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Abstract

Security agencies throughout the world use bodyguards to protect government officials and
public figures. In this paper, we consider a two-person zero-sum game between a defender who
allocates such bodyguards to protect several targets and an attacker who chooses one target to
attack. Because the number of feasible bodyguard allocations grows quickly as either the number
of targets or the number of bodyguards increases, solving the game by brute force with a linear
program becomes computationally intractable for problems of practical size. By assuming that
the marginal benefit of each additional bodyguard assigned to a target is decreasing, we show
that we can solve the game with a different linear program whose size is linear in the number of
targets and the number of bodyguards, respectively. Next, we extend the allocation game to a
scheduling game, which allows a bodyguard to report to multiple targets if their schedules allow.
We develop an algorithm to compute a bound for the value of this bodyguard scheduling game
and present a mixed strategy that achieves this bound in all numerical experiments.

1 Introduction
Security agencies throughout the world—such as the Secret Service in the US, the Protected Per-
sons Service in the United Kingdom, or the Dienst Koninklijke en Diplomatieke Beveiliging in The
Netherlands—are in charge of protecting government officials (e.g., cabinet ministers, lawyers, and
judges) as well as public figures (e.g., television hosts, crime journalists, or accomplished scientists)
from violent events such as terrorist attacks or political violence. The security agencies typically do
so by assigning bodyguards to individuals with the mission to protect them against any threat.

In the Netherlands, the number of protected individuals has increased tenfold in the last twenty
years (Start, 2023) and it appears that this number is only increasing, while the capacity to protect
these individuals is lagging behind (Nachtegael, 2024). As stated in an official report by the Dutch
Ministry of Justice and Security (Zouridis, 2023), this potential lack of protection might already
have led to the assassination of a prominent Dutch crime journalist, a Dutch lawyer in charge of
defending a key witness as well as a family member of the key witness. Based on this report, the
Dutch cabinet decided to increase the total budget of the Dutch Protection and Security program
with 112 million euros yearly, to hire and train new personnel, but also to fund scientific research to
improve the effectiveness and efficiency of the program (Kaag, 2023).
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In this paper, we develop a game theoretical model that can assist the Dutch Protection and
Security program assigning bodyguards to targets (i.e., individuals under threat). This game is zero-
sum and played between an attacker and a defender. The defender allocates a number of bodyguards
among several targets to protect them, and the attacker chooses one target to attack. By assigning
more bodyguards to a target, the defender reduces the damage caused by an attack, where damage
is broadly construed as any consequence undesirable for the defender, such as people getting hurt,
damaged properties, chaos, among other things. We assume that the defender wants to minimize the
expected damage from an attack while the attacker wants to maximize it.

The reason for studying a zero-sum game stems from the fact that it is difficult for security
agencies to identify adversaries, let alone accurately assessing their views/damage of the targets. It
thus seems reasonable to come up with a bodyguard assignment that minimizes the expected damage
–from the view of the defender– regardless of which target is attacked by whichever adversary. This
can be exactly achieved by modelling our setting as a zero-sum game.

In the first part of the paper, we study a bodyguard allocation game. In this game, the defender
allocates a number of bodyguards among several targets such that each bodyguard is assigned to
one target. We assume that the damage incurred when a target is attacked is convex and decreasing
in the number of bodyguards assigned to the target. In other words, assigning more bodyguards
to a target reduces the damage caused by an attack, but the marginal damage reduction of each
additional bodyguard is decreasing. Because each player has a finite number of pure strategies,
linear programming can be used to compute the value of the game and an optimal mixed strategy
for each player. Solving the game by linear programming, however, requires us to first enumerate
all pure strategies of both players. Whereas the number of pure strategies for the attacker is just the
number of targets, the number of pure strategies for the defender grows quickly in the number of
targets and bodyguards. For instance, if there are 10 targets and 30 bodyguards, the number of pure
strategies for the defender is

(
30+10−1
10−1

)
, which is more than 211 million. A direct implementation of

the linear program can present computational challenges for problems of practical sizes.
For the bodyguard allocation game, we demonstrate that it is possible to solve the game without

enumerating all pure strategies for the defender. To do so, we first show that the best way to im-
plement a defender’s mixed strategy –with an expected number x ∈ R+ of bodyguards allocated to
a target– is to allocate either ⌊x⌋ bodyguards or ⌈x⌉ bodyguards with appropriate probabilities. By
taking advantage of this property, we are able to solve the bodyguard allocation game by formulating
a different linear program, whose size grows linearly in the number of targets and in the number of
bodyguards. This approach allows us to solve a bodyguard allocation game with 10 targets and 30
bodyguards within a few seconds.

In the second part of the paper, we study a bodyguard scheduling game. Each target is associated
with a location, and a start time and an end time. If the locations of two targets are nearby, and the
end time of one target is sufficient earlier than the start time of the other target, then a bodyguard can
be assigned to protect both targets. For example, a bodyguard can report to a courthouse at 9:00–
12:00, and then report to a press conference in the same city at 14:00–15:00. If we represent each
target by a node, then we can draw a directional arc from node 1 to node 2, if a bodyguard assigned
to target 1 can be assigned next to target 2. A feasible bodyguard schedule is then analogous to a
feasible flow in the network consisting of these nodes and arcs to observe all appropriate constraints.

In the bodyguard scheduling game, each player has a finite number of pure strategies, so in theory
one can again compute the entire payoff matrix and solve the game by a linear program. For example,
if there are 10 targets and 30 bodyguards, then the attacker has 10 pure strategies—one for attacking
each target—and the number of the defender’s pure strategies is the number of different feasible,
integer-valued, flows in the network described above. In the worst case, we may need to screen up
to (30 + 1)10 ≈ 8.19× 1014 potential assignments to determine which ones are feasible, because in
theory each target can have any number of bodyguards between 0 and 30. Our contribution to the
bodyguard scheduling game is to develop a much more efficient way—by leveraging our findings
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for the bodyguard allocation game—to approach the bodyguard scheduling game. Specifically, we
develop an algorithm to compute a bound for the value of this bodyguard scheduling game and
present a mixed strategy that achieves this bound in all numerical experiments.

The rest of the paper proceeds as follows. Section 2 provides an overview of the major advance-
ments in the research disciplines related to this paper. Section 3 concerns the bodyguard allocation
game and Section 4 concerns the bodyguard scheduling game. Section 5 concludes the paper.

2 Overview of related literature
Our work belongs to the stream of literature that uses quantitative modelling to assist police de-
partments and security agencies to make better decisions about resource allocation. Pioneers in this
stream of literature are Kolesar et al. (1975) and Chaiken and Dormont (1978). These authors were
asked by the New York Police Department to come up with patrol car schedules meeting specified
service standards. Variations of these models can be found in Green and Kolesar (1984); Green
(1984); Schaack and Larson (1989), and Kolesar and Green (1998). It is worth pointing out that
some of these models are in use by police departments in the US (Green and Kolesar, 2004). Some
other decisions that are investigated are the dispatching of police cars (Dunnett et al., 2019), the
joint decision of dispatching and locating police cars (Adler et al., 2014), the partitioning of a city
center into police patrol sectors (Curtin et al., 2010; Camacho-Collados and Liberatore, 2015) and
the allocation of police officers and cameras to fight pickpocketing (Schlicher and Lurkin, 2024).

