then by inducing a distance on the domain
via the bijective mapping defined in the following theorem.

Theorem 2 (One-to-one correspondence). The transfer mapping TG : X → X , which assigns
the extended point TG(x) ∈ X to any point x ∈ X by adding its excluded variables determined
by the role graph G, is a bijection.

Proof. Injectivity. Let x, y ∈ X be such that x ̸= y. By definition of TG, there is a least
one variable whose value differ between the two extended points x = TG(x) and y = TG(y),
since 1) there is a least one included variable between x and y that does not share the same
value; or 2) there is a least one variable that is strictly excluded for one point between x
and y. Therefore, there is a least one variable that also does not share the same value in the
extended points x and y. This show that TG is injective since x ̸= y ⇒ TG(x) ̸= TG(y).

Surjectivity. Let x ∈ X be an extended point. Then, let G′ = (V ′, E ′) be the subgraph
of the role graph G obtained by removing the nodes and arcs corresponding to the excluded
variables that take the value EXC in x. The set V ′ is nonempty since either x has no meta
variables and thus V ′ = V , or x has at least one meta variable xm

i = xm
i ∈ V ′. Thus,

V ′ is the set of variables that are included in x, and E ′ is the set of decree dependencies
between the included variables of x. By construction, each variable in V ′ respects the decree
dependencies between the other variables in the set V ′. Let x be the point that contains only
the included variables of the extended point x, i.e., the variables in the set V ′. The point
x necessarily belongs to domain X , since it only contains included variables that respect
the decree dependencies between each others. Indeed, otherwise, if the decree dependencies
would not be respected, then x would 1) contain a variable that should not be included; or
2) not contain a variable that should be included; or 3) contain an included variable that
would take a value that is not allowed by the decree dependencies. Then, by definition of
the mapping TG, TG(x) = x, since x ∈ X contains all the included variables of the extended
point x ∈ X . This shows that TG is thus surjective, since ∀x ∈ X , ∃x ∈ X , such that
TG(x) = x.

The transfer mapping TG is both injective and surjective, thus bijective.

A consequence of Theorem 2 is that if a distance distp : X × X → R+ is well-defined on
the extended domain X , then a distance distp : X × X → R+ can be induced on the domain
X with the bijective transfer mapping TG : X → X . This is done in Section 4.

13



3.6 Illustration on the MLP example: graph-structured domain
Section 3 introduced many definitions and mathematical expressions. To facilitate the com-
prehension, the MLP example is modeled in this section. Before developing the role graph,
the preliminary step is to model each variable and its set, which takes into account its decree
dependencies, for a point x ∈ X . Variables are modeled by following the decree depen-
dencies, starting with the meta and neutral variables, then modeling variables with decree
dependencies whose determining variables have been previously modeled.

The first variables to be modeled are the optimizer o ∈ {ASGD, ADAM}, the learning rate
r ∈ ]0, 1[, and the activation function a ∈ {ReLU, Sig, Tanh}. Next, meta-decreed and
decreed variables whose decree dependencies involve only meta variables are modeled. The
variables α1, α2 and α3 are included if and only if o = ASGD, and the variables β1, β2 and β3
are included if and only if o = ADAM. The number l of hidden layers is constrained to a set
that depends on the optimizer o:

l ∈ Lo =
®

LASGD = {0, 1, 2, 3} if o = ASGD,

LADAM = {0, 1, 2, 3, 4} if o = ADAM.

The number of units ui is included if 1 ≤ i ≤ l ≤ lmax = 4 and its bounds depends on the
optimizer o:

ui ∈ Uo =
®

UASGD if o = ASGD,

UADAM if o = ADAM.

There are at most four unit variables in the architecture. Finally, the dropout ρ is always
included, but its bounds depends on the number of the hidden layers l and the number of
units u1, u2, . . . , ul as expressed in (1).

The next modeling step is to build the role graph G = (V, A). The nodes of the graph cor-
respond to all included and excluded variables V = {o, α1, α2, α3, β1, β2, β3, l, u1, u2, u3, u4, ρ, r, a}.
The arcs A of the graph represent pairs of parent-child variables, in which the child has a de-
cree dependency with its parent. For example, the number of hidden layers l and the number
of units ui are all parents of the dropout ρ, since they determine its bounds. The role graph
G = (V, A) of the MLP example is illustrated in Figure 3. The role graph G schematically
models a great deal of information, including 1) all included and excluded variables, 2) the
role of each variable via their node position, 3) the dependencies of the restricted sets of
meta-decreed and decreed variables with their parents.

The third modeling step is to determine the universal sets of meta-decreed and decreed
variables. The universal sets of meta and neutral variables are directly given by the problem
statement. The universal set of the number of hidden layers l, the dropout ρ, and the number
of units ui are respectively L = LASGD ∪ LADAM, P = [0, 0.5], and U i = UASGD ∪ UADAM ∪ {EXC}
for 1 ≤ 1 ≤ lmax.

Afterwards, the fourth modeling step is to express the restricted sets X r
i /parr

i
. The re-

stricted sets of meta and neutral variables are identical to their universal set X r
i , which can

be expressed as

xm
1 = o ∈ {ASGD, ADAM}, and (xneu

1 , xneu
2 ) = (r, a) ∈ ]0, 1[ × {ReLU, Sig, Tanh}.

