
On the accurate detection of the Pareto frontier

for bi-objective mixed integer linear problems

Lavinia Amorosi∗ and Marianna De Santis†

Abstract

We propose a criterion space search algorithm for bi-objective mixed
integer linear programming problems. The Pareto frontier of these prob-
lems can have a complex structure, as it can include isolated points, open,
half-open and closed line segments. Therefore, its exact detection is an
achievable though hard computational task. Our algorithm works by al-
ternating the resolution of single objective mixed integer linear problems
with bi-objective linear ones. Along the iterations of the algorithm, the
non-dominated points and line segments found are stored in an ordered
manner, using the tree data-structure proposed in [1]. The performance of
the algorithm is improved using suitably defined cuts and related strate-
gies. Under specific assumptions, we can prove that the exact Pareto
frontier can be detected in a finite number of iterations. Experimental
results on a test-bed of instances and a comparison with the Triangle
Splitting Method [8] is presented, showing the notably good performance
of our approach in terms of accuracy of the Pareto frontier detected and
in terms of efficiency for medium size instances.

Key Words: Bi-objective Programming, Mixed-Integer Linear Program-
ming, Criterion Space Algorithm.

Mathematics subject classifications (MSC 2010): 90C11, 90C29, 90C57.

1 Introduction

Optimization problems arising from real world applications increasingly require
the introduction of multiple criteria against which the possible solutions are
evaluated to identify the best decision(s). In particular, under the sustainabili-
ty paradigm that is increasingly spreading across all sectors, new problems of a
multi-objective nature arise or classic problems in the mathematical program-
ming literature are reformulated in multi-objective terms. Just to cite a few
examples, in the energy sector the design and management of renewable energy

∗Dipartimento di Scienze Statistiche, Sapienza Università di Roma, Piazzale Aldo Moro 5,
00185, Roma, Italy, (lavinia.amorosi@uniroma1.it)

†Dipartimento di Ingegneria dell’informazione, Università di Firenze, Via di Santa Marta
3, 50139, Firenze, Italy, (marianna.desantis@unifi.it)

1

storage systems is performed by taking into account both installation costs and
energy self-sufficiency [3]. In the mobility sector, the planning of walking routes
is done by minimizing travel times but also maximizing the air quality of the
route [32]. In supply chain, maximization of profit and minimization of CO2
emissions are simultaneously performed [9]. Consequently, from a methodologi-
cal point of view, multi-objective programming is receiving increasing attention.
Although there is still a considerable gap between the complexity of the models
deriving from real world applications and the solution techniques available, the
study in this research area is producing increasingly efficient algorithms capable
of dealing with instances of increasing size [20].
Depending on the continuous, discrete or mixed nature of the decision vari-
ables, and on the absence or presence of a combinatorial structure underlying
the problem, we can distinguish multi-objective optimization (MOO) problems
from multi-objective combinatorial optimization (MOCO) problems. As regards
the exact solution techniques capable of generating the entire Pareto frontier of
the problem, we can distinguish between decision space algorithms and objective
space (or criterion space) algorithms. Since the number of objectives is usually
smaller than the number of variables, objective space algorithms have the advan-
tage of working in a lower dimensional space. In the context of multi-objective
optimization problems, the class of multi-objective linear programming (MOLP)
problems has so far been the most studied and for which solution techniques have
also been developed as extensions of those for the single objective case [14]. The
class of multi-objective integer or binary linear optimization problems has also
been the focus of many works from the literature [15]. In particular, solution al-
gorithms have been developed for the bi- or multi-objective versions of classical
combinatorial optimization problems such as the shortest path, the minimum
spanning tree and the minimum cost flow problems (see e.g. [26, 29, 3, 27]).
Recently, works dealing with bi- and multi-objective mixed integer nonlinear
optimization problems have also been proposed (see e.g. [11, 12, 13, 16]).
In this work we address bi-objective mixed integer linear problems of the fol-
lowing form:

min z(x) = (z1(x), z2(x))
T

s.t. Ax ≤ b,
xi ∈ Z, i ∈ I

(BOMILP)

where z1(x), z2(x) are linear functions, A ∈ Rm×n, b ∈ Rm and I ⊆ {1, . . . , n}.
We denote by C = {1, . . . , n} \ I the set of the continuous variables indices.
We further denote by X the feasible set of the problem, subset of the so called
decision space:

X = {x ∈ Z|I| × R|C| : Ax ≤ b}.

The image of X through the functions z1(x), z2(x) is a subset of R2 and it is
called the feasible set in the image or feasible set in the criterion space. To
characterize the solutions of problem (BOMILP) we use the standard Pareto-
optimality notion based on the dominance in the image space. In particular,
given two feasible solutions x′, x′′ ∈ X, we say that x′ dominates x′′ and z(x′)
dominates z(x′′) if zi(x

′) ≤ zi(x
′′), i = 1, 2 and z(x′) ̸= z(x′′).

2

Definition 1.1 ((weakly) efficient solution and (weakly) non-dominated point).
A feasible solution x∗ ∈ X is called an efficient solution for problem (BOMILP)
if there is no feasible solution x ∈ X such that

zi(x) ≤ zi(x
∗) for i = 1, 2 and zk(x) < zk(x

∗) for some k ∈ {1, 2}.

The image z(x∗) is called non-dominated point. Moreover, a feasible solution
x̂ ∈ X is called a weakly efficient solution for problem (BOMILP) if there is
no feasible solution x ∈ X such that

zi(x) < zi(x̂) for i = 1, 2.

The image z(x̂) is called weakly non-dominated point.

The set of all non-dominated points of a BOMILP is called non-dominated
set or also Pareto frontier. We denote it by YN . In Figure 1, we report the
feasible set in the image space of an instance proposed in [17]. Since the feasible
set in the image space of a BOMILP is an intersection of polyhedra in R2, its
non-dominated set can contain isolated points as well as open, half-open, and
closed line segments. This makes the exact detection of the non-dominated
set of a BOMILP an achievable, though hard, computational task. The isolated
points as well as the extremes of the line segments that form the non-dominated
set of a BOMILP are called extreme non-dominated points. Each polyhedron in
the criterion space is the image of feasible solutions having the integer variables
fixed to specific feasible values. The continuous bi-objective linear subproblems
obtained when the integer variables are fixed to specific integer values are called
slice problems [4]. We will further refer to an efficient integer assignment as to
a fixing of the integer variables in such a way that there exists a non-dominated
point of (BOMILP) with exactly that fixing. Given (BOMILP), we denote with
zid its ideal point, namely (zid)i := minx∈X zi(x), i = 1, 2 and we denote by
xid,1, xid,2 ∈ X, two feasible solutions such that (zid)1 = z1(x

id,1) and (zid)2 =
z2(x

id,2). Given a vector v ∈ Rn, we will denote by ∥v∥ its euclidean norm.
The paper is organized as follows. In Section 1.1, we review some exact

approaches for solving BOMILPs. In Section 2 we present our method: a scheme
of the algorithm is reported and commented. In Section 2.1, we introduce the so
called extreme-inequalities used within our algorithm to cut dominated region
in the image space. Within Section 2.2, we provide an example to describe
in details how our algorithm works. An analysis of the algorithm is given in
Section 3, where we show that under suitable assumptions, our method is able to
detect the exact Pareto frontier of a BOMILP after a finite number of iterations.
Computational results are reported in Section 4, where different strategies based
on the use of the extreme-inequalities are explored and a comparison with the
Triangle Splitting Algorithm [8] is shown. Section 5 concludes.

