
Solving the parallel processor scheduling and bin packing problems
with contiguity constraints: mathematical models and

computational studies

Fatih Burak Akçay, Maxence Delorme

Department of Econometrics and Operations Research, Tilburg University, The Netherlands
Corresponding author m.delorme@tilburguniversity.edu

Abstract

The parallel processor scheduling and bin packing problems with contiguity constraints are impor-
tant in the field of combinatorial optimization because both problems can be used as components of
effective exact decomposition approaches for several two-dimensional packing problems. In this study,
we provide an extensive review of existing mathematical formulations for the two problems, together
with some model enhancements and lower bounding techniques, and we empirically evaluate the com-
putational behavior of each of these elements using a state-of-the-art solver on a large set of literature
instances. We also assess whether recent developments such as meet-in-the middle patterns and the re-
flect formulation can be used to solve the two problems more effectively. Our experiments demonstrate
that some features, such as the mathematical model used, have a major impact on whether an approach
is able to solve an instance, whereas other features, such as the use of symmetry-breaking constraints,
do not bring any significant empirical advantage despite being useful in theory. Overall, our goal is to
help the research community design more effective yet simpler algorithms to solve the parallel processor
scheduling and bin packing problems with contiguity constraints and closely related extensions so that,
eventually, those can be integrated into more exact methods for two-dimensional packing problems.

Keywords: Packing, Contiguity constraints, Exact algorithms, Computational evaluation.

1 Introduction

Cutting and Packing (C&P) problems have been widely studied in the literature for the last eighty years,
starting from the seminal work of Kantorovich in the late thirties [55]. There are numerous practical appli-
cations for C&P problems, whether those are one-dimensional (automobile component manufacturing [4]
and high performance computing [74]), two-dimensional (glass manufacturing industry [69] and newspaper
layouting [76]), three-dimensional (container loading [68] and 3D printing [24]), or even higher [51].

Two of the most studied two-dimensional C&P problems are the Strip Packing Problem (SPP) and the
Orthogonal Packing Problem (OPP). In the SPP, we are given a rectangular strip with fixed width and
infinite height together with a set of rectangular items. The goal is to pack all the items into the strip
while minimizing the strip height. An illustrative example outlining an SPP instance and its corresponding
optimal solution are shown in Figures 1a and 1b. In the OPP, we are given a rectangular bin with fixed
width and fixed height and a set of rectangular items. The goal is to determine whether all the items
can be packed into the bin. As observed by Iori et al. [52], although the OPP is said to be in decision
version (i.e., the expected solution is either Yes or No, also referred to as recognition version in the
complexity literature), one is generally requested to also produce the specific packing (if it exists) in
practical applications. In most SPP and OPP related literature, it is assumed that the items (i) do not

1

overlap, (ii) must entirely lie within the container, and (iii) are packed with their edges parallel to the
borders of the container. While some of these assumptions were relaxed in a few C&P studies [6, 46, 84],
we point out that, to the best of our knowledge, this has never been the case for the SPP or the OPP.

According to the typology proposed by Wäsher et al.[78], the SPP falls into the category of (two-
dimensional) open dimension problems. Following the three-field typology proposed by Lodi et al.[60],
the SPP is denoted as 2SP|O|F, where “O” stands for “oriented items” (i.e., item rotation by 90° is not
allowed) and where “F” stands for “free” (i.e., guillotine cutting, also known as edge-to-edge cutting, is
not required). Note that the SPP was not formally defined according to the (older) typology proposed by
Dyckhoff [39] and that none of the typologies offers a classification for the OPP.

The SPP is known to be strongly NP-hard by polynomial reduction from the one-dimensional bin
packing problem [61]. Therefore, its recognition version, the OPP, is strongly NP-complete. Nevertheless,
both problems have attracted the attention of the C&P research community who has developed over the
years a large number of heuristics [19, 67], metaheuristics [53, 60], and exact approaches [52]. Those
exact approaches include, among others, integer linear programming (ILP) models solved through an ILP
solver [21], branch-and-bound (B&B) algorithms [61], branch-and-price (B&P) algorithms [14], constraint
programming (CP) [45], and decomposition approaches [26]. Based on recent empirical studies focusing
on exact approaches for the SPP [27, 37], decomposition methods appear to be the most competitive.

In all existing decomposition algorithms proposed in the literature to solve either the SPP or the OPP
[25, 26, 27, 37], the original problem is divided into two (smaller) sub-problems: a main problem (MP)
and a secondary problem (SP). In the MP, one solves a relaxed version of the original problem that fixes
one coordinate (the abscissa or the ordinate) of every item. In the SP, one determines whether or not
it is possible to complete the MP solution (i.e., find the second coordinate for every item) such that the
solution becomes feasible for the original problem. If the answer to the SP is Yes, then the MP solution
is also feasible for the original problem whereas if the answer is No, then one needs to add a constraint to
prevent the MP solution from being generated again.

As far as the MP is concerned, two main relaxations can be considered for the SPP: the one-dimensional
bin packing problem with contiguity constraints (1CBP) and the parallel processor scheduling problem
with contiguity constraints (P|cont|Cmax) [27]. To the best of our knowledge, only the latter was used
in the literature as the MP of a decomposition approach whereas the former was mostly used to derive
valid bounds [2, 61]. In the 1CBP, the items of the original problem are cut into unit-height slices and
the objective is to pack all the resulting slices into the minimum number of identical one-dimensional
bins while enforcing that the slices belonging to the same item are packed into contiguous bins. In this
problem, the bin capacity of each one-dimensional bin is equal to the width of the container. An illustrative
example outlining the optimal solution for the 1CBP relaxation of the SPP instance described in Figure
1a is provided in Figure 1c. In the P|cont|Cmax, the items of the original problem are cut into unit-width
slices and the objective is to pack all the resulting slices into a fixed number of one-dimensional bins
whose capacity is to be minimized while enforcing that the slices belonging to the same item are packed
into contiguous bins. In this problem, the number of one-dimensional bins is equal to the width of the
container. An illustrative example outlining the optimal solution for the P|cont|Cmax relaxation of the
SPP instance described in Figure 1a is provided in Figure 1d. One can observe that the recognition version
of the 1CBP is the same as the recognition version of the P|cont|Cmax since, in both cases, the number
of bins is equal to one of the two container dimensions whereas the bin capacity is equal to the other
container dimension. Therefore, any solution method tailored to solve one problem can also be used to
solve the other. We point out, however, that applying the 1CBP relaxation to an OPP instance does not
produce the same numerical instance as the one obtained after applying the P|cont|Cmax relaxation.

2

Figure 1: An SPP instance, its optimal solution, and the solution of its two relaxations [27]

w h

strip 6 ∞
item 1 4 1
item 2 2 4
item 3 3 1
item 4 1 2
item 5 4 2
(a) SPP instance

1

2 3

4

5

0

1

2

3

4

5

(b) SPP solution

1

2 3

4

5

0

1

2

3

4

5

(c) 1CBP solution

1

2 3

4

5

0

1

2

3

4

5

(d) P|cont|Cmax solution

As far as the SP is concerned, even though the terminology varied in the literature, it can be defined
as a scheduling problem with non-overlapping constraints among subsets of tasks.

A decomposition approach for the SPP and for the OPP can roughly be summarized as (i) an algo-
rithm to solve the MP, (ii) an algorithm to solve the SP, and (iii) a set of enhancing techniques (e.g.,
preprocessing, symmetry-breaking constraints, and cut lifting/strengthening). We report in Figure 2 a
schematic representation of the decomposition approaches proposed so far for the SPP and the OPP. As
one can observe, several combinations of MP/SP solution methods were tested in the literature and most
papers included an extensive set of computational experiments comparing the performance of the newly
introduced decomposition approach with the performance of its predecessors. However, these experiments
measured the performance of each algorithm as a whole, never component by component. In fact, it
could be possible that a (new) decomposition algorithm composed of the MP of Côté et al. [27] and the
SP of Delorme et al. [37] obtains state-of-the-art results for the SPP. This is why identifying the most
effective solution technique to solve each component of the decomposition is crucial in order to develop
better algorithms for the SPP and the OPP. This is especially important considering that such algorithms
can be extended to solve related two-dimensional packing problems such as the two-dimensional knapsack
problem [48] and the two-dimensional bin packing problem [29].

Figure 2: Existing decomposition algorithms for the SPP and the OPP

Solve main problem
B&B → Clautiaux et al. [25]
CP → Clautiaux et al. [26]
ILP+B&B → Côté et al. [27]
ILP Flow→ Delorme et al. [37]

Initialization

feasible?

End

Solve secondary problem
B&B → Clautiaux et al. [25]
B&B → Clautiaux et al. [26]
B&B → Côté et al. [27]
CP → Delorme et al. [37]

Yes

No

Forbid the
current solution

The main objective of this paper is to review the solution methods that were proposed for the
P|cont|Cmax and the 1CBP and to test these solution methods on literature benchmarks in order to
determine the ones that are the most effective. In addition, we also assess whether or not recent advances
in the C&P area such as reduced-cost variable fixing [32], meet-in-the-middle patterns [30], and the reflect
formulation [35] could be used to solve the two problems more efficiently. We also review and evaluate a
number of lower bounding techniques and introduce new ones. In order to make sure that the evaluated

3

methods are easy to re-implement and modify by the C&P community, which is essential if we want our
findings to be used in the future, our work focuses on techniques that both work well in practice and are easy
to code and modify. In addition, an implementation of all the reviewed techniques is made available online.

The paper is organized as follows. In Section 2, we review the most important approaches proposed
in the literature for the SPP, the OPP, and closely related problems. In Section 3, we describe the
mathematical models for the 1CBP and the P|cont|Cmax that have been proposed in the literature, and
in Section 4, we detail existing model enhancement techniques. In Section 5, we discuss the existing lower
bounds for the 1CBP and the P|cont|Cmax and propose new ones. In Section 6, we evaluate each of the
reviewed techniques through an extensive set of computational experiments and derive some conclusions
and future research directions in Section 7.

2 Literature review

Exact approaches for two-dimensional packing problems have gathered a lot of attention in the C&P litera-
ture, especially in recent years. We refer the reader to Iori et al. [52] for a comprehensive survey on the topic.

One of the first exact algorithms designed to solve the SPP was proposed by Martello et al. [61].
The authors introduced a B&B algorithm that uses the concept of a staircase placement together with
some advanced reduction procedures and bounding techniques. Later on, Alvarez-Valdés et al. [2] and
Boschetti and Montaletti [16] improved the performance of that B&B algorithm by integrating advanced
preprocessing techniques, enhanced dominance criteria, and additional bounding procedures. Castro and
Oliveira [22] and Castro and Grossmann [21] developed ILP models for the SPP inspired by time rep-
resentation in scheduling problems. Soh et al. [75] translated the OPP into a SAT problem and solved
it trough a SAT encoding. By iteratively solving a number of OPP in which the bin height is increased
until a feasible solution is found (also known as destructive bound), they showed that their method could
be used to solve the SPP. Another SAT encoding was proposed later on by Grandcolas and Pinto [45].
Recently, Silva et al. [72] proposed the so-called “floating-cuts” formulation, a model for general rectangu-
lar cutting problems with fixed container dimensions (i.e., that could be use for the OPP but not for the
SPP). Whereas the aforementioned literature solves the SPP (or the OPP) with a direct approach, the
most competitive (and recent) approaches use decomposition strategies instead (see Figure 2).

The SPP and the OPP are closely related to the two-dimensional knapsack problem (2D-KP) and
the two-dimensional bin packing problem (2D-BPP). In the 2D-KP, the objective is to pack a subset of
rectangular items with maximum value into a rectangular bin. Caprara and Monaci [20] introduced a
decomposition approach to solve the problem where the MP selects the items contained in the solution
while the SP, an OPP, determines whether it is possible to pack the selected items into the bin. In the
2D-BPP, the goal is to pack a set of rectangular items into the minimum number of identical rectangular
bins. The most effective algorithm to solve the problem was proposed by Côté et al. [29] and also uses a
decomposition strategy. The MP assigns a set of items to each bin whereas the SP, a sequence of OPP,
determines whether it is possible to pack each item set into a bin.

Our two problems of interest, the 1CBP and the P|cont|Cmax, belong to the category of one-dimensional
packing problems. To the best of our knowledge, the P|cont|Cmax was never studied as a standalone
problem and the only study focusing on the 1CBP was proposed by Mesyagutov et al. [66] who introduced
an ILP model based on the well-known set covering formulation [44] and solved it within a B&P framework.
Among the papers who tackled the 1CBP as a component of a more general algorithm, we mention the
work of Martello et al. [61], who solved the problem with a B&B algorithm, the work of Alvarez-Valdés
et al. [2], who introduced an ILP formulation for the problem and solved it with an ILP solver, and the

4

work of Friedow and Scheithauer [41], who solved the model proposed by Mesyagutov et al. [66] with a
cutting plane algorithm. Among the papers who tackled the P|cont|Cmax as a component of a more general
algorithm, we mention the work of Boschetti and Montaletti [16] who introduced an ILP formulation for
the problem and solved it with an ILP solver, the work of Côté et al. [27] who solved the problem with
a hybridized procedure that first calls a tailored B&B algorithm for a fixed duration and then solves
the model of Boschetti and Montaletti [16] through an ILP solver, and the work of Delorme et al. [37]
who introduced an ILP model based on the well-known arcflow formulation of Valério de Carvalho [77]
and solved it with an ILP solver. Other works tackled the recognition version of the 1CBP and the
P|cont|Cmax. Clautiaux et al. [25] solved the problem through B&B while Belov et al. [10] introduced
another ILP formulation to model the problem where the novelty with respect to the model introduced
by Alvarez-Valdés et al. [2] lies in the way to represent the contiguity constraints. We categorize the
aforementioned 1CBP and P|cont|Cmax literature in Table 1 and indicate, for each paper, the problem
tackled (1CBP, P|cont|Cmax, or the recognition version of these problems), its purpose (to obtain a valid
bound or to serve as a component of a decomposition algorithm), and the method used to solve it (ILP,
CP, or a tailored enumerative algorithm). Each of the methods marked with the symbol “⊗” is reviewed
in the next section and empirically evaluated in Section 5.

Table 1: Categorization of the 1CBP and P|cont|Cmax literature

Reference
Problem Purpose Solution approach

1CBP P|cont|Cmax
Recognition

version Bounds Decomposition
component ILP CP Enumerative

Alvarez-Valdés et al. [2] × × ⊗
Belov et al. [10] × × ⊗
Boschetti and Montaletti[16] × × ⊗
Clautiaux et al. [25] × × ×
Clautiaux et al. [26] × × ⊗
Côté et al. [27] × × × ⊗ ×
Delorme et al. [37] × × × ⊗
Friedow and Scheithauer[41] × × ×
Martello et al. [61] × × ×
Mesyagutov et al. [66] × × × ×

The 1CBP is a special case of the bin packing problem with time lags recently introduced by Letelier
et al. [58] in which a time lag of exactly one bin is imposed between sequences of item slices. The 1CBP is
also a special case of the resource-constrained project scheduling problem [56] where only one resource is
considered and where precedence constraints are not allowed. That observation was used by Clautiaux et
al. [26] to derive an effective CP approach to solve the recognition version of the problem. We also point
out that, if every item in a 1CBP instance has at most two slices (i.e., if every item in the original SPP
instance has height 1 or 2), then the problem can be formulated as a two bar charts packing problem [7, 40].

We finish this literature review by pointing out that several 1CBP and P|cont|Cmax relaxations were also
considered in the literature, leading to even weaker SPP and OPP relaxations. On the 1CBP side, Belov
et al. [10] and Alvarez-Valdés et al. [2] considered a relaxation in which the contiguity constraints were
replaced by conflict constraints where slices belonging to the same item were forbidden to be packed in the
same bin, resulting in a bin packing problem with conflicts. Alvarez-Valdés et al. [2] studied an even weaker
relaxation in which the contiguity constraints were completely removed, resulting in the very well-known
one-dimensional bin packing problem [36]. Note that, even though they were never studied in the SPP
and OPP context, similar relaxations can also be derived on the P|cont|Cmax side, resulting in the P||Cmax

with conflicts [57] and the P||Cmax [33]. We point out that, to the best of our knowledge, these weaker
relaxations were never used as the MP of an effective decomposition approach for the SPP or the OPP.

5

3 Mathematical models

In this section, we review the mathematical models (ILP and CP) that were proposed in the literature
for the 1CBP and the P|cont|Cmax. We start by introducing the mathematical notation used in the
models, we then present three ILP models for the P|cont|Cmax followed by one ILP model for the 1CBP
and demonstrate that a formulation solving one problem can easily be modified to solve the other, and we
finish the section by describing a CP formulation that can be used to model both problems. Throughout the
section, we use the terminology associated with the optimization version of the 1CBP and the P|cont|Cmax

(i.e., in which an objective function is considered), however, all models can easily be adapted to address
the recognition version of the problems (i.e., when both the number of bins and the capacity are limited).

3.1 Mathematical notation

Because the P|cont|Cmax and the 1CBP originate from the SPP literature, we first introduce the mathe-
matical notation for the SPP and reuse it for the two studied relaxations. In the SPP, we are given a set
of n items to be packed in a strip with fixed width W and minimum height. In the recognition version of
the problem, the OPP, the strip height H is fixed. Each item i (i = 1, . . . , n) has a width wi and a height
hi. Without loss of generality, we assume hereafter that wi and hi are positive integers (i = 1, . . . , n).
As it can be more convenient for modelling purposes, an SPP instance can also be defined as a set of m
item types where each item type j (j = 1, . . . ,m) has a width wj , a height hj , and a demand dj (where∑m

j=1 dj = n). Using a Cartesian coordinate system, an SPP solution identifies, for every item, the co-
ordinate (p, q) in which the bottom-left corner of the item is packed. We call a row the unit-height slice
obtained by cutting the strip horizontally, and we call a column the unit-width slice obtained by cutting
the strip vertically. Columns are indexed from 0 to W − 1 whereas rows are indexed from 0 to UB − 1

(where UB is an instance-specific valid upper bound). We say that an item engages a column p′ (or a
row q′) when a portion of the item intersects with p′ (or q′). When packed in coordinate (p, q), an item i

engages columns p, p+ 1, . . . , p+ wi − 1 and rows q, q + 1, . . . , q + hi − 1.
Using a similar notation, in the P|cont|Cmax, we are given a set of n items to be packed into a fixed num-

ber W of identical bins whose capacity is to be minimized. Following the scheduling terminology, a “bin” is
a “machine” and the “bin capacity” is the “makespan”. Each item i (i = 1, . . . , n) has length li and occupies
a given number ki of consecutive bins (corresponding to columns in the SPP). In the P|cont|Cmax relaxation
of an SPP instance, li = hi and ki = wi for every item i (i = 1, . . . , n). A P|cont|Cmax solution identifies,
for every item, the first column p occupied by the item. When packed in column p, an item i engages
columns p, p+1, . . . , p+wi−1. In Figure 1d, a feasible P|cont|Cmax solution with makespan 5 is depicted.
In the figure, item 5 is packed in column 2 and engages columns 2, 3, 4 and 5. Note that item types can
also be used to describe a P|cont|Cmax instance and that the notion of rows is not relevant for the problem.

Similarly, in the 1CBP, we are given a set of n items to be packed in the minimum number of bins with
capacityW . Each item i (i = 1, . . . , n) has length li and occupies a given number ki of consecutive bins (cor-
responding to rows in the SPP). In the 1CBP relaxation of an SPP instance, li = wi and ki = hi for every
item i (i = 1, . . . , n). A 1CBP solution identifies, for every item, the first row q occupied by the item. When
packed in row q, an item i engages rows q, q+1, . . . , q+hi−1. In Figure 1c, a feasible 1CBP solution using
5 bins is depicted. In the figure, item 5 is packed in row 2 and engages rows 2 and 3. Note that item types
can also be used to describe a 1CBP instance and that the notion of columns is not relevant for the problem.

We now introduce several sets that are used in the mathematical models hereafter:

• N = {1, 2, . . . , n} is the item set (M is used for the set of item types);

• W = {0, 1, . . . ,W − 1} is the set of columns;

6

• Wi = {0, 1, . . . ,W −wi} is the set of columns in which item i can be packed in a feasible P|cont|Cmax

solution (Wj are used for the item types);

• Wi(p) = {p′ ∈ Wi : 0 ≤ p−wi + 1 ≤ p′ ≤ p} gathers every column p′ such that item i would engage
column p if i was packed in p′ (Wj(p) are used for the item types);

• H = {0, 1, . . . ,UB − 1} is the set of rows;

• Hi = {0, 1, . . . ,UB−hi} is the set of rows in which item i can be packed in a feasible 1CBP solution
(Hj are used for the item types);

• Hi(q) = {q′ ∈ Hi : 0 ≤ q − hi + 1 ≤ q′ ≤ q} is the subset of rows for which item i would engage row
q if i was packed in a row of the subset (Hj(q) are used for the item types).

3.2 ILP models for the P|cont|Cmax

3.2.1 BKRS formulation

The first ILP formulation we review was proposed by Belov et al. [10] and will be referred to as BKRS
hereafter. Even though this formulation was initially proposed to solve the recognition version of the
P|cont|Cmax, BKRS can trivially be adapted to solve the optimization version of the problem.

