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Optimal transport has been very successful for various machine learning tasks; however, it is known to suffer
from the curse of dimensionality. Hence, dimensionality reduction is desirable when applied to high-dimensional
data with low-dimensional structures. The kernel max-sliced Wasserstein distance is developed for this purpose
by finding an optimal nonlinear mapping that reduces data into 1 dimensions before computing the Wasserstein
distance. However, its theoretical properties have not yet been fully developed. In this paper, we provide sharp finite-
sample guarantees under milder technical assumptions compared with state-of-the-art for the kernel projected
p-Wasserstein distance between two empirical distributions with n samples for general p∈ [1,∞). Algorithm-wise,
we show that computing the kernel projected 2-Wasserstein distance is NP-hard, and then we further propose
a semidefinite relaxation (SDR) formulation (which can be solved efficiently in polynomial time) and provide a
relaxation gap for the SDP solution. We provide numerical examples to demonstrate the good performance of our
scheme for high-dimensional two-sample testing.

1. Introduction
Optimal transport has achieved much success in various areas, such as generative modeling [25, 56,
45, 54], distributional robust optimization [23, 24, 68], non-parametric testing [74, 58, 73, 71, 66],
domain adaptation [2, 14, 12, 13, 72], etc. See [57] for comprehensive reviews on these topics.
When applying optimal transport (OT) in statistical inference, one usually cares about the sam-

ple complexity of Wasserstein distance, i.e., how close between a population distribution µ and its
empirical distribution 1

n

∑n

i=1 δxi with xi ∼ µ in terms of the "Wasserstein distance". Unfortunately,
one needs the sample size n to be exponentially large in data dimension to achieve accurate enough
estimation [21], referred to as the curse of dimensionality issue.
To tackle challenge of high dimensionality, it is meaningful to combine OTwith projection operators

to low-dimensional spaces. Researchers first attempted to study Sliced Wasserstein distances [10, 11,
17, 37, 36, 49, 51], which compute the average of the Wasserstein distance between two projected
distributions using random one-dimensional projections. Since a single random projection contains
little information to distinguish two high-dimensional distributions, computing the sliced Wasserstein
distance requires a large number of linear projections. To tackle this issue, more recent literature
considered theMax-Sliced (MS) Wasserstein distance that seeks the optimal projection direction such
that the Wasserstein distance between projected distributions is maximized [16, 41, 43, 55, 69].
Later Wang et al. [70] modified the max-sliced Wasserstein distance by seeking an optimal nonlinear
projection belonging to a ball of reproducing kernel Hilbert space (RKHS), which we call the Kernel
Max-Sliced (KMS) Wasserstein distance. The motivation is that a nonlinear projector can be more
flexible in capturing the differences between two high-dimensional distributions; it is worth noting
that KMS Wasserstein reduces to MS Wasserstein when specifying a dot product kernel.
Despite promising applications of KMSWasserstein distance, its computational and statistical results

are still limited. From the computational perspective, Wang et al. [70] designed a gradient-based
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algorithm to find local optimal points for computing the empirical KMS Wasserstein distance, which
is inspired by the efficient manifold gradient algorithm in [31]. However, there is no theoretical guar-
antee regarding the quality of the obtained local optimum solution. In numerical experiments, the
quality of the local optimum solution is highly sensitive to the choice of the initial iteration point.
From the statistical perspective, the authors therein built concentration properties of the empirical
KMS Wasserstein distance for distribution satisfying the projection Poincare inequality and Poincare
inequality, which could be difficult to verify in practice.
To improve the aforementioned limitations, in this paper, we provide new computational and sta-

tistical results regarding the KMS Wasserstein distance. The following summarizes our contributions.
Sharp Finite-Sample Guarantees of KMS p-Wasserstein.We provide a non-asymptotic estimate on
the KMS p-Wasserstein distance between two empirical distributions based on n samples, referred
to as the finite-sample guarantees. Our result shows that when the samples are drawn from identical
populations, the rate of convergence is n−1/(2p), which is dimension-free and optimal in the worst
case.
Computation of KMS 2-Wasserstein. We analyze the computation of KMS 2-Wasserstein distance
between two empirical distributions based on n samples. First, we show that computing this distance
exactly is NP-hard. The proof methodology involves reducing the NP-hard fair-PCA problem, which
focuses on maximizing the minimization of homogeneous quadratic functions [64], to this specific
problem. Consequently, we are prompted to propose a semidefinite relaxation (SDR) as an approxi-
mate heuristic.
We further propose an efficient first-order method with biased gradient oracles to solve the SDR

formulation, the complexity of which for finding a δ-optimal solution is Õ (n2δ−3). In comparison, the
complexity of the interior point method for solving SDR is Õ(n6.5). Next, we derive theoretical guar-
antees regarding the optimal solutions from SDR. We show that there exists an optimal solution from
SDR that is at most rank-k, where k≜ 1+ ⌊

√
2n+9/4− 3/2⌋, whereas computing the KMS distance

exactly requires a rank-1 solution. An intuitive explanation is that we show that any extreme point of
SDR is at most rank-k, and the set of extreme points of SDR must have a non-empty intersection with
the set of its optimal solutions. We also provide a corresponding rank reduction algorithm designed
to identify such low-rank solutions from the pool of optimal solutions of SDR.
Numerical Studies. Finally, we exemplify our theoretical results in two numerical studies: the uncer-
tainty quantification and non-parametric two-sample testing. Our numerical results showcase the sta-
ble performance and quick computational time of our SDR formulation, as well as the desired sample
complexity rate of the empirical KMS Wasserstein distance.
Literature. The study on the statistical and computational results of MS and KMS Wasserstein dis-
tances is popular in the existing literature. From the statistical perspective, existing results on the
rate of empirical MS/KMS Wasserstein are either dimension-dependent, suboptimal or require reg-
ularity assumptions (e.g., log-concavity, Poincare inequality, projection Bernstein tail condition) on
the population distributions [52, 3, 43, 69], except the very recent literature [9] that provides a
sharp, dimension-free rate for MS Wasserstein with data distributions supported on a compact sub-
space but without regularity assumptions. From the computational perspective, there are two main
approaches to compute such distances. One is to apply gradient-based algorithms to find local opti-
mal solutions or stationary points, see, e.g., [42, 32, 30, 33, 70] Unfortunately, due to the highly
non-convex nature of the optimization problem, the quality of the estimated solution is unstable and
highly depends on the choice of initial guess. The other is to consider solving its SDR instead [55], yet
the theoretical guarantees on the solution from convex relaxation are missing. Inspired from existing
reference [4, 18, 53, 40] that studied the rank bound of SDR for various applications, we adopt their
proof techniques to provide similar guarantees for computing KMS in Theorem 5. Besides, all listed
references add entropic regularization to the inner optimal transport problem and solve the regu-
larized version of MS/KMS Wasserstein distances instead, while the gap between the solutions from
regularized and original problems could be non-negligible.
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2. Background
We first introduce the definition of Wasserstein and KMS Wasserstein distances below.
Definition 1 (Wasserstein Distance). Let p ∈ [1,∞). Given a normed space (V,∥ · ∥), the p-
Wasserstein distance between two probability measures µ,ν on V is defined as

Wp(µ,ν) =

(
min

π∈Γ(µ,ν)

∫
∥x− y∥p dπ(x, y)

)1/p

where Γ(µ,ν) denotes the set of all probability measures on V ×V with marginal distributions being
µ and ν.
Definition 2 (Reproducing Kernel Hilbert Space (RKHS)). Consider a symmetric and positive
definite kernelK :B×B→R, where B ⊆Rd. Given such a kernel, there exists a unique Hilbert space
H, called the RKHS, associated with the reproducing kernel K. Denote by Kx the kernel section at
x ∈ B defined by Kx(y) = K(x, y),∀y ∈ B. Any function f ∈ H satisfies the reproducing property
f(x) = ⟨f,Kx⟩H,∀x∈B. For x, y ∈B, it holds that K(x, y) = ⟨Kx,Ky⟩H.
Definition 3 (Kernel Max-Sliced (KMS) Wasserstein Distance). Let p∈ [1,∞). Given two dis-
tributions µ and ν, define the p-KMS Wasserstein distance as

KMSp(µ,ν) = max
f∈H, ∥f∥H≤1

Wp(f#µ,f#ν),

where f#µ and f#ν are the pushforward measures of µ and ν by f :B→R, respectively.