The aforementioned papers do no explicitly model strategic behavior of opponents (e.g., crim-
inals anticipating on police decisions). This is in sharp contrast to the defender-attack models that
expanded significantly after 9/11 (see reviews of Hausken (2024); Hunt and Zhuang (2024)). A cen-
tral question in these works is how a limited budget should be allocated over a number of potential
attack locations, while taking into account the strategic behavior of attackers (see, e.g., Azaiez and
Bier (2007); Bier et al. (2007, 2008); Zhuang and Bier (2007); Hausken (2008); Shan and Zhuang
(2013); Guan et al. (2017); Baron et al. (2018) and Musegaas et al. (2022)). Similar to these works,
we also model our setting as a defender-attack game, but we assume the resources to be countable
objects, which is in contrast to the other papers that see the resources as financial budget. To the best
of our knowledge, papers that (i) are inspired by police operations, (ii) apply game theory, and (iii)
consider resources to be countable objects, are limited. Below, we list some exceptions.

A recent example is the work of Wu et al. (2020). The authors investigate how to assign a
limited number of police teams over a set of regions in the city center of San Francisco, with the
aim to minimize the number of criminal targets. Because criminals can behave strategically, the
authors model the interaction between the police department and criminals in each region as a 2x2
zero-sum game, where the police department has to decide to allocate a single police team or not in
each region, while the criminals in that region make the decision to commit crime(s) or not. Using
data from the San Francisco Police in 2016, the authors showed the potential of their model.

Another example stems from the work of Pita et al. (2009). This work is inspired by a resource
allocation problem faced by the police at the Los Angeles international (LAX) airport. The police
at LAX uses several security barriers to prevent terrorist attacks, consisting of road checkpoints,
police units patrolling the roads to the terminals, as well as security screening and bag checks for
passengers. Because resources (i.e., police officers) are scarce, the police need to make choices about
the locations to which they allocate resources, while taking into account that adversaries can learn
over time (i.e., can learn resource allocation schedules). For that reason, the authors developed a
non-zero sum game that randomizes between where to allocate resources (i.e., randomizes between
roadways entering the airport and canine patrol routes within the airport terminals). The authors
formulated a mixed-integer linear program that is able to identify an optimal randomized allocation
strategy for real-life instances. Notably, the authors also developed a support system (based on the
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non-zero sum game) that is already in use at LAX for more than a decade.
As a final example, we discuss the work of Jain et al. (2012), which is an extension/variation of

the work of Pita et al. (2009), applied to the allocation of air marshals to flights. This air marshal ap-
plication comes close to our bodyguard allocation/scheduling game, because similar to bodyguards,
air marshals are also subject to travel constraints. For instance, if an air marshal is assigned to a flight
from Los Angeles to San Francisco, then its next flight should have San Francisco as its departure
airport. Likewise, if a bodyguard is assigned to a certain target it is not possible to reassign it to
another target at a different location immediately, because bodyguards need to travel first. Dealing
with such travel constraints substantially complicates the analysis of a game and this holds for the
air marshal game as well. Instead of solving this game via brute force naively, Jain et al. (2012)
propose a mixed integer linear program, where decision variables reflect the percentage of time air
marshals are allocated to schedules—a feasible combination of consecutive flights. Because these
schedules consists of 2 to 3 flights per day only, their mixed integer linear program is able to solve
real-life instances daily (i.e., instances with hundreds of air marshals and thousands of flights).

Despite the apparent overlap with our work, we do not believe that Jain et al. (2012)’s results can
be easily applied to our setting, mainly for two reasons. First, in contrast to the work of Jain et al.
(2012) where at most one air marshal is allocated to a single flight, we allow for an assignment of
multiple bodyguards to a single target. Second, it seems that the solution method of Jain et al. (2012)
is tailor made—and so leveraged—for a setting where (i) the number of air marshals is much smaller
than the number of flights and (ii) the defender and the attacker have different utility functions. This
is in sharp contrast to our setting where many bodyguards can be assigned to protect the same target
and the defender and the attacker have opposite interests.

3 The bodyguard allocation game
Consider a two-person zero-sum game G between an attacker and a defender. The defender has a
total of k ∈ N+ agents to allocate among a set N = {1, 2, . . . , n} of n ∈ N+ targets. If z ∈ N≥0

bodyguards are assigned to target i ∈ N , then the attacker can cause damage gi(z) by attacking target
i, with gi : N≥0 → R≥0. We assume that each additional bodyguard assigned to target i reduces the
damage the attacker can cause by attacking target i, but the marginal reduction is diminishing, i.e.,
gi is convex and decreasing. In addition, there exists a bi ∈ N+ such that the marginal benefit for
additional bodyguards beyond bi is zero. In other words, gi(z) = gi(bi) for all z ≥ bi, for i ∈ N .
This assumption is not restrictive, because we can set bi = k for all i ∈ N .

A pure strategy for the defender can be delineated by (z1, z2, . . . , zn), where
∑n

i=1 zi = k, with
the interpretation that zi ∈ N≥0 is the number of bodyguards assigned to target i ∈ N . The number
of defender’s pure strategies is at most

(
k+n−1
n−1

)
, which equals the number of nonnegative integer

solutions to
∑n

i=1 zi = k. A pure strategy for the attacker is an integer in N , which corresponds
to the target they choose to attack. The number of the attacker’s pure strategies is n. The attacker
chooses which target to attack in order to maximize the expected damage, while the defender chooses
how to allocate the bodyguards to minimize it.

Because the number of pure strategies in G for each player is finite, the two-person zero-sum
game G has a finite payoff matrix. Linear programming can be used to compute the value of the
game and the optimal mixed strategy for each player. We next demonstrate the game G with an
example with n = 2 targets and k = 2 bodyguards.

Example 1. Consider a setting with n = 2 targets, k = 2 bodyguards, b1 = b2 = 2, and g1(0) =
0.8, g1(1) = 0.6, g1(2) = 0.5, g2(0) = 0.6, g2(1) = 0.4 and g2(2) = 0.3. The payoff matrix is
given on the next page, where the rows correspond to the attacker’s pure strategies and the columns
correspond to the defender’s pure strategies. The attacker wants to maximize the expected damage,
while the defender wants to minimize it.
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(2, 0) (1, 1) (0, 2)[ ]
1 0.5 0.6 0.8
2 0.6 0.4 0.3

It is straightforward to verify that it is optimal for the attacker to attack target 1 with proba-
bility 2/3 and attack target 2 with probability 1/3. It is optimal for the defender to use (2, 0) with
probability 2/3 and (1, 1) with probability 1/3. The value of the game is 8/15.

While in theory it is possible to solve G by first laying out the entire payoff matrix and then solv-
ing a linear program, as demonstrated in Example 1, this approach quickly becomes computationally
intractable as n and k increase. For example, if there are n = 10 targets and k = 20 bodyguards,
then the defender has more than 10 million pure strategies.

The rest of this section presents a method to solve G with computational effort that is orders of
magnitude smaller than what is required to solve it via the entire payoff matrix.

3.1 Analysis of the bodyguard allocation game
In this section, we analyze the bodyguard allocation game. We identify the attacker’s and defender’s
optimal strategy and develop a method to compute the value of the game without having to compute
the entire payoff matrix.