Key idea: Model BKRS builds on the textbook P||Cmax ILP formulation [71] in which binary decision
variables indicate whether a given item (or in our case, a given item slice) is packed into a given column (or
bin). In order to take contiguity into account, BKRS uses a set of binary variables that keeps track of the
column index in which the first slice of each item is packed. Contiguity is then imposed through an addi-
tional set of constraints that only allows an item slice to be packed in a column if (i) this is the first slice of
that item to be packed in a column or (ii) the (immediate) previous column also contains a slice of that item.

Variables and mathematical formulation: Model BKRS requires: (i) binary decision variables xip
taking value 1 if column p is the column in which the first slice of item i is packed, and value 0 otherwise
(i ∈ N , p ∈ Wi), (ii) binary decision variables aip taking value 1 if a slice of item i is packed in column p,
and value 0 otherwise (i ∈ N , p ∈ Wi), and (iii) decision variable z indicating the maximum column height
(or the bin capacity). The model can be defined as follows:

min z (1)

s.t.
∑
p∈Wi

xip = 1 i ∈ N , (2)

∑
i∈N

hiaip ≤ z p ∈ W, (3)

ai0 = xi0 i ∈ N , (4)

aip ≤ ai,p−1 + xip p ∈ Wi \ {0}, i ∈ N , (5)

aip ≤ ai,p−1 p ∈ W \Wi, i ∈ N , (6)∑
p∈W

aip = wi i ∈ N , (7)

xip ∈ {0, 1} i ∈ N , p ∈ Wi, (8)

aip ∈ {0, 1} i ∈ N , p ∈ W. (9)

7

The objective function (1) minimizes the maximum column height. Constraints (2) make sure that, for each
item i, exactly one bin is identified as the column in which the first slice of item i is packed. Constraints (3)
prevent the bin capacity from being violated. Constraints (4)-(6) ensure that a slice of item i is only allowed
to be packed in column p (i.e., aip = 1) if this is the first slice of item i to be packed in a column (i.e., if xip =
1) or if column p− 1 also contains a slice of item i (i.e., if ai,p−1 = 1). Constraints (7) make sure that, for
each item, the required number of slices is packed. Note that model BKRS requires O(nW) variables and
O(nW) constraints and cannot easily be extended to take item types into account instead of item indices.

3.2.2 BM formulation

The second formulation we review was proposed by Boschetti and Montaletti [16] and will be referred to as
BM hereafter. According to the authors, BM was inspired by mathematical models that were previously
introduced for related two-dimensional C&P problems [5, 15].

Key idea: Unlike BKRS in which a decision variable was created for each column and for each item
slice, model BM only considers one decision variable for each column and for each item. Intuitively, BM
can be seen as a version of BKRS where one only decides the column in which the first slice of each item
is packed. Contiguity is implicitly taken into account in the model by assuming that, if the first slice of
item i is packed in column p, then columns p+ 1, p+ 2, . . . , p+ wi − 1 also contain a slice of item i.

Variables and mathematical formulation: Model BM requires the same variables xip and z as
previously introduced for BKRS and can be defined as follows:

min z (10)

s.t.
∑
p∈Wi

xip = 1 i ∈ N , (11)

∑
i∈N

∑
p′∈Wi(p)

hixip′ ≤ z p ∈ W, (12)

xip ∈ {0, 1} i ∈ N , p ∈ Wi, (13)

where the objective function (10) and constraints (11) are the same as in BKRS, and where capacity
constraints (12) are updated to sum over xip′ variables (indicating whether the first slice of item i is
packed in a column p′ such that, due to the contiguity constraints, a slice of i must also be packed in
column p) instead of aip variables (indicating whether a slice of item i is packed in column p). Note
that model BM requires O(nW) variables and O(n +W) constraints and, unlike BKRS, can easily be
extended to take item types into account instead of item indices.

3.2.3 FLOW-PCC formulation

The third formulation we review was proposed by Delorme et al. [37] and will be referred to as FLOW-
PCC hereafter. FLOW-PCC is based on the well-known arcflow formulation introduced by Wolsey [82]
and popularized by Valério de Carvalho [77] for solving the one-dimensional cutting stock problem. Be-
cause state-of-the-art mathematical solvers can often solve large-sized arcflow models to optimality within
a reasonable computational time, these formulations have become very popular in the C&P research com-
munity. We refer the reader to the work of de Lima et al. [31] for a recent survey on arcflow formulations.

Key idea: As BM, model FLOW-PCC requires one decision variable for each column and for each
item. The main difference between the two models lie in the way capacity constraints are enforced.

8

• In BM, one keeps track of the length of the item slices contained in every column and makes sure
that the total length in a column never exceeds the capacity z;

• In FLOW-PCC, the capacity is seen as a resource. One keeps track of the resource available in every
column and makes sure that the first slice of an item can only be packed in a column with enough
resources left. If the first slice of item i is packed in column p, then hi resources are consumed in
column p and released in column p+wi. In the first column (with index 0), z resources are available.

A graphical representation summarizing the difference between the two models is available in Figure 3.
In BM (on the left part of the figure), packing the first slice of the grey item in column 0 means that
a slice of the item also needs to be counted in columns 1, 2, and 3 (i.e., the decision variable appears in
four capacity constraints). In FLOW-PCC (on the right part of the figure), packing the first slice of the
grey item in column 0 means that the resource is locked in column 0 and released in column 4 (i.e., the
decision variable only appears in two flow conservation constraints).

Figure 3: Difference between BM and FLOW-PCC models

0 1 2 3 4 5 6

(a) BM model

0 1 2 3 4 5 6

(b) FLOW-PCC model

Variables and mathematical formulation: Model FLOW-PCC uses graph G = (V,A) where vertex
set V = {0, 1, . . . ,W} and where arc set A is composed of (i) item arcs A1, . . . ,An where Ai contains
every arc (d, d + wi) such that d ∈ Wi and (ii) loss arcs A0 containing every arc (d, d + 1) such that
d = 0, . . . ,W − 1. If selected in a solution, item arc (d, d+ wi) ∈ Ai carries hi units of flow from node d
to node d+wi. If selected in a solution, loss arc (d, d+1) ∈ A0 carries 1 unit of flow from node d to node
d+ 1 and represents one unit of unused space in column d (note that a loss arc may be selected multiple
times). For notation purposes, we assume h0 = 1. A feasible FLOW-PCC solution can then be defined
as a 0−W flow where z flows are sent from node 0 to node W . A FLOW-PCC solution corresponding
to the example depicted in Figure 1d is shown in Figure 4. In the figure, the number located in the middle
of an arc indicates the amount of flow it carries. Loss arcs are represented with dotted lines.

Figure 4: A FLOW-PCC solution corresponding to the example depicted in Figure 1d

0 1 2 3 4 5 61 1 2 1

1

4 1
2

2

As far as variables are concerned, model FLOW-PCC requires: (i) binary decision variables xide
taking value 1 if arc (d, e) ∈ Ai is selected in the solution (or in other words, if column d is the column in
which the first slice of item i is packed), and value 0 otherwise (i ∈ N), (ii) integer decision variables x0de
indicating the number of times arc (d, e) ∈ A0 is selected in the solution (or in other words, the amount

9

of unused space in column d), and (iii) integer decision variable z indicating the amount of flow sent from
node 0 to node W . The model can be defined as follows:

min z (14)

s.t.
∑

(d,e)∈Ai

xide = 1 i ∈ N , (15)

∑
i∈{0}∪N

∑
(d,e)∈Ai

d=0

hixide = z, (16)

∑
i∈{0}∪N

∑
(d,e)∈Ai

d=p

hixide =
∑

i∈{0}∪N

∑
(d,e)∈Ai

e=p

hixide p ∈ V \ {0,W}, (17)

∑
i∈{0}∪N

∑
(d,e)∈Ai
e=W

hixide = z, (18)

x0de ∈ N0 (d, e) ∈ A0, (19)

xide ∈ {0, 1} i ∈ N , (d, e) ∈ Ai. (20)

where the objective function (14) and constraints (15) are the same as in BM and where flow conservation
constraints (16)-(18) replace capacity constraints (12). Note that, like BM, model FLOW-PCC requires
O(nW) variables and O(n +W) constraints and can easily be extended to take item types into account
instead of item indices. We point out that the constraint matrix in FLOW-PCC is sparser than the
constraint matrix of BM as every xide FLOW-PCC variable (i ∈ N , (d, e) ∈ Ai) appears in exactly
2 flow conservation constraints (16)-(18) whereas every xip BM variable (i ∈ N , p ∈ Wi) appears in wi

capacity constraints (12). We also point out that, because of the loss arcs, FLOW-PCC requires up to
W additional variables compared to BM.

3.3 ILP models for the 1CBP

3.3.1 APT formulation

To the best of our knowledge, the only ILP model for the 1CBP available in the literature was proposed
by Alvarez-Valdés et al. [2] and will be referred to as APT hereafter. We first provide an updated version
of the model introduced by Alvarez-Valdés et al., we show afterwards how a minor modelling change can
strengthen the continuous relaxation value of the formulation, and we finish by outlining the similarities
between the resulting version of APT and model BM.

Key idea: Similarly to BM and FLOW-PCC, model APT requires one decision variable for every
item i ∈ N and for every row q ∈ Hi that indicates whether the first slice of item i is packed in row q.
Like in BM, contiguity is implicitly taken into account in the model by assuming that, if the first slice of
item i is packed in row q, then rows q + 1, q + 2, . . . , q + hi − 1 also contain a slice of item i. The main
difference between APT and BM lies in the way the models handle the objective function: whereas the
latter can efficiently use a unique decision variable z in both the objective function (10) and the capacity
constraints (12), the former requires one decision variable for every bin (or row) so that it can keep track
of the total number of bins used in the solution.

Variables and mathematical formulation: Model APT requires: (i) binary decision variables xiq
taking value 1 if row q is the row in which the first slice of item i is packed, and value 0 otherwise

10

(i ∈ N , q ∈ Hi) and (ii) binary decision variables zq taking value 1 if row q − 1 is the last row that is
engaged by any item (q ∈ H ∪ {UB}). The model can be defined as follows:

min
∑

q∈H∪{UB}

qzq (21)

s.t.
∑

q∈H∪{UB}

zq = 1, (22)

∑
q∈Hi

xiq = 1 i ∈ N , (23)

∑
i∈N

∑
q′∈Hi(q)

wixiq′ ≤W q ∈ H, (24)

∑
q′∈Hi

q′≥q

xiq′ +
∑

q′∈H∪{UB}
q′≤q+hi−1

zq′ ≤ 1 i ∈ N , q ∈ Hi, (25)

xiq ∈ {0, 1} i ∈ N , q ∈ Hi, (26)

zq ∈ {0, 1} q ∈ H ∪ {UB}. (27)

The objective function (21) minimizes the index of the first unused row. Constraint (22) makes sure
that exactly one row is defined as the first unused row. Demand constraints (23) and capacity constraints
(24) are similar to constraints (11) and (12) in BM. Constraints (25) make sure that, for a given item i

and a given row q, if the first slice of item i is packed in row q or any subsequent row, then every row
q′ = 0, . . . , q+hi−1 should be considered engaged. Note that model APT requires O(nUB) variables and
O(nUB) constraints and can easily be extended to take item types into account instead of item indices. We
also point out that, as suggested by Alvarez-Valdés et al. [2], one can improve the model performance by
using a valid lower bound LB on the optimal solution value and setting all variables zq = 0, . . . ,LB− 1 to
0 (as far as implementation is concerned, one can reduce the model size by not generating such variables).
As demonstrated in our computational experiments, doing so greatly reduces the number of constraints
(25) and improves the quality of the LP-relaxation value of the model.

Another improvement (which was, to the best of our knowledge, never proposed in the literature)
simply consists in using the same strategy as the one adopted in the well-known textbook model for the
one-dimensional bin packing problem [36] where variable zq indicates whether bin q is used or not. The
updated version of model APT, called APTP hereafter is as follows:

min
∑
q∈H

zq (28)

s.t.
∑
q∈Hi

xiq = 1 i ∈ N , (29)

∑
i∈N

∑
q′∈Hi(q)

wixiq′ ≤Wzq q ∈ H, (30)

zq ≤ zq−1 q ∈ H \ {0}, (31)

xiq ∈ {0, 1} i ∈ N , q ∈ Hi, (32)

zq ∈ {0, 1} q ∈ H. (33)

Observe that APTP has O(nUB) variables and O(n + UB) constraints and can be seen as a direct
BM adaptation for the 1CBP. We point out that, like in APT, one can improve the model performance by
using a valid lower bound LB on the optimal solution value and setting all variables zq = 0, . . . ,LB−1 to 1.

11

3.3.2 FLOW-CBP formulation

In the same way model APTP can be seen as an adaptation of model BM for the 1CBP, model FLOW-
PCC can also be extended to the 1CBP. This adaptation will be referred to as FLOW-CBP hereafter.

Variables and mathematical formulation: Model FLOW-CBP uses graph G = (V,A) where vertex
set V = {0, 1, . . . ,UB} and where arc set A is composed of (i) item arcs A1, . . . ,An where Ai contains
every arc (d, d+ hi) such that d ∈ Hi and (ii) loss arcs A0 containing every arc (d, d+1) such that d ∈ H
If selected in a solution, item arc (d, d + hi) ∈ Ai carries wi units of flow from node d to node d + hi. If
selected in a solution, loss arc (d, d+1) ∈ A0 carries 1 unit of flow from node d to node d+1 and represents
one unit of unused space in row d. For notation purposes, we assume w0 = 1. A feasible FLOW-CBP
solution can then be defined as a 0 − q flow where W flows are sent from node 0 to node q. As far as
variables are concerned, model FLOW-CBP uses the same binary decision variables xide and integer
decision variables x0de as FLOW-PCC, but replaces integer variable z with binary decision variables zq
taking value 1 if node q is the target node of the network (i.e., the node with W incoming and 0 outgoing
flows). FLOW-CBP can be defined as follows:

min
∑

q∈H∪{UB}

qzq (34)

s.t.
∑

q∈H∪{UB}

zq = 1, (35)

∑
(d,e)∈Ai

xide = 1 i ∈ N , (36)

∑
i∈{0}∪N

∑
(d,e)∈Ai

d=0

wixide =W, (37)

∑
i∈{0}∪N

∑
(d,e)∈Ai

d=q

wixide +Wzq =
∑

i∈{0}∪N

∑
(d,e)∈Ai

e=q

wixide q ∈ V \ {0}, (38)

x0de ∈ N0 (d, e) ∈ A0, (39)

xide ∈ {0, 1} i ∈ N , (d, e) ∈ Ai, (40)

zq ∈ {0, 1} q ∈ H ∪ {UB}. (41)

We outline the minor change in flow conservation constraints (38) that was required in order to identify
the target node of the network. We also point out that, like in APT and APTP, one can improve the
model performance by using a valid lower bound LB on the optimal solution value and setting all variables
zq = 0, . . . ,LB − 1 to 0.

Overall, it appears that most ILP models for the P|cont|Cmax can easily be adapted to solve the 1CBP
and vice versa. Models solving the P|cont|Cmax have the advantages of (i) not requiring a valid upper
bound UB, (ii) having a number of variables and constraints that both depend on W instead of UB (most
SPP instances proposed in the literature have the strip width W significantly lower than the optimal
solution value of the instance zopt), and (iii) only requiring one variable z to model the objective function
of the problem. Models solving the 1CBP have the main advantage that several variables can be fixed
when a valid lower bound is available.

12

3.4 CP formulations for the P|cont|Cmax and the 1CBP

CP has received a lot of attention from the research community in the last two decades, even though the
peak of interest seems to have passed already. Nevertheless, the recent literature has shown that CP is
particularly effective to solve a targeted set of highly constrained combinatorial optimization problems
[43, 54], especially in the scheduling area.

Key idea: Well-known scheduling problems such as the job-shop [83], the flow-shop [81], and the open-
shop [3] scheduling problems are commonly encountered in production settings and fall under the umbrella
of the Resource-Constrained Project Scheduling Problem (RCPSP). In the RCPSP, one wants to determine
a schedule that minimizes a given objective function (e.g., the total makespan) such that a number of
practical constraints (e.g., precedence and resource constraints) are satisfied. The P|cont|Cmax can be
seen as a special version of the RCPSP with a unique renewable resource with availability z in which a
task with duration wi consuming hi resources per time unit is created for every item i ∈ N . In that version,
the makespan of the schedule is limited to W and the objective is to minimize the resource availability z.
As far as the 1CBP is concerned, the problem corresponds to the more standard version of the RCPSP
where one resource with availability W is considered and where a task with duration hi consuming wi

resources per time unit is created for every item i ∈ N . In that version, it is the makespan of the schedule
that is to be minimized. Note that precedence constraints are not present in either version.

Variables and mathematical formulations: Both the CP model solving the P|cont|Cmax (called
CP-PCC hereafter) and the CP model solving the 1CBP (called CP-CBP hereafter) use the following
variables and constraint types:

• ivli, interval variable that represents the execution of task i ∈ N ;

• setStartMin(ivli, ℓ): forces task i to start at time ℓ or later (similarly, setStartMax forces task i
to start at time ℓ or earlier);

• setSizeMin(ivli, ℓ): forces the duration of task i to be at least ℓ (similarly, setSizeMax forces the
duration of task i to be at most ℓ);

• endof(ivli): indicates the completion time of task i;

• pulse(ivli, ℓ): counts ℓ units of occupation from the starting time of task i to its completion time.

Models CP-PCC (on the left) and CP-CBP (on the right) can be defined as follows:

min z (42)

s.t. setStartMin(ivli, 0) i ∈ N , (43)

setStartMax(ivli,W − wi) i ∈ N , (44)

setSizeMin(ivli, wi) i ∈ N , (45)

setSizeMax(ivli, wi) i ∈ N , (46)∑
i∈N

pulse(ivli, hi) ≤ z. (47)

min z (48)

s.t. setStartMin(ivli, 0) i ∈ N , (49)

endof(ivli) ≤ z i ∈ N , (50)

setSizeMin(ivli, hi) i ∈ N , (51)

setSizeMax(ivli, hi) i ∈ N , (52)∑
i∈N

pulse(ivli, wi) ≤W. (53)

Whereas the two CP models appear to have less variables and constraints than their ILP counterparts,
we point out that such a size comparison does not really make sense given the fact that the methodology
used by ILP solvers differ significantly from the methodology used by CP solvers.

13

4 Model enhancements

A large part of the recent literature focusing on mathematical models for combinatorial optimization
problems contains a dedicated section that introduces ad hoc techniques aimed at improving the “perfor-
mance” of the proposed models (by performance, we mean the average computation time required by a
state-of-the-art solver to solve a given instance of the model to optimality). Such techniques can be used,
for example, to reduce the size of the model (i.e., the number of variables, the number of constraints, or
the number of non-zero elements in the coefficient matrix), to strengthen the model continuous relaxation
bound, or to remove some symmetry in the model solution space.

Several of these techniques were proposed in the literature for the SPP, and a subset of those were also
extended to the P|cont|Cmax and the 1CBP. We emphasize that, since the P|cont|Cmax and the 1CBP are
two relaxations of the SPP, a valid preprocessing for the SPP is not necessarily valid for the P|cont|Cmax

or the 1CBP. In this section, we present four sets of model enhancement techniques that can be applied to
(some of) the previously introduced models. The first set shows how one can exploit the item multiplicity
in order to reduce the model size. The second set fixes some decision variables to positive integer values,
which reduces the model size, while also adjusting some instance dimensions, which strengthens the model
continuous relaxation value. The third set fixes some decision variables to zero, reducing the model size.
The last set is composed of various symmetry-breaking constraints. We conclude the section with a table
that identifies the enhancement techniques that are compatible with each of the previously introduced
mathematical models. Every technique in this section is presented for model BM, but can easily be
extended to the other models unless stated otherwise.

4.1 Exploiting item multiplicity

Item multiplicity arises when an instance contains several items with the exact same dimensions. Depend-
ing on the modelling strategy, it is sometimes possible to gather all the items with the same dimensions
into a unique item type together with a corresponding demand. By doing so, one may reduce the overall
size of the model as one variable set per item type is needed instead of one variable set per item (see,
e.g., the well-studied cases of the bin packing and cutting stock problems [36]). Note, however, that when
items have two dimensions or more, the number of item types is very likely to be close to (if not equal to)
the number of items, unless item multiplicity is an explicit feature of the instance.

As observed in Section 3, it is trivial to take the item multiplicity into account in BM by replacing
binary decision variables xip (i ∈ N , p ∈ Wi) with integer decision variables xjp (j ∈ M, p ∈ Wj) and
replacing the right-hand-side of constraints (11) by dj , the demand of item type j. Note that exploiting the
item multiplicity does not always improve the performance of a model as the solver-specific inner machinery
seems to be more effective when dealing with binary variables than it is when dealing with integer variables.
In addition, an integer variable cannot be included in a no-good cut, which can be a significant issue if
one wishes to solve the P|cont|Cmax or the 1CBP as the MP of a decomposition algorithm. A well-known
solution consists in using a binary expansion where every integer variable xjp (j ∈ M, p ∈ Wj) is replaced
by a set of binary variables xBjpg (j ∈ M, p ∈ Wj , g = 0, . . . , ⌊log2(dj)⌋) such that:

xjp =

⌊log2(dj)⌋∑
g=0

2gxBjpg j ∈ M, p ∈ Wj (54)

Binary expansion and integer variables can be used in all models presented in Section 3 except BKRS
and the CP formulations as CP does not have a practical way to handle duplicated interval variables.