In particular, for dot product kernel K(x, y) = xTy, the RKHS H= {f : f(x) = xTβ,∃β ∈Rd}. In this
case, the KMSWasserstein distance reduces to the max-sliced Wasserstein distance [16]. A more flexi-
ble choice is the Gaussian kernelK(x, y) = exp(− 1

2σ2 ∥x−y∥22), where σ > 0 denotes the temperature
hyper-parameter. In this case, the function class H satisfies the universal property as it is dense in the
continuous function class.
Given the RKHS H, let the canonical feature map that embeds data to H as

Φ : B→H, x 7→Φ(x) =Kx. (1)
Define the functional uf : H→R by uf (g) = ⟨f, g⟩H for any g ∈H, which can be viewed as a linear
projector that maps data from the Hilbert space H to the real line. In light of this, for two probability
measures µ and ν on H, we define the MS p-Wasserstein distance

MSp(µ,ν) = sup
f∈H: ∥f∥H≤1

Wp

(
(uf )#µ, (uf )#ν

)
, (2)

where (uf )#µ denotes the pushforward measure of µ by the map uf , i.e., if µ is the distribution of
a random element X of H, then (uf )#µ is the distribution of the random variable uf (X) = ⟨f,X⟩,
and (uf )#ν is defined likewise. In the following, we show that the KMS Wasserstein distance in Defi-
nition 3 can be reformulated as the MS Wasserstein distance between two distributions on (infinite-
dimensional) Hilbert space.
Remark 1 (Reformulation of KMS Wasserstein). By the reproducing property, we can see that
f(x) = ⟨f,Kx⟩H = uf (Φ(x)), which implies f = uf ◦Φ. As a consequence,

KMSp(µ,ν) = sup
f∈H: ∥f∥H≤1

Wp

(
(uf )#

(
Φ#µ

)
, (uf )#

(
Φ#ν

))
=MSp

(
Φ#µ,Φ#ν

)
. (3)

In other words, the KMS Wasserstein distance first maps data points into the infinite-dimensional
Hilbert spaceH through the canonical feature mapΦ, and next finds the linear projector to maximally
distinguish data from two populations. Compared with the traditional MS Wasserstein distance [16]
that performs linear projection in Rd, KMS Wasserstein distance is a more flexible notion.
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Remark 2 (Connections with Kernel PCA). Given data points x1, . . . , xn on B, denote by µ̂n the
corresponding empirical distribution. Assume 1

n

∑
i∈[n]Φ(xi) = 0, since otherwise one can center those

data points as a preprocessing step. Kernel PCA [47] is a popular tool for nonlinear dimensionality
reduction.When seeking the first principal nonlinear projection function f , [46] presents the following
reformulation of kernel PCA:

argmax
f∈H: ∥f∥H≤1

Var
(
(uf )#(Φ#µ̂n)

)
, (4)

where Var(·) denotes the variance of a given probability measure. In comparison, the KMSWasserstein
distance aims to find the optimal nonlinear projection function that distinguishes two populations and
replaces the variance objective in (4) with the Wasserstein distance between two projected distribu-
tions in (3). Also, kernel PCA is a special case of KMS Wasserstein by considering p= 2, µ≡ µ̂n, ν ≡ δ0
in (3).

Notations. We use "MATLAB notation" to define block matrics: for matrices A1, . . . ,An of com-
mon width, let [A1, . . . ,An] denote the matrix obtained by horizontal contamination of them, and
[A1; . . . ;An] denote the matrix obtained by vertical contamination of them. Let ⟨·, ·⟩ denote the inner
product operator. For any positive integer n, denote [n] = {1,2, . . . , n}. Define

Γn =
{
π ∈Rn×n

+ :

n∑

i=1

πi,j =
1

n
,

n∑

j=1

πi,j =
1

n
, ∀i, j ∈ [n]

}
. (5)

Let Conv(P ) denote a convex hull of the set P , and S+
n denote the set of positive semidefinite matrices

of size n×n. We use Õ(·) as a variant of O(·) to hide logarithmic factors.

3. Statistical Guarantees
Suppose samples xn := {xi}i∈[n] and yn := {yi}i∈[n] are given and follow distributions µ,ν, respectively.
Denote by µ̂n and ν̂n the corresponding empirical distributions from samples xn and yn. In this section,
we provide a finite-sample guarantee on the p-KMS Wasserstein distance between µ̂n and ν̂n with p∈
[1,∞). This guarantee can be helpful for KMSWasserstein distance-based hypothesis testing: Suppose
one aims to build a non-parametric test to distinguish two hypotheses H0 : µ = ν and H1 : µ ̸= ν.
Thus, it is crucial to control the high-probability upper bound of KMSp(µ̂n, ν̂n) underH0 as it serves
as the critical value to determine whetherH0 is rejected or not. We first make the following assumption
on the kernel.
Assumption 1. The kernel K(·, ·) satisfies that

√
K(x,x)≤A for any x∈B.

Assumption 1 is standard in the literature (see, e.g., [26]), and is quite mild: The Gaussian kernel
K(x, y) = exp(−∥x− y∥22/σ2) naturally fits into this assumption. For dot product kernel K(x, y) =
xTy, if we assume the support B has a finite diameter, this assumption can also be satisfied. Define
the critical value

∆(n,α) = 4A
(
C +4

√
log

2

α

)1/p

·n−1/(2p),

where C ≥ 1 is a universal constant. Now, we have the following finite-sample guarantees on KMS
p-Wassersrein distance.
Theorem 1 (Finte-Sample Guarantee). Fix p ∈ [1,∞), error probability α ∈ (0,1), and suppose null
hypothesis H0 : µ= ν and Assumption 1 holds. With probability at least 1−α, it holds that

KMSp(µ̂n, ν̂n)≤∆(n,α).
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The dimension free upper bound ∆(n,α) =O(n−1(/2p)) is optimal in the worst case. Indeed, in the
one-dimension case B = [0,1] and K(x, y) = xy, the kernel max-sliced Wasserstein distance KMSp

coincides with the classical Wasserstein distanceWp. In this case, it is easy to see that if µ= (δ0+δ1)/2
is supported on the two points 0 and 1, then the expectation ofKMS(µ̂n, ν̂n) is of order n−1/(2p) [21].
Suppose we design a two-sample test TKMS such thatH0 is rejected if KMSp(µ̂n, ν̂n)≥∆(n,α). By

Theorem 1, we have the following performance guarantees of TKMS.
Corollary 1 (Testing Power of TKMS). Fix a level α∈ (0,1/2), p∈ [1,∞), and suppose Assumption 1
holds. Then the following result holds:
(I) (Risk): The type-I risk of TKMS is at most α;
(II) (Power): Under H1 : µ ̸= ν, suppose the sample size n is sufficiently large such that ϱn :=
KMSp(µ,ν)−∆(n,α)> 0, the power of TKMS is at least 1− c · n−1/(2p), where c is a constant
depending on A,C,p, ϱn.

Remark 3 (Comparision with Maximum Mean Discrepancy (MMD)). MMD has been a popular
kernel-based tool to quantify the discrepancy between two probability measures (see, e.g., [26, 22,
35, 60, 61, 6, 48, 44, 63, 67]), which, for any two probability distributions µ and ν, is defined as

MMD(µ,ν) = max
f∈H,

∥f∥H≤1

Eµ[f ]−Eν [f ] = max
f∈H,

∥f∥H≤1

(uf )#
(
Φ#µ

)
− (uf )#

(
Φ#ν

)
, (6)

where ξ denotes the mean of a given probability measure ξ. The empirical (biased) MMD estima-
tor also exhibits dimension-free finite-sample guarantee as in Theorem 1: it decays in the order of
O(n−1/2), where n is the number of samples. However, the KMS Wasserstein distance is more flexi-
ble as it replaces the mean difference objective in (6) by the Wasserstein distance, which naturally
incorporates the geometry of the sample space and is suitable for hedging against adversarial data
perturbations [23].

4. Computation of 2-KMS Wasserstein distance

Let µ̂n and ν̂n be two empirical distributions supported on n points, i.e., µ̂n =
1
n

∑
i δxi , ν̂n =

1
n

∑
j δyj ,

where {xi}i,{yj}j are data points inRd. This section focuses on the computation of 2-KMSWasserstein
distance between these two distributions. According to Definition 3, it holds that

KMS2(µ̂n, ν̂n) =


 max

f∈H, ∥f∥2H≤1



min

π∈Γn

∑

i,j∈[n]

πi,j|f(xi)− f(yj)|2







1/2

, (KMS)

where Γn is defined in (5).
Although the outer maximization problem is a functional optimization that contains uncountably

many parameters, one can apply the existing represented theorem (see below) to reformulate Prob-
lem (KMS) as a finite-dimensional optimization.
Theorem 2 (Theorem 1 in [70]). There exists an optimal solution to (KMS), denoted as f̂ , such that
for any z,

f̂(z) =

n∑

i=1

ax,iK(z,xi)−
n∑

i=1

ay,iK(z, yi), (7)

where ax = (ax,i)i∈[n], ay = (ay,i)i∈[n] are coefficients to be determined.
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Define gram matrix K(xn, xn) = (K(xi, xj))i,j∈[n] ∈ Rn×n and other gram matrices K(xn, yn),
K(yn, xn),K(yn, yn) likewise, then define the concatenation of gram matrics

G= [K(xn, xn),−K(xn, yn);−K(yn, xn),K(yn, yn)]∈R2n×2n. (8)

Assume G is positive definite such that it admits the Cholesky decomposition G−1 = UUT. By sub-
stituting the expression (7) into (KMS) and direct calculation (see Appendix EC.4), we obtain the
following exact reformulation of (KMS):

max
ω∈R2n: ∥ω∥2=1

{
min
π∈Γn

∑

i,j

πi,j(M
T
i,jω)

2

}
. (9)

Here, we omit taking the square root of the optimal value of the max-min optimization problem for
simplicity of presentation and the vector

Mi,j =UTM ′
i,j, whereM ′

i,j = [(K(xi, xl)−K(yj, xl))l∈[n]; (K(yj, yl)−K(xi, yl))l∈[n]]∈R2n.

Since Problem (9) is a non-convex program, it is natural to question its computational hardness. The
following theorem gives an affirmative answer, whose proof is provided in Appendix EC.5.
Theorem 3 (NP-hardness of computing 2-KMS Wasserstein). Problem (9) is NP-hard for the worst-
case instances of {Mi,j}i,j .

The proof idea of Theorem 3 is to construct an instance of {Mi,j}i,j that depends on a generic col-
lection of n vectors {Ai}i such that solving (9) is at least as difficult as solving the optimization
maxω: ∥ω∥2=1mini∈[n]ω

TAiA
T
i ω, which is the fair-PCA problem [59] with rank-1 data matrices (or fair

beamforming problem [62]) and has been proved to be NP-hard [62]. Interestingly, the computational
hardness of MS Wasserstein distance arises both from the high data dimension d and large sample
size n, whereas that of KMS Wasserstein distance arises from the large sample size n only.
To tackle the computational challenge of solving (9), in the subsequent subsections, we present an

SDR formula and propose an efficient first-order algorithm to solve it. Next, we analyze the compu-
tational complexity of our proposed algorithm and the theoretical guarantees on SDR.