1.1 Literature Review

Since the first contribution by Mavrotas and Diakoulaki [22], three main cat-
egories of algorithms have been proposed in the literature for solving multiob-

3

Figure 1: The feasible set in the image space of a BOMILP [17]. Its Pareto
frontier contains isolated points, half-open and closed line segments.

jective mixed integer linear problems (MOMILPs): branch and bound meth-
ods, criterion, or image space algorithms, and hybrid methods consisting in a
combination of the previous two approaches. Branch and bound methods rep-
resent the first and most investigated approach to deal with MOMILPs (see
e.g. [22, 30, 31, 6, 23, 18]) and in particular with BOMILPs (see [4, 5, 28, 2]).
However, as the image space usually has a smaller dimension than the decision
space, also image space algorithms have been designed, by exploiting this ad-
vantage and focusing on the structure of the problem in the image space. The
first algorithm belonging to this category is the Triangle Splitting Method by [8]
designed for BOMILPs. This algorithm starts by computing the lexicograph-
ically optimal images and building a rectangle from them. All local extreme
supported non-dominated images are found and then used to split the rectangle
in upper rectangular triangles. The hypotenuse of each triangle is then inves-
tigated by solving an auxiliary MIP. At this stage, two situations can occur:
the whole hypotenuse is non-dominated or a part of it is non-dominated and
an unsupported image is found. In this latter case the triangle is split into two
new rectangles and the same procedure is repeated. Between iterations, the
splitting direction is changed. At the end of the algorithm a post-processing
procedure is adopted to represent the Pareto frontier via a minimal number
of line segments. In [28] the ϵ-Tabu Constraint Algorithm is introduced. As
in [8], it starts from the lexicographically optimal images. Then it computes
the corresponding slice problem and the associated non-dominated set via di-

4

chotomic search. Thereafter the line segments of the slice problem are checked
for dominance by using an auxiliary problem based on ϵ-constraints and no-good
contraints. If a line segment is (partially) dominated, the procedure switches
to the slice that dominates the current line segment and starts exploring the
new slice. The algorithm ends when all line segments have been explored. We
further cite [7, 17, 25, 24] as additional methods appeared in the literature to
deal with BOMILPs. We also refer to [20] for a comprehensive overview on
solution approaches for multiobjective mixed integer linear problems.

2 PADMe: a criterion space method for the accu-
rate detection of the Pareto frontier of BOMILPs

The method we present detects the Pareto frontier of a (BOMILP) alternat-
ing the solution of single-objective mixed integer linear and bi-objective linear
subproblems. The scheme of our method is reported in Algorithm 1. The
idea is to detect the efficient integer assignments of (BOMILP) and the related
extreme non-dominated points, scrolling the feasible set in the image space
from top-left to bottom-right. As a first step, we address the single-objective
mixed integer linear problem having z1(x) as objective function and the feasi-

ble set of (BOMILP). Its solution (x0
I , x

0
C) = (xid,1

I , xid,1
C) provides the integer

assignment x0
I that identifies a first polyhedron in the image space or a first

slice problem, as commonly called in the literature (see e.g. [4]). In particular,
since x0

I is obtained by minimizing z1(x), the first identified polyhedron is lo-
cated in the upper-left part of the feasible set in the image space. Its extreme
non-dominated points form the set Y 0 and are determined by addressing the
bi-objective linear problem obtained from (BOMILP), with the integer variables
fixed to x0

I . Then, we enter in a loop, in order to explore the feasible set in the
image space until the minimum with respect to z2(x) is reached. We recall that
such minimum is the second component of the ideal vector, denoted by (zid)2
and it is attained at xid,2 = (xid,2

I , xid,2
C). At each iteration, we identify the

new slice problem to address and a related potential efficient integer assignment
as follows. We first solve a single-objective mixed integer linear sub-problem,
where z1(x) is minimized over the original feasible set X intersected with two
constraints bounding the values of z2(x) and z1(x), respectively and a bunch of
so called no good/Tabu constraints [28]:

min z1(x)

s.t. x ∈ X,

z2(x) ≤ z2(x
k−1
I , xk−1

C)

z1(x) ≤ z1(x
id,2)

xI ̸= x0
I , . . . , x

k−1
I .

(MILPk)

5

Following the ideas in [28], the Tabu constraints xI ̸= xj
I , j = 0, 1, . . . , k − 1

are included into (MILPk) in order to exclude slice problems that have already
been analyzed in a previous iteration. Given the solution of (MILPk−1), x̂

k−1 =
(xk−1

I , xk−1
C), we restrict the search of non-dominated points of (BOMILP)

in the image space below z2(x̂
k−1). Note that the constraint on z2 excludes

slice problems belonging to the image space above z2(x̂
k−1) and then domi-

nated by z(x̂k−1). On the other hand, the constraint on z1(x) excludes slice
problems dominated by z(xid,2). Indeed, assuming that the ideal point of
(BOMILP) exists, we have that the non-dominated set YN is contained in the
box [zid1 , z1(x

id,2)] × [zid2 , z2(x
id,1)]. Therefore, we can exclude slice problems

outside such box. In Algorithm 1, the feasible set of (MILPk) is denoted by Sk.
Once problem (MILPk) is solved, we address a sequence of bi-objective linear
problems (BOLPs), in order to detect the partial potential Pareto frontier of
the slice problem related to xI = xk

I . These BOLPs are defined using specific
cuts in the image space, in order to avoid the exploration of dominated regions.
Details are given in section 2.1.

For how it is defined, our method relies on the availability of two solvers: one
able to address mixed integer linear problems (such as, e.g., GUROBI [19]), one
able to address bi-objective linear problems (such as, e.g., BENSOLVE [21]).
In order to efficiently store and filter the points and line segments detected at
each iteration, we use the data structure developed in [1], called Bi-objective
Tree (BoT). In particular, in our algorithm we keep updated the data structure
π, where the new points and line segments are the input of the insert function
from [1] (see Algorithm 2).

2.1 Using extreme-inequalities to cut dominated regions
in the image space

Let (xk
I , x

k
C) be the solution of (MILPk) obtained at iteration k ≥ 1 and let

Y k−1 ̸= ∅ be the list of extreme non-dominated points, whose cardinality is
denoted by pk−1, detected at iteration k − 1 related to the (k − 1)-th integer
assignment xk−1

I (or the (k − 1)-th slice problem). The list of extreme non-
dominated points is sorted in increasing order with respect to the first coordinate
(or first objective). First, we define the set F k as the one that identifies the
region of the current slice problem, with z2(x) ≤ (yk−1

1)2:

F k = {x ∈ X, z2(x) ≤ (yk−1
1)2, xI = xk

I}, (1)

being yk−1
1 ∈ Y k−1 the first extreme non-dominated point detected at the pre-

vious iteration. In order to check whether the current xk
I is defining a poten-

tial efficient integer assignment and in order to exclude dominated region of
the image space, we consider specific cuts. Given the pair of subsequent ex-
treme non-dominated points (yk−1

i , yk−1
i+1), with 1 ≤ i < pk−1, we define the i-th

extreme-inequality as
(wi)

T z(x) ≤ (wi)
T yk−1

i ,

6

where wi is

wi =
(vi1, v

i
2)

∥vi∥
(2)

being
vi1 = (yk−1

i)2 − (yk−1
i+1)2, vi2 = (yk−1

i+1)1 − (yk−1
i)1.