14

4.2 Prepacking large items and adjusting the instance dimensions

Prepacking large items, reducing the strip dimensions, and increasing the item dimensions are common
reduction procedures for the SPP [16, 27, 37]. In the following, we briefly describe how each technique
can also be used when solving the P|cont|Cmax and the 1CBP.

Prepacking large items: Following an idea introduced by Boschetti and Montaletti [16], in the SPP,
one may prepack a set of “large” items S (an item i is said to be large if wi >

W
2) at the bottom of the strip

if there exists a feasible packing with height
∑

i∈S hi that contains every “S-compatible” item (an item i′

is said to be S-compatible if at least one item in S can be packed side by side with i′, or in other words,
if mini∈S{wi}+wi′ ≤W). Indeed, if such a packing exists, no other item can be packed side by side with
any of the large items in S (meaning that the empty space cannot be utilized), and one can therefore find
an optimal solution for the SPP in which the items in S are packed together with the S-compatible items
in an isolated block.

The same idea may be used for the P|cont|Cmax: one may also prepack a set of large items S at the
bottom of the columns if there exists a feasible solution with makespan

∑
i∈S hi that contains every S-

compatible item. Indeed, even though one might think that the unused space could be utilized by packing
(up to)W−mini∈S{wi} slices of an item i′ that is not S-compatible, doing so would simply shift the unused
space on these (up to) W −mini∈S{wi} columns by hi′ units as one slice of item i′ needs to be packed in
the subsequent column because of the contiguity constraints, increasing the makespan of that column to∑

i∈S hi + hi′ . Note that in the recognition version of the problem, an additional preprocessing step can
be applied in which W is replaced by UB and wi is replaced by hi. That idea may be also be used for the
1CBP: one may prepack a set of large items S in the first rows if there exists a feasible solution with

∑
i∈S hi

bins that contains every S-compatible item (the definitions of large and S-compatible are unchanged).

Reducing W : Following an idea introduced by Alvarez-Valdés et al. [2], one can decrease W by one
unit as long as there does not exist any subset of items whose total width is equal to W in both the
P|cont|Cmax and the 1CBP. In practice, this can be done by solving the following knapsack problem:

max
∑
i∈N

wiξi :
∑
i∈N

wiξi ≤W, ξi ∈ {0, 1} (i ∈ N) (55)

and by setting W to the optimal solution value of the problem. In the recognition version of the two
problems, this preprocessing step can also be applied to UB (in that case, wi should be replaced by hi).

Increasing the item dimensions: Following an idea introduced by Boschetti et al. [15], one can also
increase the width of an item i′ by one unit as long as there are no combinations of (other) item heights
whose sum is equal to W −wi′ in both the P|cont|Cmax and the 1CBP. In practice, this can also be done
by solving a knapsack problem for every item i′ ∈ N :

max
∑
i∈N

wiξi :
∑

i∈N\{i′}

wiξi ≤W − wi′ , ξi ∈ {0, 1} (i ∈ N \ {i′}) (56)

and by setting wi′ to W minus the optimal solution value of the problem. In the recognition version of the
two problems, this preprocessing step can also be applied to hi′ (in that case, wi should be replaced by hi
and W should be replaced by UB). Note that, if one aims at exploiting item multiplicity, one should be
careful when applying this preprocessing step as it may create new item types. Consider for example an
instance with 3 items where W = 30 and w1 = w2 = w3 = 9: after applying this preprocessing, w1 = 12

15

and w2 = w3 = 9, which results in a new item type. One may therefore opt for alternative solutions, such
as applying this preprocessing on the item types with unit demand first, or distributing the width increase
among all the items with the same item type, if possible, resulting in w1 = w2 = w3 = 10.

4.3 Reducing the number of variables

One may observe that the model size is directly impacted by the size of sets W,Wi,H, and Hi. Whereas a
trivial definition of these sets was proposed in Section 3, more elaborated versions (with a reduced size) can
be built by using the concepts of canonical dissection, normal patterns, and meet-in-the-middle patterns
introduced by Herz [49], Christofides and Whitlock [23] and Côté and Iori [30], respectively. Given one
of these enhanced sets, it was shown in the corresponding introductory paper that there always exists at
least one optimal solution in which every item is packed in a coordinate belonging to the set.

Normal patterns: Similar to canonical dissection, normal patterns use the idea that, given a feasible
solution for the SPP, every item can be pushed as much downward and as much to the left as possible
without deteriorating the solution value, and therefore, that there always exists an optimal SPP solution
in which no item can be pushed further downward or to the left. A necessary condition for a solution to
display such a property is that every item should be packed in a coordinate that is a combination of the
other item dimensions. Normal patterns can be used to reduce the size of the P|cont|Cmax models (resp.,
the 1CBP models) introduced in Section 3 by defining sets Wi′ (resp., Hi′) for every item i′ ∈ N such
that the set contains every abscissa w (resp., every ordinate h) satisfying:

w =
∑

i∈N\{i′}

wiξi : w ≤W − wi′ , ξi ∈ {0, 1} (i ∈ N \ {i′}) (57)

(
resp., h =

∑
i∈N\{i′}

hiξi : h ≤ UB − hi′ , ξi ∈ {0, 1} (i ∈ N \ {i′})
)

(58)

Meet-in-the-middle patterns: Sometimes referred to as “MIM patterns” in the literature [30], the
meet-in-the-middle patterns improve upon the normal patterns by alleviating one of the main drawbacks
of the method: the further away from the origin a packing coordinate is, the more likely it is to be included
in the normal patterns. To do so, given a certain threshold, every item packed on the left side of the thresh-
old is pushed as much to the left as possible whereas every item packed on the right side of the threshold is
pushed as much to the right as possible. The name “meet-in-the-middle” comes from the fact that a given
MIM pattern for a certain instance of a given problem (say, for example, the P|cont|Cmax) is composed of
two normal patterns: one from 0 to the threshold t corresponding to the starting coordinate of the items
packed on the left side of the threshold, and one from W to W−t corresponding to the ending coordinate of
the items packed on the right side of the threshold, the two sets meeting in the middle (or, more precisely,
meeting in t). In practice, one tries every possible threshold t and uses the one that minimizes a certain eval-
uation criterion (such as

∑
i∈N |Wi| or |∪i∈N Wi| for the P|cont|Cmax). Since the MIM patterns are equiv-

alent to the normal patterns when the threshold t is set to 0 or to W , using the former is, in theory, at least
as good as using the latter based on the chosen evaluation criterion. We point out that MIM patterns by
Côté and Iori [30] cannot directly be used for the 1CBP. Indeed, pushing as much to the right as possible the
items packed on the right side of a given threshold may increase the 1CBP objective function value, which
was not the case for the P|cont|Cmax. We illustrate this behaviour in an example available in Appendix A.

We also outline that sets W (resp. H) may sometimes also be reduced thanks to normal or MIM
patterns by setting W = ∪i∈N {Wi} (resp. H = ∪i∈N {Hi}). Note, however, that such a reduction is not
always valid: for example, it cannot be applied in constraints (31) of APTP.

16

4.4 Symmetry-breaking constraints

Symmetry is a common phenomenon in combinatorial optimization that is often seen as problematic
because it significantly increases the size of the search space. For a given ILP formulation, we say that
two distinct feasible solutions are symmetric if one can be obtained from the other after applying a certain
transformation. For example, in the well-known graph coloring problem, permuting the colors of a given
solution produces a symmetric solution. Similarly, in the classical vehicle routing problem, permuting the
routes of two identical vehicles produces a symmetric solution. In the P|cont|Cmax, the solution displayed
in Figure 1d and the solution obtained after rotating the packing layout by 180° are also symmetric.

Symmetry-breaking constraints are supplementary cuts added to a model with the objective of de-
creasing (or sometimes completely removing) the presence of symmetry in the search space of the model.
Note that using such constraints is not always beneficial in practice since (i) it can make it harder for
the solver heuristics to find good quality solutions and (ii) the extra time spent solving each node of the
solution tree (caused by the supplementary cuts) can be longer than the time earned by not exploring the
nodes corresponding to symmetric solutions.

Gapless packing: In some aspects, using normal patterns to define sets W,Wi,H, and Hi can be seen
as a form of symmetry-breaking constraints: every optimal solution in which at least one item is not
packed in a normal pattern has an equivalent solution that does. Nevertheless, using normal patterns does
not remove all forms of symmetry: it is true that there is always a gap (i.e., an item that can be pushed
further to the left) in an optimal solution in which at least one item is not packed in a normal pattern,
but there are also optimal solutions in which every item is packed in a normal pattern that do have a gap
too. Boschetti & Montaletti [16] proposed two symmetry-breaking constraints to reduce the number of
gaps in an SPP solution. Similar constraints can be used in BM for the P|cont|Cmax as follows:∑

i∈N
xi0 ≥ 1, (59)∑

i′∈N
p−wi′∈Wi′

xi′,p−wi′
≥ xip i ∈ N , p ∈ Wi \ {0}. (60)

Constraint (59) ensures that the first slice of at least one item is packed in the first column whereas
constraints (60) make sure that if the first slice of an item is packed in column p (p > 0), then column
p − 1 contains the last slide of at least one item. Considering the (potentially very) high number of
constraints (60), Boschetti and Montaletti [16] suggested to only add such constraints if their number was
below a certain threshold. Belov et al. [10] proposed instead to merge those constraints so as to obtain:

M
∑
i′∈N

p−wi′∈Wi′

xi′,p−wi′
≥

∑
i∈N
p∈Wi

xip, p ∈ W \ {0}, (61)

where the big-M coefficient may be set to n. For the CP models, such constraints may be obtained with
StartAtEnd(ivli, ivli′), which enforces task i′ to start when task i ends, together with the OR operator.

Mirror symmetry: Every optimal solution for the SPP has an obvious symmetric solution in which the
packing layout is rotated by 180°. Belov et al. [10] used that observation to derive a symmetry-breaking
constraint that forces an arbitrary item to be packed in a coordinate located in the first half of the strip.
A similar idea can be used in the P|cont|Cmax by picking an arbitrary item i and adding one of the two
following constraints to the model:

17

∑
p∈Wi

p≤⌊(W−wi)/2⌋

xip = 1, (62)
∑
p∈Wi

p>⌊(W−wi)/2⌋

xip = 0. (63)

From an implementation point of view, using (62) adds one extra constraint whereas using (63) reduces
the number of variables. If identical items are merged, mirror symmetry can be avoided by using:

∑
p∈Wj

p≤⌊(W−wj)/2⌋

xjp ≥
⌈
dj
2

⌉
, (64)

for an arbitrary item type j. For the CP models, mirror symmetry can be avoided with setStartMax(ivli,

⌊(W − wi)/2⌋) for an arbitrary item i, which forbids task i to start after time ⌊(W − wi)/2⌋.

Identical items: In case one cannot (or does not want to) exploit item multiplicity by merging the
identical items, then a valid symmetry-breaking constraint forbids every solution in which there exists a
pair of identical items (i, i′) in which the first slice of i is packed in column p and the first slice of i′ is
packed in column p′ such that i < i′ and p > p′. In BM, such a constraint can be modelled as follows:∑

p∈Wi

pxip ≤
∑

p′∈Wi′

p′xi′p′ i ∈ N , i′ ∈ N : i < i′, wi = wi′ , hi = hi′ . (65)

For the CP models, such constraints may be obtained using constraint type startBeforeStart (ivli, ivli′),
which forbids task i to start later than task i′.

4.5 Compatibility table

We conclude this section with a summary table that indicates, for each of the models introduced in
Section 3, whether the aforementioned model enhancement techniques can be applied.

Table 2: Compatibility between mathematical models and model enhancements

Type Model enhancement
P|cont|Cmax 1CBP

BKRS BM FLOW CP-PCC APT APTP FLOW-CBP CP-CBP

Item
multiplicity

Binary expansion ✓ ✓ ✓ ✓ ✓
Integer demand ✓ ✓ ✓ ✓ ✓

Preprocessing
Prepacking large items ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Reducing W ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Increasing the item dimensions ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Variable
reduction

Normal patterns ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Meet-in-the-middle patterns ✓ ✓ ✓ ✓

Symmetry
breaking

Gapless packing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Mirror symmetry ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Identical items ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

We point out that some of the listed techniques are not always pairwise compatible, meaning that they
cannot be used together in the same model unless some non-trivial adjustments are made, or they cannot be
used together in the same model at all. For example, the symmetry-breaking constraints enforcing “gapless
packing” requires some adjustments in order to be used together with the MIM patterns. Similarly, if one
exploits item multiplicity (either with integer variables or with binary expansion), then the symmetry-
breaking constraint aimed at ordering the identical items cannot be applied.

18

5 Lower bounds

Various lower bounds have been proposed in the literature for the SPP, two of the strongest ones resulting
from the P|cont|Cmax and the 1CBP relaxations. In the following, we review the SPP lower bounds that
can be adapted for the P|cont|Cmax and the 1CBP.

5.1 Lower bounds for the P|cont|Cmax

L1: A trivial lower bound for the P|cont|Cmax can be obtained by selecting the maximum value between
(i) the quotient

∑
i∈N hiwi

W rounded up to the nearest integer and (ii) the largest item height maxi∈N {hi}.

LPCC
2 : As observed by Alvarez-Valdés et al. [2], a better lower bound for the P|cont|Cmax can be obtained

by relaxing the contiguity constraints and solving the P||Cmax. This bound is called LPCC
2 hereafter. Even

though the P||Cmax is an NP-hard combinatorial optimization problem, large-sized instances can be solved
with state-of-the-art optimization algorithms. For instance, after observing that the recognition version
of the P||Cmax is the same as the recognition version of the one-dimensional cutting stock problem, one
can use the concept of a destructive bound and iteratively solve one-dimensional cutting stock problems
(e.g., by using one of the techniques described in [36]) until an optimal solution for the P||Cmax is found.
In practice, one sets the bin capacity to a valid lower bound (e.g., L1) and increases it by one unit until
the optimal solution value of the cutting stock problem is at most W .

LPCC′
2 : Considering that there exists ILP formulations for the cutting stock problem with a very tight

LP-relaxation value (e.g., it is conjectured that the LP-relaxation of the arcflow formulation rounded up
to the nearest integer is at most one bin away from the optimal solution value, see [36]), we also considered
an alternative bound LPCC′

2 in which the bin capacity is increased until the LP-relaxation of the arcflow
model is at most W . A similar strategy was proposed by Côté et al. [27] who derived a lower bound
for the SPP (which is also valid for the P|cont|Cmax) by solving the LP-relaxation of a set-covering-like
formulation with a column generation procedure.

LPCC
3 and LPCC′

3 : As also observed by Alvarez-Valdés et al. [2], an even better lower bound for the
P|cont|Cmax can be obtained by replacing the contiguity constraints with conflict constraints and solving
the P||Cmax with conflicts. This bound is called LPCC

3 hereafter. As in LPCC
2 , one can notice that

the recognition version of the P||Cmax with conflicts is the same as the recognition version of the one-
dimensional bin packing problem with conflicts. Therefore, an optimal solution for the P||Cmax with
conflicts can be obtained by solving multiple bin packing problems with conflicts. Brandao and Pedroso
[17] showed how the bin packing problem with conflicts could be reduced to the vector packing problem and
proposed an extension of the arcflow formulation to solve the latter problem. That extension is particularly
effective to compute LPCC

3 because of the peculiar structure of its conflict graph (it is composed of a set
of n disjoint cliques), resulting in a limited number of vector dimensions (one for the item weights and
n for the conflicts). Since that extension of the arcflow model also displays a very good LP-relaxation
quality, we also considered an alternative bound LPCC′

3 in which the bin capacity is increased until the
LP-relaxation of the arcflow extension is at most W .

LPCC
4 and LPCC′

4 : Delorme and Iori [35] introduced reflect, an extension of the arcflow formulation for
the cutting stock problem that uses a pair of 0-t and 0-t′ paths where t+ t′ = W to model a bin instead
of a single 0-W path like in the arcflow model. The authors demonstrated that using such a strategy
produces smaller ILP models that can be solved faster with a state-of-the-art ILP solver. Since model

19

FLOW-PCC is largely inspired by the arcflow model, we also tested an extension of reflect tailored to
the P|cont|Cmax referred to as REFLECT hereafter. The model is described in Appendix B. Because
of the hi coefficient in the flow conservation constraints, a feasible REFLECT solution with objective
value z cannot always be converted into a feasible FLOW-PCC solution with the same objective value
(see the example provided in Appendix B). Nevertheless, the solution value produced by REFLECT can
be used as a valid lower bound for the P|cont|Cmax. This bound is called LPCC

4 hereafter. Inspired by the
previous bounds, and since computing LPCC

4 can take a long time in practice, we also considered lower
bound LPCC′

4 obtained by rounding up the LP-relaxation of REFLECT.

5.2 Lower bounds for the 1CBP

As far the 1CBP is concerned, the following lower bounds (which are adaptations or copies of the previously
described bounds) can be used:

• L1 = max{maxi∈N {hi},
⌈∑

i∈N hiwi

W

⌉
};

• LCBP
2 is the bound obtained after relaxing the contiguity constraints and solving the one-dimensional

cutting stock problem with the arcflow model;

• LCBP ′
2 is the bound obtained after solving the LP-relaxation of the arcflow model used to solve the

one-dimensional cutting stock problem;

• LCBP
3 is the bound obtained after replacing the contiguity constraints by conflict constraints and

solving the bin packing problem with conflicts with an extension of the arcflow model;

• LCBP ′
3 is the bound obtained after solving the LP-relaxation of the arcflow extension used to solve

the bin packing problem with conflicts.

We point out that bounds LCBP
4 and LCBP ′

4 do not seem interesting to compute in practice because
one needs to fix the number of bins in order to run the reflect extension, whereas the number of bins is
not an information known in the 1CBP. We also emphasize that one iteration of the reflect extension is
time-consuming, limiting the interest of applying an iterative procedure in which the number of bins is
incremented until a stopping criterion is reached (as was done for LPCC

2 and LPCC
3).

6 Computational experiments

In this section, we thoroughly evaluate the performance of each of the proposed methods, with and without
the reviewed enhancement techniques, and we report the outcome of these experiments in seven subsec-
tions. The first part evaluates the performance of a baseline version of each P|cont|Cmax and 1CBP models
introduced in Section 3. The second part measures how effective are the variable reduction techniques
introduced in Section 4.3. The third part demonstrates the empirical improvements that can be obtained
after exploiting the item multiplicity as described in Section 4.1. The fourth part assesses whether the
symmetry-breaking constraints introduced in Section 4.4 are beneficial in practice. The fifth part tests the
usefulness of two popular (but non-tailored) optimization techniques: destructive bounds and reduced-cost
variable fixing. The sixth part identifies the combination of approaches that solves the maximum number
of instances in the tested dataset. It also measures how the results vary when changing the random seed
of the solver. The last part evaluates the quality of the lower bounds introduced in Section 5. Every ap-
proach was implemented in C++ and can be downloaded from https://github.com/mdelorme2/Parallel_

processor_scheduling_and_bin_packing_problems_with_contiguity. All computational tests were

20

https://github.com/mdelorme2/Parallel_processor_scheduling_and_bin_packing_problems_with_contiguity
https://github.com/mdelorme2/Parallel_processor_scheduling_and_bin_packing_problems_with_contiguity

executed on a single thread of a virtual machine AMD EPYC-Rome Processor with 2.00 GHz and 64 GB of
RAM memory, running under Ubuntu 20. The ILP models were solved using Gurobi 10.0.1 whereas the
CP models were solved using IBM ILOG CPLEX CP Optimizer 22.1.1. In each run, a time limit of 3600
seconds was imposed. The experiments were performed on the following two-dimensional packing datasets:

• NGCUT: a set of twelve instances proposed by Beasley [9];

• CGCUT: a set of three instances proposed by Christofides and Whitlock [23];

• GCUT: a set of thirteen instances proposed by Beasley [8];

• BENG: a set of ten instances proposed by Bengtsson [12];

• HT: a set of nine instances proposed by Hopper and Turton [50];

• BKW: a set of thirteen SCP instances proposed by Burke et al. [19];

• CLASS1,. . . ,CLASS10: ten sets, each consisting of fifty instances, proposed by Berkey and Wang
[13] (first six classes) and Martello and Vigo [62] (last four classes). Because CLASS4, CLASS6, and
CLASS8 are notoriously difficult datasets [27], these are only tested in a subset of the experiments.

The main features of each class are summarized in Table 3. For each dataset, we report the number of
instances contained in the dataset and the average n,m,W,wmin, wmax, hmin, and hmax values.