4.1. Semidefinite relaxation with efficient algorithms

We observe the simple transformation of the objective in (9):
∑

i,j

πi,j(M
T
i,jω)

2 =
∑

i,j

πi,j⟨Mi,jM
T
i,j, ωω

T⟩.

Inspired by this relation, we use the change of variable approach to optimize the rank-1 matrix S =
ωωT, i.e., it suffices to consider the following equivalent formulation of (9):

max
S∈S2n+ ,Trace(S)=1,rank(S)=1

{
F (S) = min

π∈Γn

∑

i,j

πi,j⟨Mi,jM
T
i,j, S⟩

}
. (10)

An efficient SDR is to drop the rank-1 constraint to consider the semidefinite program (SDP):

max
S∈S2n

F (S), where S2n =
{
S ∈ S2n

+ : Trace(S) = 1
}
. (SDR)
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Remark 4 (Connection with [74]). We highlight that Xie and Xie [74] considered the same
SDR heuristic to compute the max-sliced 1-Wasserstein distance. However, the authors therein
apply the interior point method to solve a large-scale SDP, which has expansive complexity
O(n6.5polylog( 1

δ
)) (up to δ-accuracy) [5]. In the following, we present a first-order method that

exhibits much smaller complexity Õ (n2δ−3) in terms of the problem size n (see Theorem 4). Besides,
theoretical guarantees on the solution from SDR have not been explored in [74], and we are the first
literature to provide these results.

The constraint set S2n is called the Spectrahedron and admits closed-form Bregman projection. Inspired
by this, we propose an inexact mirror ascent algorithm to solve (SDR). Its high-level idea is to itera-
tively construct an inexact gradient estimator and next perform the mirror ascent on iteration points.
By properly balancing the trade-off between the bias and cost of querying gradient oracles, this type
of algorithm could guarantee to find a near-optimal solution [28, 29, 27].
We first discuss how to construct supgradient estimators of F . By Danskin’s theorem [7],

∂F (S) = Conv
{∑

i,j

π∗
i,j(S)Mi,jM

T
i,j : π∗(S)∈Π(S)

}
,

where Π(S) denotes the set of optimal solutions to the following optimal transport (OT) problem:

min
π∈Γn

∑

i,j

πi,j⟨Mi,jM
T
i,j, S⟩. (11)

Therefore, the main challenge of constructing a supgradient estimator is to compute an optimal solu-
tion π∗(S) ∈ Γ(S). Since computing an exactly optimal solution is too expensive, we derive its near-
optimal estimator, denoted as π̂, and practically use the following supgradient estimator:

v(S) =
∑

i,j

π̂i,jMi,jM
T
i,j. (12)

In particular, we adopt the stochastic gradient-based algorithm with Katyusha momentum in [75]
to compute a ϵ-optimal solution π̂ to (11). It achieves the state-of-the-art complexity Õ (n2ϵ−1). See
the detailed algorithm in Appendix EC.6. Next, we describe the main algorithm for solving (SDR).
Define the (negative) von Neumann entropy h(S) =∑i∈[2n] λi(S) logλi(S), where {λi(S)}i are the
eignevalues of S, and define the von Neumann Bregman divergence

V (S1, S2) = h(S1)−h(S2)−⟨S1−S2,∇h(S2)
T⟩= Trace(S1 logS1−S1 logS2).

Iteratively, we update Sk+1 by performing mirror ascent with constant stepsize α> 0:

Sk+1 = argmax
S∈S2n

α⟨v(Sk), S⟩+V (S,Sk),

which admits the following closed-form update:

S̃k+1 = exp(logSk +αv(Sk)) , Sk+1 = S̃k+1/Trace(S̃k+1). (13)

The general procedure for solving (SDR) is summarized in Algorithm 1.
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Algorithm 1 Inexact Mirror Ascent for solving (SDR)
1: Input: Max iterations T , initial guess S1, tolerance ϵ, constant stepsize α.
2: for k= 1, . . . , T − 1 do
3: Apply [75] to obtain a ϵ-optimal solution (denoted as π̂) to (11)
4: Construct inexact supgradient v(Sk) according to (12)
5: Perform mirror ascent according to (13)
6: end for
7: Return Ŝ1:T = 1

T

∑T

k=1 Sk

4.2. Theoretical analysis

In this subsection, we provide the complexity of solving (SDR) and theoretical guarantees on the
optimal solution of (SDR). It is worth mentioning that the constraint set S2n is compact, and the
objective in (SDR) is continuous, so an optimal solution, denoted as S∗, is guaranteed to exist and
with finite optimal value. To analyze the complexity of Algorithm 1, we first derive the bias and
computational cost of the supgradient estimator v(S) in (12). Define the constant C =maxi,j ∥Mi,j∥22.
Lemma 1 (Bias and Computational Cost). (I) (Bias) v(S) corresponds to the gradient of F̂ (S) =∑

i,j π̂i,j⟨MT
i,jMi,j, S⟩, where π̂ is defined in (12) and |F (S)− F̂ (S)| ≤ ϵ;

(II) (Cost) The cost for computing (12) isO (C ·n2
√
lognϵ−1

), withO(·) hiding some universal constant.
Next, we analyze the error of the inexact mirror ascent framework in Algorithm 1.
Lemma 2 (Error Analysis of Algorithm 1). When taking the stepsize α= log(2n)

C
√
T
, the output Ŝ1:T from

Algorithm 1 satisfies
0≤ F (S∗)−F (Ŝ1:T )≤ 2ϵ+2C

√
log(2n)

T
.

Combining Lemmas 1 and 2, we obtain the complexity for solving (SDR).
Theorem 4 (Complexity Bound). Fix the precision δ > 0 and specify hyper-parameters

T = ⌈16C
2 log(2n)

δ2
⌉, ϵ=

δ

4
, α=

log(2n)

C
√
T

.

Then, the total cost of Algorithm 1 for finding δ-optimal solution to (SDR) is
O
(
T ·Cn2

√
lognδ−1

)
=O

(
C3n2(logn)3/2δ−3

)
.

Next, we analyze the quality of (SDR). Notably, the exact formulation (9) requires the optimal
solution to be rank-1 while the more tractable relaxation (SDR) does not enforce such a constraint.
Therefore, it is of interest to provide theoretical guarantees on the low-rank solution of (SDR), i.e.,
we aim to find the smallest integer k ≥ 1 such that there exists an optimal solution to (SDR) that is
at most rank-k. The integer k is called a rank bound on (SDR).
Theorem 5 below characterizes the value of k, and Fig. 1 illustrates the comparison between the

theoretical rank k, the ideal rank 1 required by the exact formulation (9), and the trivial rank bound
2n (as the matrix S is of size 2n×2n). From Theorem 5 and Fig. 1, we find our theoretical rank bound
is remarkably smaller than the trivial rank 2n and relatively close to the ideal rank 1. The proof of
Theorem 5 is provided in Appendix EC.10.
Theorem 5 (Rank Bound on (SDR)). There exists an optimal solution to (SDR) of rank at most k ≜

1+
⌊√

2n+ 9
4
− 3

2

⌋
. As a result,

Optval(9)= max
S∈S2n+ ,Trace(S)=1,rank(S)=1

F (S)≤Optval(SDR)≤ max
S∈S2n+ ,Trace(S)=1,rank(S)=k

F (S).
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Figure 1 Comparision between the theoretical rank k, the ideal rank 1, and the trivial rank 2n. The y-axis is in the
logarithm scale.

Proof Sketch of Theorem 5. We first reformulate (SDR) by taking the dual of the inner OT problem:

max
S∈S2n
f,g∈Rn

{
1

n

n∑

i=1

(fi + gi) : fi + gj ≤ ⟨Mi,jM
T
i,j, S⟩, ∀i, j ∈ [n]

}
. (14)

By Birkhoff’s theorem [8] and complementary slackness condition of OT, one can show that there
exists an optimal solution of (f, g) such that at most n constraints of (14) are binding, and with such an
optimal choice, one can adopt the convex geometry analysis from [39, 40] to derive the desired rank
bound for any feasible extreme point of variable S. Since the set of optimal solutions of (SDR) must
have a non-empty intersection with the set of feasible extreme points, the desired result holds. □

However, we highlight that Algorithm 1 only finds a near-optimal solution Ŝ1:T of (SDR), which is
not guaranteed to satisfy the rank bound in Theorem 5. To fill the gap, we develop a rank-reduction
algorithm that further converts Ŝ1:T to the solution that simultaneously maintains the desired rank
bound and optimality gap. First, we fix S ≡ Ŝ1:T in (14) and find the optimal (f, g) with n bind-
ing constraints only, using the Hungarian algorithm [38]. Next, for fixed (f, g), we develop a greedy
rank reduction algorithm inspired by [40, Algorithm 2], which iteratively reduces the rank of vari-
able S until it reaches the desired rank bound. We provide the detailed algorithm description in
Appendix EC.10 and complexity analysis below.
Theorem 6. There exists a rank-reduction algorithm (see Algorithm 4 in Appendix EC.10) such that (I)
for a δ-optimal solution to (SDR), it outputs another δ-optimal solution with rank at most k; (II) its
worst-case complexity is O(n5).