In case i = pk−1, we set wi = (0, 1)T . Note that vi1 ≥ 0 and vi2 ≥ 0 for all
i ∈ {1, . . . , pk−1}.

Then, within a loop on the index i ∈ {1, . . . pk−1} we check whether the set
F k intersected with one inequality per time, is non-empty. In particular, we
check if the following set:

W k
i = F k ∩ {x ∈ Rn : (wi)

T z(x) ≤ (wi)
T yk−1

i }, (3)

with i ∈ {1, . . . , pk−1} is non-empty. In case W k
i ̸= ∅, we address the BOLP

min
x∈Wk

i

(z1(x), z2(x))

and we enrich the set Y k with its extreme non-dominated points. Once all
the sets W k

i , i ∈ {1, . . . , pk−1} have been analyzed and the corresponding non-
empty BOLPs have been addressed, the set Y k is a collection of points that we
denote as potential extreme non-dominated points, related to the integer fixing
xk
I . Such points define the so called partial potential Pareto frontier of the slice

problem obtained when the integer variables are fixed to xk
I . The name partial

potential Pareto frontier wants to emphasize the fact that the non-dominated
set of a slice problem may contribute only partially to the Pareto frontier of the
entire BOMILP.

In case W k
i = ∅ for every i = 1, . . . , pk−1, we have that the extreme non-

dominated points of the current slice problem are dominated by the previously
identified non-dominated points and line segments (see Proposition 3.2), so that
the current integer assignment is not an efficient one and we can avoid the
resolution of BOLPs. Note that the non-dominated points and line segments
detected for the integer fixing xk

I , can still be (even only partially) removed
on a later iteration, in case extreme points related to a new slice problem are
dominating them. Examples in this respect are given in Section 2.2.

2.2 Illustrative example

In order to better explain how Algorithm 1 works, we describe its iterations
when applied to the instance proposed in [17], whose feasible set in the image
space is reported in Figure 1. In Figure 2, we depict the initialization and the
first iteration of PADMe. We start by minimizing z1(x) over the feasible set,
detecting the solution (x0

I , x
0
C). The point z

∗
2 is also detected (see Figure 2 (a)).

The corresponding slice problem, once the integer variables are fixed to x0
I , is

the singleton Y 0 = {y01} that is inserted in the BoT data structure π. Note that,
in this case, p0 = 1. Then, we solve problem (MILPk), k = 1, imposing z2(x) ≤

7

Algorithm 1: PADMe = Pareto Accurate Detection Method

Input: (BOMILP), k = 0, π = ∅
Output: the Pareto frontier YN of (BOMILP);

Compute xid,1 = (x0
I , x

0
C) ∈ argminx∈X z1(x)

Compute the set Y 0 = {y01 , . . . , y0p0} of extreme non-dominated points of

minx∈X,xI=x0
I
(z1(x), z2(x))T

for j = 1, . . . , p0 − 1 do
π∗ = (((y0j)1, (y

0
j)2), (y

0
j+1)1, (y

0
j+1)2)), ∅, ∅)

Insert(π∗, π)
end

Compute xid,2 = (xid,2
I , xid,2

C) ∈ argminx∈X z2(x)

while (z2((xk
I , x

k
C)) > (zid)2 & Sk ̸= ∅) do

Set k = k + 1

Compute (xk
I , x

k
C) by solving (MILPk)

Set Y k = ∅
Set Fk as in (1)

for i = 1, . . . , pk−1 do
if (pk−1 == 1) then

Compute the set Y i,k = {yi,k1 , . . . , yi,k
pi,k

} of extreme non-dominated

points of minx∈Fk (z1(x), z2(x))T

end
else

Compute wi as in (2)
Set Wk

i as in (3)

if Wk
i ̸= ∅ then

Compute the set Y i,k = {yi,k1 , . . . , yi,k
pi,k

} of extreme

non-dominated points of minx∈Wk
i
(z1(x), z2(x))T

end

end

Y k = Y k ∪ Y i,k

Update π by Algorithm 2
end

if Y k = ∅ then
Set Y k = Y k−1

end

Set pk = |Y k|
end
Return YN = π

8

Algorithm 2: Update of the Bi-Objective Tree data structure [1]

Input: Y i,k, pi,k, π

if pi,k == 1 then

π∗ = (((yi,k1)1, (y
i,k
1)2), (y

i,k
1)1, (y

i,k
1)2)), ∅, ∅)

Insert(π∗, π)
end
else

for j = 1, . . . , pi,k − 1 do

π∗ = (((yi,kj)1, (y
i,k
j)2), (y

i,k
j+1)1, (y

i,k
j+1)2)), ∅, ∅)

Insert(π∗, π)
end

end

(y01)2, z1(x) ≤ z1(x
id,2) and the Tabu constraint xI ̸= x0

I . The solution (x1
I , x

1
C)

is obtained (see Figure 2 (b)) and the extreme non-dominated points {y11 , y12} are
detected, by addressing the BOLP minx∈F 1(z1(x), z2(x))

T (see Figure 3 (a)).
Therefore, Y 1 = {y11 , y12}, p1 = 2 and π is updated accordingly. Note that, for
ease of notation, we dropped the second index in the apices of the potential
extreme non-dominated points y11 and y12 .

(a) (b)

Figure 2: Illustration of PADMe on a BOMILP instance: initialization and first
iteration.

In Figure 3 and Figure 4, we plot the conclusion of the first iteration and the
second iteration of PADMe. Problem (MILP2) will have z2(x) ≤ (y11)2, z1(x) ≤
z1(x

id,2), xI ̸= x0
I and xI ̸= x1

I as constraints. Solving (MILP2) leads to the
solution (x2

I , x
2
C) (see Figure 3 (b)). Since p1 = 2, the set W 2

1 is defined as
the intersection of F 2 with the extreme-inequality (w1)

T z(x) ≤ (w1)
T y11 . Such

intersection is empty so that we discard the related slice problem, as it cannot

9

(a) (b)

Figure 3: Illustration of PADMe on a BOMILP instance: detection of Y 1 =
{y11 , y12} (a) and second iteration (b). The slice problem obtained fixing the
integer variables to x2

I is discarded, as the feasible set obtained intersecting F 2

with the extreme-inequality (w1)
T z(x) ≤ (w1)

T y11 is empty.

contribute to the definition of the Pareto frontier of the original problem. In
particular, we set Y 2 = Y 1 = {y11 , y12}. We go on solving problem (MILP3) with
z2(x) ≤ (y11)2, z1(x) ≤ z1(x

id,2), xI ̸= x0
I , xI ̸= x1

I and xI ̸= x2
I as constraints,

detecting the solution (x3
I , x

3
C) (see Figure 4 (a)). Now, W 3

1 is defined as the
intersection of F 3 with the extreme-inequality (w1)

T z(x) ≤ (w1)
T y11 . Such

intersection is non-empty and the BOLPminx∈W 3
1
(z1(x), z2(x))

T has y31 as single
extreme non-dominated point. Adding this point in the data structure π has the
effect of splitting the previously identified line segment [y11 , y

1
2] into two smaller

segments. The segments [y1,11 , y1,12] and [y3,11 , y3,12], together with the point y31
are kept in the BoT data structure π (see Figure 4 (b)).