Table 3: Dataset features

Dataset #inst. n m W wmin wmax hmin hmax

CGCUT 3 33.7 12 50 6.3 28.3 6.7 24
HT 9 23.2 21 40 1.8 17.9 1.4 10.7
BENG 10 90 52.9 32.5 1 8 1 12
NGCUT 12 14.4 7.3 17.5 1.3 13.7 2.4 17.3
BKW 13 354.8 58.1 110.8 3.1 49.8 3.1 56.1
GCUT 13 27.8 27.8 769.2 161.6 538.4 171.3 456.5
CLASS1 50 60 44.1 10 1 10 1 10
CLASS2 50 60 44.1 30 1 10 1 10
CLASS3 50 60 58.5 40 1.4 34.6 1.5 34.4
CLASS4 50 60 58.5 100 1.4 34.6 1.5 34.4
CLASS5 50 60 59.9 100 2.6 98.4 2.9 97.7
CLASS6 50 60 59.9 300 2.6 98.4 2.9 97.7
CLASS7 50 60 59.2 100 4.7 99.4 1.8 95.6
CLASS8 50 60 59.5 100 1.9 94.9 6.7 99.4
CLASS9 50 60 59.6 100 7 99.3 6.7 99
CLASS10 50 60 59.5 100 1.9 96.2 2.2 96.4

6.1 Baseline version of the models

6.1.1 P|cont|Cmax

We report in Table 4 the results obtained by a baseline version of BKRS, BM, FLOW-PCC, and CP-
PCC on a subset of the above-mentioned datasets. Only the three preprocessing techniques described
in Section 4.3 aimed at prepacking large items, reducing W , and increasing the item dimensions were
included in the baseline version. The first two columns of the table identify the dataset and the number
of instances included in the dataset. The following columns provide, for each of the tested models, the
number of optimal solutions found (column “#opt”), the average CPU time in seconds over each run of the
dataset including (column “T(s)”) or excluding (column “Topt(s)”) the ones terminated by the time limit or
the memory limit. We also report in columns BEST the results obtained by the best approach among the

21

Table 4: Results of BKRS, BM, FLOW-PCC, FLOW-PCC and BEST on P|cont|Cmax instances

Dataset #inst BKRS BM FLOW-PCC CP-PCC BEST

#opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s)

CGCUT 3 1 2400 0 2 1201 1 2 1250 75 1 2400 0 2 1201 1
HT 9 6 1268 103 8 407 8 8 409 11 8 431 35 8 403 3
BENG 10 8 1399 849 10 8 8 8 778 73 10 1 1 10 1 1
NGCUT 12 12 16 16 12 0 0 12 55 55 12 0 0 12 0 0
BKW 13 2 3109 1 7 2040 700 5 2635 1084 4 2741 809 8 1847 751
GCUT 13 4 2575 89 11 581 22 9 1121 18 9 1108 0 11 570 19
CLASS1 50 50 1 1 50 0 0 50 0 0 44 436 4 50 0 0
CLASS2 50 44 562 148 50 14 14 50 115 115 50 2 2 50 2 2
CLASS3 50 34 1248 141 47 348 141 43 505 1 31 1386 28 47 325 116
CLASS5 50 34 1441 425 48 147 3 47 302 92 39 797 6 48 146 2
CLASS7 50 50 6 6 50 0 0 50 0 0 50 0 0 50 0 0
CLASS9 50 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0
CLASS10 50 12 2932 810 24 1907 73 21 2174 204 19 2249 46 25 1810 21

Total 410 307 1015 143 369 396 39 355 535 60 327 743 18 371 373 34

four tested algorithms for every instance. In other words, BEST simulates the performance of a hyper-
algorithm able to predict with 100% accuracy the methods that is the fastest to solve a given instance.

Further model-specific measures are available in Table 5 where the continuous relaxation (column
“cont.”), the number of variables (column “#var”), constraints (column “#const”), and non-zero elements
in the constraint matrix (column “#nz”) are reported for each ILP formulation.

Table 5: Model-specific metrics for BKRS, BM, and FLOW-PCC on P|cont|Cmax instances

Dataset #inst BKRS BM FLOW-PCC

cont. #var #const #nz cont. #var #const #nz cont. #var #const #nz

CGCUT 3 240.1 4074 2154 12 236 245.2 1357 78 28 773 245.2 1406 84 4169
HT 9 21.7 2019 1095 6070 21.7 842 62 7829 21.7 881 63 2603
BENG 10 89.4 6301 3363 18 843 89.4 2823 123 15 481 89.4 2855 123 8532
NGCUT 12 36.3 400 241 1203 36.5 153 28 884 36.5 169 29 490
BKW 13 177.7 328 189 164 909 984 317 177.7 160 852 459 1 944 411 177.7 160 959 461 482 770
GCUT 13 4240.5 32 893 17 166 99 339 4283.9 10 358 541 4 638 076 4283.9 11 029 692 32 415
CLASS1 50 186.6 565 348 1673 187.2 178 36 846 187.2 187 38 551
CLASS2 50 60.1 3601 1950 10 770 60.1 1530 90 9510 60.1 1559 90 4646
CLASS3 50 503.4 2321 1257 6970 506.7 669 58 9706 506.7 707 68 2083
CLASS5 50 1619.4 4244 2250 12 795 1629.2 1155 78 40 720 1629.2 1234 101 3620
CLASS7 50 1580.9 1006 594 3090 1588.0 255 49 8438 1588.0 327 78 907
CLASS9 50 3340.2 257 187 822 3341.6 60 24 1687 3341.6 104 46 265
CLASS10 50 909.7 10 246 5325 30 784 915.6 3332 142 95 128 915.6 3431 151 10 193

Total 410 1145.6 14 401 7355 43 236 1150.4 6406 96 229 747 1150.4 6478 112 19 361

We observe that BM obtains the best results on average as the algorithm is able to solve 369 out of
the 410 tested instances. Despite having a theoretical advantage over BM when it comes to the number
of non-zero elements in the constraint matrix (one order of magnitude less on average at the expense of a
few supplementary variables and constraints), FLOW-PCC solves 14 instances less than BM while also
being 21s slower on average. As far as CP-PCC is concerned, the approach is able to solve 327 out of the
410 tested instances. Interestingly, CP-PCC solves an instance in 18s on average, outlining a “solving fast
or never” behavior for CP that was already observed in the literature for other problems. BKRS does not
appear to be competitive as it only solves 307 instances in total. Note that BEST solves 2 instances more
than BM (through CP-PCC), which indicates that BM does not clearly dominate all the other approaches.

When it comes to model-specific measures, we see that BKRS requires on average more than twice the
number of variables and more than fifty times the number of constraints compared to BM and FLOW-
PCC. This model size increase does not produce any improvement in the continuous relaxation value of
the model. We also observe that BM and FLOW-PCC have comparable model-specific measures, both
in terms of model size (the former has slightly less variables and constraints, but more non-zero elements
than the latter) and in terms of continuous relaxation value (which was the same for the two models in

22

all 410 tested instances). We finally point out that there is not a perfect correlation between the size of a
model and the ability for the approach using that model to solve an instance to optimality: for example
BM could not solve instance CGCUT02 (for which 1286 variables and 87 constraints were needed) whereas
it could solve instance GCUT08 - (for which 13 414 variables and 423 constraints were needed).

We conclude this first set of experiments for the P|cont|Cmax by assessing the effectiveness of the
preprocessing techniques included in the baseline version of our approaches. Indeed, even though these
techniques have always been included by default in recent algorithms [16, 27, 37], one may wonder whether
those are worthwhile to implement: considering how sophisticated tailored state-of-the-art optimization
algorithms have become, one may decide to leave aside a few components if they only provide an epsilon
improvement. We therefore tested a version of BKRS, BM, FLOW-PCC, and CP-PCC without any of
the three preprocessing techniques described in Section 4.3 and provide the outcome of these experiments
in Appendix C. In brief, using these preprocessing techniques allows each approach to solve up to seven
instances more. As BKRS does not seem to offer any competitive advantage over BM, we do not test
the approach in further experiments.

6.1.2 1CBP

We report in Table 6 the results obtained by a baseline version of APT, APTP, FLOW-CBP, and
CP-CBP on a subset of the above-mentioned datasets. The three preprocessing techniques described
in Section 4.3 and a lower bound LCBP ′

2 were included in the baseline version. For the ILP models, the
necessary upper bound was obtained by using CP-CBP until a feasible solution was found.

Table 6: Results of APT, APTP, FLOW-CBP, CP-CBP, and BEST on 1CBP instances

Dataset #inst APT APTP FLOW-CBP CP-CBP BEST

#opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s)

CGCUT 3 2 1206 9 2 1203 5 2 1210 14 1 2400 0 2 1203 5
HT 9 9 18 18 9 9 9 9 31 31 8 415 17 9 6 6
BENG 10 5 1897 194 8 768 60 3 2577 190 10 36 36 10 36 36
NGCUT 12 12 4 4 12 4 4 12 10 10 12 1 1 12 1 1
BKW 13 4 2649 510 7 2207 1013 4 2500 27 5 2229 36 8 1886 816
GCUT 13 4 2586 305 4 2509 53 3 2770 1 7 1705 81 7 1705 81
CLASS1 50 41 723 91 41 725 94 35 1185 151 50 105 105 50 103 103
CLASS2 50 44 527 108 42 714 164 26 1813 164 49 122 51 50 42 42
CLASS3 50 21 2104 39 20 2164 9 18 2308 12 36 1022 19 36 1022 19
CLASS5 50 20 2161 3 21 2114 62 20 2161 3 34 1158 7 34 1157 7
CLASS7 50 47 219 3 47 237 23 47 275 63 50 1 1 50 1 1
CLASS9 50 50 1 1 50 6 6 50 3 3 50 0 0 50 0 0
CLASS10 50 6 3183 122 6 3171 23 6 3232 536 14 2594 8 14 2594 8

Total 410 265 1309 56 269 1291 80 235 1579 73 326 762 31 332 724 48

We observe that CP-CBP obtains the best results on average as it is able to solve 326 out of the 410
tested instances. APTP comes second with 269 instances solved, followed by APT with 4 instances less.
We notice similar trends between these two models (they both solve a comparable number of instances in
each dataset), even though APT runs out of memory more often than APTP. FLOW-PCC comes last
with 235 instances solved. BEST solves 6 instances more than CP-CBP (mostly through APTP), which
indicates that CP-CBP does not clearly dominate all the other approaches. We also point out that:
(i) for 328 instances, both the (numerical instance resulting from the) P|cont|Cmax relaxation and the
(numerical instance resulting from the) 1CBP relaxation could be solved by BEST, (ii) for 43 instances,
the P|cont|Cmax relaxation could be solved by BEST, but not the 1CBP relaxation, (iii) for 4 instances,
the 1CBP relaxation could be solved by BEST, but not the P|cont|Cmax relaxation, and (iv) for 35
instances, neither relaxations could be solved by BEST. This indicates that the 1CBP relaxation of the
tested instances seems to be harder to solve than the P|cont|Cmax relaxation overall, even though this is not

23

the case for all instances. From a practical point of view, this demonstrates that an effective decomposition
approach for the SPP could use both the 1CBP and the P|cont|Cmax as MP.

We also tested the effectiveness of providing LCBP ′
2 to the approaches by running a version of each of the

four methods in which the lower bound was set to 0. The outcome of these experiments, together with some
model-specific measures, are reported in Appendix C. In summary, using LCBP ′

2 allows each approach to
solve between 12 and 38 instances more. As far as model-specific measures are concerned, APTP is better
on average than APT according to both the size of the model and its continuous relaxation value. Like for
their P|cont|Cmax counterparts, APTP and FLOW-CBP have the same continuous relaxation values for
all 410 tested instances and comparable model sizes. This is interesting considering that the performance
of APTP and APT are almost identical whereas the two approaches clearly outperformed FLOW-CBP.

As APT does not offer any competitive advantage over APTP (either in terms of model size, contin-
uous relaxation value, or computational behavior), we do not test the approach in further experiments.

6.2 Variable reduction techniques

6.2.1 P|cont|Cmax

We report in Table 7 the results obtained by a baseline version of BM without any variable reduction
techniques, and compare it with a version that uses normal patterns and with a version that uses MIM
patterns. For normal patterns and MIM patterns, we also report between round brackets the average
variable reduction ratio and the average constraint reduction ratio compared to the baseline version of
BM. Such ratios are computed as follows: for CGCUT1, 125 variables were needed for the baseline version
of BM whereas 124 variables were needed for the version using normal patterns, resulting in a variable
reduction ratio equals to 1

125 = 0.8%; considering that these ratios were 25% for CGCUT2 and 35% for
CGCUT3, the average reduction ratio for dataset CGCUT was 0.8%+25%+35%

3 = 20.3%.

Table 7: Results of BM varying the chosen variable reduction technique

BM

Dataset #inst Baseline Normal patterns MIM patterns

#opt T(s) Topt(s) #var #const #opt T(s) Topt(s) #var (% red.) #const (% red) #opt T(s) Topt(s) #var (% red) #const (% red)

CGCUT 3 2 1201 1 1357 78 2 1201 2 939(-20.3%) 69(-9.5%) 3 11 11 580(-38%) 64(-13.9%)
HT 9 8 407 8 842 62 8 406 7 823(-2.8%) 62(-1.4%) 8 404 4 804(-5.7%) 62(-1.4%)
BENG 10 10 8 8 2823 123 10 8 8 2823(-0%) 123(-0%) 10 8 8 2823(-0%) 123(-0%)
NGCUT 12 12 0 0 153 28 12 1 1 135(-14.9%) 26(-9.8%) 12 1 1 128(-17.9%) 25(-10.4%)
BKW 13 7 2040 700 160 852 459 7 1989 605 160 655(-4%) 457(-1.7%) 6 2233 635 160 457(-8%) 457(-1.8%)
GCUT 13 11 581 22 10 358 541 12 280 3 4322(-72.9%) 224(-64.7%) 12 279 2 2446(-79.5%) 182(-66.1%)
CLASS1 50 50 0 0 178 36 50 0 0 143(-32.2%) 34(-12.4%) 50 0 0 124(-40.9%) 34(-12.5%)
CLASS2 50 50 14 14 1530 90 50 13 13 1529(-0.1%) 90(-0%) 50 13 13 1528(-0.2%) 90(-0%)
CLASS3 50 47 348 141 669 58 47 336 128 487(-51.1%) 47(-32%) 47 339 130 408(-62.4%) 47(-32.3%)
CLASS5 50 48 147 3 1155 78 48 146 2 624(-53.9%) 48(-40.1%) 48 147 3 432(-63.7%) 46(-41.1%)
CLASS7 50 50 0 0 255 49 50 0 0 20(-70.6%) 9(-63.1%) 50 0 0 13(-72.3%) 9(-63.1%)
CLASS9 50 50 0 0 60 24 50 0 0 4(-41.8%) 3(-39.9%) 50 0 0 4(-41.9%) 3(-39.9%)
CLASS10 50 24 1907 73 3332 142 24 1909 78 2937(-23.5%) 128(-14.9%) 24 1916 92 2660(-34.4%) 125(-17.6%)

Total 410 369 396 39 6406 96 370 383 35 6029(-36.4%) 71(-27.2%) 370 383 35 5890(-42.2%) 69(-27.8%)

Overall, we observe that the variable reduction techniques are empirically effective for BM as using
normal patterns reduces the number of variables by 36% on average whereas using MIM patterns reduces
the number of variables by 42% on average. We notice that the variable reduction is more pronounced
for some datasets (e.g., CGCUT or CLASS3) than others (e.g., HT or BENG). As far as the number of
instances solved to optimality is concerned, it appears that variable reduction techniques only have a minor
impact as using normal or MIM patterns only allows BM to solve one instance more to optimality within
the time limit. We report in Table 8 the outcome of similar experiments for FLOW-PCC and CP-PCC.

We notice that the variable reduction techniques have a more significant impact on FLOW-PCC
as the approach could solve 5 more instances to optimality within the time limit when using the MIM
patterns than it did in the baseline version. As far as CP-PCC is concerned, it appears that using one of

24

Table 8: Results of FLOW-PCC and CP-PCC varying the chosen variable reduction technique

FLOW-PCC CP-PCC

Dataset #inst Baseline Normal patterns MIM Patterns Baseline Normal patterns MIM patterns

#opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s)

CGCUT 3 2 1250 75 2 1303 155 2 1211 17 1 2400 0 1 2400 0 1 2400 0
HT 9 8 409 11 8 403 4 8 421 24 8 431 35 8 409 10 8 413 15
BENG 10 8 778 73 8 778 72 8 778 72 10 1 1 10 1 1 10 1 1
NGCUT 12 12 55 55 12 8 8 12 7 7 12 0 0 12 0 0 12 0 0
BKW 13 5 2635 1084 3 2773 10 4 2587 304 4 2741 809 4 2735 789 4 2793 978
GCUT 13 9 1121 18 10 831 1 12 492 233 9 1108 0 9 1108 0 9 1108 0
CLASS1 50 50 0 0 50 0 0 50 0 0 44 436 4 43 507 3 43 508 5
CLASS2 50 50 115 115 49 178 108 50 100 100 50 2 2 50 2 2 50 2 2
CLASS3 50 43 505 1 43 505 1 43 505 1 31 1386 28 31 1369 1 30 1440 0
CLASS5 50 47 302 92 47 240 26 48 201 59 39 797 6 38 897 44 37 936 0
CLASS7 50 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0
CLASS9 50 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0
CLASS10 50 21 2174 204 23 2033 194 23 2038 203 19 2249 46 18 2306 6 19 2257 67

Total 410 355 535 60 355 512 34 360 482 49 327 743 18 324 768 16 323 778 17

the two proposed variable reduction techniques worsens the performance of the approach. This could be
due to the fact that preventing the first slice of an item to be packed in a given column adds a constraint
in CP-PCC (IloForbidStart) whereas doing so in BM or in FLOW-PCC removes a variable.

6.2.2 1CBP

We compare in Table 9 the results obtained by two versions of APTP, FLOW-CBP, and CP-CBP:
one without any variable reduction technique and one using normal patterns.

Table 9: Results of APTP, FLOW-CBP, CP-CBP varying the chosen variable reduction technique

APTP FLOW-CBP CP-CBP

Dataset #inst Baseline Normal patterns Baseline Normal patterns Baseline Normal patterns

#opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s)

CGCUT 3 2 1203 5 2 1206 9 2 1210 14 2 1205 6 1 2400 0 1 2400 0
HT 9 9 9 9 9 26 26 9 31 31 9 21 21 8 415 17 8 419 21
BENG 10 8 768 60 8 768 59 3 2577 190 3 2577 191 10 36 36 10 39 39
NGCUT 12 12 4 4 12 11 11 12 10 10 12 5 5 12 1 1 12 1 1
BKW 13 7 2207 1013 6 2241 645 4 2500 27 5 2355 343 5 2229 36 6 2166 493
GCUT 13 4 2509 53 5 2220 2 3 2770 1 5 2260 3 7 1705 81 7 1703 77
CLASS1 50 41 725 94 41 724 92 35 1185 151 36 1175 232 50 105 105 50 115 115
CLASS2 50 42 714 164 42 714 164 26 1813 164 26 1813 164 49 122 51 49 122 51
CLASS3 50 20 2164 9 20 2166 12 18 2308 12 18 2313 17 36 1022 19 36 1026 25
CLASS5 50 21 2114 62 21 2128 89 20 2161 3 21 2111 41 34 1158 7 34 1156 5
CLASS7 50 47 237 23 48 174 31 47 275 63 47 217 1 50 1 1 50 1 1
CLASS9 50 50 6 6 50 0 0 50 3 3 50 0 0 50 0 0 50 0 0
CLASS10 50 6 3171 23 7 3101 36 6 3232 536 6 3190 124 14 2594 8 14 2594 9

Total 410 269 1291 80 271 1268 71 235 1579 73 240 1538 71 326 762 31 327 762 42

Just like for the P|cont|Cmax, using normal patterns seems slightly beneficial for APTP and FLOW-
CBP whereas the impact is less visible for CP-CBP. We provide in Appendix D the size of models
APTP and FLOW-CBP and outline that the variable reduction obtained from using normal patterns
is less significant (-13.1% for APTP and -14.9% for FLOW-CBP) than it was for the P|cont|Cmax.

These experiments showed that, even though variable reductions techniques could often bring a sig-
nificant decrease in terms of model size, such a decrease did not necessarily translate into an increase in
terms of performance. Based on these results, we decided to keep using normal patterns in the ILP models
and to not use any variable reduction techniques in the CP models.

25

6.3 Exploiting item multiplicity

6.3.1 P|cont|Cmax

We compare in Table 10 the outcome of extensive experiments aimed at evaluating the impact of exploiting
item multiplicity. To do so, we ran three versions of BM and FLOW-PCC: one version that does not
exploit item multiplicity at all, one that gathers identical items and uses a binary expansion, and one that
gathers identical items and uses integer variables.