5. Numerical Study
This section presents experiment results for KMS 2-Wasserstein using SDR relaxation with first-order
algorithm and rank reduction (denoted as SDR-Efficient). Baseline approaches include the block
coordinate descent (BCD) algorithm [70], which finds stationary points of KMS 2-Wasserstein, and
using off-the-shelf solver cvxpy [19] for solving SDR relaxation (denoted as SDR-Naive). All experi-
ments were conducted on a MacBook Pro with an Intel Core i9 2.4GHz and 16GB memory, based on
four datasets: blob (a d-dimensional Gaussian mixture synthetic dataset) [44], Iris [20], mnist [15],
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and credit [76]. Unless otherwise stated, error bars are reproduced using 10 independent trials.
Throughout the experiments, we specify the kernel as Gaussian, with bandwidth being the median of
pairwise distances between data points. Other details and numerical studies can be found in Appen-
dices EC.11 and EC.12.
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Figure 2 Comparison of SDR-Efficiennt with baselines SDR-Naive and BCD in terms of time and solution quality.
Columns from left to right correspond to datasets blob (2-dimensional), Iris, mnist, and credit.

Computational Time and Solution Quality.We first compare our approach with baseline methods in
terms of running time and solution quality. For a given nonlinear projector, its quality is estimated by
projecting the testing data points from two groups and then computing their 2-Wasserstein distance.
The experimental results are presented in Fig. 2, from which we can see that even for small sample
size datasets, SDR-Naive takes considerably longer time than SDR-Efficient and BCD. So we omit
the experiment of SDR-Naive for mnist and credit datasets. From the bottom plots of Fig. 2, we
find the performance of two SDR solvers outperform BCD, as indicated by their larger means and
smaller variations. One possible explanation is that BCD is designed to find a local optimum solution
for the original non-convex problem, making it highly sensitive to the initial guess and potentially less
effective in achieving optimal performance.
Testing Power of KMS Versus MS. Next, we compare the performance between KMS and MSWasser-
stein distances for two-sample testing. Fig. 3 illustrates a toy example where µ and ν are generated
from blob dataset and presents the contour plots of optimal projection functions estimated by com-
puting these two distances. The plots show that KMS operates by identifying a central point and
projecting each data point based on its distance from this central point. Subsequently, a two-sample
test is conducted utilizing the Wasserstein distance between the projected data points as a statistic.
In contrast, the MS Wasserstein distance appears to be less flexible, as depicted in the contour plot,
where the projection function operates by linearly separating the sample space.
We also examine the testing power of TKMS using blob dataset with dimension d= 20 in Fig. 4 for

different choices of sample size n∈ {20,40,80,160,180,200}. The type-I error is controlled within α=
0.05, and the error bar is generated using 20 independent trials. Compared with baseline approaches
(MMD-O [44], ME [34], MS [69]), we find the KMS Wasserstein-based two-sample test distinguishes the
differences between two Gaussianmixtures very well. Unlike Theorem 1 that determines the threshold
∆(n,α) to reject H0 based on a theoretical error bound, we use the bootstrap strategy to estimate
such a threshold.
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Figure 3 Visualization for 2-dimensional blob dataset. Figures from left to right correspond (a) samples from µ, (b)
samples from ν under H1, (c) optimal projector from KMS Wasserstein distance, and (d) optimal nonlinear
projector from MS Wasserstein distance.
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Figure 4 Testing power of KMS and other baseline approaches for blob dataset.

6. Concluding Remarks
In this paper, we presented statistical and computational guarantees of KMSWasserstein distance. Our
finite-sample guarantees demonstrate that the empirical KMS p-Wasserstein distance decays in the
order of n−1/(2p) with n samples. Our findings are based on modest technical assumptions and do not
face the curse of dimensionality. Regarding algorithms, we prove that computing KMS 2-Wasserstein
distance between discrete measures is NP-hard. Subsequently, we introduce an effective semidefinite
programming relaxation (SDR) and propose a first-order method utilizing biased gradient oracles to
find its solution. Furthermore, we show that the SDR includes a solution of low rank and propose a
greedy rank reduction algorithm that yields the desired low-rank solution. Finally, our numerical study
validates our theoretical results and highlights the exceptional performance of the KMS Wasserstein
distance.
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Supplementary for “Statistical and Computational Guarantees of
Kernel Max-Sliced Wasserstein Distances”

EC.1. Limitations
We list several limitations of this work below.
(I) Our theoretical results assume that the sample sizes from sample sets xn and ym satisfym= n
for the simplicity of presentation. If considering the unequal sample size m ̸= n, the error
bound ∆(n,α) in Theorem 1 is replaced by

2A

(
C +4

√
log

1

α

)1/p

·
[
n−1/(2p) +m−1/(2p)

]
;

the complexity bound in Theorem 4 replaces n withmax{n,m}; the rank bound in Theorem 5
replaces k= 1+

⌊√
2n+ 9

4
− 3

2

⌋
with

1+

⌊√
2(n+m− 1)+

9

4
− 3

2

⌋
,

since for unbalanced OT, at most n+m− 1 constraints are binding [57, Proposition 3.4].
(II) Although our statistical guarantees focus on KMS p-Wasserstein distance with general p ∈

[1,∞), our computational guarantees focus on p= 2 only. It is of research interest to develop
similar computational guarantees for other choices of p, i.e., p= 1.

(III) It is of research interest to develop performance guarantees on SDR in terms of optimal value
instead of solution rank. Also, it is desirable to develop exact algorithms or approximation
algorithms with better approximation quality for computing KMS p-Wasserstein distance.

(IV) In this work we only consider classical Gaussian kernel for numerical study. It is desirable to
consider deep neural network-based kernel to further boost the power of KMS Wasserstein-
based testing.

EC.2. Broader Societal Impact
This is a theoretical work on statistical and computational guarantees on KMS Wasserstein dis-
tance. One of its societal impacts is its application to non-parametric two-sample testing. In practice,
researchers can deploy two-sample testing to evaluate the effectiveness of medical treatments, dis-
cover economic disparities, detect anomaly observations, and more. We do not foresee any negative
societal impact of this work.
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EC.3. Proof of Theorem 1 and Corollary 1
The proof in this part relies on the following technical results.
Theorem EC.1. (Finite-Sample Guarantee on MS 1-Wasserstein Distance on Hilbert Space,
Adopted from [9, Corollary 2.8]) Let δ ∈ (0,1], and µ be a probability measure on a separable Hilbert
spaceH with ∫H ∥x∥dµ(x)<∞. Let X1, . . . ,Xn be i.i.d. random elements ofH sampled according to µ,
and µ̂n =

1
n

∑n

i=1 δXi
, then it holds that

EMS1 (µ, µ̂n)≤C ·
(∫

H
∥x∥2+2δ dµ(x)

)1/(2+2δ)

· (δn)−1/2,

where C ≥ 1 is a universal constant.
Theorem EC.2 (Functional Hoefffding Theorem [65, Theorem 3.26]). Let F be a class of func-
tions, each of the form h : B → R, and X1, . . . ,Xn be samples i.i.d. drawn from µ on B. For i ∈ [n],
assume there are real numbers ai,h ≤ bi,h such that

h(x)∈ [ai,h, bi,h]

for any x∈B, h∈F ∪{−F}. Define

L2 = sup
h∈F∪{−F}

1

n

n∑

i=1

(bi,h− ai,h)
2.

For all δ≥ 0, it holds that

P

{
sup
h∈F

∣∣∣∣∣
1

n

n∑

i=1

h(Xi)

∣∣∣∣∣≥E

[
sup
h∈F

∣∣∣∣∣
1

n

n∑

1

h(Xi)

∣∣∣∣∣

]
+ δ

}
≤ exp

(
−nδ2

4L2

)
.

We first show the one-sample guarantees for KMS p-Wasserstein distance.
Proposition EC.1. Fix p ∈ [1,∞), error probability α ∈ (0,1), and suppose Assumption 1 holds. Let
C ≥ 1 be a universal constant. Then, we have the following results:
(I) EKMSp(µ, µ̂n)≤A(2C1/p) ·n−1/(2p)

(II) With probability at least 1−α, it holds that

KMSp(µ, µ̂n)≤ 21−1/pA

(
C +4

√
log

1

α

)1/p

·n−1/(2p).

Proof of Proposition EC.1. Recall from (3) that

KMSp(µ,ν) =MSp

(
Φ#µ,Φ#ν

)
.

Therefore, it suffices to derive one-sample guarantees forMSp

(
Φ#µ,Φ#µ̂n

)
.

(I) Observe that under Assumption 1, we have

A2 ≥K(x,x) = ⟨Kx,Kx⟩= ∥Kx∥2H,

and therefore ∥Φ(x)∥H = ∥Kx∥H ≤A,∀x∈B. In other words, for every probability measure µ
on B, the probability measure Φ#µ is supported on the ball in H centered at the origin with
radius A. By Theorem EC.1 with δ= 1, we obtain

EKMS1(µ, µ̂n) =EMS1

(
Φ#µ,Φ#µ̂n

)
≤ AC√

n
.
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Since Φ#µ and Φ#µ̂n are supported on the ball of H centered at the origin with radius A, it
holds that

MSp

(
Φ#µ,Φ#µ̂n

)
≤
[
MS1

(
Φ#µ,Φ#µ̂n

)
· (2A)p−1

]1/p
.

In other words,
KMSp(µ, µ̂n)≤

[
KMS1(µ, µ̂n) · (2A)p−1

]1/p
. (EC.1)

It follows that
EKMSp(µ, µ̂n) =EMSp

(
Φ#µ,Φ#µ̂n

)

≤E
[
MS1

(
Φ#µ,Φ#µ̂n

)
· (2A)p−1

]1/p

≤
{
E
[
MS1

(
Φ#µ,Φ#µ̂n

)
· (2A)p−1

]}1/p

≤
{
AC√
n
· (2A)p−1

}1/p

= 21−1/pAC1/p ·n−1/(2p).