In Figure 5, the fourth iteration is shown. The new polyhedron to explore
is higlighted in orange (see Figure 5 (a)), and, since p3 = 1, the BOLP con-
sidered at the fourth iteration is minx∈F 4(z1(x), z2(x))

T , where F 4 includes the
constraints z2(x) ≤ (y31)2 and xI = x4

I . The extreme line segment [y41 , y
4
2] is

detected and memorized within π (see Figure 5 (b)). At the fifth iteration the
slice problem with xI = x5

I is considered and the related steps of the algorithm
are depicted in Figure 6.

In the fifth iteration, two BOLPs will be addressed. The first BOLP ad-
dressed will have the intersection of F 5 with the extreme-inequality (w1)

T z(x) ≤
(w1)

T y41 as feasible set. The components of w1 ∈ R2 are computed according to
(2), considering y41 and y42 . The extreme non-dominated points detected will be
y1,51 = y51 and y1,52 , so that Y 1,5 = {y1,51 , y1,52 }. Then, the second BOLP having
F 5 intersected with z2(x) ≤ y42 as feasible set will be considered. The points

10

(a) (b)

Figure 4: Illustration of PADMe on a BOMILP instance: the third iteration.
The extreme-inequality (w1)

T z(x) ≤ (w1)
T y11 allows to cut dominated regions

of the slice problem obtained by fixing the integer variables to x3
I . Therefore,

the BOLP solver addresses a problem with a reduced feasible set.

y2,51 = y51 and y2,52 will be detected and will form the set Y 2,5. The partial po-
tential Pareto frontier of the slice problem associated with the fixing x5

I is then

made of the segment having as extreme non-dominated points y51 and y2,52 , union
of the sets Y 1,5 and Y 2,5 (see Figure 6 (b)). At the sixth iteration, given the
constraint z2(x) ≤ (y51)2, problem (MILP6) detects (x

6
I , x

6
C), and y61 = z(x6

I , x
6
C)

is the extreme non-dominated point of the sixth slice problem considered (see
Figure 7 (b)). The point y61 is included in the data structure π, so that the
previously detected line segment [y51 , y

2,5
2] is removed as it is dominated by y61 .

The entire Pareto frontier of the BOMILP is exactly detected and stored in the
data structure π. In Figure 8, we report the BoT (bi-objective tree) π asso-
ciated with the Pareto frontier of the instance. Each node, represents either
an isolated non-dominated point or a pair of extreme non-dominated points,
defining a non-dominated line segment. The label π.r.r.r.r denotes the relation
of the last generated node with respect to the root node. An ordered visit (from
left to right and from bottom to top) of the BoT returns the complete Pareto
frontier.

3 Analysis of the algorithm

In this Section, we show that Algorithm 1 detects the non-dominated set of
(BOMILP) in a finite number of iterations, under specific assumptions. For the
correctness of Algorithm 1, we need to make a first standard assumption:

11

(a) (b)

Figure 5: Illustration of PADMe on a BOMILP instance: the fourth iteration. By
solving problem (MILP4) the point (x4

I , x
4
C) is detected (a). Once the related

slice problem is addressed the set Y 4 = {y41 , y42} is detected (b).

Assumption 3.1. Given (BOMILP), we assume that the ideal objective values
zidi := minx∈X zi(x), i = 1, 2, and thus the ideal point zid := (zid1 , zid2)T ∈ R2,
exist.

As a first result, we show that every non-dominated point of (BOMILP)
belongs to the partial potential Pareto frontier of a slice problem. In particular,
we show that the efficient-inequalities used along the iterations of Algorithm 1
are not cutting any non-dominated point and that any non-dominated point is
detected at a certain iteration.

Proposition 3.2. Given (BOMILP), let Assumption 3.1 holds. Let y ∈ YN .
Then, k ∈ N exists such that y belongs to the partial potential Pareto frontier
obtained from Y k in Algorithm 1.

Proof. Let {xk
I} ⊆ Z|I| be the sequence of integer feasible assignments for

(BOMILP). Since y ∈ YN , it necessarily belongs to the feasible set in the
image space of (BOMILP) and, in particular, k ∈ N exists such that y ∈ z(Xk),
being Xk = {x ∈ X | xI = xk

I}. This in particular means that y is the image
of a feasible solution for a specific slice problem. We show that y cannot be
cut by any of the inequalities introduced in Algorithm 1. Let x(y) ∈ Xk be
the counterimage of y, i.e. z(x(y)) = y. Necessarily, it must be x(y) ∈ F k,
as otherwise y2 > (yk−1

1)2 holds and y would be dominated by yk−1
1 , that is a

contradiction to y ∈ YN . Assume that x(y) /∈ W k
i for all i ∈ {1, . . . , pk−1} or,

in other words, y is cut by every i-th extreme-inequality. Then, wT
i y > wT

i y
k−1
i

for all i ∈ {1, . . . , pk−1}. By construction, wi ≥ 0 and wi ̸= 0 so that we get
again a contradiction with y ∈ YN , as y would be dominated by some point

12

(a) (b)

Figure 6: Illustration of PADMe on a BOMILP instance: the fifth iteration. By
solving problem (MILP5) the point (x5

I , x
5
C) is detected (a). Two BOLPs are

addressed in order to populate Y 5 = Y 5,1 ∪ Y 5,2 = {y51 , y52} (b).

(a) (b)

Figure 7: Illustration of PADMe on a BOMILP instance: the sixth iteration. The
complete non-dominated set detected by PADMe is reported in subfigure (b) and
highlighted in red.

13

Figure 8: The BoT (bi-objective tree) [1] associated with the Pareto frontier of
the BOMILP instance solved by PADMe.

of the potential partial Pareto frontier of the previously analyzed slice prob-
lem. Therefore, let j ∈ {1, . . . , pk−1} be an index such that x(y) ∈ W k

j . Then,
since y ∈ YN , we have that it is also a non-dominated point of the BOLP
minx∈Wk

j
(z1(x), z2(x))

T . The potential extreme non-dominated points of such

BOLP are collected in Y j,k and then in Y k.

In case (BOMILP) is a bi-objective binary problem, we can prove that Algo-
rithm 1 exactly detects its non-dominated frontier with no additional assump-
tion but Assumption 3.1:

Theorem 3.3. Given (BOMILP), assume that the integer variables are con-
strained to be binary, namely xi ∈ {0, 1}, for i ∈ I, with |I| ≤ n. Let Assump-
tion 3.1 holds. Then, Algorithm 1 detects the Pareto frontier of (BOMILP) in
a finite number of iterations.

Proof. From Proposition 3.2, we have that every non-dominated point y ∈ YN

is detected at a certain iteration k ∈ N, by addressing a specific slice problem.
Furthermore, under the assumption that the integer variables are constrained
to be binary, a finite number of feasible integer assignments exists, so that a
finite number of slice problem exists.

In order to prove that our algorithm stops in a finite number of iterations
in the general integer case, we need to make a specific assumption. Indeed, we
need to exclude cases where non-dominated points or segments belong to the
partial potential Pareto frontier of an infinite number of slice problems. Such
situation can indeed occur, as Example 3.4 shows.

14

Example 3.4. Consider the problem

min (x1, x2)
T

s.t. x1 − x2 ≤ 1,
x1 − x3 ≤ 0,
x3 ≥ 1,
x3 ∈ Z,
x ≥ 0.