Table 10: Results of BM and FLOW-PCC with binary variables, binary expansion, and integer variables

BM+NOR FLOW-PCC+NOR

Dataset #inst Binary var Binary expansion Integer var Binary var Binary expansion Integer var

#opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s)

CGCUT 3 2 1201 2 3 73 73 3 153 153 2 1303 155 2 1204 7 2 1229 43
HT 9 8 406 7 9 27 27 9 8 8 8 403 4 9 390 390 9 324 324
BENG 10 10 8 8 9 365 6 10 125 125 8 778 72 7 1185 150 10 591 591
NGCUT 12 12 1 1 12 1 1 12 1 1 12 8 8 12 12 12 12 12 12
BKW 13 7 1989 605 9 1268 231 10 1001 221 3 2773 10 8 1531 237 8 1471 141
GCUT 13 12 280 3 12 280 3 12 280 3 10 831 1 10 831 1 10 831 1
CLASS1 50 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0
CLASS2 50 50 13 13 50 6 6 50 23 23 49 178 108 48 208 67 50 124 124
CLASS3 50 47 336 128 47 297 86 47 284 72 43 505 1 44 487 62 43 505 1
CLASS5 50 48 146 2 48 146 2 48 145 1 47 240 26 46 290 2 46 291 3
CLASS7 50 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0
CLASS9 50 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0
CLASS10 50 24 1909 78 24 1940 141 24 1915 90 23 2033 194 22 2082 150 22 2134 269

Total 410 370 383 35 373 350 28 375 334 29 355 512 34 358 496 45 362 476 62

We notice that exploiting item multiplicity seems effective for both approaches. Using binary expan-
sion allows each method to solve 3 instances more to optimality whereas using integer variables allows BM
and FLOW-PCC to solve respectively 5 and 7 instances more to optimality within the time limit. As
one could expect, exploiting item multiplicity is more effective when solving a dataset with a high number
of identical items (such as BKW) than it is when solving a dataset with a low number of identical items
(such as CLASS10). Among the numerous methods we have evaluated so far, BM with normal patterns
and integer variables is the one that solves the highest number of instances to optimality (375 out of 410).

6.3.2 1CBP

The outcome of similar experiments performed on APTP and FLOW-CBP are reported in Table 11.

Table 11: Results of APTP, FLOW-CBP with binary variables, binary expansion, and integer variables

APTP+NOR FLOW-CBP+NOR

Dataset #inst Binary var Binary expansion Integer var Binary var Binary expansion Integer var

#opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s)

CGCUT 3 2 1206 9 2 1201 2 2 1202 3 2 1205 6 2 1202 3 2 1202 3
HT 9 9 26 26 9 30 30 9 11 11 9 21 21 9 18 18 9 10 10
BENG 10 8 768 59 6 1552 187 6 1601 269 3 2577 191 2 2880 1 2 2880 3
NGCUT 12 12 11 11 12 1 1 12 2 2 12 5 5 12 3 3 12 3 3
BKW 13 6 2241 645 7 1799 249 8 1606 355 5 2355 343 6 2087 315 7 2005 633
GCUT 13 5 2220 2 5 2222 2 5 2220 2 5 2260 3 5 2217 3 5 2217 3
CLASS1 50 41 724 92 41 698 61 40 755 44 36 1175 232 38 989 165 36 1109 140
CLASS2 50 42 714 164 37 1142 278 40 910 238 26 1813 164 27 1737 150 29 1655 246
CLASS3 50 20 2166 12 21 2116 63 20 2173 29 18 2313 17 18 2309 10 18 2308 8
CLASS5 50 21 2128 89 21 2128 89 21 2128 89 21 2111 41 21 2107 41 21 2107 41
CLASS7 50 48 174 31 48 174 32 48 174 31 47 217 1 47 217 1 47 217 1
CLASS9 50 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0
CLASS10 50 7 3101 36 7 3101 36 7 3101 36 6 3190 124 6 3183 124 6 3183 124

Total 410 271 1268 71 266 1316 79 268 1296 75 240 1538 71 243 1502 59 244 1503 76

Interestingly, it appears that APTP does not seem to benefit from exploiting item multiplicity when it
comes to the total number of instances solved to optimality as the approach solves 5 instances less when us-
ing binary expansion and 3 instances less when using integer variables than it does when using binary vari-

26

ables. Note, however, that the version of APTP that uses integer variables performs well on dataset BKW,
which has a high number of identical items. As far as FLOW-CBP is concerned, it seems like exploiting
item multiplicity has a positive effect since the method is able to solve 3 instances more when using binary
expansion and 4 instances more when using integer variables than it does when using binary variables.

These experiments showed that exploiting item multiplicity usually improves the performance of the
ILP-based approaches, even if this is not always the case. Based on these results, we decided to keep the
version of the ILP models that uses integer variables even if it could also make sense to design a set of
empirical rules in which one decides whether or not item multiplicity should be exploited based on the
average number of identical items contained in the dataset one wishes to solve.

6.4 Symmetry-breaking constraints

6.4.1 P|cont|Cmax

We report in Table 12 the outcome of the experiments aimed at evaluating the impact of symmetry-
breaking constraints. To do so, we start by running three versions of BM, FLOW-PCC, and CP-PCC:
one version that does not use any symmetry-breaking constraints at all (referred to as “SB”), one that uses
(59) together with the desegregated gapless packing constraints (60) (referred to as “S1

G”), and one that
uses (59) together with the aggregated gapless packing constraints (61) (referred to as “S2

G”).

Table 12: Results of BM, FLOW-PCC, CP-PCC with/without gapless packing constraints

BM+NOR+ INT FLOW-PCC+NOR+ INT CP-PCC

Dataset #inst SB S1
G S2

G SB S1
G S2

G SB S1
G S2

G

#opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s)

CGCUT 3 3 153 2 1201 2 1201 2 1229 2 1203 2 1206 1 2400 1 2400 1 2400
HT 9 9 8 8 444 9 406 9 324 8 412 9 99 8 431 8 456 8 411
BENG 10 10 125 10 21 10 16 10 591 8 1333 8 1056 10 1 10 2 10 1
NGCUT 12 12 1 12 1 12 0 12 12 12 3 12 3 12 0 12 1 12 0
BKW 13 10 1001 9 1202 9 1156 8 1471 8 1766 7 1907 4 2741 2 2931 1 3046
GCUT 13 12 280 12 562 12 360 10 831 10 831 10 831 9 1108 8 1108 8 1108
CLASS1 50 50 0 50 0 50 0 50 0 50 0 50 0 44 436 43 507 42 577
CLASS2 50 50 23 50 6 49 82 50 124 49 208 50 156 50 2 50 1 50 5
CLASS3 50 47 284 46 376 46 332 43 505 43 505 44 493 31 1386 30 1379 29 1440
CLASS5 50 48 145 48 157 48 153 46 291 48 228 48 199 39 797 35 793 33 937
CLASS7 50 50 0 50 0 50 0 50 0 50 0 50 0 50 0 47 0 47 0
CLASS9 50 50 0 50 0 50 0 50 0 50 0 50 0 50 0 34 0 34 0
CLASS10 50 24 1915 23 2105 23 2000 22 2134 22 2062 22 2047 19 2249 18 2304 17 2385

Total 410 375 334 370 397 370 379 362 476 360 499 362 477 327 743 298 764 292 810

It appears that adding gapless packing constraints slightly deteriorates the performance of BM and
FLOW-PCC and significantly deteriorates the performance of CP-PCC. As a result, such constraints
are not considered anymore in subsequent P|cont|Cmax experiments.

We continue by running two more versions of BM, FLOW-PCC and CP-PCC. For BM and
FLOW-PCC, the first version uses mirror symmetry-breaking constraints (64) (which was applied to
the item type with the smallest width) and is referred to as “S1

M” in the table whereas the second version
uses mirror symmetry-breaking constraints (63) (which was applied to the item type with the smallest
width among the item types with demand 1) and is referred to as “S2

M” in the table. For CP-PCC,
the first version also uses mirror symmetry-breaking constraints (63) whereas the second version uses
symmetry-breaking constraints (65) (related to the permutation of identical items) and is referred to as
“SI” in the table. Note that (i) one cannot apply constraints (64) to CP-PCC since the model does not
exploit item multiplicity and (ii) one cannot apply constraints (65) to the tested versions of BM and
FLOW-PCC as those already exploit item multiplicity through the use of integer variables. Just like
gapless packing constraints, it appears that mirror symmetry-breaking constraints slightly deteriorate the

27

Table 13: Results of BM, FLOW-PCC, CP-PCC with/without other symmetry-breaking constraints

BM+NOR+ INT FLOW-PCC + NOR + INT CP-PCC

Dataset #inst SB S1
M S2

M SB S1
M S2

M SB S2
M SI

#opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s)

CGCUT 3 3 153 2 1200 3 712 2 1229 2 1202 2 1205 1 2400 1 2400 1 2400
HT 9 9 8 8 412 9 39 9 324 8 408 8 408 8 431 8 406 8 447
BENG 10 10 125 10 10 10 83 10 591 8 823 7 1366 10 1 10 1 10 1
NGCUT 12 12 1 12 0 12 0 12 12 12 2 12 3 12 0 12 0 12 0
BKW 13 10 1001 8 1469 8 1396 8 1471 8 1565 10 1523 4 2741 4 2890 3 2965
GCUT 13 12 280 12 280 12 280 10 831 11 742 11 733 9 1108 10 841 9 1108
CLASS1 50 50 0 50 0 50 0 50 0 50 0 50 0 44 436 46 309 47 224
CLASS2 50 50 23 50 31 50 5 50 124 50 44 48 170 50 2 50 1 50 1
CLASS3 50 47 284 45 374 47 298 43 505 43 505 43 508 31 1386 31 1369 31 1393
CLASS5 50 48 145 48 147 48 146 46 291 47 225 47 257 39 797 38 865 38 868
CLASS7 50 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0
CLASS9 50 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0
CLASS10 50 24 1915 24 1904 24 1930 22 2134 22 2097 22 2146 19 2249 18 2304 19 2249

Total 410 375 334 369 373 373 351 362 476 361 461 360 499 327 743 328 736 328 734

performance of BM and FLOW-PCC. However, those seem useful for CP-PCC as the approach was
able to solve one additional instance to optimality within the time limit. Forbidding the permutation of
identical items also allows CP-PCC to solve one supplementary instance. We also tested a version of
CP-PCC that forbids the permutation of identical items in addition of using mirror symmetry-breaking
constraints and we can report that such a version solved 330 instances to optimality out of 410. Note,
however, that the mentioned improvements do not appear in all datasets: in CLASS10 for example, the
version of CP-PCC that works best is the one without any symmetry-breaking constraints.

6.4.2 1CBP

The outcome of similar experiments conducted with the 1CBP models are reported in Tables 14 and 15.

Table 14: Results of APTP, FLOW-CBP, CP-CBP with/without symmetry-breaking constraints

APTP + NOR+ INT FLOW-CBP+NOR+ INT CP-CBP

Dataset #inst SB S1
G S2

G SB S1
G S2

G SB S1
G S2

G

#opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s)

CGCUT 3 2 1202 2 1203 2 1201 2 1202 2 1202 2 1201 1 2400 1 2400 1 2400
HT 9 9 11 8 601 9 31 9 10 9 59 9 117 8 415 9 184 9 148
BENG 10 6 1601 2 2882 4 2218 2 2880 2 2881 2 2881 10 36 10 148 10 111
NGCUT 12 12 2 12 4 12 2 12 3 12 5 12 3 12 1 12 1 12 2
BKW 13 8 1606 7 1832 5 2254 7 2005 7 2158 8 1870 5 2229 5 2329 5 2441
GCUT 13 5 2220 5 2220 5 2222 5 2217 5 2217 5 2216 7 1705 6 1939 6 1942
CLASS1 50 40 755 39 908 43 667 36 1109 34 1232 38 1041 50 105 50 155 50 123
CLASS2 50 40 910 26 1856 35 1280 29 1655 28 1877 24 1916 49 122 47 270 48 206
CLASS3 50 20 2173 20 2166 22 2030 18 2308 19 2258 19 2262 36 1022 36 1039 35 1168
CLASS5 50 21 2128 23 2028 22 2030 21 2107 22 2029 22 2024 34 1158 34 1162 33 1262
CLASS7 50 48 174 48 151 49 137 47 217 48 204 48 211 50 1 50 1 50 39
CLASS9 50 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0
CLASS10 50 7 3101 7 3119 7 3125 6 3183 6 3191 7 3177 14 2594 15 2617 13 2686

Total 410 268 1296 249 1468 265 1336 244 1503 244 1535 246 1508 326 762 325 800 322 831

Overall, we observe that using symmetry-breaking constraints does not have a clear positive effect on
APTP, even though we notice that one additional instance could be solved to optimality when using
mirror symmetry-breaking constraints (64). As far as FLOW-CBP is concerned, it appears that using
(59) together with the aggregated gapless packing constraints (61) has a positive effect, and so does using
mirror symmetry-breaking constraints (64). We also tested a version of FLOW-CBP that uses (59),
(61), and (64) at the same time, and we can report that such a version solved 249 instances to optimality
out of 410. When it comes to CP-CBP, it seems like forbidding the permutation of identical items is the
only symmetry-breaking constraint that brings an empirical improvement.

28

Table 15: Results of APTP, FLOW-CBP, CP-CBP with/without other symmetry-breaking constraints

APTP + NOR+ INT FLOW-CBP+NOR+ INT CP-CBP

Dataset #inst SB S1
M S2

M SB S1
M S2

M SB S2
M SI

#opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s)

CGCUT 3 2 1206 2 1202 2 1202 2 1202 2 1202 2 1202 1 2400 1 2400 2 1286
HT 9 9 26 9 79 9 8 9 10 9 11 9 99 8 415 8 410 8 418
BENG 10 8 768 6 1765 6 1758 2 2880 3 2567 3 2633 10 36 10 36 10 142
NGCUT 12 12 11 12 2 12 2 12 3 12 2 12 2 12 1 12 0 12 0
BKW 13 6 2241 8 1889 8 1620 7 2005 8 1670 7 1799 5 2229 5 2363 5 2360
GCUT 13 5 2220 5 2220 5 2219 5 2217 5 2217 5 2216 7 1705 7 1694 7 1705
CLASS1 50 41 724 44 712 40 879 36 1109 39 966 38 1041 50 105 50 63 50 30
CLASS2 50 42 714 38 1193 38 1092 29 1655 27 1783 27 1830 49 122 47 240 48 192
CLASS3 50 20 2166 21 2142 21 2096 18 2308 18 2312 19 2246 36 1022 36 1042 36 1034
CLASS5 50 21 2128 22 2089 22 2059 21 2107 21 2112 21 2116 34 1158 34 1160 34 1157
CLASS7 50 48 174 48 154 47 217 47 217 47 217 47 217 50 1 50 0 50 1
CLASS9 50 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0
CLASS10 50 7 3101 7 3137 7 3104 6 3183 6 3177 6 3213 14 2594 15 2542 15 2543

Total 410 271 1268 272 1333 267 1326 244 1503 247 1484 246 1503 326 762 325 772 327 755

These experiments showed that, despite being useful in theory, the reviewed symmetry-breaking con-
straints do not necessarily improve (and can even deteriorate) the performance of the tested ILP-based
approaches. As far as CP-based approaches are concerned, it seems like preventing symmetric solutions
in which identical items are permutated is useful for both the 1CBP and the P|cont|Cmax. Based on these
results, we decided to not add any symmetry-breaking constraints to the ILP models and to only use the
symmetry-breaking constraints related to permutations of identical items for the CP models.

6.5 Destructive bounds and reduced-cost variable fixing

We report in Tables 16 and 17 the outcome of the experiments aimed at evaluating the impact of destruc-
tive bounds (referred to as “DB” in the table) and reduced-cost variable fixing (referred to as “RCVF” in
the table). For the P|cont|Cmax (resp., for the 1CBP), an approach using destructive bounds tries to find
a solution for a problem instance in which the bin capacity (resp., the number of bins) is fixed to a given
lower bound LB. If the approach finds a feasible solution, then it is proven to be optimal as the solution has
an objective value that is equal to a lower bound. If the approach proves that there isn’t any solution with
objective value LB, then LB+1 becomes a valid lower bound and the approach is called again. Destructive
bounds are often used in the SPP literature [27, 37]. An ILP-based approach that uses reduced-cost vari-
able fixing works similarly. The only difference is that, at each iteration, every variable that cannot appear
(i.e., that cannot take value 1 or above) in a solution with objective value LB is deactivated. To do so, such
an approach starts by solving the LP-relaxation of the model (say with objective value ẑ) and computes the
reduced cost of every variable in the model. One can show [34] that any LP solution in which a variable v
with reduced cost ŝv−ϵ ≥ LB− ẑ takes value 1 or above must have objective value strictly above LB (ϵ is a
very small number used to avoid precision errors). Therefore, one can deactivate variable v for a given LB
(i.e., set the variable to 0 or not creating it at all) if ŝv−ϵ ≥ LB−ẑ. Reduced-cost variable fixing was shown
to be sometimes useful when solving ILP models with a very tight LP-relaxation such as the cycle formu-
lation for the kidney exchange problem [34] or the arcflow formulation for the bin packing problem [35].

From the implementation perspective, we initialized LB with the LP-relaxation value of model BM
rounded up for BM and CP-PCC, with the LP-relaxation value of model FLOW-PCC rounded up for
FLOW-PCC, and with LCBP ′

2 for APTP, FLOW-CBP, and CP-CBP. We also outline that, if one
does not need to minimize the number of bins, several simplifications occur in APTP and FLOW-CBP.
In fact, APTP with destructive bounds is identical to BM with destructive bounds and FLOW-CBP
with destructive bounds is identical to FLOW-PCC with destructive bounds.

For the P|cont|Cmax, it appears that using destructive bounds is useful for both FLOW-PCC and CP-

29

Table 16: Results of BM, FLOW-PCC, CP-PCC with/without DB and RCVF

BM+NOR+ INT FLOW-PCC + NOR + INT CP-PCC+SI

Dataset #inst B DB DB+RCVF B DB DB+RCVF B DB

#opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s)

CGCUT 3 3 153 2 1200 2 1200 2 1229 2 1200 2 1201 1 2400 1 2400
HT 9 9 8 9 113 9 343 9 324 9 31 9 284 8 447 9 23
BENG 10 10 125 10 52 10 52 10 591 10 23 10 23 10 1 10 0
NGCUT 12 12 1 12 0 12 0 12 12 12 1 12 1 12 0 12 0
BKW 13 10 1001 7 1670 8 1423 8 1471 10 968 10 958 3 2965 5 2233
GCUT 13 12 280 12 290 12 298 10 831 10 832 10 831 9 1108 9 1111
CLASS1 50 50 0 50 0 50 0 50 0 50 0 50 0 47 224 50 0
CLASS2 50 50 23 50 4 50 4 50 124 50 44 50 45 50 1 50 1
CLASS3 50 47 284 45 380 45 388 43 505 45 392 46 376 31 1393 42 607
CLASS5 50 48 145 48 147 48 147 46 291 48 186 48 189 38 868 43 576
CLASS7 50 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0
CLASS9 50 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0
CLASS10 50 24 1915 24 1884 24 1901 22 2134 23 1973 23 1984 19 2249 24 1937

Total 410 375 334 369 369 370 370 362 476 369 384 370 389 328 734 355 505

Table 17: Results of APTP, FLOW-CBP, CP-CBP with/without DB and RCVF

APTP+NOR+INT FLOW-CBP+NOR+INT CP-CBP+SI

Dataset #inst B DB DB+RCVF B DB DB+RCVF B DB

#opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s)

CGCUT 3 2 1202 2 1201 2 1201 2 1202 2 1201 2 1201 2 1286 2 1272
HT 9 9 11 9 11 9 11 9 10 9 8 9 3 8 418 9 5
BENG 10 6 1601 5 1991 5 1991 2 2880 4 2270 4 2270 10 142 9 362
NGCUT 12 12 2 12 1 12 1 12 3 12 1 12 1 12 0 12 0
BKW 13 8 1606 9 1396 9 1396 7 2005 9 1339 10 1059 5 2360 4 2516
GCUT 13 5 2220 5 2430 5 2408 5 2217 5 2260 5 2260 7 1705 7 1929
CLASS1 50 40 755 39 864 39 864 36 1109 35 1226 35 1217 50 30 41 720
CLASS2 50 40 910 39 927 39 926 29 1655 26 1863 26 1863 48 192 47 339
CLASS3 50 20 2173 22 2159 22 2159 18 2308 18 2315 18 2315 36 1034 31 1376
CLASS5 50 21 2128 21 2158 21 2158 21 2107 21 2116 21 2116 34 1157 34 1168
CLASS7 50 48 174 47 217 47 217 47 217 47 217 47 217 50 1 50 1
CLASS9 50 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0
CLASS10 50 7 3101 7 3227 7 3227 6 3183 5 3255 5 3255 15 2543 13 2668

Total 410 268 1296 267 1344 267 1343 244 1503 243 1519 244 1509 327 755 309 924

PCC, but not for BM. Interestingly, we observe that the performance of FLOW-PCC with destructive
bounds is almost comparable to the performance of BM with destructive bounds. For the 1CBP, using
destructive bounds does not seem to bring any empirical improvement for APTP and FLOW-CBP,
and significantly deteriorates the performance of CB-CBP. This may come as a surprise considering the
positive results observed for CP-PCC. A possible explanation could be that proving infeasibility for a CP
approach is more difficult for an instance with a large makespan and a resource available in small quantity
compared to an instance with a small makespan and a resource available in large quantity (indeed, most
of the tested instances had W significantly smaller than the optimal solution value). When it comes to
reduced-cost variable fixing, it seems like using the technique brings a marginal improvement compared
to using destructive bounds alone for both the P|cont|Cmax and the 1CBP.