14



o
∈ {ASGD, Adam}

Optimizer

α1
∈ A1/o

Decay

α2
∈ A2/o

Power update

α3
∈ A3/o

Average start

HPs associated ASGD

l
∈ L/o

β1
∈ B1/o

Run. average 1

β2
∈ B2/o

Run. average 2

β3
∈ B3/o

Num. stability

HPs associated to Adam

u1
∈ U1/o,l

u2
∈ U2/o,l

u3
∈ U3/o,l

u4
∈ U4/o,l

Architectural
HPs

ρ
∈ P/l,u1:4

Dropout

r
∈ ]0, 1[

Learning rate

a
∈ {ReLU, Sig, Tanh}

Activation function

Figure 3: Role graph G for the MLP example.

Meta-decreed variables and their restricted sets are expressed as

(xmd
1 , xmd

2 , xmd
3 , xmd

4 , xmd
5 ) =

(
l, u1:4

)
∈ L/o ×

∏4
i=1 U i/o,l

where u1:4 := (u1, u2, u3, u4), and

L/o =
®

LASGD if o = ASGD,

LADAM if o = ADAM,
and U i/o,l =


UASGD if o = ASGD and 1 ≤ i ≤ l,

UADAM if o = ADAM and 1 ≤ i ≤ l,

{EXC} otherwise,

with 1 ≤ i ≤ l. Decreed variables are expressed as(
xdec

1 , xdec
2 , xdec

3 , xdec
4 , xdec

5 , xdec
6 , xdec

7
)

=
(
α1:3, β1:3, ρ

)
∈

∏3
i=1 Ai/o ×

∏3
j=1 Bi/o × P/l,u1:4

,

where α1:3 := (α1, α2, α3), β1:3 :=
(
β1, β2, β3

)
, and

Ai/o =
®

]0, 1[ if o = ASGD,

{EXC} if o = ADAM,
and Bj/o =

®
{EXC} if o = ASGD,

]0, 1[ if o = ADAM,

with i, j ∈ {1, 2, 3}, and

P/l,u1:4
=
ñ
0,

∑l
i=1 ui

2τmax

ô
⊆ [0, 0.5]. (5)

15



Finally, the extended domain X is constructed with the restricted sets as follows

X =
{

x : o ∈ {ASGD, ADAM},

(l, u1:4) ∈ L/o ×
4∏

i=1
U i/o,l

(
α1:3, β1:3, ρ

)
∈

3∏
i=1

Ai/o ×
3∏

j=1
Bi/o × P/l,u1:4

,

(r, a) ∈ ]0, 1[ × {ReLU, Sig, Tanh}
}

.

4 Distance for graph-structured domains
In this section, the graph-structured distance distp : X × X → R+ is defined. Section 4.1
presents the included-excluded distance function that can compute distances for variables
that can be included or excluded. The included-excluded distances of the MLP example are
modeled in Section 4.2. Finally, Section 4.3 presents the graph-structured distance that is
constructed with included-excluded distances, one per variable.

4.1 Included-excluded distances
For two extended points x, y ∈ X , the distance regarding the i-th variable assigned to role
r, respectively xr

i and yr
i , is computed through three cases:

1. both xr
i and yr

i are excluded, hence the distance is set to zero;
2. exactly one variable xr

i or yr
i is excluded, hence the distance is set to a parameter

that models a distance between a variable that is included for one extended point, and
excluded for the other extended point;

3. both xr
i and yr

i are included, hence an one-dimensional distance function d is used, e.g.,
the Euclidean distance.

Recall that a meta or neutral variable xr
i ∈ X r

i is always included, hence for r ∈ {m, neu},
the distance between xr

i and yr
i is always computed in the third case. For a meta-decreed or

decreed variable, the restricted sets of xr
i and yr

i may differ, hence its corresponding included-
excluded distance must be defined on its universal set X r

i in order to allow comparisons of
any pairs xr

i , yr
i with different restricted sets. In the MLP example, the universal set of the

number of units ui is U = UASGD ∪ UADAM ∪ {EXC}. Hence, to compare the number of units
ui from any two pairs of extended points, the corresponding included-excluded distance of
ui must be defined on its universal set U . The following theorem formalizes the discussion
above on the three cases and the universal set by introducing a novel distance based on
distances proposed in [34, 32].

Theorem 3 (Included-excluded distance). Let X r
i be the universal set of the i-th variable

assigned to the role r ∈ R, noted xr
i , and define Yr

i = X r
i \ {EXC}. Consider d : Yr

i × Yr
i →

R+, a one-dimensional extended real-valued distance for the variable xr
i when it is included,

16



and θr
i ∈ R+ a parameter greater than or equal to sup{d (µ, ν) : µ, ν ∈ Yr

i }/2. Then, for
u, v ∈ X r

i , the function dr
i : X r

i × X r

i → R+ defined by

dr
i (u, v) :=


d (u, v) if u ̸= EXC ̸= v (both included),
0 if u = EXC = v (both excluded),
θr

i otherwise (one excluded),
(6)

is a one-dimensional extended real-valued distance function.