(II) For the second part, we re-writeKMS1(µ, µ̂n)with µ̂n =
1
n

∑n

i=1 δxi using the kantorovich dual
reformulation of OT:

KMS1(µ, µ̂n) = sup
f∈H: ∥f∥H≤1,

g is 1-Lipschitz with g(0) = 0

∣∣∣∣∣
1

n

n∑

i=1

(
g(f(x))−Ex∼µ[g(f(x))]

)∣∣∣∣∣ ,

where the additional constraint g(0) = 0 does not impact the optimal value of the OT problem.
In other words, one can represent

KMS1(µ, µ̂n) = sup
h∈H

∣∣∣ 1
n

n∑

i=1

h(xi)
∣∣∣,

where the function class
H=

{
x 7→ g(f(x))−Ex∼µ[g(f(x))] : g is 1-Lipschitz with g(0) = 0, f ∈H,∥f∥H ≤ 1

}
.

Consequently, for any x,
|g(f(x))|= |g(f(x))− g(0)| ≤ |f(x)|= |⟨f,Kx⟩H| ≤ ∥f∥H∥Kx∥H ≤A.

One can apply Theorem EC.2 withF ≡H, ai,h ≡−A−Ex∼µ[g(f(x))], bi,h ≡A−Ex∼µ[g(f(x))],
where h(x) = g(f(x))−Ex∼µ[g(f(x))], to obtain

P
{
KMS1(µ, µ̂n)≥E [KMS1(µ, µ̂n)] + δ

}
≤ exp

(
− nδ2

4(2A)2

)
= exp

(
− nδ2

16A2

)
.

Or equivalently, the following relation holds with probability at least 1−α:

KMS1(µ, µ̂n)≤E [KMS1(µ, µ̂n)] + 4An−1/2

√
log

1

α
≤An−1/2

(
C +4

√
log

1

α

)
.

By the relation (EC.1), we find that with probability at least 1−α,
KMSp(µ, µ̂n)

≤
[
An−1/2

(
C +4

√
log

1

α

)
· (2A)p−1

]1/p
= 21−1/pA

(
C +4

√
log

1

α

)1/p

·n−1/(2p).
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□

We now complete the proof of Theorem 1. By the triangle inequality, with probability at least 1−2α,
it holds that

KMSp(µ̂n, ν̂n)≤KMSp(µ, µ̂n)+KMSp(ν, ν̂n)

≤ 2 · 21−1/pA

(
C +4

√
log

1

α

)1/p

·n−1/(2p)

≤ 4A

(
C +4

√
log

1

α

)1/p

·n−1/(2p).

Then, substituting α with α/2 gives the desired result.
Proof of Corollary 1. It remains to show the type-II risk when proving this corollary. In particular,

Type-II Risk= PH1

{
KMSp(µ̂n, ν̂n)<∆(n,α)

}

= PH1

{
KMSp(µ,ν)−KMSp(µ̂n, ν̂n)≥KMSp(µ,ν)−∆(n,α)

}

≤ PH1

{∣∣KMSp(µ,ν)−KMSp(µ̂n, ν̂n)
∣∣≥KMSp(µ,ν)−∆(n,α)

}

≤ E
∣∣KMSp(µ,ν)−KMSp(µ̂n, ν̂n)

∣∣
KMSp(µ,ν)−∆(n,α)

,

where the last relation is based on the Markov inequality and the assumption that KMSp(µ,ν)−
∆(n,α)> 0. Based on the triangular inequality, we can see that

E
∣∣KMSp(µ,ν)−KMSp(µ̂n, ν̂n)

∣∣≤E[KMSp(µ, µ̂n)] +E[KMSp(ν, ν̂n)]≤ 2AC1/p ·n−1/(2p).

Combining these two upper bounds, we obtain the desired result. □
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EC.4. Reformulation for 2-KMS Wasserstein Distance in (KMS)
In this section, we derive the reformulation for computing 2-KMS Wasserstein distance:

max
f∈H, ∥f∥2H≤1



min

π∈Γn

∑

i,j∈[n]

πi,j|f(xi)− f(yj)|2


 . (EC.2)

Based on the expression of f in (7), we reformulate the problem above as

max
ax,ay∈Rn



min

π∈Γn

∑

i,j∈[n]

πi,j

∣∣∣∣∣∣
∑

l∈[n]

ax,lK(xi, xl)−
∑

l∈[n]

ay,lK(yj, yl)

∣∣∣∣∣∣

2
 , (EC.3a)

subject to the constraint
∥∥∥∥∥

n∑

i=1

ax,iK(·, xi)−
n∑

i=1

ay,iK(·, yi)
∥∥∥∥∥

2

H

=⟨
n∑

i=1

ax,iK(·, xi)−
n∑

i=1

ay,iK(·, yi)
n∑

i=1

ax,iK(·, xi)−
n∑

i=1

ay,iK(·, yi)⟩

=
∑

i,j∈[n]

ax,iax,j⟨K(·, xi),K(·, xj)⟩+
∑

i,j∈[n]

ay,iay,j⟨K(·, yi),K(·, yj)⟩

− 2
∑

i,j∈[n]

ax,iay,j⟨K(·, xi),K(·, yj)⟩ ≤ 1.

(EC.3b)

One can re-write (EC.3) in compact matrix form. If we define
s= [ax;ay],

M ′
i,j = [(K(xi, xl)−K(yi, xl))l∈[n]; (K(yj, yl)−K(xi, yl))l∈[n]],

G= [K(xn, xn),−K(xn, yn);−K(yn, xn),K(yn, yn)]∈R2n×2n,

Problem (EC.3) can be reformualted as

max
s∈R2n



min

π∈Γn

∑

i,j∈[n]

πi,j

∣∣sTM ′
i,j

∣∣2 : sTGs≤ 1



 . (EC.4)

Take Cholesky decomposition G−1 =UUT and use the change of variable approach to take ω=U−1s,
Problem (EC.4) can be further reformulated as

max
s∈R2n



min

π∈Γn

∑

i,j∈[n]

πi,j

(
⟨ω,UTM ′

i,j⟩
)2

: ωTω≤ 1



 . (EC.5)

After definingMi,j =UTM ′
i,j and observing that the inequality constraint ωTω≤ 1 will become tight,

we obtain the desired reformulation as in (9).
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EC.5. Proof of Theorem 3
The general procedure of NP-hardness proof is illustrated in the following diagram: Problem (9) con-
tains the (Fair PCA with rank-1 data) as a special case, whereas this special problem further contains
(Partition) (which is known to be NP-complete) as a special case. After building these two reductions,
we finish the proof of Theorem 3.

(Fair-PCA with rank-1 data)

max
!: k!k2=1

min
i2[n]

!>AiA
>
i !max

!2R2n: k!k2=1

8
<
:min

⇡2�n

X

i,j

⇡i,j(M
>
i,j!)2

9
=
; .

(9)

Give integers a1, . . . , aN ,
determine whether binary
variables {xi}N

i=1 2 {�1, 1}N

exist such that
PN

i=1 aixi = 0?

(Partition)

◆ ◆

Figure EC.1 Proof outline of Theorem 3

Claim 1. Problem (9) contains Problem (Fair PCA with rank-1 data).
Proof of Claim 1. Given vectors A1, . . . ,An, we specify

M1,: ≜ {M1,1,M1,2, . . . ,M1,n}= {A1, . . . ,An},

andMi,: ≜ {Mi,1,Mi,2, . . . ,Mi,n}, i= 2, . . . , n is specified by circularly shifting the elements inM1,: by
i−1 positions. For instance,M2,: = {An,A1, . . . ,An−1}. For the inner OT problem in (9), it suffices to
consider deterministic optimal transport π, i.e.,

πi,j =

{
1/n, if j = σ(i),

0, otherwise

for some bijection mapping σ : [n]→ [n]. The cost matrix for the inner OT is actually a circulant
matrix:

(
(MT

i,jω)
2
)
i,j

=




(A1ω)
2 (A2ω)

2 · · · (Anω)
2

(Anω)
2 (A1ω)

2 · · · (An−1ω)
2

... ... . . . ...
(A2ω)

2 (A3ω)
2 · · · (A1ω)

2


 .

When considering the feasible circularly shifting bijection mapping (e.g., σ(i) = (i+ j) mod n,∀i ∈
[n] for j = 0,1, . . . , n− 1), we obtain the upper bound on the optimal value of the inner OT problem
in (9):

min
π∈Γn

∑

i,j

πi,j(M
T
i,jω)

2 ≤min
i∈[n]

(AT
i ω)

2 =min
i∈[n]

ωTAiA
T
i ω.

On the other hand, for any bijection mapping σ, the objective of the inner OT problem in (9) can be
written as a convex combination of (AT

1 ω)
2, . . . , (AT

nω)
2, and thus,

min
π∈Γn

∑

i,j

πi,j(M
T
i,jω)

2 ≥ min
α∈R+

n ,
∑

i αi=1

{∑

i

αi(A
T
i ω)

2
}
≥min

i∈[n]
(AT

i ω)
2.