To do so, we first introduce some new concepts and definitions. For any defender’s mixed strat-
egy, we can compute a corresponding vector x = (x1, . . . , xn), where xi ∈ R≥0 represents the
expected number of bodyguards assigned to target i ∈ N .1 We call a defender’s mixed strategy
consistent if

• it always assigns xi bodyguards to target i if xi is an integer, and otherwise

• (so if xi is not integer) it assigns ⌊xi⌋ bodyguards to target i with probability ⌈xi⌉ − xi and
assigns ⌈xi⌉ bodyguards to target i with probability xi − ⌊xi⌋.

For any given vector (x1, . . . , xn) with
∑n

i=1 xi = k, where xi is the expected number of body-
guards assigned to target i ∈ N , it is always possible to construct a consistent mixed strategy. One
way to do it is to first divide [0, k] into n subintervals with lengths x1, x2, . . . , xn as follows:

[0, x1), [x1, x1 + x2), · · · ,

[
n−2∑
i=1

xi,
n−1∑
i=1

xi

)
,

[
n−1∑
i=1

xi, k

]
,

with subinterval i corresponding to target i ∈ N . Next, draw a number u from the uniform distribu-
tion over the interval (0, 1). Find the points u, u+1, u+2, . . . , u+n−1, and identify the subintervals
each of these points belongs to. Finally, assign the n bodyguards to the targets corresponding to these
subintervals. It is straightforward to verify that this mixed strategy is consistent.

Example 2. Reconsider the setting of Example 1 and let vector x = (12
3
, 1
3
). As illustrated in Figure

1 on the next page, if u ∈ (0, 2
3
) we assign two bodyguards to target 1. On the other hand, if

u ∈ (2
3
, 1) we assign one bodyguard to target 1 and one bodyguard to target 2.

We now show that to find an optimal defender’s strategy, it is sufficient for the defender to
consider only consistent mixed strategies. We give a lemma before proving this result.

1Note that
∑

i∈N xi = k.
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Figure 1: Visualisation of setting with n = 2, k = 2 and x = (12
3
, 1
3
)

Lemma 1. Let W be a nonnegative integer-valued random variable. If E[W ] = c ∈ R>0, then the
distribution that minimizes E[gi(W )], for i ∈ N , is the one that has the least variance, i.e., if c is an
integer, then it is optimal to take W = c deterministically; otherwise, the optimal distribution is

P{W = ⌊c⌋} = ⌈c⌉ − c,

P{W = ⌈c⌉} = c− ⌊c⌋.

Proof. Define dz = gi(z − 1)− gi(z), for z ∈ N>0. Because gi is convex and gi(0) > gi(1) > · · · >
gi(bi) = gi(bi + 1) = gi(bi + 2) = · · · , it follows that

d1 ≥ d2 ≥ · · · ≥ 0.

Moreover, the objective function E[g(W ))] can be computed as follows:

E[gi(W )] =
∞∑
z=0

gi(z)P{W = z}

=
∞∑
z=0

(
gi(0)−

n∑
j=1

dj

)
P{W = z}

= g(0)−
∞∑
z=0

z∑
j=1

djP{W = z}

To minimize the preceding, it is equivalent to maximize

∞∑
z=0

z∑
j=1

djP{W = z} =
∞∑
j=1

∞∑
z=j

djP{W = z}

=
∞∑
j=1

djP{W ≥ j}. (1)

Recall that the expected value of a nonnegative integer-valued random variable can be computed
by E[W ] =

∑∞
j=1 P{W ≥ j}. Writing yj = P{W ≥ j} as decision variables with j ∈ N>0, we can

formulate the following linear programming model to maximize (1).

max
∞∑
j=1

djyj,

subject to
∞∑
j=1

yj = c,

1 ≥ y1 ≥ y2 ≥ · · · ≥ 0.
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Because dj decreases in j, to maximize the preceding the optimal solution is to let

yj =


1, i = 1, . . . , ⌊c⌋,
c− ⌊c⌋, i = ⌊c⌋+ 1,
0, i ≥ ⌊c⌋+ 2.

Because P{W ≥ 1} = P{W ≥ 2} = · · · = P{W ≥ c} = 1, P{W = n} = 0 for n < c.
Moreover, because P{W ≥ c + 2} = 0, we have P{W = n} = 0 for all n ≥ c + 2. Thus,
P{W = c} = 1 or P{W = c} = 1 − c + ⌊c⌋ and P{W = c + 1} = c − ⌊c⌋. In other words, the
optimal choice is for W to take on the two integers surrounding E[W ], or just E[W ] if it happens to
be an integer. □

Theorem 1. An optimal strategy for the defender is a consistent mixed strategy.

Proof. Consider an arbitrary mixed strategy for the defender and let Xi be a non-negative integer-
valued random variable, denoting the number of bodyguards assigned to target i ∈ N with E[Xi] =
xi. Because gi is a nonnegative integer-valued function that is decreasing and convex for all i ∈ N ,
applying Lemma 1 it follows that the expected damage if target i is attacked—namely, E[gi(Xi)]—is
minimized if Xi takes on the two integers surrounding xi, or just xi if it happens to be an integer, for
i ∈ N . Consequently, any of the defender’s mixed strategy that is not consistent is dominated by a
consistent mixed strategy, which completes the proof. □

3.2 The defender’s game
According to Theorem 1, to find an optimal defender strategy it is sufficient to consider only consis-
tent mixed strategies. Recall that gi(z) is the damage from an attack of target i ∈ N if it is protected
by z bodyguards. Without loss of generality, we assume that the targets are labeled in such a way
that g1(0) ≥ g2(0) ≥ · · · ≥ gn(0). In other words, without any bodyguards, target 1 has the highest
value and target n the lowest value. We define hi(xi) as the expected damage if the attacker attacks
target i ∈ N when the defender uses a consistent mixed strategy (with induced vector x) that as-
signs an expected number of xi bodyguards to target i, for xi ∈ [0, bi]. In other words, the function
hi : R>0 → R>0 for all i ∈ N is defined by

hi(xi) =

{
gi(xi), if xi is an integer,
(⌈xi⌉ − xi)gi(⌊xi⌋) + (xi − ⌊xi⌋)gi(⌈xi⌉), if xi is not an integer.

Consequently, the defender’s game can be formulated as

min
x∈X

{
max
i∈N

hi(xi)
}
, (2)

with X = {(xi)i∈N |xi ≥ 0 ∀i ∈ N,
∑

i∈N xi = k}. The game in (2) can be solved by a greedy
algorithm: keep allocating fractional bodyguards to targets having the highest present expected
damage until the defender runs out of bodyguards, or until target i has received bi bodyguards for
some i ∈ N so the objective function cannot be reduced further.2 Consequently, an optimal solution,
which we denote by x∗, has the property that for some t ∈ N , we have h1(x

∗
1) = h2(x

∗
2) = · · · =

ht(x
∗
t ) and hj(x

∗
j) = hj(0) for j ≥ t+ 1. We denote the optimal value by r∗.