Proof. Let r ∈ R and i ∈ Ir. The identity of indiscernibles, nonnegativity and symmetry
of dr

i are trivially proven since θr
i is strictly positive and since d is a distance function. The

rest of the proof consists of proving that dr
i satisfies the triangle inequality. Let u, v, z ∈ X r

i :

Case 1 (both variables are excluded): if u = EXC = v, then

dr
i (u, v) = 0 ≤ dr

i (u, z) + dr
i (z, v), by nonnegativity of dr

i .

Case 2 (only one variable is excluded, WLOG v): if u ̸= EXC = v and

• if z ̸= EXC, then

dr
i (u, v) = θr

i ≤ d(u, z) + θr
i = dr

i (u, z) + dr
i (z, v), by nonnegativity of d.

• if z = EXC, then

dr
i (u, v) = θr

i ≤ θr
i + 0 = dr

i (u, z) + dr
i (z, v).

Case 3 (both variables are included): if u ̸= EXC and v ̸= EXC and

• if z ̸= EXC, then

dr
i (u, v) = d(u, v) ≤ d(u, z) + d(z, v) = dr

i (u, z) + dr
i (z, v).

• if z = EXC, then

dr
i (u, v) = d(u, v) ≤ sup{d (µ, ν) : µ, ν ∈ Yr

i } ≤ 2θr
i = dr

i (u, z) + dr
i (z, v).

Multiple comments on Theorem 3 that introduces the included-excluded distance are
provided. First, the included-excluded distance is precisely useful for meta-decreed and de-
creed variables that can have different restricted sets, i.e. that can be included or excluded,
and/or have different admissible values. As mentioned previously, for variables that are al-
ways included, such as meta and neutral variables, included-excluded distances are always
computed with the both included case. The included-excluded distance is nevertheless de-
fined for these variables in order to obtain a concise formulation of the graph-structured
distance in Section 4.3.

17



Second, the included-excluded distance is compatible with any variable type. Indeed,
in (6), the two cases both excluded and one excluded does not regard the variable type, and
the case both included allows to utilize any distance function d.

Third, the universal set X r
i allows to compare any pair of variables xr

i , yr
i . Moreover,

it is also necessary to establish a lower bound on the parameter θr
i , which ensures the

triangular inequality in the last case of the proof. The inequality θr
i ≥ sup{d (µ, ν) : µ, ν ∈

X r

i \ {EXC}}/2 implies that the distance dr
i (xr

i , yr
i ) = θr

i (one excluded case) must be at
least half the largest distance between any pairs of included variables xr

i , yr
i , with possibly

different restricted sets. In the MLP example, recall that the universal set of the number of
units ui is U = UASGD ∪ UADAM ∪ {EXC}. Therefore, the parameter θr

i for ui must be greater
than (max(U ′) − min(U ′))/2, where U

′ = UASGD ∪ UADAM. Apart from its lower bound, the
parameter θr

i is flexible.
Fourth, the included-excluded distance is more formally an extended real-valued one [10],

since it is allowed to take the infinite value. The infinity value allows to consider meta-decreed
or decreed variables with unbounded restricted sets. For example, let r ∈ {md, dec} and i ∈
Ir, such that X r

i /parr
i

= [0, ∞[ when it is included, and X r
i /parr

i
= {EXC} when it is excluded.

In this example, X r
i = [0, ∞[ ∪ {EXC}, therefore sup{d (µ, ν) : µ, ν ∈ X r

i \ {EXC}} = ∞,
hence the parameter θr

i must be set to infinity to guaranty the triangular inequality. If
the restricted sets are always bounded, then included-excluded distance becomes a standard
distance that maps into R, instead of R.

4.2 Illustration on the MLP example: distances
In this section, the included-excluded distances of each variable in the MLP example are
modeled. For a meta-decreed or decreed variable that can be excluded, its parameter is
arbitrarily set to θr

i = 3
2 sup{d (µ, ν) : µ, ν ∈ X r

i \ {EXC}}.
The distance for the optimizer, which is the only meta variable, is

dm
1 (o, o′) =

®
σ if o ̸= o′,

0 otherwise,
(7)

where σ > 0 is a categorical parameter. Similarly, the distances for the neutral variables are

dneu
1 (r, r′) = |r − r′| , and dneu

2 (a, a′) =


γ1 if (a = ReLU, a′ = Sig) or (a = Sig, a′ = ReLU),
γ2 if (a = ReLU, a′ = Tanh) or (a = Tanh, a′ = ReLU),
γ3 if (a = Sig, a′ = Tanh) or (a = Tanh, a′ = Sig),
0 if a = a′,

where γ1, γ2, γ3 > 0 are categorical parameters. For meta-decreed variables, the included-
excluded distances are

dmd
1

Ä
l, l

′ä = |l − l′|
and

dmd
i+1 (ui, u′

i) =


0 if l < i and l

′
< i,

3
2
Ä
max

Ä
U

′ä− min
Ä
U

′ää if
Ä
l ≥ i and l

′
< i
ä

or
Ä
l < i and l

′ ≥ i
ä

,

|ui − u′
i| if l ≥ i and l

′ ≥ i,

18



where i ∈ {1, 2, . . . , lmax}, U
′ = UASGD ∪ UADAM, and l < i signifies that the i-th unit is not

included, whereas l ≥ i signifies that it is included. Finally, the included-excluded distances
for the decreed variables are given by the expressions

ddec
i

(
αi, α′

i

)
=


0 if o = ADAM = o′,

3
2 if o ̸= o′,∣∣αi − α′

i

∣∣ if o = ASGD = o′,

and ddec
j+3
Ä
βj , β

′
j

ä
=


0 if o = ASGD = o′,

3
2 if o ̸= o′,∣∣∣βj − β

′
j

∣∣∣ if o = ADAM = o′,

where i, j ∈ {1, 2, 3}, and
ddec

7 (ρ, ρ′) = |ρ − ρ′| .