Since the upper and lower bounds match with each other, we obtain

min
π∈Γn

∑

i,j

πi,j(M
T
i,jω)

2 =min
i∈[n]

ωTAiA
T
i ω,
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and consequently,

max
ω: ∥ω∥2=1

{
min
π∈Γn

∑

i,j

πi,j(M
T
i,jω)

2

}
= max

ω: ∥ω∥2=1

{
min
i∈[n]

ωTAiA
T
i ω

}
,

which justifies Problem (9) contains Problem (Fair PCA with rank-1 data). □

Claim 2. Problem (Fair PCA with rank-1 data) contains Problem (Partition).
It is noteworthy that Claim 2 has previously been proved by [62]. For the sake of completeness, we

provide the proof here.
Proof of Claim 2. Consider the norm minimization problem

P =min
ω

{
∥ω∥22 : min

i∈[n]
(ωTAi)

2 ≥ 1
}
. (EC.6)

and the scaled problem
max

ω

{
min
i∈[n]

(ωTAi)
2 : ∥ω∥22 = P

}
. (EC.7)

We can show that Problem (Fair PCA with rank-1 data) is equivalent to (EC.7), whereas (EC.7) is
equivalent to (EC.6). Indeed,
• For the first argument, for any optimal solution from Problem (Fair PCA with rank-1 data),
denoted as ω∗, one can do the scaling to consider ω̃∗ =

√
Pω, which is also optimal to (EC.7),

and vise versa.
• For the second argument, let ω1, ω2 be optimal solutions from (EC.6), (EC.7), respectively. Since

P is the optimal value of (EC.6), one can check that ω1 is a feasible solution to (EC.7). Since
mini∈[n] (ωT

1 Ai)
2 ≥ 1, by the optimality of ω2, it holds that mini∈[n] (ωT

2 Ai)
2 ≥ 1, i.e., ω2 is a

feasible solution to (EC.6). Since ∥ω2∥22 = P , ω2 is an optimal solution to (EC.6). Reversely, one
can show ω1 is an optimal solution to (EC.7): suppose on the contrary that there exists ω̄1 such
that ∥ω̄1∥22 = P and mini∈[n] (ω̄T

1 Ai)
2 >mini∈[n] (ωT

1 Ai)
2 ≥ 1, then one can do a scaling of ω̄1

such that mini∈[n] (ω̄T
1 Ai)

2 = 1 whereas ∥ω̄1∥22 > P , which contradicts to the optimality of P .
Combining both directions, we obtain the equivalence argument.

Thus, it suffices to show (EC.6) contains Problem (Partition). Define a= (ai)i∈[n],Q= In + aaT, and
assume Q admits Cholesky factorization Q= STS. Then we create the vector Ai = S−⊤ei, where ei
is the i-th unit vector of length n. Then, it holds that

(EC.6)
=min

ω

{
∥ω∥22 : min

i∈[n]
((S−1ω)Tei)

2 ≥ 1
}

=min
ω

{
∥Sx∥22 : min

i∈[n]
(xTei)

2 ≥ 1
}

=min
ω

{
xTQx : x2

i ≥ 1
}

=min
ω

{ n∑

i=1

x2
i +

(
n∑

i=1

aixi

)2

: x2
i ≥ 1

}
(∗)

where the second equality is by the change of variable x= S−1ω, the third equality is by the definitions
of S and ei, and the last equality is by the definition of Q. The solution to Problem (Partition) exists
if and only if the optimal value to Problem (*) equals n. Thus, we finish the proof of Claim 2.
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EC.6. Algorithm that Finds Near-optimal Solution to Optimal Transport
In this section, we present the algorithm that returns ϵ-optimal solution to the following optimal
transport (OT) problem:

min
π∈Γn

∑

i,j

πi,jci,j, (EC.8)

where {ci,j}i,j is the given cost matrix. Define ∥C∥∞ =maxi,j ci,j . In other words, we find π̂ ∈ Γn such
that

optval(EC.8)≤
∑

i,j

π̂i,jci,j ≤ optval(EC.8)+ ϵ.

Entropy-Regularized OT. The key to the designed algorithm is to consider the entropy regularized
OT problem

min
π∈Γn

∑

i,j

πi,jci,j + η
∑

i,j

πi,j log(πi,j),

whose dual problem is
min
v∈Rn

{
G(v) =

1

n

n∑

i=1

hi(v)

}
, (EC.9)

where
hi(v) = η log

∑

j

exp

(
vj − ci,j − η

η

)
− 1

n

∑

j

vj + η(1+ logn).

Given the dual variable v ∈Rn, one can recover the primal variable π using

π(v) =

1
n
exp

(
vj−ci,j−η

η

)

∑
j′∈[n] exp

(
vj′−ci,j′−η

η

)

Algorithm 2 essentailly optimizes the dual formulation (EC.9) with light computational speed.
Theorem EC.3 ([75, Theorem 3]). Suppose we specify Tout = O(∥C∥∞

√
lnn

ϵ
), T = n, the number of

total iterations (including outer and inner iterations) of Algorithm 2 is O(n∥C∥∞
√
lnn

ϵ
) with per-iteration

cost O(n). Therefore, the number of arithmetic operations of Algorithm 2 for finding ϵ-optimal solution
is O(n2∥C∥∞

√
lnn

ϵ
)
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Algorithm 2 Stochastic Gradient-based Algorithm with Katyusha Momentum for solving OT [75]
1: Input: Accuracy ϵ > 0, η = ϵ

8 logn
, ϵ′ = ϵ

6maxi,j ci,j
, maximum outer iteration Tout, and maximum

inner iteration T .
2: Take (y0, z0, λ̃0, λ0,C0,D0) = (0,0,0,0,0,0)
3: for t= 0, . . . , Tout− 1 do
4: τ1,t =

2
t+4

, γt =
η

9τ1,t

5: ut =∇ϕ(λ̃t)
6: for j = 0, . . . , T − 1 do
7: k= j+ tT
8: λk+1 = τ1,tzk +

1
2
λ̃t +( 1

2
− τ1,t)yk

9: Sample i uniformly from [n], and construct

Hk+1 = ut +
(
∇hi(λk+1)−∇hi(λ̃t)

)

10: Update zk+1 = zk− γt ·Hk+1/2 and yk+1 = λk+1− ηHk+1/9
11: end for
12: Update λ̃t+1 =

1
T

∑T

j=1 ytT+j

13: Sample λ̂t uniformly from {λtT+1, . . . , λtT+T} and take Dt =Dt + vec(π(λ̂t))/τ1,t
14: Ct =Ct +1/τ1,t
15: πt+1 =Dt/Ct

16: end for
17: Query Algorithm 3 to Round π̃ := πTout to π̂ such that π̂1n =

1
n
1n and π̂T1n =

1
n
1n

18: Return π̂

Algorithm 3 Round to Γn ([1, Algorithm 2])
1: Input: π ∈Rn×n

+

2: X = diag(x1, . . . , xn), with xi =min{1, 1
nri(π)

}. Here ri(π) denotes the i-th row sum of π.
3: π′ =Xπ.
4: Y = diag(y1, . . . , yn), with yj =min{1, 1

nci(π
′)}. Here cj(π′) denotes the j-th column sum of π′.

5: π′′ = π′Y .
6: er =

1
n
1n− r(π′′),ec =

1
n
1n− c(π′′), where

r(π′′) = (ri(π
′′))i∈[n], c(π

′′) = (cj(π
′′))j∈[n].

7: Return π′′ + ere
T
c /∥er∥1.
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EC.7. Proof of Lemmas 1, 2, and Theorem 4
Proof of Lemma 1. For the first part, it is noteworthy that v(S) is associated with the objective

F̂ (S) =
∑

i,j

π̂i,j⟨MT
i,jMi,j, S⟩,

where π̂i,j is the ϵ-optimal solution to
F (S) = min

π∈Γn

∑

i,j

πi,j⟨MT
i,jMi,j, S⟩.

By definition, it holds that
0≤ F̂ (S)−F (S)≤ ϵ.

The second part follows from Theorem EC.3. □

The proof of Lemma 2 replies on the following technical result.
Lemma EC.1 ([50]). Let {Sk}Tk=1 be the updating trajectory of mirror ascent aiming to solve the maxi-
mization of G(S) with S ∈ S2n, i.e.,

Sk+1 = argmax
S∈S2n

α⟨v(Sk), S⟩+V (S,Sk), k= 1, . . . , T − 1.

Here v(S) is a supgradient of G(S), and we assume there exists M∗ > 0 such that
∥v(S)∥Tr := Trace(v(S))≤M∗, ∀S ∈ S2n.

Let Ŝ1:T = 1
T

∑T

k=1 Sk, and S∗ be a maximizer of G(S). Define the diameter
D2

S2n
= max

S∈S2n
h(S)− min

S∈S2n
h(S) = log(2n).

For constant step size
α=

D2
S2n

M∗
√
T

=
log(2n)

M∗
√
T
,

it holds that
0≤G(S∗)−G(Ŝ1:T )≤M∗

√
4 log(2n)

T
.

Proof of Lemma 2. Let S∗ and Ŝ∗ be maximizers of the objective F (·) and F̂ (·), then we have the
following error decomposition:

F (S∗)−F (Ŝ1:T )

=
[
F (S∗)− F̂ (S∗)

]
+
[
F̂ (S∗)− F̂ (Ŝ∗)

]
+
[
F̂ (Ŝ∗)− F̂ (Ŝ1:T )

]
+
[
F̂ (Ŝ1:T )−F (Ŝ1:T )

]

≤2ϵ+
[
F̂ (S∗)− F̂ (Ŝ∗)

]
+
[
F̂ (Ŝ∗)− F̂ (Ŝ1:T )

]

≤2ϵ+
[
F̂ (Ŝ∗)− F̂ (Ŝ1:T )

]
,

where the first inequality is because ∥F − F̂∥∞ ≤ ϵ and
|
[
F (S∗)− F̂ (S∗)

]
| ≤ ϵ, |

[
F̂ (Ŝ1:T )−F (Ŝ1:T )

]
| ≤ ϵ;

and the second inequality is because F̂ (Ŝ∗)− F̂ (Ŝ1:T )≤ 0. It remains to bound
[
F̂ (Ŝ∗)− F̂ (Ŝ1:T )

]
. It

is worth noting that
∥v(S)∥Tr =

∑

i,j

πi,j∥Mi,jM
T
i,j∥Tr ≤

∑

i,j

πi,j ·C =C.