Example 3. Reconsider the setting of Example 1. The defender wants to solve

min
(x1,x2)∈X

{
max

{
max{0.8− 0.2x1, 0.7− 0.1x1, 0.5},max{0.6− 0.2x2, 0.5− 0.1x2, 0.3}

}}
2For instance, this might happen if bi = 1 for all i ∈ N , k = 2 and g1(1) ≥ gi(0) for all i ∈ N . For this setting,

there is no need to allocate more than one bodyguard, which is assigned to target 1.
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The optimal solution is x∗ =
(
12
3
, 1
3

)
with r∗ = 8

15
. If, however, the defender has only k = 1

bodyguard, we would end up with optimal solution x∗ = (1, 0) and r∗ = 0.6. In Figure 2, we also
visualize the progression of the greedy algorithm with 0, 1, and 2 bodyguards.

da
m

ag
e

/d
am

ag
e

0.8

0.7

0.6

0.5

0.4

0.3
0 bodyguards 1 bodyguard 2 bodyguards

Figure 2: Allocation for 0, 1 and 2 bodyguards.

Because the defender has a mixed strategy that guarantees the expected damage to be at most r∗

regardless of which target the attacker chooses to attack, r∗ is an upper bound for the value of the
game. We now give an expression for this upper bound r∗. Recall that in the optimal solution to (2),
there exists t ∈ N+ such that the first t targets receive some bodyguards, while all others targets do
not receive any bodyguard. Write T = {1, 2, . . . , t} for convenience. Because x∗

i = 0 for i /∈ T , it
follows that

k =
n∑

i=1

x∗
i =

∑
i∈T

x∗
i .

For i ∈ T , write x∗
i = mi + yi, where mi = ⌊x∗

i ⌋ is the integral part and yi = x∗
i −mi ∈ [0, 1) is the

fractional part. We next develop a formula to compute the optimal value of (2), r∗, as a function of
T and mi, i ∈ T , so that we can compute r∗ directly once we identify T and mi, i ∈ T .

Since hi(x
∗
i ) = r∗ for i ∈ T , by the definition of hi we must have

r∗ = hi(x
∗
i ) = (1− yi)gi(mi) + yigi(mi + 1),

for i ∈ T . Solving for yi yields

yi =


gi(mi)−r∗

gi(mi)−gi(mi+1)
if mi ≤ bi − 1

0 if mi ≥ bi

(3)

for i ∈ T . Note that yi = 0 follows from the fact that gi(mi) = r∗ if mi = bi.
Define s ≡

∑
i∈T yi, which is the sum of all the fractional parts of the bodyguard allocations, so

k =
∑
i∈T

x∗
i =

∑
i∈T

mi +
∑
i∈T

yi =
∑
i∈T

mi + s.

Note that s < t because yi < 1 for i ∈ T . Using (3), we have that

s ≡
∑
i∈T

yi =
∑
i∈T

gi(mi)

gi(mi)− gi(mi + 1)
− r∗

∑
i∈T

1

gi(mi)− gi(mi + 1)

=
∑
i∈T

gi(mi)

gi(mi)− gi(mi + 1)
− r∗

λ
, (4)
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where we have defined

λT =

(∑
i∈T

1

gi(mi)− gi(mi + 1)

)−1

. (5)

Solving r∗ from (4) gives

r∗ =

(∑
i∈T

gi(mi)

gi(mi)− gi(mi + 1)
− s

)
λT . (6)

The next subsection shows that r∗ in (6) is also a lower bound for the value of the game G , so
that r∗ is the value of the game.

3.3 The attacker’s game
We now present an attacker’s strategy that guarantees an expected damage at least r∗ for the attacker
regardless of what the defender does, which proves that r∗ is also a lower bound for the value of the
game.

A mixed strategy for the attacker can be delineated by (p1, . . . , pn) with
∑n

i=1 pi = 1, where
pi ≥ 0 is the probability of attacking target i ∈ N . Consider the attacker’s strategy with

pi =


λT

gi(mi)− gi(mi + 1)
, i ∈ T,

0, i /∈ T.
(7)

where λ is defined in (5). We will show that this attacker’s strategy guarantees expected damage
at least r∗ regardless of what the defender does. Given the attacker’s strategy in (7), what can the
defender do to minimize the expected damage? The defender chooses (zi)i∈N ∈ NN

≥0 in order to
minimize

n∑
i=1

pigi(zi) =
∑
i∈T

pigi(zi), (8)

with the constraint
∑n

i=1 zi = k. The equality in the preceding is due to pi = 0 for i /∈ T . Because
pigi(zi) are convex functions, i ∈ T , it follows that the preceding optimization problem can be
solved by a greedy algorithm (see, for example, Lemma 1 in Subelman (1981) or Appendix in Ross
and Lin (2001)). That is, to achieve optimality, the defender can allocate the bodyguards one at a
time to the target that provides the most reduction in the objective function in (8) at the moment.

Because gi(zi) is a convex decreasing function, i ∈ T , we can see that each of the first mi

bodyguards allocated to target i will reduce the objective function in (8) for at least

pigi(mi − 1)− pigi(mi) =
λT

gi(mi)− gi(mi + 1)
(gi(mi − 1)− gi(mi)) > λT .

In addition, after allocating mi bodyguards to target i, i ∈ T , the (mi + 1)st bodyguard allocated to
target i would reduce the objective function by exactly λT . Since

∑
i∈T mi ≤ k, it follows that with

the greedy algorithm, after the first
∑

i∈T mi iterations, exactly mi bodyguards will go to target i,
for i ∈ T .

After the first
∑

i∈T mi bodyguards allocated in the greedy algorithm, with mi bodyguards going
to target i, for i ∈ T , the defender still has k−

∑
i∈T mi = s bodyguards to allocate. Because of the

choice of pi in (7), allocating one additional bodyguard to any target i ∈ T will reduce the objective
function by exactly λT . Since s < t, to minimize the objective function in (8), it is optimal for the
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defender to choose a subset of s targets from T and allocate one additional bodyguard to each target
in this subset. The minimized expected damage achieved in (8) is∑

i∈T

pigi(zi) =
∑
i∈T

pigi(mi)− sλT =
∑
i∈T

λTgi(mi)

gi(mi)− gi(mi + 1)
− sλT = r∗,

where the last equality is due to (6). In other words, the best the defender can do against the attacker’s
strategy in (7) is to reduce the expected damage to r∗. In other words, the attacker’s mixed strategy in
(7) guarantees expected damage for at least r∗ regardless of what the defender does. Consequently,
r∗ is a lower bound for the value of our game.

3.4 Solving the game with a linear program
We have shown that r∗ in (6) is an upper bound for the value of the game G in Section 3.2 and
also a lower bound in Section 3.3. Consequently, we have proved that r∗ is the value of the game
G . To compute r∗, one could solve the optimization problem in (2). Another way to compute r∗ is
to recognize that hi(xi) is a piecewise-linear decreasing function in xi, for i ∈ N . Therefore, the
optimization problem in (2) can be transformed into a linear program as follows:

min
x1,...,xn,v

v

s.t. v ≥ (gi(j + 1)− gi(j)) · (xi − j) + gi(j) ∀j = 0, 1, . . . , bi − 1 , ∀i ∈ N

v ≥ gi(bi) ∀i ∈ N∑
i∈N

xi = k

v ≥ 0

xi ≥ 0 ∀i ∈ N,

(9)

The optimal value from the preceding linear program is equal to r∗ and the optimal solution
(x∗

i )i∈N describes an induced vector of an optimal mixed consistent strategy. This consistent mixed
strategy can be obtained by following the procedure at the beginning of Section 3.1. For the attacker
it is optimal to use the mixed strategy in (7). We demonstrate this result via an example.