4.3 Graph-structured distance and induced distance
Now that the included-excluded distance has been detailed, the following theorem formally
introduces the graph-structured distance.

Theorem 4 (Graph-structured distance). For any p ≥ 1, the graph-structured function
distp : X × X → R+ defined by

distp(x, y) :=
Ç∑

r∈R

∑
i∈Ir

dr
i (xr

i , yr
i )

p

å 1
p

, (8)

is an extended real-valued distance function, where R = {m, md, dec, neu}.

Proof. The identity of indiscernibles, nonnegativity and symmetry of distp are trivially
proven since the operations of summation and exponentiation with p ≥ 1 on the included-
excluded distances in (8) conserve these properties. The rest of the proof consists of showing
the triangular inequality is respected by demonstrating that distp is equivalent to a p-norm,
that respects the triangular inequality. Let K = {1, 2, . . . , nm + nmd + ndec + nneu} be a set
of indices that reorders the indices r ∈ {m, md, dec, neu} and i ∈ {1, 2, . . . , nr}:

• ak := dm
i (xm

i , ym
i ), for k = i with i ∈ {1, 2, . . . , nm},

• ak := dmd
j

(
xmd

j , ymd
j

)
, for k = nm + j with j ∈ {1, 2, . . . , nmd},

• ak := ddec
l

(
xdec

l , ydec
l

)
, for k = nm + nmd + l with l ∈ {1, 2, . . . , ndec},

• ak := dneu
v (xneu

v , yneu
v ), for k = nm + nmd + ndec + v with v ∈ {1, 2, . . . , nneu}.

Finally, let a =
(
a1, a2, . . . , a|K|

)
, then

∥a∥p =
(

|K|∑
k=1

|ak|p
) 1

p

=
Ç∑

r∈R

∑
i∈Ir

dr
i (xr

i , yr
i )

p

å 1
p

= distp (x, y)

19



For p → ∞, the graph-structured distance dist∞ : X ×X → R+ is defined as a maximum,
i.e.,

dist∞ (x, y) := max { dr
i (xr

i , yr
i ) : r ∈ R, i ∈ Ir} , (9)

which is trivially a distance function by virtue of the max function.
Note that, in practice, variables often require scaling to improve the conditioning and

eliminate biases related to variable scales. In the context of the work, scaling categorical
variables and excluded variables is ambiguous. Fortunately, in our proposed distance, an
included-excluded distance dr

i is defined with a flexible distance d for its both included case.
Therefore, the distance d can be defined using a scaling parameter, such that d(a, b) =
ωr

i d′(a, b), where ωr
i > 0 is a weight parameter related to the variable xr

i and d′ is a one-
dimensional distance of appropriate variable type. The weight parameter ωr

i can be used
to automatically scale the lower bounds of the parameter θr

i , since the lower bound of θr
i is

defined with the one-dimensional distance d. In Section 5, scaling parameters will be used
to better adjust our proposed distance to the datasets; this helps to remove biases that are
related to variable scales.

Theorem 2, which establishes the bijection between the domain X and the extended
domain X , implies that a distance distp : X × X → R+ can be induced from the graph-
structured distance distp : X × X → R+. The following corollary is a direct consequence of
Theorems 2 and 4.

Corollary 1 (Induced distance). For p ≥ 1, the induced function distp : X ×X → R+defined
by

distp(x, y) := distp (TG(x), TG(y)) = distp (x, y) , (10)

is an extended real-valued distance, where distp : X × X → R+ is a graph-structured distance
and TG : X → X is the bijective transfer mapping.

Corollary 1 unpacks most of the contributions. To arrive at Corollary 1, it was necessary
to: 1) define an extended point x, restricted sets and the extended domain X using notions
from graph theory; 2) define the transfer mapping TG : X → X , and prove that it is bijective,
3) define the included-excluded distances on the universal set for tackling variables that can
either be included or excluded, or with different admissible values, and 4) define the graph-
structured distance distp : X × X → R+ based on the contributions mentioned above.

5 Computational experiments involving heterogeneous
datasets

This section compares two approaches on regression problems with simple distance-based
models for instances of the MLP example. The first approach, called Sub divides a regression
problem into subproblems, each assigned to a portion of the domain in which the included
variables are fixed. The second approach, called Graph, uses the induced distance in (10)
with p = 2 to tackle a regression problem directly and by aggregating the data across the
subproblems. See this git-link for full details on the computational experiments. Table 1
details the instances for the two approaches.