Therefore, the proof can be finished by querying Lemma EC.1 withM∗ =C and stepsize α= log(2n)

C
√
T
.

□



ec11

Proof of Theorem 4. The proof can be finished by taking hyper-parameters such that

2ϵ≤ δ

2
, 2C

√
log(2n)

T
≤ δ

2
.

In other words, we take ϵ= δ
4
and T = ⌈ 16C2 log(2n)

δ2
⌉. We follow the proof of Lemma 2 to take stepsize

α= log(2n)

C
√
T
. □

EC.8. Proof of Theorem 5
We reply on the following two technical results when proving Theorem 5.
Theorem EC.4 (Birkhoff-von Neumann Theorem [8]). Consider the discrete OT problem

min
π∈Γn

∑

i,j

πi,jci,j, . (EC.10)

There exists an optimal solution π that has exactly one entry of 1/n in each row and each column with
all other entries 0.
Theorem EC.5 (Rank Bound, Adopted from [40, Theorem 2] and [39, Lemma 1]). Consider the
domain set

D=
{
S ∈ S+

m : Trace(S) = 1
}

and the intersection of N linear inequalities:

E =
{
S ∈Rm×m : ⟨S,Ai⟩ ≥ bi, i∈ [N ]

}
.

Then, any feasible extreme point inD∩E has a rank at most 1+⌈
√
2N +9/4−3/2⌉. Such a rank bound

can be strengthened by replacing N by the number of binding constraints in E .
Proof of Theorem 5. By taking the dual of inner OT problem, we find (SDR) can be reformulated as

max
S∈S2n
f,g∈Rn

{
1

n

n∑

i=1

(fi + gi) : fi + gj ≤ ⟨Mi,jM
T
i,j, S⟩, ∀i, j ∈ [n]

}
. (EC.11)

Let S∗ be the optimal solution of variable S to the optimization problem above. Then for fixed S∗,
according to Theorem EC.4 and complementary slackness of OT, there exists optimal solutions (f∗, g∗)
such that only n constraints out of n2 constraints in (EC.11) are binding. Moreover, an optimal solution
to (SDR) can be obtained by finding a feasible solution to the following intersection of constraints:

Find S ∈ S2n
⋂
E ≜

{
S : f∗

i + g∗j ≤ ⟨Mi,jM
T
i,j, S⟩, i, j ∈ [n]

}
.

By Theorem EC.5, any feasible extreme point from S2n∩E has rank at most 1+
⌊√

2n+ 9
4
− 3

2

⌋
. Thus,

we pick such a feasible extreme point to satisfy the requirement of Theorem 5.
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Algorithm 4 Rank reduction algorithm for (SDR)
1: Run Algorithm 1 to obtain δ-optimal solution to (SDR), denoted as Ŝ.

// Step 2: Find n binding constraints

2: Run Hungarian algorithm [38] to solve OT (11) with S ≡ Ŝ, and obtain an optimal assignment
σ : [n]→ [n] together with dual optimal solutoin (f∗, g∗).

// Step 3-9: Calibrate low-rank solution using a greedy algorithm

3: Initialize δ∗ = 1
4: while δ∗ > 0 do
5: Perform eigendecomposition Ŝ =QΛQT, where Λ= diag(λ1, . . . , λr) with rank(Ŝ) = r
6: Find a direction Y =Q∆QT, where ∆∈ Sr is some nonzero matrix satisfying

Trace(∆) = 0, ⟨QTMi,σ(i)M
T
i,jQ,∆⟩= 0, ∀i∈ [n].

7: If such Y does not exist, then break the loop.
8: Take new solution Ŝ(δ∗) := Ŝ+ δ∗Y , where

δ∗ = argmax
δ≥0

{
δ : λmin(Λ+ δ∆)≥ 0

}
.

9: Update Ŝ = Ŝ(δ∗)
10: end while
11: Return Ŝ

EC.9. Rank Reduction Algorithm
In this section, we develop a rank reduction algorithm that, based on the near-optimal solution
(denoted as Ŝ) returned from Algorithm 1, finds an alternative solution of the same (or smaller)
optimality gap while satisfying the desired rank bound in Theorem 5.
Step (i): Find n binding constraints. First, we fix S ≡ Ŝ in (14) and finds the optimal solution (f∗, g∗)
such that only n constraints out of n2 constraints are binding. It suffices to apply the Huangarian
algorithm [38] to solve the following balanced discrete OT problem

max
f,g∈Rn

{
1

n

n∑

i=1

(fi + gi) : fi + gj ≤ ci,j

}
= min

π∈Γn

{
n∑

i,j=1

πi,jci,j

}

where ci,j = ⟨Mi,jM
T
i,j, Ŝ⟩. The output of the Huangarian algorithm is a deterministic optimal transport

that moves n probability mass points from the left marginal distribution of π to the right, which is
denoted as a bijection σ that permutes [n] to [n]. Thus, these n binding constraints are denoted as

f∗
i + g∗σ(i) ≤ ⟨Mi,jM

T
i,j, S⟩, i∈ [n].

We denote by the intersection of these n constraints as En.
Step (ii): Calibrate low-rank solution using a greedy algorithm. Second, let us assume Ŝ is not an
extreme point of S2n∩En, since otherwise one can terminate the algorithm to output Ŝ following the
proof of Theorem 5. We run the following greedy rank reduction procedure:
(I) We find a direction Y ̸= 0, along which Ŝ remains to be feasible, and the null space of Ŝ is
non-decreasing.

(II) Then, wemove Ŝ along the direction Y until its smallest non-zero eigenvalue vanishes. We update
Ŝ to be such a new boundary point.
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(III) We terminate the iteration until no movement is available.
To achieve (I), denote the eigendecomposition of Ŝ with rank(Ŝ) = r as

Ŝ =
(
Q 0

)(Λ 0
0 0

)(
QT 0

)
=QΛQT

where Λ= diag(λ1, . . . , λr) with λ1 ≥ · · · ≥ λr > 0 and Q∈R2n×r. To ensure Ŝ+ δY ∈ S2n ∩En while
Null(Ŝ+ δY )⊇Null(Ŝ), for some stepsize δ > 0, it suffices to take

Y =
(
Q 0

)(∆ 0
0 0

)(
QT 0

)
=Q∆QT,

where ∆∈ Sr \ {0} is a symmetric matrix satisfying

Trace(∆) = 0, ⟨Mi,jM
T
i,j,Q∆QT⟩= 0, i∈ [n].

To achieve (II), it suffices to solve the one-dimensional optimization

δ∗ = argmax
δ≥0

{
δ : λmin(Λ+ δ∆)≥ 0

}
, (EC.12)

where λmin(·) denotes the smallest eigenvalue of a given matrix. the optimization above admits closed-
form solution update. Let eigenvalues of ∆ be λ′

1 ≥ · · · ≥ λ′
r. It suffices to solve

δ∗ = argmax
δ≥0

{
δ : min

i∈[r]
(λi + δλ′

i)≥ 0
}
.

As long as λ′
r ≥ 0, we return δ∗ = 0. Otherwise, let i be an index such that λ′

i ≥ 0 > λ′
i+1. We take

δ∗ =maxi<j≤r−λj
λ′
j
as the desired optimal solution.

The overall algorithm is summarized in Algorithm 4. Its performance guarantee is summarized in
Propositions EC.2, EC.3, and Theorem 6.
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EC.10. Proof of Theorem 6
The proof of this theorem is separated into two parts.
Proposition EC.2. The rank of iteration points in Algorithm 4 strictly decreases. Thus, Algorithm 4 is
guaranteed to terminate within 2n iterations.

Proof. Assume on the contrary that rank(Ŝ(δ∗)) = rank(Ŝ) = r. Since Ŝ(δ∗) =Q(Λ+ δ∗∆)QT, the
positive eigenvalues of Ŝ(δ∗) are those of the matrix Λ+ δ∗∆. According to the solution structure of
(EC.12), this could happen only when Λ+ δ∗∆≻ 0, i.e., either δ∗ = 0 or ∆⪰ 0. For the first case, this
algorithm terminates. For the second case, since Trace(∆) = 0,∆∈ Sr, it implies that ∆=0, which is
a contradiction.
Thus, the rank of the iteration point reduces by at least 1 in each iteration. □

Proposition EC.3. Let S∗ be the output of Algorithm 4. Then, it holds that
(I) S∗ is a δ-optimal solution to (SDR).
(II) The rank of S∗ satisfies

rank(S∗)≤ 1+

⌊√
2n+

9

4
− 3

2

⌋
.

Proof. Recall the solution Ŝ obtained from Step 1 of Algorithm 4 satisfies
F (Ŝ) = min

π∈Γn

∑

i,j

πi,j⟨Mi,jM
T
i,j, Ŝ⟩

= max
f,g∈Rn

{
1

n

n∑

i=1

(fi + gi) : fi + gj ≤ ⟨Mi,jM
T
i,j, Ŝ⟩

}
≥ objval(SDR)− δ.