Example 4. Consider a setting with n = 4 targets, k = 3 bodyguards, b1 = b2 = 2, b3 = b4 = 3
and functions gi for all i ∈ N as depicted in Table 1 below.

z 0 1 2 3
g1(z) 0.9 0.7 0.6 0.6
g2(z) 0.8 0.6 0.5 0.5
g3(z) 0.7 0.5 0.4 0.3
g4(z) 0.6 0.4 0.3 0.2

Table 1: Damage functions

Solving optimization problem (9) leads to optimal value r∗ = 5
8

with x = (13
4
, 7
8
, 3
8
, 0). Hence,

we have T = {1, 2, 3}, m1 = 1, m2 = m3 = m4 = 0, y1 = 3
4
, y2 =

7
8
, y3 = 3

8
, and y4 = 0. For the

defender, it is optimal to always allocate one (out of the three bodyguards) to target 1. The remaining
two bodyguards could be mixed as follows: defend target 1 and target 2 with probability 5/8, defend
target 1 and target 3 with probability 1/8 and defend target 2 and target 3 with probability 1/4 (see
also Figure 3). For the attacker, we can use (7) to compute p1 = 1/2, p2 = p3 = 1/4, and p4 = 0.
In other words, it is optimal for the attacker to attack target 1 with probability 1/2, and target 2 and
target 3 each with probability 1/4, and attack target 4 not at all.
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target 2

target 1

target 3
u u+ 1 u+ 2

13
4

7
8

3
8

Figure 3: Visualisation of setting with n = 4, k = 3 and x = (13
4
, 7
8
, 3
8
, 0)

Recall that in G , the attacker has n pure strategies and the defender has up to
(
k+n−1
n−1

)
pure

strategies. To compute the optimal mixed strategy for the attacker via the payoff matrix, the linear
program requires n + 1 variables and up to

(
k+n−1
n−1

)
constraints. For example, if there are n = 10

targets and k = 20 bodyguards, then that linear program has 11 variables and more than 10 million
constraints. By comparison, the linear program in (9) has n + 1 variables and up to nk + n + 1
constraints, so its size is linear in both n and k. If n = 10 and k = 20, then the linear program in (9)
has 11 variables and only 211 constraints.

3.5 Some special cases
As discussed in the previous section, we can identify r∗, as well as the associated optimal strate-
gies of both the attacker and defender by solving optimization problem (9). In some special cases,
however, it is not necessary to solve problem (9). In this section, we discuss three of them.

3.5.1 At most one bodyguard for each target

In this section, we discuss the special case bi = 1 for all i ∈ N . This setting could, for instance,
represent a setting where a security agency believes that the probability of an attack is already low
per target (e.g., gi(0) ≪ 1 for all i ∈ N ) and so at most one bodyguard per target suffices. It could
also represent a setting where the security agency wants to limits the amount of input required. That
is, if bi = 1 for all i ∈ N only two data points (gi(0) and gi(1)) needs to be estimated per target.

It turns out that for this special case, we need to compare n + 2 values to identify r∗. If x∗
i ≥ 1

for some i ∈ N then i ∈ argmax{gi(1)} due to the structure of an optimal solution. Consequently,
r∗ = maxi∈N{gi(1)}. Hence, the first value that we need in our comparison is maxi∈N{gi(1)}.

Now, suppose that x∗
i < 1 for all i ∈ N and thus mi = 0 for all i ∈ N and s = k. For this setting,

we focus on n + 1 candidate optimal solutions of optimization problem (9), namely those (xi)i∈N
for which hi(xi) = hj(xj) for all i, j ∈ T ′ with T ′ ∈ {{1}, {1, 2}, . . . , {1, 2, . . . , n}}. Using the
derivations of (3)–(6), we know that for each T ′ ∈ {{1}, {1, 2}, . . . , {1, 2, . . . , n}} we have

hi(xi) = hj(xj) =

(∑
i′∈T ′

gi′(0)

gi′(0)− gi′(1)
− k

)
λT ′ for all i, j ∈ T ′. (10)

Suppose that T ∗ = {1, 2, . . . , t∗} corresponds to an optimal solution. Then,(∑
i′∈T ′

gi′(0)

gi′(0)− gi′(1)
− k

)
λT ′ ≤

(∑
i′∈T ∗

gi′(0)

gi′(0)− gi′(1)
− k

)
λT ∗ (11)

for all T ′ ∈ {{1}, {1, 2}, . . . , {1, 2, . . . , n}}. This holds for the following reason. If T ′ =
{1, 2, . . . , t′} with t′ < t∗ then (11) holds, because the bodyguards allocated to target t∗ can be
allocated over the first t∗ − 1 targets. Note, this is only possible because xt∗ > 0. If t′ > t∗ then
(11) holds, because xj < 0 for all j = t∗ + 1, t∗ + 2, . . . , t′, implying that fictitious bodyguards are
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introduced and allocated over the first t∗ targets. Hence, from equation (11) we learn that

max
T ′∈{{1},{1,2},...,{1,2,...,n}}

{(∑
i∈T ′

gi(0)

gi(0)− gi(1)
− k

)
λT ′

}
=
∑
i∈T ∗

(
gi(0)

gi(0)− gi(1)
− k

)
λT ∗ .

In conclusion, to identity r∗, we need to compare the n candidate optimal solutions of optimiza-
tion problem (9) with maxi∈N{gi(1)}. The maximum of these values coincides with r∗, i.e.,

r∗ = max

{
max
i∈N

gi(1), max
T ′∈{{1},{1,2},...,{1,2,...,n}}

{(∑
i∈T ′

gi(0)

gi(0)− gi(1)
− k

)
λT ′

}}
.

Lidbetter and Lin (2020) study a booby trap game in which one player can booby trap k out of a
total of n > k boxes and the other player opens 1 box to either get the reward in the box if the box
is not booby trapped, or get nothing if it is booby trapped. This booby trap game is a special case of
our bodyguard allocation game G if gi(1) = 0 for all i ∈ N .

3.5.2 Exponential damage function

Suppose function gi has an exponential form, i.e., gi(z) = γi · αz
i with z ∈ N≥0, γi,∈ R>0, and

αi ∈ (0, 1) for all i ∈ N . One way to interpret this damage function is that each additional bodyguard
adds a defense layer for the target. The attacker penetrates each defense layer of target i ∈ N with
probability αi, independently of everything else, and succeeds in the attack only if the attacker
penetrates all defense layers. Moreover, γi could be interpreted as the importance/societal value of
a target (e.g., this value could be extremely high for the prime minister). In the special case that all
targets are equally important, so that gi(z) = αz

i for i ∈ N , the game G is mathematically equivalent
to a hide-search game studied in Subelman (1981) between a hider and a searcher. In the hide-search
game studied in Subelman (1981), the hider chooses to hide in one of n locations, while the searcher
decides how to allocate k searches among these n locations. The searcher wants to maximize the
probability of finding the target within these k searchers, while the hider wants to minimize it. Each
search in location i will independently find the target—if the target is hidden there—with probability
1 − αi, for i ∈ N . Therefore, if the searcher searches location i for z times, then the probability of
not finding the target is αz

i , for i ∈ N . The searcher decides how to distribute the k searches among
the n locations in this hide-search game, just as in our game G the defender decides how to allocate
k bodyguards among the n targets. Subelman (1981) develops an algorithm for this special case,
which involves maximizing a characteristic function and using its solution to compute the optimal
strategy for each player. The algorithm developed in this section is more powerful because it works
as long as the damage functions are decreasing and convex in the number of bodyguards assigned.