Its non-dominated set is made of a single closed line segment with extreme non-
dominated points (0, 1)T and (1, 0)T . These extreme non-dominated points are
detected by Algorithm 1 at the very beginning, before entering the while loop,
when addressing the bi-objective continuous problem minx∈X,xI=x0

I
(z1(x), z2(x))

T .

Indeed, Y 0 = {(0, 1)T , (1, 0)T }. However, there exist an infinite number of in-
teger feasible assignments associated to slice problems sharing the same partial
potential Pareto frontier , that is exactly the segment with extreme points (0, 1)T

and (1, 0)T . In fact, all x3 ∈ Z, x3 ≥ 1 are efficient integer assignments.

Assumption 3.5. Given (BOMILP) and a non-dominated point or line seg-
ment, we assume that at most q ∈ N slice problems share such point or line
segment as partial potential Pareto frontier .

Under Assumption 3.5, we are able to prove the following result.

Theorem 3.6. Given (BOMILP), let Assumption 3.1 and Assumption 3.5 hold.
Then, Algorithm 1 detects the Pareto frontier of (BOMILP) in a finite number
of iterations.

Proof. From Assumption 3.1, we have that the non-dominated set YN is a
bounded set. Indeed, YN is contained in the box [zid1 , z1(x

id,2)]× [zid2 , z2(x
id,1)].

In particular, thanks to Assumption 3.5, we have that a finite number of slice
problems belongs to the box [zid1 , z1(x

id,2)]× [zid2 , z2(x
id,1)]. Since in the detec-

tion of the new slice problem, i.e. in the solution of problem (MILPk), the
constraint z1(x) ≤ z1((x

id,2)) is included, we have that Algorithm 1 analyzes
a finite number of slice problems. From Proposition 3.2, we have that this fi-
nite number of slice problems suffices to detect the exact non-dominated set
of (BOMILP), as every non-dominated point y ∈ YN is detected at a certain
iteration k ∈ N, by addressing a specific slice problem.

Remark 3.7. Assumption 3.5 is naturally satisfied by binary problems, where
the number of slice problems is finite. On the other hand, when dealing with
general integer instances, such assumption is needed by any algorithm making
use of Tabu constraints to exclude already analyzed slice problems (such as the
one proposed in [28]), in order to ensure finiteness.

4 Numerical results

In the following, we analyze the performance of Algorithm 1 (PADMe) on the
class of biobjective 0-1 mixed integer programs introduced by Mavrotas and Di-

15

akoulaki [22]. This class has been used in the majority computational studies of
algorithms for solving BOMILPs and are available at [10] along with the Triangle
Splitting Method (TSM) implementation. The problem size of the instances varies
between 20 and 320 variables and the number of constraints (m) equals the num-
ber of decision variables (n). For all instances, the number of integer variables is
half of the total number of variables, i.e. |I| = 0.5n. Our method have been im-
plemented in C++ and Matlab and all the tests have been run on an iMac intel
core i5, 6 core processor running at 3GHz with 32GB RAM. In our implemen-
tation of PADMe, we use GUROBI [19] as solver for the MILP subproblems and
BENSOLVE [21] as solver for the BOLP subproblems. We use default parame-
ters for both solvers. Furthermore, as already mentioned, we use the BoT data
structure proposed in [1] to efficiently store the extreme non-dominated points
found along the iterations of PADMe. The implementation of such data structure
is publicly available at https://github.com/Nadelgren/IJOC-Efficient. We
underline that PADMe can be interpreted as a way of turning a solver for bi-
objective linear problems (BENSOLVE in our implementation), into a solver
for BOMILPs. Therefore, a first test we propose, is related to the performance
of BENSOLVE in combination with the extreme-inequalities introduced. In the
original version of PADMe, as reported in Algorithm 1, the extreme-inequalities
are used to help the BOLP solver by reducing the feasible region of the BOLP
subproblems that have to be addressed. However, the number of BOLPs to
be solved at iteration k of Algorithm 1 depends on the cardinality of Y k−1,
that in turn depends on the dimension of the instance. Such number soon be-
comes prohibitive as the dimension of the instances grows (see Table 1). We
then compare Algorithm 1, with two other versions, differing on the way the
extreme-inequalities are used. In a version called PADMe (only some), we consider
only meaningful extreme-inequalities. More precisely, we allow the computation
of W i+1 and the solution of the corresponding BOLP only if the new extreme-
inequality is “sufficiently different” with respect to the previous one, namely we
check whether ∥wi+1 − wi∥ > η, being η a positive parameter. In this way, we
allow our algorithm to solve a smaller number of (more meaningful) BOLPs, but
we may incur in a less accurate Pareto frontier detected. In a further version
of Algorithm 1, called PADMe (ID check), the extreme-inequalities are not used
as further constraints to be added in the BOLP subproblems, but in order to
check whether a slice problem can contribute to the non-dominated set or can
be discarded. At every iteration k of Algorithm 1, after having detected a new
integer assignment, we check whether the ideal point of the new slice problem
belongs to any of the halfspaces defined by the extreme-inequalities. If this is
not the case, we can discard the integer assignment obtained as it cannot lead
to extreme non-dominated points, as shown in Proposition 4.1. An example
of such situation is depicted in Figure 10. Otherwise, in case the ideal point
belongs to at least one halfspace defined by the extreme-inequalities, we con-
sider the BOLP minx∈Fk(z1(x), z2(x))

T without any additional constraint. An
illustration of the strategy implemented is depicted in Figure 9.

Proposition 4.1. Given (BOMILP), let zkid be the ideal point of the slice

16

Figure 9: Use of the extreme-inequalities in combination with the ideal point:
in this case, zkid is not cut by every extreme-inequality. The slice problem is
then addressed and the potential extreme non-dominated points yk1 and yk2 are
added to the BoT data structure.

problem obtained at iteration k ∈ N. Then, if (wi)
T zkid > (wi)

T yk−1
i for all

i ∈ {1, . . . , pk−1}, no extreme non-dominated point can be detected by address-
ing the k-th slice problem (so that the slice problem can be discarded).

Proof. By definition of the ideal point zkid, we have that the image of each
feasible solution z(x) of the k-th slice problem, namely the image through z1(x)
and z2(x) of every solution in the set {x ∈ X | xI = xk

I}, is dominated by
the ideal point: z(x) ≥ zkid, z(x) ̸= zkid. Having (wi)

T zkid > (wi)
T yk−1

i for all
i ∈ {1, . . . , pk−1} implies that zkid is dominated by some non-dominated point
of the (k − 1)-th slice problem. Therefore, since z(x) ≥ zkid, we have that any
point of the k-th slice problem is dominated by some point from the (k − 1)-
th slice problem, so that no extreme non-dominated point can be detected by
addressing the k-th slice problem.

In Table 1, we report a comparison among the original Algorithm 1 (referred
as to PADMe (all cuts)), the version where only some cuts are considered, with
η = 0.1 (referred as to PADMe (only some)) and the version where the strategy
related to the ideal point is implemented (referred as to PADMe (ID check)).