20

https://github.com/bbopt/graph_distance


Sub Graph

Instance o l Variables # of
var. Size Variables # of

var.
# of
θr

i
Size

#1 ASGD
1 r, u1 2 40

l, r, u1:3 5 2 1802 r, u1:2 3 60
3 r, u1:3 4 80

#2 ASGD
1 r, u1, α1:3 5 100

l, r, u1:3, α1:3 8 2 3602 r, u1:2, α1:3 6 120
3 r, u1:3, α1:3 7 140

#3
ASGD

1 r, u1, α1:3 5 100

o, l, r, u1:2, α1:3, β1:3 11 7 4402 r, u1:2, α1:3 6 120

ADAM
1 r, u1, β1:3 5 100
2 r, u1:2, β1:3 6 120

#4

ASGD
1 r, u1, α1:3 5 100

o, l, r, u1:3, α1:3, β1:3 12 8 580
2 r, u1:2, α1:3 6 120

ADAM
1 r, u1, β1:3 5 100
2 r, u1:2, β1:3 6 120
3 r, u1:3, β1:3 7 140

#5

ASGD
1 r, u1, α1:3, p 6 120

o, l, r, u1:2, α1:3, β1:3, p 13 8 680
2 r, u1:2, α1:3, p 7 140

ADAM
1 r, u1, β1:3, p 6 120
2 r, u1:2, β1:3, p 7 140
3 r, u1:3, β1:3, p 8 160

Table 1: Problem instances of the MLP example and their dataset sizes, with u1:2 = (u1, u2),
u1:3 = (u1, u2, u3), α1:3 = (α1, α2, α3) and β1:3 = (β1, β2, β3); the activation function is fixed at
a = ReLU for all instances

For Sub, the dataset size of a subproblem is 20 times the number of variables. For Graph,
the dataset size is the sum of the subproblem dataset sizes. For both approaches, 50% of a
dataset is allocated to a training set, and the validation and testing sets are each allocated a
25%. The data is generated with a uniform distribution on the restricted sets. Instance #1
fixes the optimizer, hence the number of hidden layers is meta instead of meta-decreed. There
are 3 subproblems, each assigned to a fixed number of hidden layers. Instance #2 adds the
hyperparameters α1:3 to the first instance. Instance #3 frees the optimizer o ∈ {ASGD, ADAM},
and the hyperparameters β1:3 are introduced via o = ADAM. There are 4 subproblems, each
assigned to a pair (o, l). Instance #4 adds a subproblem by allowing l = 3 when o = ADAM.
The number of hidden layers l becomes a meta-decreed variable, since LASGD ̸= LADAM. Instance
#5 adds the dropout ρ with bounds in (1).

5.1 Setup
The generation of a data couple (x, f(x)) is done by the following steps: 1) a MLP model
is constructed with respect to its given hyperparameters x ∈ X with PyTorch; 2) the MLP
is trained and validated on the quarter of the Fashion-MNIST training dataset (15k data),

21



and 3) the performance score f(x) ∈ [0, 100], that represents the percentage of well-classified
images, is computed on the MLP with the quarter of the Fashion-MNIST test dataset (2.5k
data). To reduce data generation time, only 25% of the Fashion-MNIST dataset is used, and
the number of epochs and batch size are respectively set to 25 and 128. Each instance has a
heterogeneous dataset that is partitioned into a training, validation and test. For Sub, these
datasets are further divided into subproblems according to the size column in Table 1.

Two types of regression models are considered, the inverse distance weighting (IDW) and
the K-nearest neighbors (KNN). For IDW, the training dataset is composed of data points
and images that are used for interpolation. For KNN, the training dataset contains data
points that are available as neighbors, and the images of these neighbors are used to compute
a mean. Graph constructs a single model with an induced distance. Sub constructs many
models, one per subproblem, and each model utilizes an Euclidean distance defined on their
corresponding subdomain.

In the computational experiments, a prediction error is computed with a Root Mean
Squared Error (RMSE) on a test dataset. For Sub, the computation of the RMSE test is done
by assigning each test data point to its respective subproblem and model. Before computing
the RSME test, parameters are adjusted with respect to the RMSE on the validation dataset.
The parameters to adjust depend on the model type and the approach employed. Regarding
the model type, IDW adds no parameter, whereas KNN adds the number of neighbors K
for Graph and a number of neighbors per subproblem for Sub. Both approaches have weight
parameters. Graph also requires parameters for the excluded-included distances between
variables that can take the special value EXC, and a parameter for the categorical distance
of the optimizer (if not fixed). The optimization of the RMSE validation is done with the
open-source blackbox optimization software NOMAD [8] that is based on the Mesh Adaptive
Direct Search algorithm [6] (MADS).

5.2 Results
Table 2 details the results of RMSE validations and tests, and it presents the budget of
evaluations allocated to the adjustment of parameters with NOMAD. Graph has fewer pa-
rameters, since all the variables are considered simultaneously and the number of bounds θr

i

required is small for the instances.
In Table 2, the RMSE validation value is the smallest value during its optimization.