6.6 Approach combination and randomness impact

In total, we tested 35 approaches for the P|cont|Cmax and 32 approaches for the 1CBP (the 3 variations
using MIM patterns were not suitable for the 1CBP). For the P|cont|Cmax, the best approach was BM
with normal patterns and integer variables with a total of 375 instances solved. For the 1CBP, the
best approach was CP-CBP with symmetry-breaking constraints forbidding the permutation of identical
items with a total of 327 instances solved. However, we observed that, if we consider the results of all

30

tested methods, the total number of P|cont|Cmax instances solved to optimality was 383 and the total
number of 1CBP instances solved to optimality was 343. This means that the 2 mentioned approaches
did not clearly dominate the others on all datasets. Therefore, an interesting research question would be
to identify a combination of approaches solving the maximum number of instances. To do so, we solved
the following Maximum Coverage Problem (MCP). For each of the tested approaches, we created sub-
variations simulating the results that would have been obtained by the approach if a certain time limit of
x seconds was used, where x varied between 1 and 3600. For a given approach a and a given instance i,
we say that i is covered by sub-variation vx of a if a solves i in less than x seconds. We also define the
budget of a sub-variation vx to be the amount of time spent running vx (i.e., x). The objective is to find
a subset of sub-variations covering the maximum number of instances with a budget of 3600 seconds.

For the P|cont|Cmax, 382 instances could be covered in one hour by using three sub-variations: a variant
of BM, a variant of FLOW-PCC, and a variant of CP-PCC. If we restrict the number of sub-variations
to two, then 381 instances could be covered by using BM with normal patterns and integer variables for
2000 seconds and CP-PCC with symmetry-breaking constraints forbidding the permutation of identical
items for 1000 seconds. For the 1CBP, 338 instances could be covered in one hour by using six sub-
variations: four variants of CP-CBP and two variants of FLOW-CBP. If we restrict the number of sub-
variations to two, then 334 instances could be covered by using CP-CBP with mirror symmetry-breaking
constraints (63) for 2500 seconds and FLOW-CBP with normal patterns, integer variables, and reduced-
cost variable fixing for 1000 seconds. We point out that: (i) the 3600s budget was not always entirely used,
(ii) we ran the MCP model for up to 3600 sub-variations per approach, but the aforementioned results
were not improved, (iii) the MCP model could always be solved to optimality in less than 60 seconds, and
(iv) we provide the MCP model used in our experiments in Appendix E for the interested reader.

A last question one may wonder is whether the results reported in our experiments are strongly
impacted by solver randomness. Indeed, it is common knowledge that solver randomness may influence
the performance of an approach, therefore, it is possible that one of the small improvements observed when
using a specific feature was more due to solver randomness than to the impact of said feature. To do so, we
ran each component of the best pair of approaches for both the P|cont|Cmax and the 1CBP with 5 different
random seeds, which, according to the solver’s documentation, “acts as a small perturbation to the solver,
and typically leads to different solution paths” [47]. These results, which also include experiments on
CLASS4, CLASS6, and CLASS8, are reported in Tables 18 and 19 for the P|cont|Cmax and in Appendix F
for the 1CBP. In these tables, the column labeled “# solved by x seeds” indicates the number of instances
solved by exactly x out of the 5 tested random seeds. If solver randomness was non-existent, then only
the columns “# solved by 0 seeds” and “# solved by 5 seeds” would contain non-zero values.

Table 18: Results of BM with normal patterns and integer variables for P|cont|Cmax instances

Dataset #inst Seed-1 Seed-2 Seed-3 Seed-4 Seed-5 #solved by x seeds

#opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) 5 4 3 2 1 0

CGCUT 3 3 766 2 1200 3 1115 3 90 3 196 2 1 0 0 0 0
HT 9 9 186 8 407 9 70 9 220 8 425 8 0 1 0 0 0
BENG 10 10 156 9 374 9 368 10 48 10 9 9 0 1 0 0 0
NGCUT 12 12 0 12 0 12 1 12 0 12 1 12 0 0 0 0 0
BKW 13 10 1054 8 1389 9 1311 9 1228 10 979 8 0 1 1 1 2
GCUT 13 12 280 12 279 12 279 12 279 12 279 12 0 0 0 0 1
CLASS1 50 50 0 50 0 50 0 50 0 50 0 50 0 0 0 0 0
CLASS2 50 50 4 50 11 50 20 50 6 50 4 50 0 0 0 0 0
CLASS3 50 48 247 45 396 47 310 47 291 46 343 45 1 1 0 1 2
CLASS4 50 0 3600 1 3539 0 3600 0 3600 0 3600 0 0 0 0 1 49
CLASS5 50 48 147 48 146 48 146 48 146 48 146 48 0 0 0 0 2
CLASS6 50 0 3600 0 3600 0 3600 0 3600 0 3600 0 0 0 0 0 50
CLASS7 50 50 0 50 0 50 0 50 0 50 0 50 0 0 0 0 0
CLASS8 50 4 3324 5 3260 4 3316 6 3233 5 3266 4 0 1 0 1 44
CLASS9 50 50 0 50 0 50 0 50 0 50 0 50 0 0 0 0 0
CLASS10 50 24 1901 24 1904 24 1954 24 1915 24 1911 24 0 0 0 0 26

Total 560 380 1186 374 1206 377 1206 380 1182 378 1186 372 2 5 1 4 176

31

Table 19: Results of CP-PCC with symmetry-breaking constraints forbidding the permutation of identical
items and DB for P|cont|Cmax instances

Dataset #inst Seed-1 Seed-2 Seed-3 Seed-4 Seed-5 #solved by x seeds

#opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) 5 4 3 2 1 0

CGCUT 3 1 2400 1 2400 1 2400 1 2400 1 2400 1 0 0 0 0 2
HT 9 9 91 9 7 9 32 9 14 9 19 9 0 0 0 0 0
BENG 10 10 0 10 0 10 0 10 0 10 0 10 0 0 0 0 0
NGCUT 12 12 0 12 0 12 0 12 0 12 0 12 0 0 0 0 0
BKW 13 5 2364 5 2220 5 2222 5 2259 5 2241 5 0 0 0 0 8
GCUT 13 9 1112 9 1111 9 1111 9 1112 9 1112 9 0 0 0 0 4
CLASS1 50 50 0 50 0 50 0 50 0 50 0 50 0 0 0 0 0
CLASS2 50 50 1 50 1 50 0 50 3 50 0 50 0 0 0 0 0
CLASS3 50 41 708 42 669 42 675 41 654 41 665 41 0 0 0 2 7
CLASS4 50 20 2228 19 2273 21 2169 20 2298 20 2257 18 1 1 1 1 28
CLASS5 50 43 516 42 592 43 538 42 589 43 519 42 0 1 0 0 7
CLASS6 50 10 2910 10 2911 10 2908 10 2911 10 2912 10 0 0 0 0 40
CLASS7 50 50 0 50 0 50 0 50 0 50 0 50 0 0 0 0 0
CLASS8 50 12 2761 12 2763 12 2762 12 2763 12 2762 12 0 0 0 0 38
CLASS9 50 50 0 50 0 50 0 50 0 50 0 50 0 0 0 0 0
CLASS10 50 24 1955 24 1963 24 1960 24 1956 24 1958 24 0 0 0 0 26

Total 560 396 1084 395 1088 398 1074 395 1089 396 1080 393 1 2 1 3 160

As anticipated, both the number of instances solved to optimality and the average running time are
influenced by solver randomness for the P|cont|Cmax. However, the extent of such an influence is fairly lim-
ited as the tested version of BM solved between 374 and 380 instances in total, among which 372 instances
were solved by all 5 tested random seeds whereas the tested version of CP-PCC solved between 395 and
398 instances in total, among which 393 instances were solved by all 5 tested random seeds. This indicates
that randomness alone could explain a small increase/decrease of the number of optimal solutions found
by a given approach, which is why we only kept in our experiments the model enhancements that brought
an empirical improvement that was either consistent (i.e., that could be observed on most of the tested ap-
proaches) or significant (i.e., that was well above the margin of error). The difficulty of datasets CLASS4,
CLASS6, and CLASS8 was, once more, empirically demonstrated as the tested version of BM mostly
failed to find any optimal solution within the time limit. Interestingly, the tested version of CP-PCC
showed a surprising good performance on these three datasets as it could solve all instances with 20 items.

As far as the 1CBP is concerned, similar comments can be made regarding CLASS4, CLASS6, and
CLASS8. We observe, however, that solver randomness seems slightly more pronounced as the tested
version of FLOW-CBP (resp. CP-CBP) solved 30 (resp. 18) instances with one random seed but not
with (at least) one other. For the P|cont|Cmax, these numbers were 12 for the tested version of BM
and 7 for the tested version of CP-PCC. We still point out that aggregated results do not show a large
disparity in the range of solved instances: between 252 and 258 instances solved for the tested version of
FLOW-CBP and between 360 and 364 instances solved for the tested version of CP-CBP. These range
magnitudes are comparable to what was observed for the P|cont|Cmax.

6.7 Lower bounds

In Tables 20 and 21, we present the outcome of the experiments aimed at assessing the quality of the
P|cont|Cmax and 1CBP lower bounds introduced in Sections 5.1 and 5.2. All three preprocessing techniques
described in Section 4.3 were applied before calling the lower bounds. Note, however, that the preprocessing
applied for the P|cont|Cmax relaxation of one instance is not necessarily the same as the preprocessing
applied for the 1CBP relaxation of that same instance. The columns in the tables provide, for each dataset
and for each lower bound, the number of instances in the dataset for which that lower bound was the best
lower bound (column "#eq."), the average deviation from the best lower bound (column "dev."), and the
average CPU time needed to run the lower bound (column "T(s)"). For a given instance, we call “best
lower bound" the highest lower bound obtained in our experiments for that instance (i.e., the maximum
among the 30+ lower bounds obtained by our exact approaches in one hour and the tested lower bounds).

32

Table 20: Performance of the P|cont|Cmax lower bounds

L1 LPCC
2 LPCC′

2 LPCC
3 LPCC′

3 LPCC
4 LPCC′

4

Dataset #inst #eq. dev. T(s) #eq. dev. T(s) #eq. dev. T(s) #eq. dev. T(s) #eq. dev. T(s) #eq. dev. T(s) #eq. dev. T(s)

CGCUT 3 0 8 0 1 7 1 1 7 0 2 6.7 176 2 6.7 1 1 1.7 0 1 1.7 0
HT 9 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0 9 0 7 9 0 0
BENG 10 0 1 0 10 0 0 10 0 0 10 0 293 10 0 1 10 0 0 10 0 0
NGCUT 12 1 4 0 4 1.2 0 4 1.2 0 7 0.8 0 7 0.8 0 2 2.8 0 2 4 0
BKW 13 13 0 0 13 0 0 13 0 0 13 0 569 13 0 39 13 0 591 13 0 0
GCUT 13 3 69.8 0 3 62.6 98 3 62.6 4 4 55.2 662 4 55.2 141 6 15.2 277 3 27.5 1
CLASS1 50 6 1.5 0 31 0.7 0 31 0.7 0 31 0.7 13 31 0.7 0 45 0.1 0 41 0.2 0
CLASS2 50 0 1 0 50 0 0 50 0 0 50 0 84 50 0 0 50 0 0 50 0 0
CLASS3 50 6 4.7 0 16 3.7 1 16 3.7 0 17 3.5 460 17 3.5 4 35 0.8 1 29 1.1 0
CLASS5 50 14 13.2 0 20 11.5 15 20 11.5 0 21 11.3 640 21 11.3 17 28 2.3 73 20 3.3 0
CLASS7 50 19 7.9 0 31 4.4 0 31 4.4 0 35 2.9 0 35 2.9 0 30 2.8 0 30 3 0
CLASS9 50 44 2.5 0 49 0.1 0 49 0.1 0 50 0 0 50 0 0 32 4.4 0 32 4.4 0
CLASS10 50 1 8.8 0 11 7.7 15 11 7.7 1 12 7.6 1678 12 7.6 30 32 1.5 1380 22 2.3 0

Total 410 116 7.2 0 248 5.5 7 248 5.5 0 261 5 398 261 5 12 293 2 205 262 2.8 0

As one could expect, both the quality and the computation time of a P|cont|Cmax lower bound increase
as the relative complexity of the bound increases. The trivial lower bound L1 yields the worst performance,
even though it is very fast to compute. Lower bound LPCC

2 (obtained by solving the P||Cmax) obtained
slightly better results while also being relatively fast to compute. Lower bound LPCC

3 (obtained by solving
the P||Cmax with conflicts) obtained even better results, but at the expense of a significant increase in
computation time. Interestingly, the quality of lower bounds LPCC′

2 and LPCC′
3 were as good as the quality

of LPCC
2 and LPCC

3 , respectively, while being significantly faster to compute. Finally, LPCC
4 (obtained by

solving a model inspired by the reflect formulation [35]) achieved the best results, with 293 instances out
of 410 for which the approach obtained the best lower bound. However, the computation time required to
achieve such results was significant (205 seconds on average). In contrast, LPCC′

4 (obtained by solving the
LP-relaxation of the model used in LPCC

4) also produced relatively good results in a much shorter time.

Table 21: Performance of the 1CBP lower bounds

L1 LCBP
2 LCBP ′

2 LCBP
3 LCBP ′

3

Dataset #inst #eq. dev. T(s) #eq. dev. T(s) #eq. dev. T(s) #eq. dev. T(s) #eq. dev. T(s)

CGCUT 3 0 6.7 0 2 0.3 0 2 0.3 0 2 0.3 0 2 0.3 0
HT 9 9 0 0 9 0 0 9 0 0 9 0 0 9 0 0
BENG 10 0 1 0 10 0 0 10 0 0 10 0 4 10 0 0
NGCUT 12 1 4 0 2 4 0 2 4 0 3 2.9 0 3 2.9 0
BKW 13 13 0 0 13 0 0 13 0 0 13 0 298 13 0 34
GCUT 13 3 62.7 0 6 20.3 0 6 20.3 0 8 16.5 0 8 16.5 0
CLASS1 50 6 1.5 0 41 0.2 0 41 0.2 0 45 0.1 0 45 0.1 0
CLASS2 50 0 1 0 50 0 0 50 0 0 50 0 1 50 0 0
CLASS3 50 5 5.8 0 36 1 0 36 1 0 38 0.4 0 38 0.4 0
CLASS5 50 12 18.6 0 28 2.9 0 28 2.9 0 36 1.7 0 36 1.7 0
CLASS7 50 19 7.9 0 29 3.1 0 29 3.1 0 32 2.5 0 32 2.5 0
CLASS9 50 44 2.5 0 32 4.4 0 32 4.4 0 46 1.6 0 46 1.6 0
CLASS10 50 1 8.4 0 29 1.9 0 29 1.9 0 44 0.4 0 44 0.4 0

Total 410 113 7.8 0 287 2.4 0 287 2.4 0 336 1.4 10 336 1.4 1

For the 1CBP too, both the quality and the computation time of a lower bound increase as the relative
complexity of the bound increases. Compared to the P|cont|Cmax lower bounds, 1CBP lower bounds are
faster to compute and have better quality on average. The former remark could be explained by the fact
that 1CBP lower bounds do not require an iterative process, unlike some P|cont|Cmax lower bounds.

Overall, these findings are significant as they outline that it is possible to derive good quality lower
bounds for both the P|cont|Cmax and the 1CBP. We even observed that, for some instances, the best lower
bound among the ones tested in these experiments was higher than the best lower bound obtained by the
approaches tested in the previous experiments. These results also suggest that the tested lower bounds
should perform well for the SPP, confirming previous observations on the matter [2, 27].

33

7 Conclusion

We studied the parallel processor scheduling problem with contiguity constraints (P|cont|Cmax) and the
one-dimensional bin packing problem with contiguity constraints (1CBP). These two problems are relevant
for the research community because they are used as components of effective decomposition algorithms for
various two-dimensional cutting and packing problems. After enumerating the main approaches proposed
in the literature to solve the P|cont|Cmax and the 1CBP exactly, we reviewed existing mathematical
formulations for the two problems together with some model enhancements. We also investigated lower
bounding techniques for the two problems and assessed whether recent advances in the cutting and packing
area such as reduced-cost variable fixing, meet-in-the-middle patterns, and the reflect formulation could be
used to solve the problems more efficiently. We then empirically evaluated the performance of each model
when solved with a state-of-the-art solver on a large set of instances from the literature. We also tested the
reviewed model enhancements and lower bounding techniques and made a number of relevant observations.

From the problem point of view, it is interesting to know that (i) the most important feature determin-
ing whether an approach can solve a given instance is the model used by the approach, (ii) the second most
important feature is whether or not the approach uses a preprocessing step aimed at prepacking large items
and adjusting the instance dimensions and, for the 1CBP, whether or not a lower bound is given to the
approach, (iii) less important features, but which are still relevant overall for integer linear programming
(ILP) models, are the use of normal (or meet-in-the-middle) patterns to reduce the number of variables
involved and the exploitation of item multiplicity, (iv) features that do not appear to be empirically useful
are the use of symmetry breaking constraints, destructive bounds, and reduced-cost variable fixing, (v)
approaches BM and CP-PCC obtain very good empirical results, even without any model enhancement
techniques, (vi) lower bounds obtained by solving the continuous relaxation of flow models, including re-
flect, are both fast to compute and effective, (vii) on some notoriously difficult datasets, it seems beneficial
to use an approach based on constraint programming (CP) over an approach based on ILP, and (viii) for
most strip packing instances, the (numerical instance resulting from the) P|cont|Cmax relaxation seems
easier to solve than the (numerical instance resulting from the) 1CBP relaxation. As far as the latter
comment is concerned, we emphasized that both relaxations are relevant in practice because they do not
necessarily lead to the same objective solution value, as demonstrated in Appendix G. For example, for
SPP instance “cl_06_020_06”, the optimal solution value of the 1CBP relaxation was 206 whereas the
optimal solution value of the P|cont|Cmax relaxation was 208. In total, we identified at least 4 instances for
which the 1CBP relaxation and the P|cont|Cmax relaxation did not have the same optimal solution value.

From the optimization point of view, it is interesting to observe that (i) even though some model en-
hancements such as symmetry-breaking constraints are useful in theory, they do not necessarily translate
into any empirical improvement, (ii) whereas solver randomness only has a marginal effect on empirical re-
sults, that effect does exist and should be taken into consideration when assessing the performance of an ap-
proach, (iii) the goal of finding the best unique approach to solve a given combinatorial optimization prob-
lem might sometimes be overvalued given the fact that running a few sequential approaches for a limited
time period may provide better empirical results than running a unique approach for the same duration.

As far as challenging and open problems are concerned, we identified three interesting research di-
rections. Based on the outcomes of this survey, a first natural research direction is the search for more
effective exact algorithms to solve the P|cont|Cmax and the 1CBP as there are still dozens of medium-
sized instances that could not be solved to optimality within one hour of computation time. To the best
of our knowledge, no major breakthrough has happened in the area since the FLOW-PCC formulation,
whereas it is possible that alternative ILP models or CP formulations could obtain better empirical results.
Considering that the 1CBP is very close to the bin packing problem (BPP), which was extensively studied

34

in the recent years, it would also be interesting to determine whether any of the main features utilized
by the effective approaches recently proposed for the BPP [32, 70, 79] could be extended to tackle the
1CBP. Other methodologies to solve the P|cont|Cmax and the 1CBP more effectively include the search
for good quality and fast to compute bounding procedures. We reviewed and empirically assessed various
relaxation-based lower bounding procedures for both problems and our results showed that there was still
some room for improvement. Regarding upper bounding procedures, we could not find many methods
tailored to the P|cont|Cmax or to the 1CBP besides adaptations of the first-fit, best-fit, and worst-fit
heuristics suggested by Martello et al. [61] and Côté at al. [27]. Indeed, as these two problems are mostly
solved as components of a decomposition approach, existing heuristics are usually aimed at finding good
quality solutions for the overall problem, not for individual components. One could certainly adapt the
many existing strip packing heuristics [1, 18, 59, 80] to tackle the P|cont|Cmax and the 1CBP, but it would
probably be more interesting to understand whether problem-specific structures can be exploited to derive
more effective ad hoc heuristics. We also identify as promising the search for automated hyper-algorithms
able to select which method (or sequence of methods) among the ones reviewed in this work is better
suited to solve a given instance based on its features (following the recent trend that aims at incorporating
machine learning techniques into optimization algorithms [11]).