For each instance and each algorithm, we report the number of MILPs ad-
dressed (# MILPs), the number of BOLPs addressed (# BOLPs) and the com-
putational CPU time needed in seconds (time) obtained using the clock C++
function. From the results in Table 1, it is clear that considering all extreme-
inequalities and then all possible BOLP subproblems at each iteration, becomes
prohibitive as soon as the dimension of the problem raises, as the cardinality
of Y k depends on the number of vertices of the polyhedron of the slice prob-
lem analyzed. Allowing a smaller number of extreme-inequalities clearly has

17

Figure 10: Illustration of Proposition 4.1. If the ideal point zkid is cut by every
extreme-inequality, the current slice problem can be discarded. In the figure
such case is depicted: (wi)

T zkid > (wi)
T yk−1

i for all i ∈ {1, . . . , pk−1}.

the benefit of reducing the number of BOLPs to be solved and then the overall
computational time, as the performance of PADMe (only some - η = 0.1) shows.
Considering a higher value for η would even improve the performance in terms
of numerical burden. However, reducing the number of extreme-inequalities
may come at a cost in terms of accuracy of the Pareto frontier detected, as
some extreme non-dominated points could be left undetected. Since our focus
is in defining a method that could be as accurate as possible, depending on the
precision allowed to the BOLP solver used, we do not investigate this strategy
any further.

From the results in Table 1, the advantage in using the (ID check) strategy
is evident. We can notice that PADME (ID check) is one order of magnitude
faster and we can conclude that helping BENSOLVE in addressing BOLPs with
reduced feasible set is not paying off as we expected. For all the instances with
n = 160, the versions of Algorithm 1 (all cuts) and (only some) are not able to
detect the non-dominated set within one hour of CPU time (used as time limit).
For instances with n = 360, the time limit is reached by each version.

In the following, we compare PADMe in the (ID check) version with the Tri-
angle Splitting Method (TSM) [8], that is a criterion space method designed for
bi-objective problems. We mention that a comparison with branch-and-bound
approaches working in the decision space would not be fair, as criterion search
algorithms like ours and TSM strongly exploit the advantage of working into a
2-dimensional space, as already mentioned in Section 1.1.

In Table 2, we report the results obtained by our method and TSM on the
bi-objective mixed-binary instances proposed in [22] and available at [10]. For
PADMe we report the number of MILP subproblems (# MILPs), the number of
bi-objective linear programming subproblems (# BOLPs) addressed, the total
CPU time (time) in seconds and the number of extreme non-dominated points
detected (# endp). For what concerns the TSM we report the number of MILP

18

In
st

P
A
D
M
e
(a
ll
cu
ts
)

P
A
D
M
e
(o
n
ly

so
m
e
-
η
=

0.
1
)

P
A
D
M
e
(I
D

ch
ec
k
)

#
M
IL
P
s

#
B
O
L
P
s

ti
m
e
(s
)

#
M
IL
P
s

#
B
O
L
P
s

ti
m
e
(s
)

#
M
IL
P
s

#
B
O
L
P
s

ti
m
e
(s
)

C
2
0

11
55

0.
07

1
1

5
5

0
.0
7

1
1

5
0
.0
1

18
11
2

0.
14

1
8

1
0
9

0
.1
3

1
8

1
6

0
.0
3

22
42

0.
06

2
2

4
2

0
.0
6

2
2

2
0

0
.0
3

25
21
2

0.
26

2
5

2
1
2

0
.2
6

2
5

2
2

0
.0
4

7
41

0.
0
5

7
4
1

0
.0
5

7
5

0
.0
1

A
v
g
.

16
.6

92
.4

0.
12

1
6
.6

9
1
.8

0
.1
1

1
6
.6

1
3
.6

0
.0
3

M
a
x
.

25
21
2

0.
26

2
5

2
1
2

0
.2
6

2
5

2
2

0
.0
4

C
4
0

76
13
52

4.
20

7
6

1
3
4
5

4
.0
6

7
6

7
4

0
.2
5

30
29
8

0.
79

3
0

2
9
8

0
.7
9

3
0

2
8

0
.8
8

44
38
1

0.
97

4
4

3
8
1

0
.9
7

4
4

4
2

0
.1
2

84
11
16

3.
40

8
4

1
0
7
7

3
.2

8
4

8
2

0
.2
7

10
6

73
7

1.
95

1
0
6

7
3
0

1
.9
3

1
0
6

8
9

0
.2
9

A
v
g
.

68
77
6.
8

2.
26

6
8

7
6
6
.2

2
.1
9

6
8

6
3

0
.3
6

M
a
x
.

10
6

13
52

4.
20

1
0
6

1
3
4
5

4
.0
6

1
0
6

8
9

0
.8
8

C
8
0

58
6

17
74
5

45
2.
03

5
8
6

1
6
8
8
9

4
2
1
.0
2

5
8
6

5
6
4

7
.9
8

–
–

–
–

–
–

2
2
4
1

2
1
3
0

6
5
.7
1

65
5

15
36
7

42
6.
13

6
5
5

1
4
8
7
9

3
3
6
.4
5

6
5
5

6
0
9

1
0
.0
3

59
4

13
96
7

35
6.
23

5
9
4

1
3
7
1
6

3
3
0
.0
4

5
9
4

5
8
5

9
.7
1

49
2

11
86
4

26
5.
62

4
9
2

1
1
2
2
3

2
3
7
.9
1

4
9
2

4
6
9

7
.0
7

A
v
g
.

58
1.
75

14
73
5.
75

37
5

5
8
1
.7
5

1
4
1
7
6
.7
5

3
3
1
.3
5

9
1
3
.6

8
7
1
.4

2
0
.1

M
a
x
.

65
5

17
74
5

45
2.
03

6
5
5

1
6
8
8
9

4
2
1
.0
2

2
2
4
1

2
1
3
0

6
5
.7
1

T
ab

le
1:

C
om

p
ar
is
on

am
on

g
d
iff
er
en
t
ve
rs
io
n
s
o
f
P
A
D
M
e
o
n
th
e
b
i-
o
b
je
ct
iv
e
in
st
a
n
ce
s
fr
o
m

[2
2
].
E
a
ch

ve
rs
io
n
d
iff
er
s
in

th
e
w
ay

th
e
ex
tr
em

e-
in
eq
u
al
it
ie
s
ar
e
u
se
d
in

co
m
b
in
at
io
n
w
it
h
B
E
N
S
O
L
V
E
.

19

subproblems (# MILPs), the number of linear programming subproblems (#
LPs) addressed, the total CPU time (time) in seconds and the number of extreme
non-dominated points detected. For each instance, TSM reports both the number
of points detected before a post-processing phase (# endp-b) and the number
of points detected after a post-processing phase (# endp-a), used to convert the
Pareto frontier produced into a minimal representation and filter dominated
points.

In Table 2, we further report, for each instance, the number of MILPs solved
by the ϵ-Tabu Constraint Algorithm available from Table 4 in [28].

For what concerns the efficiency, we can notice that PADMe compares favor-
ably in terms of number of MILPs addressed and in terms of CPU time up to
instances with 80 variables and 80 constraints. For instances with n ≥ 160,
the computational burden asked to BENSOLVE to address a growing number
of BOLPs with higher dimension, does not allow PADMe to be competitive in
terms of CPU time. This is strongly related to the accuracy asked to PADMe in
detecting the Pareto frontier.