3.5.3 Homogeneous targets

Suppose that all targets have the same damage function, so gi = g for all i ∈ N . For this case, it fol-
lows immediately from optimization problem (9) that it is optimal to allocate bodyguards evenly—
probabilistically if needed—among the targets. In other words, first allocate ⌊k/n⌋ bodyguards to
each target, and then choose k − n⌊k/n⌋ targets uniformly randomly and allocate one additional
bodyguard to each of these targets. The value of the game subsequently reads

r∗ = g

(⌊
k

n

⌋)
−
(
k

n
−
⌊
k

n

⌋)(
g

(⌊
k

n

⌋)
− g

(⌊
k

n

⌋
+ 1

))
. (12)
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4 The bodyguard scheduling game
The bodyguard allocation game G assumes that each bodyguard can be allocated to exactly one
target. In this section, we study a bodyguard scheduling game, denoted by GS , which extends G by
allowing a bodyguard to be assigned more targets subject to appropriate schedule constraints.

In the bodyguard scheduling game GS , we associated to each target i ∈ N a start time tsi ∈ R≥0

and an end time tei ∈ R≥0.3 Moreover, for each target i ∈ N we draw a node and use a directional arc
between each pair of nodes i, j ∈ N for which the start time of target j is later than the end time of j,
i.e., tei ≤ tsj . For each directional arc, we also add a flow capacity qij ∈ N≥0 to indicate that at most
qij bodyguards can be assigned to protect target j after they have completed their assignment for
target i.4 Such a restriction could, for instance, represent a specific travel regulation set by a security
agenda. Similar to the bodyguard allocation game we write zi ∈ N≥0 for the number of bodyguards
assigned to target i ∈ N . We use wij ∈ N≥0 to indicate the number of bodyguards who report to
target j ∈ N directly after their assignment at target i ∈ N . In addition, we write w0j ∈ N≥0 for the
number of bodyguards whose first assignment is to protect target j, where node 0 can be interpreted
as the source node (e.g., a security headquarter). We denote a pure strategy for the defender as a
feasible flow in the network. Formally, a pure strategy for the defender (z1, z2, . . . , zn) is feasible if
there exists flows (w0j)j∈N and (wij)i,j∈N that satisfy the following flow/schedule constraints:∑

j∈N

w0j = k

w0j +
∑
i∈N

wij = zj ∀j ∈ N∑
j∈N

wij ≤ zi ∀i ∈ N

wij ∈ {0, 1, . . . , qij} ∀i, j ∈ N,

(13)

The first constraint ensures that we use exactly k bodyguards. The next constraint equates the
number of bodyguards reporting to each target (left-hand side) to the number of bodyguards assigned
to the target (right-hand side). The next inequality ensures that the number of bodyguards leaving
from a target (left-hand side) cannot exceed the number of bodyguards assigned to it (right-hand
side). Finally, the variables (wij)i,j∈N and (zi)i∈N must be non-negative integers and should not
exceed their respective upper bounds. We would like to mention that the constraint matrix, resulting
from constraints (13), is totally unimodular. Hence, there is no need to enforce wij to be integer: one
can relax it and use linear programming to check pure strategy (z1, z2, . . . , zn) on feasibility.

A pure strategy for the attacker in GS is an integer in N , which corresponds to the target the
attacker chooses to attack. We next demonstrate GS with a simple example.

Example 5. Consider a setting with n = 3 targets and ts1 = 9, te1 = 12, ts2 = 14, te2 = 18 and
ts3 = 8, te3 = 13. Suppose there is k = 1 bodyguard, b1 = b2 = b3 = 1 and g1(0) = 0.8, g1(1) = 0.4,
g2(0) = 0.6, g2(1) = 0.3, g3(0) = 0.5 and g3(1) = 0.3. Moreover, q12 = 1 and qij = 0 for all other
combinations of i, j ∈ N . A visual representation is depicted in Figure 4.

All feasible pure strategies of the defender are given by (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0). Note
that strategy (1, 1, 0) is the only ”new” strategy, compared to a setting without travel possibilities,
and it dominates two strategies, namely (1, 0, 0) and (0, 1, 0). The associated damage for each
relevant combination of strategies is presented on the next page, with the rows representing the pure

3For instance, we use 7.5 to represent 7:30AM.
4In the remainder of this paper, we will only show those directional arcs for which qij > 0.
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target 1

target 3

target 2

9AM 12AM 2PM 6PM

8AM 1PM

Figure 4: Visualisation of the setting with n = 3 targets and schedule constraints. The arc indicates
that the bodyguard assigned to target 1 can travel to target 2 afterwards.

attacker strategies and the columns representing the relevant pure defender strategies.

(0, 0, 1) (1, 1, 0)[ ]1 0.8 0.4
2 0.6 0.3
3 0.3 0.5

By inspection, we learn that strategy 2 of the attacker is dominated by strategy 1 (i.e., 0.8 > 0.6
and 0.4 > 0.3). For the 2x2 matrix, it is optimal for the defender to mix strategies and protect
target 3 with one bodyguard with probability 1/6 and protect target 1 and target 2—with the same
bodyguard—with probability 5/6. For the attacker, it is optimal to attack target 1 with probability
1/3 and attack target 3 with probability 2/3. Consequently, the value of the game is 7/15.

One way to solve GS is to enumerate all pure strategies for each player and compute each player’s
optimal mixed strategy by linear programming. To enumerate all pure strategies for the defender,
one needs to consider (z1, . . . , zn) ∈ Πn

i=1{0, . . . , bi} and determine whether it is a feasible pure
strategy that meet all constraints in (13). This algorithm, however, quickly becomes computationally
intractable as n and k increase. We therefore present an alternative algorithm in the next section.

4.1 Analysis of the bodyguard scheduling game
The first step of the algorithm is to solve the linear program of (9) by including the schedule con-
straints of (13) but relax the integrality constraints. Formally, we solve linear program:

min v

s.t. v ≥ (gi(j + 1)− gi(j)) · (xi − j) + gi(j) ∀j = 0, 1, . . . , bi − 1 , ∀i ∈ N

v ≥ gi(bi) ∀i ∈ N∑
j∈N

w0j = k

w0j +
∑
i∈N

wij = xj ∀j ∈ N∑
j∈N

wij ≤ xi ∀i ∈ N

wij ≤ qij ∀i, j ∈ N

v ≥ 0

xi ≥ 0 ∀i ∈ N,

(14)

The solution to the linear program of (14) corresponds to the optimal expected number of body-
guards assigned to each target, assuming that the solution can be achieved by a consistent mixed
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strategy. In other words, if we can find a consistent mixed strategy that produces the expected num-
ber of bodyguards assigned to each target indicated by the solution to the linear program in (14),
then that consistent mixed strategy is optimal for GS .