The smallest value between Sub and Graph appear in bold. For the RMSE validations, Sub
performs slightly better than Graph on all instances with the IDW model, whereas the results
are mixed between the two approaches for the KNN model. For the RMSE tests, Graph
outperforms Sub with both model types, except for the instance #5 with the IDW model.
The best results are obtained using the KNN model with Graph. Graph seems generally more
robust to overfitting as the gaps between its RMSE validations and tests are smaller: this
is not surprising, since this approach uses all the data across the subproblems, and should
therefore yield better generalization. Graph requires more time to generate the results in
Table 2, since the interpolation (IDW) or the selection of neighbors (KNN) is done on all
points. The worst gap between the two approaches is for the instance #5 with the IDW
model type: 5 vs 30 minutes of CPU time to run the 3,500 budget of evaluations. The times
were estimated with a 11th generation Intel i7-11800H (2.30 GHz) CPU.

22



Budget # of eval. # of param. RMSE validation RMSE test
Instance Model of eval. Sub Graph Sub Graph Sub Graph Sub Graph

#1 IDW 1,500 1,500 1,500 9 7 11.49 11.49 13.12 13.12
KNN 1,447 1,078 12 9 6.59 6.97 10.90 9.7

#2 IDW 2,000 2,000 2,000 18 10 16.24 16.4 21.87 21.31
KNN 2,000 1,931 21 11 12.52 8.48 21.40 15.00

#3 IDW 2,500 2,500 2,500 22 19 12.59 13.36 19.58 19.13
KNN 2459 2,500 26 20 9.31 8.56 18.83 15.15

#4 IDW 3,000 3,000 3,000 29 21 12.14 12.69 18.58 18.39
KNN 3,000 2,219 34 22 9.64 8.24 15.71 14.93

#5 IDW 3,500 3,500 3,500 34 22 13.19 14.42 16.5 16.94
KNN 3,500 2,404 39 23 10.12 11.28 17.55 14.29

Table 2: Number of parameters, RMSE validation datasets and RMSE datasets on the problem
instances.

5.2.1 Experiments on training dataset with selected parameters

In this section, some computational experiments are done to further study the aggregation of
data. Graphs plot the RMSE test versus the number of points in a (partial) training dataset.
Models are constructed with a partial training dataset, which is increased iteratively with
an additional random data point drawn from the training dataset without replacement. The
partial training dataset begins with a random data point from each subproblem, and points
are added until it becomes the training dataset. The adjusted parameters obtained from
previous Section 5.2 are selected and fixed for all iterations.

In Figures 4, the solid lines represents means, and the shaded areas represent standard
deviations. As the level of difficulty increases through the instances, Graph performs pro-
gressively better than Sub for the IDW model, except for the last iterations in instance #5.
Graph outperforms Sub on all instances with the KNN model, and particularly for the in-
stance #1. The aggregation of data seems particularly promising for the KNN model as it
provides access to more neighbors across the subproblems.

5.2.2 Experiments on training dataset with optimized parameters

A final experiment is conducted on instance #1, which provided the worst relative perfor-
mance of Graph with the IDW model. The experiment is similar to the ones in previous
Section 5.2.1, except that the parameters are now optimized with respect to RMSE valida-
tion at each iteration, and points are added in the partial training dataset until it reaches 30
points. Each iteration has a budget of 250 evaluations for the parameters adjustment with
the software NOMAD.

Figure 5 is composed of 10 runs of different random seeds. Graph performs considerably
better and its standard deviation (shaded) is globally smaller. This experiment is more
realistic than the previous ones, since parameters are not fixed and provided in advanced.
In comparison to the experiment with selected parameters, this experiment indicates that
aggregating training data points is particularly beneficial for obtaining lower RMSE test.

23



0 20 40 60 80

20

40

R
M

S
E

te
st

In
st

an
ce

#
1

IDW

Sub

Graph

0 20 40 60 80

20

40

KNN

0 50 100 150

20

40

R
M

S
E

te
st

In
st

an
ce

#
2

0 50 100 150

20

40

0 50 100 150 200

20

40

R
M

S
E

te
st

In
st

an
ce

#
3

0 50 100 150 200

20

40

0 100 200

20

40

R
M

S
E

te
st

In
st

an
ce

#
4

0 100 200

20

40

0 100 200 300
Size of the training dataset

20

40

R
M

S
E

te
st

In
st

an
ce

#
5

0 100 200 300
Size of the training dataset

20

40

Figure 4: RMSE tests with iteratively increasing training data points and selected parameters.
Each subfigure is composed of 30 runs of different random seeds. The same vertical scale is used
for comparability.

24



0 10 20 30
Size of the training dataset

10

20

30

40

50

R
M

S
E

te
st

In
st

an
ce

#
1

IDW

Sub

Graph

0 10 20 30
Size of the training dataset

10

20

30

40

50

KNN

Figure 5: RMSE tests with iteratively increasing training data points and optimized parameters.