In this respect, the comparison with TSM concerning the number of ex-
treme non-dominated points detected wants to be a measure of the accuracy
of the Pareto frontier delivered. We can notice that the number of extreme
non-dominated points detected by PADMe is always greater (equal in one case)
than the number of extreme non-dominated points released by TSM after the
post-processing phase. Such number increases as the dimension of the instances
grows. For the C160 instances solved within one hour, we have that the number
of extreme non-dominated points detected by PADMe is more than two times
larger than the number of points detected by TSM before the post-processing
phase. This higher accuracy can also be visualized by graphical inspection,
checking the Pareto frontier obtained. In Figure 12, we depict parts of the
Pareto frontier of a C40 instance (left subfigure) and a C160 instance (right
subfigure). It is clear that the higher number of extreme non-dominated points
detected by PADMe results into a more accurate Pareto frontier that dominates
the one detected by TSM.

-450 -400 -350 -300 -250 -200 -150 -100 -50

-450

-400

-350

-300

-250

-200

-150

-100

-50

The Pareto front of a C20 instance

-200 -150 -100 -50 0 50

-520

-500

-480

-460

-440

-420

-400

-380

-360

-340

Zoom on the Pareto front of a C20 instance

Figure 11: Examples of Pareto fronts of C20 instances.

20

In
st

P
A
D
M
e
(I
D

ch
ec
k
)

T
S
M
[8
]

E
P
S
-
t
a
b
u
[2
8
]

#
M
IL
P
s

#
B
O
L
P
s

ti
m
e
(s
)

#
en
d
p

#
M
IL
P
s

#
L
P
s

ti
m
e
(s
)

#
en
d
p
-b

#
en
d
p
-a

#
M
IL
P
s

C
2
0

1
1

5
0
.0
1

2
7

7
0

8
0
.1
2

3
1

2
6

3
3

1
8

16
0
.0
3

6
4

1
7
1

1
9

0
.3
7

7
4

5
3

7
6

2
2

20
0
.0
3

4
3

1
5
1

3
7

0
.3
4

4
5

4
3

6
6

2
5

22
0
.0
4

6
1

2
0
0

4
2

0
.5
3

8
7

5
8

7
2

7
5

0
.0
1

3
1

7
4

4
0
.1
2

3
5

2
9

3
7

A
v
g
.

1
6
.6

13
.6

0
.0
3

4
5
.2

1
3
3
.2

2
2

0
.2
9

5
4
.4

4
1
.8

5
6
.8

M
a
x
.

2
5

22
0
.0
4

6
4

2
0
0

4
2

0
.5
3

8
7

5
8

7
6

C
4
0

7
6

74
0
.2
5

3
5
5

7
6
3

5
9

4
.5
6

3
7
3

2
5
2

3
8
0

3
0

28
0
.8
8

1
1
2

3
1
8

4
2

1
.3
8

1
4
6

9
5

1
2
4

4
4

41
0
.1
2

1
3
7

3
5
1

5
1

1
.9
7

1
6
7

1
1
2

1
5
3

8
4

82
0
.2
7

1
9
2

3
9
2

3
9

1
.6
8

1
8
6

1
0
0

2
0
7

1
0
6

89
0
.2
9

1
2
4

3
1
9

5
0

1
.6
1

1
4
8

1
0
7

1
4
2

A
v
g
.

6
8

62
.8

0
.3
6

1
8
4
.0

4
2
8
.6

4
8
.2

2
.2
4

2
0
4

1
3
3
.2

2
0
1
.2

M
a
x
.

1
0
6

89
0
.8
8

3
5
5

7
6
3

5
9

4
.5
6

3
7
3

2
5
2

3
8
0

C
8
0

5
8
6

56
4

7
.9
8

1
0
7
9

1
7
0
0

1
9
7

3
9.
4
2

8
4
4

2
9
6

1
1
1
8

22
41

21
30

65
.7
1

7
1
9

1
2
4
5

1
7
6

2
4
.9
5

5
9
2

2
4
2

7
5
2

6
5
5

60
9

1
0
.0
3

9
6
2

1
9
2
0

2
7
9

3
8.
4
9

9
8
4

4
1
6

1
0
2
4

5
9
4

58
5

9
.7
1

9
6
0

1
8
4
1

2
6
7

4
2.
1
2

9
0
4

3
2
9

1
0
0
8

4
9
2

46
9

7
.0
7

7
6
8

1
3
4
2

1
1
6

2
6.
9
5

6
5
9

2
4
7

8
0
1

A
v
g
.

9
1
3
.6

87
1.
4

2
0
.1

8
9
7
.6
0

1
6
0
9
.6

2
0
7

3
4
.3
9

7
9
6
.6

3
0
6

9
4
0
.6

M
a
x
.

22
41

21
30

65
.7
1

1
0
7
9

1
9
2
0

2
7
9

4
2
.1
2

9
8
4

4
1
6

1
1
1
8

C
1
6
0

–
–

–
–

2
4
7
0

5
4
6

2
2
2
.6
8

1
3
4
1

3
4
2

2
8
8
8

54
50

53
61

19
14
.2
6

5
3
6
1

2
3
3
4

5
0
9

2
5
6
.9
7

1
2
7
4

3
0
0

3
0
7
0

–
–

–
–

2
2
6
0

4
5
2

2
2
1
.3
7

1
2
0
6

2
8
7

2
8
4
4

–
–

–
–

4
5
9
3

9
8
7

5
7
7
.3
8

2
4
6
4

6
0
5

6
3
5
3

1
3
5
6

12
08

7
3
.7
8

3
1
4
4

2
5
4
1

4
6
6

2
2
9
.9
6

1
3
1
0

3
4
5

3
2
2
6

A
v
g
.

–
–

–
–

2
8
3
9
.0

5
9
2

3
0
1.
6
7

1
5
1
9

3
7
5
.8

3
6
7
6
.2

M
a
x
.

–
–

–
–

4
5
9
3

9
8
7

5
7
7
.3
8

2
4
6
4

6
0
5

6
3
5
3

T
ab

le
2:

C
om

p
ar
is
on

b
et
w
ee
n
P
A
D
M
e
(I
D

ch
ec
k
)
a
n
d
T
S
M
o
n
th
e
b
i-
o
b
je
ct
iv
e
in
st
a
n
ce
s
fr
o
m

[2
2
].

21

Figure 12: Comparison on the accuracy of the Pareto frontier detected. The
Pareto frontier obtained by TSM is reported in dashed line, dominated by the
Pareto frontier detected by PADMe (ID check).

5 Conclusions

We presented PADMe, a criterion space method able to deal with bi-objective
mixed integer linear programming problems. The method alternates the resolu-
tion of mixed integer linear programming problems and bi-objective linear ones.
The method takes advantage of properly defined cutting planes in the criterion
space, the so called extreme-inequalities, used to avoid the exploration of domi-
nated regions. Under specific assumptions, PADMe is able to deliver the complete
Pareto frontier in a finite number of iterations. From a computational point of
view, the Pareto frontier is detected according to the accuracy of the solver used
for the underlying bi-objective linear subproblems. PADMe can in fact be seen
as a way to turn a solver for bi-objective linear problems into an algorithm for
BOMILPs. As far as we are aware of, it is the first time that such possibility has
been explored. Thanks to the good performance of BENSOLVE [21], the solver
used in our implementation of PADMe, our method turns out to be able to detect
a higher number of extreme non-dominated points with respect to the Triangle
Splitting Method [8] and a much more accurate Pareto frontier. Such accuracy
comes at the price of solving a large number of bi-objective linear subproblems,
the larger the higher the dimension of the problem addressed. However, as
long as the decision maker is interested in specific ranges of the Pareto fron-
tier or in solving medium size BOMILPs, PADMe turns out to be both accurate
and efficient. We finally want to underline that, as long as a solver for the
bi-objective slice problems is available, our algorithm can be adapted to deal
with bi-objective mixed integer nonlinear problems and we plan to explore this
possibility as a future work.