To search for such a consistent mixed strategy, we first identify candidate pure strategies. Based
on the solution (xi)i∈N to the linear program (14), we restrict our attention to those pure strategies
that assign either ⌊xi⌋ or ⌈xi⌉ bodyguards to target i ∈ N . Consequently, the number of candidate
pure strategies equals 2n. The next step is to eliminate those pure strategies that do not meet the
schedule/flow constraints in (13). The final step is to use linear programming again to solve the
two-person zero-sum matrix game G ∗

S , in which the attacker can choose any of the n targets to attack
but the defender can use only the feasible pure strategies just identified that assigns either ⌊xi⌋ or
⌈xi⌉ bodyguards to target i ∈ N . Because in G ∗

S the defender’s pure strategy set is a subset of that in
GS , the value of G ∗

S is an upper bound for the value of GS . In addition, the optimal value of the linear
program in (14) is a lower bound for the value of GS because the expected number of bodyguards
assigned to each target may not be achieved by any defender’s mixed strategy. Consequently, if the
value of G ∗

S coincides with the optimal value of the linear program in (14), then that common value
is also the value of the game GS , and the defender’s optimal mixed strategy for G ∗

S is also optimal
for GS . If the value of G ∗

S is strictly higher than the value of the linear program in (14), then we
find an upper bound for the value of GS and the defender can achieve this upper bound by playing
the optimal mixed strategy in G ∗

S . In order to assess this algorithm, we randomly generated 50,000
instances of GS (see Appendix 6.1 for details). It turns out that among these 50,000 instances, the
value of G ∗

S is equal to the value of GS . Therefore, we make the following conjecture.

Conjecture 1. The value of G ∗
S is equal to the value of GS .

We now demonstrate how the algorithm can be applied to the game of Example 5.

Example 6. Reconsider the setting of Example 5. For step 1, we solve the standard linear program-
ming problem in (14), leading to x1 = 5

6
, x2 = 5

6
, x3 = 1

6
, w12 = 5

6
, w01 = 5

6
, w02 = 0, w03 = 1

6
,

w12 = w13 = w21 = w23 = w31 = w32 = 0 with objective value v = 7
15

. Because the num-
ber of targets equals n = 3, we need to generate 23 pure strategies. That is, we consider strate-
gies (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1) and (1, 1, 1). For step 3, we check
each of them on feasibility. This leads to leaving our strategies (1, 0, 1) and (1, 1, 1). For the re-
maining 6 strategies, we execute step 4 and solve a new two-person zero-sum game, in which the de-
fender’s pure strategy set consists of (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0) and (0, 1, 1). This
leads to the same solution as we found in Example 5 already.

In Figure 5, we summarize the steps of the algorithm to generate an upperbound of the game.

Solve LP in (14) Generate 2n pure strategies Eliminate infeasible pure strategies Solve G ∗
S

Figure 5: Steps of algorithm to generate an upper bound of the game

The significance of the the first step of the algorithm is that it removes a huge number of pure
strategies that the defender does not need to consider. For example, if there are n = 10 targets and
k = 30 bodyguards, then we need to screen only 210 = 1024 pure strategies on feasibility. Without
this step, we need to screen up to (30 + 1)10 ≈ 8.19× 1014 pure strategies on feasibility.

We next discuss an example illustrating how the algorithm can be used in a realistic setting for a
security agency during a morning shift.
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Example 7. Consider a setting with n = 7 targets, k = 10 bodyguards, q12 = q15 = q23 = q45 =
q65 = q67 = 10 and qij = 0 otherwise. Moreover, we have gi(z) = γi·exp{−αi·zi} for all i ∈ N with
(γi)i∈N = (0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65) and (α)i∈N = (0.5, 0.2, 0.3, 0.6, 0.4, 0.1, 0.2).
Next, bi = 10 for all i ∈ N . A visual representation of the setting is presented in Figure 6.

target 4

target 7target 6

target 3target 1 target 2

target 5

Figure 6: Visualisation of the setting with n = 7 targets.

The solution of the linear programming problem of (14) is presented in Table 2 and Table 3.

x1 x2 x3 x4 x5 x6 x7 v
3.8162 3.8162 2.3774 1.0918 1.4940 5.0920 2.1881 0.4209

Table 2: Solution (xi)i∈N and v of LP.

wij 1 2 3 4 5 6 7
0 3.8162 0 0 1.0918 0 5.0920 0
1 0 3.8162 0 0 0 0 0
2 0 0 2.3774 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 1.4940 0 2.1881
7 0 0 0 0 0 0 0

Table 3: Solution (w0j)j∈N and (wij)i,j∈N of LP.

Because the number of targets is equal to n = 7 targets, we need to generate 27 = 128 pure
strategies with z1 ∈ {3, 4}, z2 ∈ {3, 4}, z3 ∈ {2, 3}, z4 ∈ {1, 2}, z5 ∈ {1, 2}, z6 ∈ {5, 6},
and z7 ∈ {2, 3}. Forty of these pure strategies turn out to violate the schedule/flow constraints.
Subsequently, we formulate the matrix game G ∗

S by allowing the defender to use the remaining
128− 40 = 88 pure strategies. Solving G ∗

S—a matrix game of size 7× 88—via linear programming,
we obtain the optimal mixed strategy for the defender, as shown in Table 4.

The value of G ∗
S equals 0.4209, which matches the optimal solution of the linear program of (14).

Therefore, the defender’s optimal mixed strategy for G ∗
S in Table 4 is also optimal for GS .

One strength of the algorithm is that it is scalable in the number of bodyguards k, because its
runtime is more or less constant in the number of bodyguards. The algorithm, however, is not
scalable in the number of targets n. In the next section, we discuss specific structures of the schedule
constraints that help reduce n, implying that we can solve GS faster.
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probability z1 z2 z3 z4 z5 z6 z7
0.09198 3 3 2 1 2 6 3
0.09185 3 3 3 2 1 5 3
0.41411 3 4 3 1 1 5 2
0.40206 3 4 3 1 2 5 3

Table 4: The defender’s optimal mixed strategy for G ∗
S in Example 7.

4.2 Special structures
In this section, we discuss three specific structures of the schedule constraints that can reduce the
runtime to solve GS . For each of the three structures, we assume that qij ∈ {0, k} for all i, j ∈ N .

4.2.1 Horizontal clusters

A horizontal cluster is a group of targets close in locations with no overlaps in time—but away from
the other targets not in the cluster—such that a bodyguard assigned to the first target in the cluster
can only be reassigned to the other targets in the same cluster. An example of two horizontal clusters
is represented in Figure 7.

target 1

target 3

target 2

target 4

Figure 7: Visualisation of the setting with n = 4 targets and two clusters ({1, 2} and {3, 4}).

The upper cluster could, for example, represent a candidate who is running for an election and is
holding two political rallies in a remote town, one in the morning and one in the afternoon. For this
setting, it is natural to assign the same team of bodyguards to both of these political rallies.