6 Discussion
The present work focused on heterogeneous datasets that are intrinsically related to mixed-
variable domains with meta and meta-decreed variables. The first important contribution,
introduced in Section 3, is a generalized modeling framework for such domains, called graph-
structured. The modeling framework is rigorously constructed through graph theory, and it
introduces many definitions and structures, such as meta-decreed variables, the role graph
G = (V, A), excluded variables, extended points and the extended domain. As such, the
paper generalizes the following state-of-the-art frameworks: mixed-variable domains with
(strictly) meta variables [7]; tree-structured spaces [12]; hierarchical spaces [20]; and variable-
size design space [28]. The second important contribution, detailed in Section 4, concerns
distance functions, which allows computation of distances between mixed-variable points
that do not share the same variables. The graph-structured distance considers both the
included and excluded variables in an extended point, and is constructed variable-wise with
one-dimensional included-excluded to facilitate computations. Computational experiments
on the MLP example are done in Section 5. The graph-structured approach aggregates data
across subproblems, and outperforms the approach that separates a problem into subprob-
lems. Further computational experiments on diverse problems and models are required to
confirm that the modeling framework and the graph-structured distance are state-of-the-
art for heterogeneous datasets. For instance, Gaussian Processes are commonly used for
such problems [28, 33, 34], and they will be studied in next work. In the near future, time
consumption will also be studied more thoroughly with more complex models.

Data availability statement
Scripts and data are publicly available at https://github.com/bbopt/graph_distance.

25

https://github.com/bbopt/graph_distance


Conflict of interest statement
On behalf of all authors, the corresponding author states that there is no conflict of interest.

Acknowledgments
We express our gratitude to Amaury Diopus’kin for the PyTorch implementation, produced
during its internship in summer 2022, that was used for data generation.

References
[1] A. Ahmad and L. Dey. A k-mean clustering algorithm for mixed numeric and categorical

data. Data & Knowledge Engineering, 63(2):503–527, 2007.

[2] A. Aleti., B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya. Software Architec-
ture Optimization Methods: A Systematic Literature Review. IEEE Transactions on
Software Engineering, 39(5):658–683, 2013.

[3] N. Ali, D. Neagu, and P. Trundle. Classification of Heterogeneous Data Based on
Data Type Impact on Similarity. In Advances in Computational Intelligence Systems.
Springer International Publishing, 2019.

[4] N. Ali, D. Neagu, and P. Trundle. Evaluation of k-nearest neighbour classifier perfor-
mance for heterogeneous data sets. SN Applied Sciences, 1:1–15, 2019.

[5] M. Asadi, G. Gröner, B. Mohabbati, and D. Gas̆ević. Goal-oriented modeling and
verification of feature-oriented product lines. Software & Systems Modeling, 15:257–
279, 2016.

[6] C. Audet and J.E. Dennis, Jr. Mesh Adaptive Direct Search Algorithms for Constrained
Optimization. SIAM Journal on Optimization, 17(1):188–217, 2006.

[7] C. Audet, E. Hallé-Hannan, and S. Le Digabel. A General Mathematical Framework
for Constrained Mixed-variable Blackbox Optimization Problems with Meta and Cate-
gorical Variables. Operations Research Forum, 4(12), 2023.

[8] C. Audet, S. Le Digabel, V. Rochon Montplaisir, and C. Tribes. Algorithm 1027: NO-
MAD version 4: Nonlinear optimization with the MADS algorithm. ACM Transactions
on Mathematical Software, 48(3):35:1–35:22, 2022.

[9] D. Batory. Feature models, grammars, and propositional formulas. In International
Conference on Software Product Lines. Springer, 2005.

[10] G. Beer. The Structure of Extended Real-valued Metric Spaces. Set-Valued and Varia-
tional Analysis, 21:591–602, 2013.

26



[11] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature models 20
years later: A literature review. Information Systems, 35(6):615–636, 2010.

[12] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter
optimization. In Advances in neural information processing systems, 2011.

[13] J.H. Bussemaker, P.D. Ciampa, T. De Smedet, B. Nagel, and G. La Rocca. Sys-
tem Architecture Optimization: An Open Source Multidisciplinary Aircraft Jet Engine
Architecting Problem. In AIAA AVIATION 2021 Forum, AIAA AVIATION Forum.
American Institute of Aeronautics and Astronautics, 2021.

[14] J. Choo, S. Bohn, G.C. Nakamura, A.M. White, and H. Park. Heterogeneous Data
Fusion via Space Alignment Using Nonmetric Multidimensional Scaling. In SIAM In-
ternational Conference on Data Mining. SIAM, 2012.

[15] M. Feurer and F. Hutter. Hyperparameter optimization. Automated machine learning:
Methods, systems, challenges, pages 3–33, 2019.

[16] A. Gardner, C.A. Duncan, J. Kanno, and R.R. Selmic. On the Definiteness of Earth
Mover’s Distance and Its Relation to Set Intersection. IEEE Transaction on Cybernetics,
48(11):3184–3196, 2018.

[17] E.C. Garrido-Merchán and D. Hernández-Lobato. Dealing with categorical and integer-
valued variables in Bayesian Optimization with Gaussian processes. Neurocomputing,
380:20–35, 2020.

[18] K. Horio, S. Ishikawa, and R. Kubota. Effective Hierarchical Optimization using In-
tegration of Solution Spaces and its Application to multiple Vehicle Routing Problem.
In 2015 International Symposium on Intelligent Signal Processing and Communication
Systems. IEEE, 2015.

[19] L.-Y. Hu, M.-W. Huang, S.-W. Ke, and C.-F. Tsai. The distance function effect on
k-nearest neighbor classification for medical datasets. SpringerPlus, 5:1–9, 2016.

[20] F. Hutter and M.A. Osborne. A Kernel for Hierarchical Parameter Spaces. Technical
Report 1310.5738, ArXiv, 2013.