A second research direction concerns the integration of the results found in this review into the de-
composition framework proposed by Côté at al. [27], where the main problem is (a form of) 1CBP or
P|cont|Cmax, and how this framework could be enhanced. For example, to the best of our knowledge,
callback functions allowing the user to add constraints during the solver execution are not available in the
CP solver of Cplex whereas these are available (and were shown to be useful) in ILP solvers. It would be
interesting to see, given the surprisingly good results displayed by CP on certain classes of P|cont|Cmax

and 1CBP instances, how CP-PCC and CP-CBP could be integrated into the decomposition framework.
Côté at al. [27] also outlined that no-good cuts could not be used with integer variables, whereas these cuts
are needed in the decomposition framework to forbid solutions of the main problem that were previously
shown to be infeasible. We pointed out that item multiplicity could be exploited using binary expansion
instead. However, to the best of our knowledge, the problem of strengthening a no-good-cut by finding the
so-called “minimum infeasible subset” (the minimum subset of items causing infeasibility, also known as
“MIS”) and applying a lifting procedure was never thoroughly studied in the context of a binary expansion.
It would also be interesting to conduct an empirical study focusing on the secondary problem of the de-
composition framework, a scheduling problem with non-overlapping constraints (sometimes referred to as
“y-check” in the literature). So far, the problem has been solved with either a branch-and-bound algorithm
or CP. Even though the computing times displayed in the literature show that most of the computational
effort is spent solving the main problem, it sometimes occurs for very large size instances that solving the
secondary problem also takes a significant amount of time. Considering that the secondary problem often
needs to be solved multiple times (especially if one computes minimum infeasible subsets), any significant
improvement in the solving time of the secondary problem would be relevant. Finally, the way of finding
the minimum infeasible subsets is also worth investigating. Côté at al. [27] suggested various heuristic
strategies that were shown to be effective in general, but those can be time consuming in practice, espe-
cially for large size instances. It would be interesting to determine whether one strategy is more suitable
for instances displaying certain features or if the set of strategies used should depend on the number of
solutions that has been tested so far in the secondary problem. Machine learning techniques seem partic-
ularly suitable to answer such questions, but these approaches usually require very large datasets for the
training phase, motivating the need for supplementary benchmark instances and dataset generators.

A third research direction concerns the extension of Côté at al.’s [27] decomposition framework to

35

other two-dimensional cutting and packing problems. To the best of our knowledge, such a framework was
used to solve the strip packing problem [27, 37, 65], the two-dimensional bin packing problem [29], and
practical packing problems in logistics [28, 38, 85]. The same framework could also be used to solve the two-
dimensional knapsack problem [20] and any of the aforementioned problems that incorporates additional
components that can be handled in the main or secondary problem such as orthogonal rotation [37],
guillotine constraints [63], multiple and/or variable-sized containers [42], loading-unloading constraints
[28], and defects [64]. That being said, all reviewers would not necessarily agree that solely applying
an existing framework to another, closely related, optimization problem is enough in terms of original
research to warrant publication. Hyperbolically, if one considers the 4 aforementioned classes of two-
dimensional packing problems (strip packing, knapsack, orthogonal packing, and bin packing) and the
5 aforementioned supplementary features (orthogonal rotation, guillotine constraints, multiple and/or
variable-sized containers, loading-unloading constraints, and defects), one could theoretically write 4 ×
25 = 128 research articles. Therefore, it would appear to be beneficial if each framework extension also
came with significant novelties, either in the form of real-world problem specificities, better ways to solve
the main and/or the secondary problem, original ways to integrate the problem features into the main
and/or the secondary problem, among others. Finally, the question remains open as to whether a similar
decomposition framework could also be used to solve three-dimensional cutting and packing problems [73],
and if yes, whether the resulting computational behaviors would be competitive.

References

[1] R. Alvarez-Valdés, F. Parreño, and J Tamarit. Reactive GRASP for the strip-packing problem. Computers &
Operations Research, 35:1065–1083, 2008.

[2] R. Alvarez-Valdés, F. Parreño, and J. Tamarit. A branch and bound algorithm for the strip packing problem.
OR Spectrum, 31:431–459, 2009.

[3] E. Anand and R. Panneerselvam. Literature review of open shop scheduling problems. Intelligent Information
Management, 7:33, 2015.

[4] C. Arbib, F. Marinelli, F. Rossi, and F. Di Iorio. Cutting and reuse: An application from automobile component
manufacturing. Operations Research, 50:923–934, 2002.

[5] R. Baldacci and M.A. Boschetti. A cutting-plane approach for the two-dimensional orthogonal non-guillotine
cutting problem. European Journal of Operational Research, 183:1136–1149, 2007.

[6] R. Baldacci, M.A. Boschetti, M. Ganovelli, and V. Maniezzo. Algorithms for nesting with defects. Discrete
Applied Mathematics, 163:17–33, 2014.

[7] M. Barkel and M. Delorme. Arcflow formulations and constraint generation frameworks for the two bar charts
packing problem. INFORMS Journal on Computing, 35:475–494, 2023.

[8] J.E. Beasley. Algorithms for unconstrained two-dimensional guillotine cutting. Journal of the Operational
Research Society, 36:297–306, 1985.

[9] J.E. Beasley. An exact two-dimensional non-guillotine cutting tree search procedure. Operations Research,
33:49–64, 1985.

[10] G. Belov, V. Kartak, H. Rohling, and G. Scheithauer. One-dimensional relaxations and LP bounds for orthog-
onal packing. International Transactions in Operational Research, 16:745–766, 2009.

[11] Y. Bengio, A. Lodi, and A. Prouvost. Machine learning for combinatorial optimization: a methodological tour
d’horizon. European Journal of Operational Research, 290:405–421, 2021.

36

[12] B.-E. Bengtsson. Packing rectangular pieces—a heuristic approach. The computer journal, 25:353–357, 1982.

[13] J.O. Berkey and P.Y. Wang. Two-dimensional finite bin-packing algorithms. Journal of the operational research
society, 38:423–429, 1987.

[14] A. Bettinelli, A. Ceselli, and G. Righini. A branch-and-price algorithm for the two-dimensional level strip
packing problem. 4OR, 6:361–374, 2008.

[15] M.A. Boschetti, A. Mingozzi, and E. Hadjiconstantinou. New upper bounds for the two-dimensional orthogonal
non-guillotine cutting stock problem. IMA Journal of Management Mathematics, 13:95–119, 2002.

[16] M.A. Boschetti and L. Montaletti. An exact algorithm for the two-dimensional strip-packing problem. Opera-
tions Research, 58:1774–1791, 2010.

[17] F. Brandao and J.P. Pedroso. Bin packing and related problems: General arc-flow formulation with graph
compression. Computers & Operations Research, 69:56–67, 2016.

[18] E.K. Burke, M.R. Hyde, and G. Kendall. A squeaky wheel optimisation methodology for two-dimensional strip
packing. Computers & Operations Research, 38:1035–1044, 2011.

[19] E.K. Burke, G. Kendall, and G. Whitwell. A new placement heuristic for the orthogonal stock-cutting problem.
Operations Research, 52:655–671, 2004.

[20] A. Caprara and M. Monaci. On the two-dimensional knapsack problem. Operations Research Letters, 32:5–14,
2004.

[21] P.M. Castro and I.E. Grossmann. From time representation in scheduling to the solution of strip packing
problems. Computers & Chemical Engineering, 44:45–57, 2012.

[22] P.M. Castro and J.F. Oliveira. Scheduling inspired models for two-dimensional packing problems. European
Journal of Operational Research, 215:45–56, 2011.

[23] N. Christofides and C. Whitlock. An algorithm for two-dimensional cutting problems. Operations Research,
25:30–44, 1977.

[24] A.M. Chugay and A.V. Zhuravka. Packing optimization problems and their application in 3D printing. In
Advances in Computer Science for Engineering and Education III 3, pages 75–85, 2021.

[25] F. Clautiaux, J. Carlier, and A. Moukrim. A new exact method for the two-dimensional orthogonal packing
problem. European Journal of Operational Research, 183:1196–1211, 2007.

[26] F. Clautiaux, A. Jouglet, J. Carlier, and A. Moukrim. A new constraint programming approach for the
orthogonal packing problem. Computers & Operations Research, 35:944–959, 2008.

[27] J.-F. Côté, M. Dell’Amico, and M. Iori. Combinatorial Benders’ cuts for the strip packing problem. Operations
Research, 62:643–661, 2014.

[28] J.-F. Côté, M. Gendreau, and J.Y. Potvin. An exact algorithm for the two-dimensional orthogonal packing
problem with unloading constraints. Operations Research, 62:1126–1141, 2014.

[29] J.-F. Côté, M. Haouari, and M. Iori. Combinatorial Benders’ decomposition for the two-dimensional bin packing
problem. INFORMS Journal on Computing, 33:963–978, 2021.

[30] J.-F. Côté and M. Iori. The meet-in-the-middle principle for cutting and packing problems. INFORMS Journal
on Computing, 30:646–661, 2018.

[31] V.L. de Lima, C. Alves, F. Clautiaux, M. Iori, and J.M. Valério de Carvalho. Arc flow formulations based on
dynamic programming: Theoretical foundations and applications. European Journal of Operational Research,
296:3–21, 2022.

37

[32] V.L. de Lima, M. Iori, and F.K. Miyazawa. Exact solution of network flow models with strong relaxations.
Mathematical Programming, 197:813–846, 2023.

[33] M. Dell’Amico and S. Martello. Optimal scheduling of tasks on identical parallel processors. ORSA Journal
on Computing, 7:191–200, 1995.

[34] M. Delorme, S. Garćıa, J. Gondzio, J. Kalcsics, D. Manlove, and W. Pettersson. New algorithms for hierarchical
optimisation in kidney exchange programs. Operations Research, to appear, 2023.

[35] M. Delorme and M. Iori. Enhanced pseudo-polynomial formulations for bin packing and cutting stock problems.
INFORMS Journal on Computing, 32:101–119, 2020.

[36] M. Delorme, M. Iori, and S. Martello. Bin packing and cutting stock problems: Mathematical models and
exact algorithms. European Journal of Operational Research, 255:1–20, 2016.

[37] M. Delorme, M. Iori, and S. Martello. Logic based benders’ decomposition for orthogonal stock cutting
problems. Computers & Operations Research, 78:290–298, 2017.

[38] M. Delorme and J. Wagenaar. Exact decomposition approaches for a single container loading problem with
stacking constraints and medium-sized weakly heterogeneous items. Omega, 125:103039, 2024.

[39] H. Dyckhoff. A typology of cutting and packing problems. European Journal of Operational Research, 44:145–
159, 1990.

[40] A. Erzin, G. Melidi, S. Nazarenko, and R. Plotnikov. Two-bar charts packing problem. Optimization Letters,
15:1955–1971, 2021.

[41] I. Friedow and G. Scheithauer. Using contiguous 2D-feasible 1D cutting patterns for the 2D strip packing
problem. In K.F. Dörner, I. Ljubic, G. Pflug, and G. Tragler, editors, Operations Research Proceedings 2015,
pages 71–77. Springer International Publishing, 2017.

[42] F. Furini and E. Malaguti. Models for the two-dimensional two-stage cutting stock problem with multiple
stock size. Computers & Operations Research, 40:1953–1962, 2013.

[43] R. Gedik, C. Rainwater, H. Nachtmann, and E.A. Pohl. Analysis of a parallel machine scheduling problem
with sequence dependent setup times and job availability intervals. European Journal of Operational Research,
251:640–650, 2016.

[44] P.C. Gilmore and R.E. Gomory. A linear programming approach to the cutting-stock problem. Operations
research, 9:849–859, 1961.

[45] S. Grandcolas and C. Pinto. A SAT encoding for multi-dimensional packing problems. In Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization Problems: 7th International
Conference, CPAIOR 2010, Bologna, Italy, June 14-18, 2010. Proceedings 7, pages 141–146, 2010.

[46] A. Grange, I. Kacem, and S. Martin. Algorithms for the bin packing problem with overlapping items. Computers
& Industrial Engineering, 115:331–341, 2018.

[47] Gurobi optimization. Gurobi online documentation. https://www.gurobi.com/documentation/current/
refman/seed.html, 2024. accessed 26 January 2024.

[48] E. Hadjiconstantinou and N. Christofides. An exact algorithm for general, orthogonal, two-dimensional knap-
sack problems. European Journal of Operational Research, 83:39–56, 1995.

[49] J.C. Herz. Recursive computational procedure for two-dimensional stock cutting. IBM Journal of Research
and Development, 16:462–469, 1972.

[50] E.B.C.H. Hopper and B.C.H. Turton. An empirical investigation of meta-heuristic and heuristic algorithms
for a 2D packing problem. European Journal of Operational Research, 128:34–57, 2001.

38

https://www.gurobi.com/documentation/current/refman/seed.html
https://www.gurobi.com/documentation/current/refman/seed.html

[51] W. Huang and K. He. On the weak computability of a four dimensional orthogonal packing and time scheduling
problem. Theoretical Computer Science, 501:1–10, 2013.

[52] M. Iori, V.L. de Lima, S. Martello, F.K. Miyazawa, and M. Monaci. Exact solution techniques for two-
dimensional cutting and packing. European Journal of Operational Research, 289:399–415, 2021.

[53] M. Iori, S. Martello, and M. Monaci. Metaheuristic Algorithms for the Strip Packing Problem, pages 159–179.
Springer US, Boston, MA, 2003.

[54] V. Jain and I. E. Grossmann. Algorithms for hybrid MILP/CP models for a class of optimization problems.
INFORMS Journal on Computing, 13:258–276, 2001.

[55] L.V. Kantorovich. Mathematical methods of organizing and planning production. Management Science, English
translation of a 1939 paper written in Russian, 6:366–422, 1960.

[56] O. Koné, C. Artigues, P. Lopez, and M. Mongeau. Event-based MILP models for resource-constrained project
scheduling problems. Computers & Operations Research, 38:3–13, 2011.

[57] D. Kowalczyk and R. Leus. An exact algorithm for parallel machine scheduling with conflicts. Journal of
Scheduling, 20:355–372, 2017.

[58] O.R. Letelier, F. Clautiaux, and R. Sadykov. Bin packing problem with time lags. INFORMS Journal on
Computing, 34:2249–2270, 2022.

[59] S.C.H. Leung, D. Zhang, and K.M. Sim. A two-stage intelligent search algorithm for the two-dimensional strip
packing problem. European Journal of Operational Research, 215:57–69, 2011.

[60] A. Lodi, S. Martello, and D. Vigo. Heuristic and metaheuristic approaches for a class of two-dimensional bin
packing problems. INFORMS Journal on Computing, 11:345–357, 1999.

[61] S. Martello, M. Monaci, and D. Vigo. An exact approach to the strip-packing problem. INFORMS Journal on
Computing, 15:310–319, 2003.

[62] S. Martello and D. Vigo. Exact solution of the two-dimensional finite bin packing problem. Management
science, 44:388–399, 1998.

[63] M. Martin, E.G. Birgin, R.D. Lobato, R. Morabito, and P. Munari. Models for the two-dimensional rectangular
single large placement problem with guillotine cuts and constrained pattern. International Transactions in
Operational Research, 27:767–793, 2020.

[64] M. Martin, R. Morabito, and P. Munari. Two-stage and one-group two-dimensional guillotine cutting problems
with defects: a CP-based algorithm and ILP formulations. International Journal of Production Research,
60:1854–1873, 2022.

[65] K. Matsushita, Y. Hu, H. Hashimoto, S. Imahori, and M. Yagiura. Exact algorithms for the rectilinear block
packing problem. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 12:JAMDSM0074–
JAMDSM0074, 2018.

[66] M. Mesyagutov, E. Mukhacheva, G. Belov, and G. Scheithauer. Packing of one-dimensional bins with con-
tiguous selection of identical items: An exact method of optimal solution. Automation and Remote Control,
72:141–159, 2011.

[67] J.F. Oliveira, A. Neuenfeldt Júnior, E. Silva, and M.A. Carravilla. A survey on heuristics for the two-
dimensional rectangular strip packing problem. Pesquisa Operacional, 36:197–226, 2016.

[68] C. Paquay, M. Schyns, and S. Limbourg. A mixed integer programming formulation for the three-dimensional
bin packing problem deriving from an air cargo application. International Transactions in Operational Research,
23:187–213, 2016.

39

[69] F. Parreño, M.T. Alonso, and R. Alvarez-Valdés. Solving a large cutting problem in the glass manufacturing
industry. European Journal of Operational Research, 287:378–388, 2020.

[70] A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. A generic exact solver for vehicle routing and related
problems. Mathematical Programming, 183:483–523, 2020.

[71] C.N. Potts. Analysis of a linear programming heuristic for scheduling unrelated parallel machines. Discrete
Applied Mathematics, 10:155–164, 1985.

[72] E. Silva, J.F. Oliveira, T. Silveira, L. Mundim, and M.A. Carravilla. The floating-cuts model: a general
and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems.
Omega, 114:102738, 2023.

[73] E.F. Silva, T.A.M. Toffolo, and T. Wauters. Exact methods for three-dimensional cutting and packing: A
comparative study concerning single container problems. Computers & Operations Research, 109:12–27, 2019.

[74] M. Sindelar, R.K. Sitaraman, and P. Shenoy. Sharing-aware algorithms for virtual machine colocation. In
Proceedings of the Twenty-third Annual ACM Symposium on Parallelism in Algorithms and Architectures,
pages 367–378, 2011.

[75] T. Soh, K. Inoue, N. Tamura, M. Banbara, and H. Nabeshima. A SAT-based method for solving the two-
dimensional strip packing problem. Fundamenta Informaticae, 102:467–487, 2010.

[76] T. Strecker and L. Hennig. Automatic layouting of personalized newspaper pages. In Bernhard Fleischmann,
Karl-Heinz Borgwardt, Robert Klein, and Axel Tuma, editors, Operations Research Proceedings 2008, pages
469–474. Springer Berlin Heidelberg, 2009.

[77] J.M. Valério de Carvalho. Exact solution of bin-packing problems using column generation and branch-and-
bound. Annals of Operations Research, 86:629–659, 1999.

[78] G. Wäscher, H. Haußner, and H. Schumann. An improved typology of cutting and packing problems. European
Journal of Operational Research, 183:1109–1130, 2007.

[79] L. Wei, Z. Luo, R. Baldacci, and A. Lim. A new branch-and-price-and-cut algorithm for one-dimensional
bin-packing problems. INFORMS Journal on Computing, 32:428–443, 2020.

[80] L. Wei, W.-C. Oon, W. Zhu, and A. Lim. A skyline heuristic for the 2d rectangular packing and strip packing
problems. European Journal of Operational Research, 215:337–346, 2011.

[81] J.M. Wilson. Alternative formulations of a flow-shop scheduling problem. Journal of the Operational Research
Society, 40:395–399, 1989.

[82] L.A. Wolsey. Valid inequalities, covering problems and discrete dynamic programs. In Annals of Discrete
Mathematics, volume 1, pages 527–538. 1977.

[83] H. Xiong, S. Shi, D. Ren, and J. Hu. A survey of job shop scheduling problem: The types and models.
Computers & Operations Research, 142:105731, 2022.

[84] J. Yang and J. Leung. The ordered open-end bin-packing problem. Operations Research, 51:759–770, 2003.

[85] X. Zhang, L. Chen, M. Gendreau, and A. Langevin. A branch-and-cut algorithm for the vehicle routing problem
with two-dimensional loading constraints. European Journal of Operational Research, 302:259–269, 2022.

40

APPENDIX

A MIM patterns cannot easily be used for the 1CBP

A direct application of the MIM patterns introduced by Côté and Iori [30] to the 1CBP is not feasible.
Consider the scenario depicted in Figure 5a, featuring a simple instance with 3 items. If we assume that
a valid upper bound UB is 6, we show in Figure 5b the optimal 1CBP solution obtained using normal
patterns, with objective value 5. If we use the MIM patterns in which the threshold t is set to 2, we show in
Figure 5c that an optimal 1CBP solution has objective value 6. This is due to the fact that MIM patterns
assume that the items packed after the threshold (i.e., above the bold line in the figure) are pushed as
much to the top as possible, removing any solution with objective value 5.

Figure 5: Optimal solution of a 1CBP instance using normal patterns versus MIM patterns

items w h NP MIM

item 1 2 3 {0,2,3} {0,3}
item 2 1 2 {0,3} {0,4}
item 3 2 3 {0,2,3} {0,3}

Strip with W = 4 and UB=6
(a) Instance description 1 2

3

0

1

2

3

4

5

6

(b) Optimal packing using normal
patterns

1 2

3
0

1

2

3

4

5

6

(c) Optimal packing using MIM
patterns with t = 2

B Model REFLECT

In this section of the appendix, we first introduce two reflect-based models tailored to the P|cont|Cmax and
we illustrate why an optimal solution of such models cannot necessarily be transformed into an equivalent
(feasible) BM or FLOW-PCC solution. In all models, we assume W to be an even number. The case
where W is an odd number can be handled using the techniques proposed by Delorme and Iori [35].