22

Acknowledgements

The authors are very grateful to Nathan Adelgren and Pietro Belotti for their
help in using the BoT data structure.

References

[1] Nathan Adelgren, Pietro Belotti, and Akshay Gupte. Efficient storage
of pareto points in biobjective mixed integer programming. INFORMS
Journal on Computing, 30(2):324–338, 2018.

[2] Nathan Adelgren and Akshay Gupte. Branch-and-bound for biobjective
mixed-integer linear programming. INFORMS Journal on Computing,
34(2):909–933, 2022.

[3] Lavinia Amorosi, Luca Cedola, Paolo Dell’Olmo, and Francesca Lucchetta.
Multi-objective mathematical programming for optimally sizing and man-
aging battery energy storage for solar photovoltaic system integration of a
multi-apartment building. Engineering Optimization, 54(1):81–100, 2022.

[4] Pietro Belotti, Banu Soylu, and Margaret M Wiecek. A branch-and-bound
algorithm for biobjective mixed-integer programs. Optimization Online,
pages 1–29, 2013.

[5] Pietro Belotti, Banu Soylu, and Margaret M Wiecek. Fathoming rules for
biobjective mixed integer linear programs: Review and extensions. Discrete
Optimization, 22:341–363, 2016.

[6] Fritz Bökler, Sophie N Parragh, Markus Sinnl, and Fabien Tricoire. An
outer approximation algorithm for generating the edgeworth–pareto hull of
multi-objective mixed-integer linear programming problems. Mathematical
Methods of Operations Research, pages 1–28, 2024.

[7] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. A criterion
space search algorithm for biobjective integer programming: The balanced
box method. INFORMS Journal on Computing, 27(4):735–754, 2015.

[8] Natashia Boland, Hadi Charkhgard, and Martin Savelsbergh. A criterion
space search algorithm for biobjective mixed integer programming: The
triangle splitting method. INFORMS Journal on Computing, 27(4):597–
618, 2015.

[9] Massimiliano Caramia and Emanuele Pizzari. A bi-objective cap-and-trade
model for minimising environmental impact in closed-loop supply chains.
Supply Chain Analytics, 3:100020, 2023.

[10] Hadi Charkhgard. Triangle splitting method implementation. https:

//usf.app.box.com/s/6i7rcdd7njkqsvnpi7x97ku9og3j8782, Accessed:
2023.

23

[11] Marianna De Santis, Gabriele Eichfelder, Julia Niebling, and Stefan
Rocktäschel. Solving multiobjective mixed integer convex optimization
problems. SIAM Journal on Optimization, 30(4):3122–3145, 2020.

[12] Marianna De Santis, Gabriele Eichfelder, and Daniele Patria. On the ex-
actness of the ε-constraint method for biobjective nonlinear integer pro-
gramming. Operations Research Letters, 50(3):356–361, 2022.

[13] Marianna De Santis, Giorgio Grani, and Laura Palagi. Branching with
hyperplanes in the criterion space: The frontier partitioner algorithm for
biobjective integer programming. European Journal of Operational Re-
search, 283(1):57–69, 2020.

[14] M. Ehrgott. Multicriteria Optimization. Lecture notes in economics and
mathematical systems. Springer, 2000.

[15] M. Ehrgott and X. Gandibleux. A survey and annotated bibliography
of multiobjective combinatorial optimization. OR Spektrum, 322:425–460,
2000.

[16] Gabriele Eichfelder and Leo Warnow. Advancements in the computation
of enclosures for multi-objective optimization problems. European Journal
of Operational Research, 310(1):315–327, 2023.

[17] Ali Fattahi and Metin Turkay. A one direction search method to find the
exact nondominated frontier of biobjective mixed-binary linear program-
ming problems. European Journal of Operational Research, 266(2):415–425,
2018.

[18] Nicolas Forget and Sophie N Parragh. Enhancing branch-and-bound
for multiobjective 0-1 programming. INFORMS Journal on Computing,
36(1):285–304, 2024.

[19] LLC Gurobi Optimization. Gurobi optimizer reference manual. http:

//www.gurobi.com, 2023.

[20] Pascal Halffmann, Luca Schäfer, Kerstin Dächert, Kathrin Klamroth, and
Stefan Ruzika. Exact algorithms for multiobjective linear optimization
problems with integer variables: A state of the art survey. Journal of
Multi-Criteria Decision Analysis, 29, 03 2022.

[21] Andreas Löhne and Benjamin Weißing. The vector linear program solver
bensolve–notes on theoretical background. European Journal of Operational
Research, 260(3):807–813, 2017.

[22] George Mavrotas and Danae Diakoulaki. A branch and bound algorithm for
mixed zero-one multiple objective linear programming. European Journal
of Operational Research, 107(3):530–541, 1998.

24

[23] Sophie N Parragh and Fabien Tricoire. Branch-and-bound for bi-objective
integer programming. INFORMS Journal on Computing, 31(4):805–822,
2019.

[24] Diego Pecin, Ian Herszterg, Tyler Perini, Natashia Boland, and Martin
Savelsbergh. A fast and robust algorithm for solving biobjective mixed
integer programs. Mathematical Methods of Operations Research, pages
1–42, 2024.

[25] Tyler Perini, Natashia Boland, Diego Pecin, and Martin Savelsbergh. A
criterion space method for biobjective mixed integer programming: The
boxed line method. INFORMS Journal on Computing, 32(1):16–39, 2020.

[26] Andrea Raith and Matthias Ehrgott. A comparison of solution strategies
for biobjective shortest path problems. Computers & Operations Research,
36(4):1299–1331, 2009.

[27] Andrea Raith and Matthias Ehrgott. A two-phase algorithm for the biob-
jective integer minimum cost flow problem. Computers & Operations Re-
search, 36(6):1945–1954, 2009.

[28] Banu Soylu and Gazi Bilal Yıldız. An exact algorithm for biobjective mixed
integer linear programming problems. Computers & Operations Research,
72:204–213, 2016.

[29] Sarah Steiner and Tomasz Radzik. Computing all efficient solutions of
the biobjective minimum spanning tree problem. Computers & Operations
Research, 35(1):198–211, 2008. Part Special Issue: Applications of OR in
Finance.

[30] Thomas Vincent, Florian Seipp, Stefan Ruzika, Anthony Przybylski, and
Xavier Gandibleux. Mavrotas and diakoulaki’s algorithm for multiobjective
mixed 0-1 linear programming revisited. MOPGP10, 2010.

[31] Thomas Vincent, Florian Seipp, Stefan Ruzika, Anthony Przybylski, and
Xavier Gandibleux. Multiple objective branch and bound for mixed 0-
1 linear programming: Corrections and improvements for the biobjective
case. Computers & Operations Research, 40(1):498–509, 2013.

[32] Judith Y. T. Wang, Zhengyu Wu, Yating Kang, Edward Brown, Meng-
fan Wen, Christopher Rushton, and Matthias Ehrgott. Walking school
bus line routing for efficiency, health and walkability: A multi-objective
optimisation approach. Journal of Multi-Criteria Decision Analysis, 30(3-
4):109–131, 2023.

25