[21] R. Jin and H. Liu. A Novel Approach to Model Generation for Heterogeneous Data
Classification. In IJCAI International Joint Conference on Artificial Intelligence, Pro-
ceedings of the 19th international joint conference on Artificial intelligence. Morgan
Kaufmann Publishers Inc., 2005.

[22] K. Kim and J. s. Hong. A hybrid decision tree algorithm for mixed numeric and cate-
gorical data in regression analysis. Pattern Recognition Letters, 98:39–45, 2017.

[23] D. Lakhmiri, S. Le Digabel, and C. Tribes. HyperNOMAD: Hyperparameter Optimiza-
tion of Deep Neural Networks Using Mesh Adaptive Direct Search. ACM Transactions
on Mathematical Software, 47(3), 2021.

27



[24] S. Lucidi and V. Piccialli. A Derivative-Based Algorithm for a Particular Class of Mixed
Variable Optimization Problems. Optimization Methods and Software, 17(3–4):317–387,
2004.

[25] S. Lucidi, V. Piccialli, and M. Sciandrone. An Algorithm Model for Mixed Variable
Programming. SIAM Journal on Optimization, 15(4):1057–1084, 2005.

[26] G. Noroozi. Data Heterogeneity and Its Implications for Fairness. Master’s thesis,
Western University, 2023. Available at https://ir.lib.uwo.ca/etd/9623/.

[27] J. Pelamatti, L. Brevault, M. Balesdent, E.-G. Talbi, and Y. Guerin. Efficient global
optimization of constrained mixed variable problems. Journal of Global Optimization,
73(3):583–613, 2019.

[28] J. Pelamatti, L. Brevault, M. Balesdent, E.-G. Talbi, and Y. Guerin. Bayesian optimiza-
tion of variable-size design space problems. Optimization and Engineering, 22:387–447,
2021.

[29] C.L. Pereira, G.D.C. Cavalcanti, and T.I. Ren. A New Heterogeneous Dissimilarity Mea-
sure for Data Classification. In IEEE International Conference on Tools with Artificial
Intelligence. IEEE, 2010.

[30] P.Z.G. Qiand, H. Wu, and C.F.J. Wu. Gaussian process models for computer experi-
ments with qualitative and quantitative factors. Technometrics, 50(3):383–396, 2008.

[31] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. The
MIT Press, 2006.

[32] P. Saves. High-dimensional multidisciplinary design optimization for aircraft eco-design.
PhD thesis, ONERA and ISAE-SUPAERO, 2024. Available at https://theses.hal.
science/ONERA-MIP/tel-04439128v1.

[33] P. Saves, Y. Diouane, N. Bartoli, T. Lefebvre, and J. Morlier. A mixed-categorical
correlation kernel for Gaussian process. Neurocomputing, 550:126472, 2023.

[34] P. Saves, R. Lafage, N. Bartoli, Y. Diouane, J. H. Bussemaker, T. Lefebvre, J. T.
Hwang, J. Morlier, and J.R.R.A Martins. SMT 2.0: A Surrogate Modeling Toolbox
with a focus on Hierarchical and Mixed Variables Gaussian Processes. Advances in
Engineering Software, 188:103571, 2024.

[35] Y.-Y. Song and Y. Lu. Decision tree methods: applications for classification and pre-
diction. Shanghai Arch Psychiatry, 27(2):130–135, 2015.

[36] D. J. Wild. Mining large heterogeneous data sets in drug discovery. Expert Opinion on
Drug Discovery, 4(10):995–1004, 2009.

[37] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H.L., and S.-H. Deng. Hyperparameter
Optimization for Machine Learning Models Based on Bayesian Optimization. Journal
of Electronic Science and Technology, 17(1):26–40, 2019.

28

https://ir.lib.uwo.ca/etd/9623/
https://theses.hal.science/ONERA-MIP/tel-04439128v1
https://theses.hal.science/ONERA-MIP/tel-04439128v1


[38] L. Yang and A. Shami. On hyperparameter optimization of machine learning algorithms:
Theory and practice. Neurocomputing, 415:295–316, 2020.

[39] L. Zhang, Y. Xie, L. Xidao, and X. Zhang. Multi-source heterogeneous data fusion.
In International Conference on Artificial Intelligence and Big Data (ICAIBD). IEEE,
2018.

[40] Y. Zhang, S. Tao, W. Chen, and D.W. Apley. A Latent Variable Approach to Gaussian
Process Modeling with Qualitative and Quantitative Factors. Technometrics, 62(3):291–
302, 2020.

29


	Introduction
	Scope of the work
	Objectives and organization of the work 
	Related work

	Illustration on the MLP example: domain of the hyperparameters
	Graph-structured domains
	Roles of variables
	Excluded variables and extended point
	Notions from graph theory
	Universal sets and restricted sets
	Extended domain and transfer mapping
	Illustration on the MLP example: graph-structured domain

	Distance for graph-structured domains
	Included-excluded distances
	Illustration on the MLP example: distances
	Graph-structured distance and induced distance

	Computational experiments involving heterogeneous datasets
	Setup
	Results
	Experiments on training dataset with selected parameters
	Experiments on training dataset with optimized parameters


	Discussion
	References