B.1 Model FLOW-REFLECT:

Model FLOW-REFLECT uses graph G = (V,A) where vertex set V = {0, 1, . . . , W2 } and where arc set
A is composed of:

• standard item arcs As
1, . . . ,As

n where As
i contains every arc (d, d + wi, s) such that d ∈ Wi and

d+ wi ≤ W
2 ; a binary decision variable xside is associated with each standard item arc;

• reflected item arcs Ar
1, . . . ,Ar

n where Ar
i contains every arc (d,W − d−wi, r) such that d ∈ Wi and

d+ wi >
W
2 ; a binary decision variable xride is associated with each reflected item arc;

• standard loss arcs As
0 containing every arc (d, e, s) such that d ∈ W, d < W

2 , e = min{e′ ∈ W : e′ > d}
an integer variable ψde is associated with each standard loss arc;

• reflected loss arc (W2 ,
W
2 , r); an integer variable Ψ is associated with the reflected loss arc;

41

If selected in a solution, item arc (d, e, {s, r}) carries hi units of flow from node d to node e. If selected in
a solution, loss arc (d, e, {s, r}) carries 1 unit of flow from node d to node e (note that a loss arc may be
selected multiple times). A feasible FLOW-REFLECT solution can then be defined as a set of z pairs
of colliding paths (i.e., two paths both starting in zero and ending in the same vertex but only one of the
two contains a reflected arc). The model can be defined as follows:

min
∑
i∈N

∑
(d,e,r)∈Ar

i

hix
r
ide +Ψ (66)

s.t.
∑

(d,e)∈As
i

hix
s
ide +

∑
(d,e)∈Ar

i

hix
r
ide = 1 i ∈ N , (67)

∑
i∈N

∑
(0,e,s)∈As

i

hix
s
i0e +

∑
i∈N

∑
(0,e,r)∈Ar

i

hix
r
i0e +

∑
(0,e,s)∈As

0

ψ0e = 2

∑
i∈N

∑
(d,e,r)∈Ar

i

hix
r
ide +Ψ

 , (68)

∑
i∈N

∑
(d,e,s)∈As

i

hix
s
ide +

∑
(d,e,s)∈As

0

ψde =
∑
i∈N

∑
(e,f,s)∈As

i

hix
s
ief +

∑
i∈N

∑
(e,f,r)∈Ar

i

hix
r
ief +

∑
(e,f)∈As

0

ψef e ∈ V \ {0, W
2
}, (69)

∑
i∈N

∑
(d,e,s)∈As

i

hix
s
ide +

∑
(d,e,s)∈As

0

ψde = 2Ψ e =
W

2
, (70)

xride ∈ {0, 1} i ∈ N , (d, e, r) ∈ Ar
i , (71)

xside ∈ {0, 1} i ∈ N , (d, e, s) ∈ As
i , (72)

ψde ∈ N0 (d, e, s) ∈ As
0, (73)

Ψ ∈ N0. (74)

B.2 Model BM-REFLECT

Model BM-REFLECT is a hybridization of models BM and FLOW-REFLECT. The model considers
a column set W = {0, . . . , W2 − 1}. For each item, it also considers two subsets of columns in which the
first slice of a given i ∈ N item can be packed:

• Columns Ws
i = {0, . . . , W2 − wi}; if the first slice of item i is packed in column p ∈ Ws

i , then a slice
of item i is also packed in columns p+ 1, p+ 2, . . . , p+ wi − 1;

• Columns Wr
i =

{
max{0, W2 −wi+1}, . . . ,min{W

2 − 1,W −wi}
}
; if the first slice of item i is packed

in column p ∈ Wr
i , then a slice of item i is also packed in:

– columns p+ 1, p+ 2, . . . , W2 − 1 to account for pre-reflection;

– columns W
2 − 1, W2 − 2, . . . ,W − p− wi to account for post-reflection;

We also adapt set Wi(p) to BM-REFLECT as follows:

• Ws
i (p) = {p′ ∈ Ws

i : 0 ≤ p− wi + 1 ≤ p′ ≤ p}, for all i ∈ N and for all p ∈ W;

• Wr1
i (p) = {p′ ∈ Wr

i : 0 ≤ W
2 − wi + 1 ≤ p′ ≤ p}, for all i ∈ N and for all p ∈ W;

• Wr2
i (p) = {p′ ∈ Wr

i : 0 ≤W − p− wi ≤ p′ ≤ W
2 − 1}, for all i ∈ N and for all p ∈ W;

The model uses two sets of binary decision variables:

• xsip taking value 1 if the first slice of item i ∈ N is packed in column p ∈ Ws
i ;

• xrip taking value 1 if the first slice of item i ∈ N is packed in column p ∈ Wr
i ;

together with integer decision variable z indicating the maximum column height.

42

BM-REFLECT can be defined as follows:

min z (75)

s.t.
∑
p∈Ws

i

xsip +
∑
p∈Wr

i

xrip = 1 i ∈ N , (76)

∑
i∈N

hi

 ∑
p′∈Ws

i (p)

xsip′ +
∑

p′∈Wr1
i (p)

xrip′ +
∑

p′∈Wr2
i (p)

xrip′

 ≤ 2z p ∈ W, (77)

xsip ∈ {0, 1} i ∈ N , p ∈ Ws
i (78)

xrip ∈ {0, 1} i ∈ N , p ∈ Wr
i . (79)

B.3 Transforming a FLOW-REFLECT solution into a FLOW-PCC solution

A feasible FLOW-REFLECT solution with objective value z cannot always be converted into a feasible
FLOW-PCC solution with the same objective value. Consider, for example, the instance described in
Table 6a. An optimal solution obtained by FLOW-PCC with objective value 5 is depicted in Figure 6b
whereas an optimal solution obtained by FLOW-REFLECT with objective value 4 is depicted in Figure
6c. Following the strategy described by Delorme and Iori [37], the FLOW-REFLECT solution can be
decomposed into the following pairs of colliding paths:

• 3 times 0 → 2 → 2 and 0 → 2;

• 1 time 0 → 1 → 2 → 2 and 0 → 1 → 2.

In P|cont|Cmax terms, such a solution packs the unique slice of item 2 into two columns at the same
time: a first half in the first column and the other half in the fourth column, which is why a solution
with objective value 4 can be reached. This problem occurs in the reflect-based models tailored to the
P|cont|Cmax because of the presence of the hi coefficients in the flow-conservation constraints (which did
not appear in the original reflect formulation for the cutting stock problem). One could still reconstruct
a feasible P|cont|Cmax solution from an optimal FLOW-REFLECT solution by “unfolding” the solution
graph and duplicating each standard arc, as shown in Figure 6d. One can then solve a simplified version
of FLOW-PCC in which at most two arcs per item are considered. Preliminary experiments indicated
that the resulting two-step matheuristic approach was not promising.

43

Figure 6: Comparison of different solutions

w h

strip 4 ∞
item 1 2 3
item 2 1 2
item 3 2 3

(a) Instance description

0 1 2 3 4
l1 = 2 l2 = 2 l4 = 2

h1 = 3 h3 = 3

h2 = 2

(b) Optimal FLOW-PCC solution

0 1 2
l2 = 2

G = 4

h1 = 3

h3 = 3

h2 = 2

(c) Optimal REFLECT solution

0 1 2 3 4
l2 = 2 l′2 = 2

h1 = 3

h2 = 2

h3 = 3

h′1 = 3

h2 = 2

h′3 = 3

(d) Extended REFLECT solution

C Supplementary tables evaluating the baseline version of the tested
models

Table 22: Results of BKRS, BM, FLOW-PCC, and CP-PCC without preprocessing techniques

Dataset #inst BKRS BM FLOW-PCC CP-PCC

#opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s)

CGCUT 3 1 2400 0 2 1201 1 2 1236 54 1 2400 0
HT 9 6 1355 232 8 404 5 9 39 39 8 414 16
BENG 10 8 1232 640 10 8 8 6 1582 234 10 1 1
NGCUT 12 12 39 39 12 1 1 12 40 40 12 1 1
BKW 13 3 3007 1029 5 2222 15 4 2666 565 3 2942 751
GCUT 13 4 2842 1136 11 611 66 9 1128 29 10 1054 290
CLASS1 50 50 1 1 50 0 0 50 0 0 39 851 75
CLASS2 50 47 515 319 50 7 7 49 209 139 50 1 1
CLASS3 50 34 1240 130 48 250 110 43 505 1 31 1369 2
CLASS5 50 34 1315 240 48 148 4 46 331 47 38 876 16
CLASS7 50 50 4 4 50 0 0 50 10 10 50 0 0
CLASS9 50 50 0 0 50 0 0 50 0 0 50 0 0
CLASS10 50 11 2887 362 23 2045 218 19 2331 260 18 2305 2

Total 410 310 991 150 367 406 32 349 583 55 320 812 28

44

Table 23: Results of APT, APTP, FLOW-CBP, and CP-CBP without a valid LB

Dataset #inst APT APTP FLOW-CBP CP-CBP

#opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s) #opt T(s) Topt(s)

CGCUT 3 2 1206 8 2 1205 7 2 1314 171 1 2400 0
HT 9 9 31 31 9 18 18 9 81 81 8 413 14
BENG 10 6 2079 1065 8 1095 468 2 2880 2 10 37 37
NGCUT 12 12 10 10 12 13 13 12 9 9 12 1 1
BKW 13 3 2798 123 5 2504 751 4 2524 104 6 2242 658
GCUT 13 4 2534 136 4 2618 409 3 2770 1 8 1677 475
CLASS1 50 42 792 258 36 1043 49 26 1782 103 36 1037 41
CLASS2 50 41 846 242 41 786 169 30 1677 396 49 123 52
CLASS3 50 14 2627 126 19 2240 22 13 2668 16 24 1892 39
CLASS5 50 21 2116 67 20 2161 3 20 2161 4 24 1875 3
CLASS7 50 46 346 63 41 668 24 42 642 78 50 13 13
CLASS9 50 50 1 1 50 9 9 50 6 6 50 0 0
CLASS10 50 3 3384 6 6 3185 141 3 3384 1 11 2812 19

Total 410 253 1463 137 253 1429 83 216 1752 93 289 1097 49

Table 24: Model-specific metrics for APT, APTP, and FLOW-CBP without a valid LB

Dataset #inst APT APTP FLOW-CBP

cont. #var #const #nz cont. #var #const #nz cont. #var #const #nz

CGCUT 3 129.7 18 421 18 455 15 730 516 240.1 18 420 681 456 687 240.1 18 745 359 55 261
HT 9 15.2 581 604 20 401 21.7 580 76 3219 21.7 608 51 1740
BENG 10 49.5 10 184 10 274 1 403 530 89.4 10 183 281 78 720 89.4 10 280 187 30 550
NGCUT 12 29.4 430 442 24 621 36.3 429 89 4841 36.3 469 52 1289
BKW 13 255 108 255 462 236 366 157 177.7 255 107 733 3 758 896 177.7 255 298 545 765 323
GCUT 13 81 919 68 631 368 278 939 4240.5 81 918 5833 27 124 252 4240.5 84 817 2928 245 736
CLASS1 50 154.8 3858 3886 700 154 186.6 3857 192 24 444 186.6 3940 112 11 571
CLASS2 50 33.9 4587 4647 438 127 60.1 4586 190 29 018 60.1 4653 127 13 759
CLASS3 50 18 344 18 379 12 477 412 502.2 18 343 666 341 375 502.2 18 660 352 55 030
CLASS5 50 32 543 32 569 52 822 092 1613.6 32 542 1391 1 613 877 1613.6 33 217 709 97 609
CLASS7 50 1544.7 1357 1363 484 073 1580.9 1356 365 66 804 1580.9 1527 187 4048
CLASS9 50 3340.5 167 169 41 092 3340.2 166 136 7801 3340.2 206 70 441
CLASS10 50 53 069 53 120 65 441 994 909.7 53 068 1662 1 904 061 909.7 53 875 858 159 204

Total 410 306 24 988 24 606 35 469 121 1145 24 987 786 1 470 961 1145 25 355 414 74 949

45

D Supplementary table evaluating the impact of variable reduction tech-
niques

Table 25: Model-specific metrics for APTP and FLOW-CBP with/without normal patterns

APTP FLOW-CBP

Dataset #inst Baseline Normal patterns Baseline Normal patterns

#var #const #var #const #var #const #var #const

CGCUT 3 18 420 681 18 007(-10.4%) 681(0%) 18 745 359 18 323(-10.3%) 359(0%)
HT 9 580 76 568(-2.4%) 76(0%) 608 51 596(-2.4%) 51(0%)
BENG 10 10 183 281 10 183(-0%) 281(0%) 10 280 187 10 280(-0%) 187(0%)
NGCUT 12 429 89 322(-31.8%) 89(0%) 469 52 349(-32.1%) 52(0%)
BKW 13 255 107 794 254 895(-2.4%) 733(0%) 255 298 545 255 084(-2.4%) 545(0%)
GCUT 13 81 918 6319 70 677(-24.4%) 5833(0%) 84 817 2928 72 976(-26.5%) 2928(0%)
CLASS1 50 3857 192 3850(-6.1%) 192(0%) 3940 112 3933(-6.6%) 112(0%)
CLASS2 50 4586 190 4585(-0.2%) 190(0%) 4653 127 4652(-0.2%) 127(0%)
CLASS3 50 18 343 679 18 268(-12.6%) 666(0%) 18 660 352 18 577(-13.4%) 352(0%)
CLASS5 50 32 542 1512 32 240(-14.7%) 1391(0%) 33 217 709 32 881(-16.4%) 709(0%)
CLASS7 50 1356 389 807(-39.9%) 365(0%) 1527 187 888(-43.5%) 187(0%)
CLASS9 50 166 200 89(-13.7%) 136(0%) 206 70 96(-21.3%) 70(0%)
CLASS10 50 53 068 1662 52 907(-4.3%) 1662(0%) 53 875 858 53 705(-4.6%) 858(0%)

Total 410 24 987 830 24 475(-13.1%) 786(0%) 25 355 414 24 802(-14.9%) 414(0%)

E Model for the maximum coverage problem

The following model determines a combination of approaches that solves the maximum number of instances.
It uses:

• set A containing every considered approach;

• set I containing every considered instances;

• set T containing every considered time limit;

• parameter siat is equal to 1 if instance i is solved by approach a in t seconds or less (i ∈ I, a ∈ A, t ∈
T);

• binary decision variable xat taking value 1 if the selected approach combination includes approach
a with a time limit of t seconds (called a sub-variation) (a ∈ A, t ∈ T);

• binary decision variables yi taking value 1 if the selected approach combination covers (or solves)
instance i (i ∈ I).

The model is as follows:

max
∑
i∈I

yi (80)

s.t.
∑
a∈A

∑
t∈T

xat ≤ β, (81)

yi ≤
∑
a∈A

∑
t∈T

siatxat i ∈ I, (82)∑
t∈T

∑
a∈A

txat ≤ 3600, (83)

yi ∈ {0, 1} i ∈ I, (84)

46

xat ∈ {0, 1} a ∈ A, t ∈ T . (85)

Objective function (80) maximizes the total number of instances solved, constraint (81) limits the
number of sub-variations included in the approach combination, constraints (82) make sure that an instance
is counted as covered if it is solved by at least one sub-variation in the approach combination, and constraint
(83) limits the total time budget of the approach combination to 3600 seconds.

F Supplementary tables evaluating the impact of solver randomness

Table 26: Results of FLOW-CBP with normal patterns, integer variables, and RCVF for 1CBP instances

Dataset #inst Seed-1 Seed-2 Seed-3 Seed-4 Seed-5 #solved by x seeds

#opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) 5 4 3 2 1 0

CGCUT 3 2 1200 2 1200 2 1210 2 1200 2 1201 2 0 0 0 0 1
HT 9 9 3 9 66 9 18 9 10 9 5 9 0 0 0 0 0
BENG 10 2 2881 4 2564 3 2770 3 2520 2 2880 2 0 0 2 0 6
NGCUT 12 12 1 12 1 12 1 12 1 12 1 12 0 0 0 0 0
BKW 13 10 1172 7 1668 9 1259 10 1098 8 1527 6 2 2 0 0 3
GCUT 13 5 2216 5 2217 5 2217 5 2217 5 2217 5 0 0 0 0 8
CLASS1 50 34 1278 34 1211 35 1174 34 1221 35 1170 33 0 1 1 2 13
CLASS2 50 28 1780 25 1941 26 1788 27 1743 23 1969 22 0 1 4 8 15
CLASS3 50 19 2242 17 2383 18 2312 18 2337 17 2413 17 0 1 0 1 31
CLASS4 50 8 3080 9 3086 8 3081 7 3099 8 3093 7 1 0 0 1 41
CLASS5 50 21 2103 22 2033 21 2102 21 2102 21 2103 21 0 0 0 1 28
CLASS6 50 6 3185 7 3153 7 3216 6 3216 7 3193 6 0 1 0 0 43
CLASS7 50 47 217 47 217 47 217 47 217 48 215 47 0 0 0 1 2
CLASS8 50 0 3600 0 3600 0 3600 0 3600 0 3600 0 0 0 0 0 50
CLASS9 50 50 0 50 0 50 0 50 0 50 0 50 0 0 0 0 0
CLASS10 50 5 3241 5 3241 5 3258 5 3261 5 3241 5 0 0 0 0 45

Total 560 258 1987 255 2006 257 1989 256 1985 252 2020 244 3 6 7 14 286

Table 27: Results of CP-CBP with mirror symmetry-breaking constraints (63) for 1CBP instances

Dataset #inst Seed-1 Seed-2 Seed-3 Seed-4 Seed-5 #solved by x seeds

#opt T(s) #opt T(s) #opt T(s) #opt T(s) #opt T(s) 5 4 3 2 1 0

CGCUT 3 1 2400 1 2400 1 2400 1 2400 1 2400 1 0 0 0 0 2
HT 9 8 420 8 415 9 107 8 432 9 329 8 0 0 1 0 0
BENG 10 10 18 10 20 10 34 10 35 10 15 10 0 0 0 0 0
NGCUT 12 12 0 12 0 12 0 12 0 12 0 12 0 0 0 0 0
BKW 13 6 2015 6 2200 5 2239 5 2321 5 2250 5 0 0 1 0 7
GCUT 13 7 1786 7 1788 7 1711 7 1692 7 1701 7 0 0 0 0 6
CLASS1 50 50 34 50 28 50 52 50 12 49 101 49 1 0 0 0 0
CLASS2 50 47 246 48 175 48 192 46 304 47 222 46 0 1 1 1 1
CLASS3 50 36 1037 36 1051 36 1064 36 1051 36 1020 36 0 0 0 0 14
CLASS4 50 15 2611 15 2615 16 2510 20 2467 16 2534 14 0 1 4 1 30
CLASS5 50 35 1145 34 1157 34 1158 34 1156 35 1144 34 0 0 0 2 14
CLASS6 50 9 2970 10 2896 10 2927 9 3011 9 2998 8 1 1 0 0 40
CLASS7 50 50 0 50 0 50 1 50 2 50 1 50 0 0 0 0 0
CLASS8 50 11 2926 11 3020 11 2891 11 2965 10 2924 10 1 0 0 0 39
CLASS9 50 50 0 50 0 50 0 50 0 50 0 50 0 0 0 0 0
CLASS10 50 15 2551 15 2541 15 2562 15 2572 14 2595 14 1 0 0 0 35

Total 560 362 1315 363 1316 364 1299 364 1323 360 1319 354 4 3 7 4 188

G An SPP instance for which the 1CBP and the P|cont|Cmax relaxations
do not produce the same bound

For a given SPP instance, the bound derived from its 1CBP relaxation is not necessarily the same as the
bound derived from its P|cont|Cmax relaxation. For example, we provide in Figure 7a an SPP instance

47

for which the optimal solution of its 1CBP relaxation has value 9 (see Figure 7b) whereas the optimal
solution of its P|cont|Cmax relaxation has value 10 (see Figure 7c).

Figure 7: An SPP instance and the optimal solution of its 1CBP and P|cont|Cmax relaxations

w h

strip 5 ∞
item 1 1 2
item 2 2 2
item 3 1 3
item 4 2 3
item 5 3 3
item 6 2 4
item 7 3 4
(a) SPP instance

1

1

23

4

5 6

7

0

1

2

3

4

5

6

7

8

9

10

(b) Optimal 1CBP solution

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

8

9

10

(c) Optimal P|cont|Cmax solution

48

	Introduction
	Literature review
	Mathematical models
	Mathematical notation
	ILP models for the P|cont|Cmax
	BKRS formulation
	BM formulation
	FLOW-PCC formulation

	ILP models for the 1CBP
	APT formulation
	FLOW-CBP formulation

	CP formulations for the P|cont|Cmax and the 1CBP

	Model enhancements
	Exploiting item multiplicity
	Prepacking large items and adjusting the instance dimensions
	Reducing the number of variables
	Symmetry-breaking constraints
	Compatibility table

	Lower bounds
	Lower bounds for the P|cont|Cmax
	Lower bounds for the 1CBP

	Computational experiments
	Baseline version of the models
	P|cont|Cmax
	1CBP

	Variable reduction techniques
	P|cont|Cmax
	1CBP

	Exploiting item multiplicity
	P|cont|Cmax
	1CBP

	Symmetry-breaking constraints
	P|cont|Cmax
	1CBP

	Destructive bounds and reduced-cost variable fixing
	Approach combination and randomness impact
	Lower bounds

	Conclusion
	MIM patterns cannot easily be used for the 1CBP
	Model REFLECT
	Model FLOW-REFLECT:
	Model BM-REFLECT
	Transforming a FLOW-REFLECT solution into a FLOW-PCC solution

	Supplementary tables evaluating the baseline version of the tested models
	Supplementary table evaluating the impact of variable reduction techniques
	Model for the maximum coverage problem
	Supplementary tables evaluating the impact of solver randomness
	An SPP instance for which the 1CBP and the P|cont|Cmax relaxations do not produce the same bound