If all the targets can be partitioned into several horizontal clusters in a bodyguard scheduling
game, then the bodyguard scheduling game reduces to a bodyguard allocation game, because we
can merge all targets in a cluster into one single target whose damage function corresponds to the
maximum of the damage functions of all targets within the cluster. If only a subset of targets can be
put into horizontal clusters, then we can still use one damage function to represent each horizontal
cluster, which effectively reduces the number of targets in a bodyguard scheduling game.

4.2.2 Vertical clusters

A vertical cluster is a group of targets that take place around the same time, with all the other targets
taking place either before or after them, so that all k bodyguards are available and shared by the
targets in the vertical cluster. Figure 8 displays a bodyguard scheduling game with two vertical
clusters.

The first vertical cluster could, for instance, represent two members of the Royal family each
visiting one city in the early morning, while the second cluster could represent two cabinet ministers,
each visiting a university in the late afternoon. Because there is plenty of time between the morning
and afternoon activities, there is also enough time for bodyguards to travel between them.
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target 1

target 2

target 3

target 4

Figure 8: Visualization of the setting with n = 4 targets and two groups ({1, 2} and {3, 4}).

If all the targets can be partitioned into several vertical clusters in a bodyguard scheduling game,
then solving the bodyguard scheduling game reduces to solving a bodyguard allocation game for
every vertical cluster. If only a subset of targets can be put into vertical clusters, then we can still
solve each of these vertical clusters via a bodyguard allocation game separately, which effectively
reduces the number of targets of the original bodyguard scheduling game.

4.2.3 Diverging cluster

A diverging cluster is a group of targets that form a tree in the schedule network. Figure 9 displays
an example of a diverging cluster that consists of targets 3, 4 and 5.

target 1

target 2

target 3

target 4

target 5

Figure 9: Visualization of the setting with n = 5 targets and one tree ({3, 4, 5}).

The diverging cluster as shown in Figure 9 could, for instance, represent three cabinet members
each having meetings close in location, but at different times. One of the cabinet members has a
meeting shortly after lunch, followed by two meetings—in parallel—for the other two members.

If a group of targets can be identified as a diverging cluster in a bodyguard scheduling game,
then there is no need to execute steps 2, 3 and 4 of the algorithm of the bodyguard scheduling game
for all targets. We demonstrate this by the example in Figure 9. First, according to step 1 of the
algorithm, we solve the linear program in (14) for all targets. Thereafter, we execute the remaining
steps for only target 1, 2, and 3. Instead of checking 25 strategies on feasibility, we thus only check
23 of them. We ignore targets 4 and 5 in the remaining steps, because we can construct a consistent
mixed strategy for target 4 and 5, based on the solution of the linear program in (14).

To illustrate this idea, suppose that the LP generates solution x3 = 4.2, x4 = 2.5, and x5 = 1.7.
For any consistent mixed strategy, we know that in 80% of the time we assign 4 bodyguards to target
3 and in 20% of the time we assign 5 bodyguards to target 3. If we assign 4 bodyguards to target
3, we assign 2 of them with probability 62.5% to target 4 and we assign 3 of them with probability
37.5% to target 4. If we assign 5 bodyguards to target 3, we always assign 3 bodyguards to target 4.
In summary, we assign in 62.5% · 80% = 50% of the time 2 bodyguards and in 37.5% · 80% + 20%
= 50% of the time 3 bodyguards, which matches with x4. Consequently, we also know that in
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62.5% · 80% = 50% of the time we assign (4− 2) = 2 bodyguards to target 4 and in 37.5% · 80% =
30% of the time, we assign (4− 3) = 1 bodyguard to target 4. Finally, in 20% of the time, we assign
(5 − 3) = 2 bodyguards to target 4. In summary, we assign in 62.5% · 80% + 20% = 70% of the
time 2 bodyguards to target 4 and in 37.5% · 80% = 30% of the time 1 bodyguard to target 5, which
matches with x5. Hence, we have constructed a consistent mixed strategy for target 4, and 5. We
also visualized this procedure in Figure 10 below.

target 3

80% 4

target 3

20% 5

target 4

37.5% 3

62.5% 2

target 5

37.5% 1

62.5% 2

target 4

100% 3

target 5

100% 2

Figure 10: Visualization of how to assign bodyguards to target 4 and 5.

If target 4 would have two additional children, in the form of target 6 and 7 (see Figure 11), then
we construct a consistent mixed strategy by first considering target 4, 6 and 7 as one consolidated
node—and follow the procedure described above, with target 3 as the parent node and target 5 and
the consolidated node as the children nodes. Subsequently, we repeat our procedure, but this time
for the tree with target 4 as parent node and target 6 and target 7 as children nodes.

consolidated node

target 1

target 2

target 3

target 4

target 6

target 7

target 5

Figure 11: Visualization of the setting with n = 7 targets and a tree ({3, 4, 5, 6, 7}).

5 Conclusion
We have investigated a resource allocation problem where a limited supply of bodyguards are to be
allocated for protecting individuals under threat. We model the problem as a two-person zero-sum
game between a defender who allocates the bodyguards and an attacker who chooses one target to
attack. Because the number of feasible bodyguard allocations grows quickly as either the number
of protected targets or the number of bodyguards increase, solving the game by brute force with a
linear program becomes computationally intractable for problems of practical size. By assuming
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that the marginal effectiveness of each additional bodyguard assigned to a target is decreasing, we
show that we can solve the game with a different linear program whose size is linear in the numbers
of both targets and bodyguards. Next, we extended the allocation game to a scheduling game, which
allows a bodyguard to report to multiple targets if their schedules allow. We developed an algorithm
to compute a bound for the value of this game and present a mixed strategy that achieved this bound
in all numerical experiments we have conducted.
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6 Appendix

6.1 Experiment for the upper bound for bodyguard scheduling games
In this experiment, we generated 50,000 random bodyguard scheduling games. For each of them,
we calculated the value of GS and G ∗

S . It turns out that GS and G ∗
S coincide for all instances.

The 50,000 random bodyguard scheduling games are generated as follows. For each number of
targets n ∈ {5, 6, 7, 8, 9} and each number of bodyguards k ∈ {10, 11, ..., 19}, we generated 1,000
random bodyguard games. In doing so, we generated/set:

• tsi ∼ Uniform[0, 10] and tei ∼ tsi + Uniform[0, 10] for all i ∈ N

• travel times tij ∼ Uniform[0, 2] for all i, j ∈ N . Note, these travel times are not part of our
bodyguard scheduling game, but we used them to identify qij for all i, j ∈ N .

• qij = k if tei + tij ≤ tsj and qij = 0 otherwise.

• gi(z) = γi · αz
i with γi ∼ Uniform[0, 1], αi ∈ Uniform[0, 1] and bi = k for all i ∈ N .

Function g is commonly used in the homeland security literature to model diminishing returns
(see, e.g., Bier et al. (2007)) and also has an operational interpretation as already discussed in Section
3.5.2. For instance, one way to interpret this damage function is that each additional bodyguard adds
a defense layer for the target. The attacker penetrates each defense layer of target i ∈ N with
probability αi, independently of everything else, and succeeds in the attack only if the attacker
penetrates all defense layers. In that regard, αi could be interpreted as the effectiveness of each
additional bodyguard for a given target i ∈ N . Moreover, value γi could be interpreted as the
importance/societal value of target i ∈ N .
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