Since Step 2 of Algorithm 4 solves the OT problem exactly, we obtain
1

n

n∑

i=1

(f∗
i + g∗i ) = F (Ŝ)≥ objval(SDR)− δ

Since Step 3-7 always finds feasible solutions to the n binding constraints
f∗
i + g∗σ(i) ≤ ⟨Mi,jM

T
i,j, S⟩, i∈ [n],

for any iteration points from Step 3-7, denoted as S̃, the pair (S̃, f∗, g∗) is guaranteed to be the δ-
optimal solution to (14), a reformulation of (SDR). Hence we finish the proof of Part (I).
For the second part, assume on the contrary that r = rank(S∗) ≥ 1 +

⌊√
2n+ 9

4
− 3

2

⌋
. It implies

n+ 1 < r(r + 1)/2. Recall that Step 6 of Algorithm 4 essentially solves a linear system with n+ 1
constraints and r(r+1)/2 variables, so a nonzero matrix∆ is guaranteed to exist. Thus, one can pick
a sufficiently small δ > 0 such that λmin(Λ+ δ∆)≥ 0, which contradicts to the termination condition
δ∗ = 0. Thus, we finish the proof of Part (II).

Combining both parts, we start to prove Theorem 6.
Proof. Algorithm 4 satisfies the requirement of Theorem 6. For computational complexity, the

computational cost of Step 2 of Algorithm 4 is O(n3). In each iteration from Step 3-7, the most com-
putationally expansive part is to solve Step 6, which essentially solves a linear system with n + 1
constraints and r(r+1)/2 variables. The conservative bound r≤ 2n. Hence, the worst-case computa-
tional cost of Step 6 (which can be achieved using Gaussian elimination) is

O((n+1+ r(r+1)/2) · (n+1)2) =O(n4).

Since Algorithm 4 terminates within at most 2n iterations, the overall complexity of it is O(n5).



ec15

EC.11. Numerical Implementation Details
When implementing our mirror ascent algorithm, for small sample size (n ≤ 50), we use the exact
algorithm adopted from https://pythonot.github.io/ to solve the inner OT; whears for large sam-
ple size we use the approximation algorithm adopt from https://github.com/YilingXie27/PDASGD
to solve this subproblem.
For baseline approaches,
(I) the BCD method is implemented using the code from github.com/WalterBabyRudin/KPW_

Test/tree/main;
(II) the max-sliced (MS) test is implemented using the same link;
(III) the mean embedding (ME) test is implemented using the code from https://github.com/

wittawatj/interpretable-test;
(IV) the optimized MMD (MMD-O) test is implemented using the code from https://github.com/

fengliu90/DK-for-TST.
We adopt from [70] to design KMS Wasserstein-based two-sample testing. For the synthetic dataset
used in Fig. 2 and 3, we specify

µ=
1

2
N (0,0.03 · ID)+

1

2
N (1D,0.03 · ID),

ν =
1

2
N (0,Σ1)+

1

2
N (1D,Σ2),

where Σ1 =

(
0.03 −0.02
−0.02 0.03

)
, Σ2 =

(
0.03 0.028
0.028 0.03

)
.

For the synthetic dataset in Fig. 4, we specify

µ=
1

2
N (0,0.03 · ID)+

1

2
N (1D,0.03 · ID),

ν =
1

2
N (0,Σ1)+

1

2
N (1D,Σ2),

Σ1 = 0.03 · ID, Σ1[1,2] =Σ1[2,1]←−0.02
Σ2 = 0.03 · ID, Σ2[1,2] =Σ2[2,1]← 0.028,Σ2[1,1] =Σ2[2,2] = 3.

(EC.13)

For the real dataset used in Fig. 2,
(I) When using Iris or credit dataset, we split its 70% as training set and 30% as testing set.
We pre-process the data by doing the normalization (in 2-norm) for each feature vector. We
compare the samples corresponding to labels 1 and 2 only;

(II) When using mnist dataset, we compare the samples corresponding to labels 6 and 8 only. We
pre-process the data by passing through it into the sigmoid function such that all entries are
bounded by [0,1].

https://pythonot.github.io/
https://github.com/YilingXie27/PDASGD
github.com/WalterBabyRudin/KPW_Test/tree/main
github.com/WalterBabyRudin/KPW_Test/tree/main
https://github.com/wittawatj/interpretable-test
https://github.com/wittawatj/interpretable-test
https://github.com/fengliu90/DK-for-TST
https://github.com/fengliu90/DK-for-TST
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EC.12. Additional Numerical Study
Statistical Convergence Rate. In this part, we validate the statistical rate of empirical KMS 2-
Wasserstein distance (see the theoretical rate in Theorem 1) using the following configuration of blob
dataset:

µ=
1

2
N (0,0.03 · ID)+

1

2
N (1D,0.03 · ID),

ν =
1

2
N (0,Σ1)+

1

2
N (1D,Σ2),

Σ1 = 0.03 · ID, Σ1[1,2] =Σ1[2,1]←−0.02
Σ2 = 0.03 · ID, Σ2[1,2] =Σ2[2,1]← 0.028,Σ2[1,1] =Σ2[2,2] = 4.

(EC.14)

In the left of Fig. EC.2, we plot the empirical KMS Wasserstein distance underH0 for different sample
size n ∈ {5,10,50,100,200,500} and dimension D ∈ {2,5,10,20}, from which we see the statistic
decays quickly to zero. In the right of Fig. EC.2, we plot the empirical KMSWasserstein distance under
H1, from which we can see the statistic converges to a certain positive threshold. From both plots, we
realize the convergence rate seems to be dimension-free, which makes the KMS distance a suitable
choice for two-sample testing.
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Figure EC.2 Value of empirical KMS Wasserstein distance for different choices of sample size and dimension. The error
bar is generated using 20 independent trials.

Ablation Study on Kernel Choice and Bandwidth. Recall that we specified the kernel to be Gaus-
sian in previous experiments, i.e.,K(x, y) = exp(−∥x−y∥22

σ2 ), where σ2 ≡ σ̂2 is picked using the median
heuristic. In this part, we perform ablation study on two different choices of kernels: the Gaussian
kernel and the exponential kernelK(x, y) = exp(−∥x−y∥2

σ
). For Gaussian kernel, we validate the band-

width choice
σ2 ∈

{
c · σ̂2 : c∈ {0.1,0.5,1,5,10}

}
,

and for exponential kernel, ew validate the bandwidth choice

σ ∈
{
c · σ̂ : c∈ {0.1,0.5,1,5,10}

}
.

The performance is examined based on the value of empirical KMS Wasserstein distance for data dis-
tributions defined in (EC.14) with n= 500, d= 20. Experiment results are reported in Fig. EC.3. From
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Figure EC.3 Ablation study for Gaussian and Exponential kernel choice.

the left plot, we realize that the bandwidth choice 1 · σ̂2 achieves the near-optimal value for estimated
KMS 2-Wasserstein distance, which justifies the median choice for Gaussian kernel is reasonable. On
the other hand, if taking the exponential kernel, the bandwidth choice 10 · σ̂ achieves the largest value
of estimated KMS 2-Wasserstein distance. Therefore, the median heuristic for the exponential kernel
may not be optimal.
Details about Solution Rank. Recall that Theorem 5 provides the rank bound regarding some optimal
solution from SDR. In this part, we compare the rank of the matrix estimated from Algorithm 1
with our theoretical rank bound based on the experiments from Fig. 2, which consists of four types
of datasets (blob, Iris, mnist, and credit). For a given positive semidefinite matrix, we calculate
the rank as the number of eigenvalues greater than the tolerance 1e-20. We report the numerical
performance on rank for these four datasets in Table EC.1 to EC.4, respectively.
It is noteworthy that for many instances, the optimal solution obtained from SDR has rank-1, which

means in those cases, our SDR does not incur any optimality gap and solves Problem (9) exactly. Only
for two cases in Table EC.4 are the rank from SDR higher than the rank bound. In these cases, one
can run our rank reduction algorithm to obtain a low-rank solution.
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Sample Size n Rank Obtained from
Algorithm 1

Rank Bound from
Theorem 5

10 2 4
12 2 4
16 1 5
20 3 6
26 5 6
33 3 7
42 6 8
54 2 10

Table EC.1 Numerical performance on rank for blob dataset

Sample Size n Rank Obtained from
Algorithm 1

Rank Bound from
Theorem 5

4 2 2
8 1 3
12 1 4
16 2 5
20 1 6
24 1 6
28 2 7
32 3 7

Table EC.2 Numerical performance on rank for Iris dataset

Sample Size n Rank Obtained after
Algorithm 1

Rank Bound from
Theorem 5

50 2 9
100 3 9
150 5 16
200 3 19
250 2 21
300 3 24
350 1 26
400 2 27

Table EC.3 Numerical performance on rank for credit dataset
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Sample Size n Rank Obtained from
Algorithm 1

Rank Bound from
Theorem 5

50 1 9
100 2 13
150 4 16
200 3 19
250 7 21
300 148 24
350 3 26
400 30 27

Table EC.4 Numerical performance on rank for mnist dataset


	Introduction
	Background
	Statistical Guarantees
	Computation of -KMS Wasserstein distance
	Semidefinite relaxation with efficient algorithms
	Theoretical analysis

	Numerical Study
	Concluding Remarks
	Appendix
	Limitations
	Broader Societal Impact
	Proof of Theorem 1 and Corollary 1
	Reformulation for 
	Proof of Theorem 3
	Algorithm that Finds Near-optimal Solution to Optimal Transport
	Proof of Lemmas 1, 2, and Theorem 4
	Proof of Theorem 5
	Rank Reduction Algorithm
	Proof of Theorem 6
	Numerical Implementation Details
	Additional Numerical Study

