
Spatial branch-and-bound for nonconvex separable piecewise
linear optimization

Thomas Hübner∗ Akshay Gupte† Steffen Rebennack‡

Submitted: May 1, 2024; Revised: 3 January, 2025

Abstract

Nonconvex separable piecewise linear functions (PLFs) frequently appear in applications
and to approximate nonlinearitites. The standard practice to formulate nonconvex PLFs is
from the perspective of discrete optimization, using special ordered sets and mixed integer
linear programs (MILPs). In contrast, we take the viewpoint of global continuous optimiza-
tion and present a spatial branch-and-bound algorithm (sBB) for optimizing a separable
discontinuous PLF over a closed convex set. It offers slim and sparse linear programming
relaxations, sharpness throughout the search tree, and an increased flexibility in branching
decisions. The main feature of our algorithm is the generation of convex underestimators
at the root node of the search tree and their quick and efficient updates at each node af-
ter branching. Convergence to the global optimum is achieved when the PLFs are lower
semicontinuous. A Python implementation of our algorithm is tested on knapsack and
network flow problems, both for continuous and discontinuous PLFs. Our algorithm is com-
pared with four logarithmic MILP formulations solved by Gurobi’s MILP solver, as well as
Gurobi’s PLF solver. We also compare our method against MINLP formulations solved by
Gurobi. The numerical experiments indicate significant performance gains up to two orders
of magnitude for medium- to large-sized PLFs. Finally, we also give an upper bound on the
additive error from PLF approximations of nonconvex separable optimization.

Keywords. Piecewise linear functions, Global optimization, Lower semicontinuity, Convex
underestimators, Branching rules, Additive error bound

AMS 2020 subject classification. 90C26, 90C57

1 Introduction

1.1 Literature review

A piecewise linear function (PLF) is a multivariate function whose domain can be partitioned
into pieces such that the function is affine in each piece. Such a nonsmooth function arises
naturally in some optimization problems or more commonly as approximation of a nonlinear
nonconvex function [Gei+12, DG15, Nag+19, BGS20, BHH22, Bär+23, WR24]. When a PLF
is convex and is either minimized or appears in a ⩽ constraint, it can be modelled as a linear
program (LP). In general, a PLF is NP-hard to optimize [KFN06] even for separable PLFs which

∗Power Systems Laboratory, ETH Zürich, Switzerland, thuebner@ethz.ch
†School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, United

Kingdom, akshay.gupte@ed.ac.uk
‡Institute for Operations Research, Karlsruhe Institute of Technology, Germany, steffen.rebennack@kit.edu

1

mailto: thuebner@ethz.ch
mailto: akshay.gupte@ed.ac.uk
mailto: steffen.rebennack@kit.edu

can be written as a sum of univariate PLFs each of which is in a different coordinate. Separable
PLFs appear naturally in a wide variety of problems in various fields dealing with economies of
scale, such as logistics, management, finance or engineering [MM57, Dan60, BF76]. Univariate
PLFs also arise as approximations to one-dimensional nonconvex functions in a global opti-
mization problem [LSW08, NP09, RK15, GK20, PUK20, SSN22]. In fact, a separable concave
function minimization can be approximated to an arbitrary precision by a single separable PLF
problem [MS04].

The common way to approach problems with nonconvex PLFs is by developing exact for-
mulations based on either mixed-integer linear programming (MILP) models or special ordered
sets of type 2 (SOS2). In both approaches, the problem is reformulated by using a number
of additional variables, some of which are binary, and constraints for each breakpoint of the
PLF. This reformulation is then solved with a MILP solver. Classical MILP and SOS2 mod-
elling approaches (see surveys in [VAN10, Reb16]) initially focused on continuous separable
PLFs, but were later extended by [VAN10] to the non-separable case. It is known that their
LPs provide the same relaxation strength [She01, CGM03, KFN04]. However, they have the
drawback of using as many binary variables as the number of segments of a PLF. This was
remedied by [VN09, HV22] who produced MILPs that require only a logarithmic number of
binary variables, thereby allowing for greater scalability of such models. Other research has
focused on specialized valid inequalities for the SOS2-based models of separable PLFs [KFN06,
VKN08, ZF12, Far+13]. Extensions of MILP models to lower semicontinuous (l.s.c.) PLFs have
been studied [VKN08, VAN10]. For general discontinuous PLFs, one cannot expect a MILP
formulation with bounded integer variables [Mey76, Theorem 2.1], but the SOS2 branching
scheme has been adapted [FZZ08]. Many of these modelling and algorithmic advances have
been implemented in state-of-the-art MILP solvers, and leveraged to build stronger polyhedral
relaxations of nonconvex functions [Reb16, KRT22, LHH23].

Since a PLF is a nonconvex function, the problem of optimizing a PLF can be viewed
through the lens of global optimization. A commonly used algorithmic framework for global
optimization is spatial branch-and-bound (sBB). The use of a sBB for optimizing a separable
function (sum of univariate functions, not necessarily PLF) was first done by Falk and Soland
[FS69]. This was improved upon by [Hor86, TH88] to general nonconvex functions and since
then sBB algorithms for global optimization have matured immensely [cf. LS13, Tuy16] and
there are many sophisticated implementations in global solvers for optimizing smooth functions.
However, this global optimization approach has so far not been undertaken for PLF optimiza-
tion, and state-of-the-art global solvers are unable to take PLFs directly as input without first
being modelled using integer variables as mentioned above. Another drawback of existing meth-
ods is that they do not always scale well with the number of segments in the PLF. We adopt
the global optimization approach and our experiments show that the sBB approach has better
scalability properties than the MILP or SOS2 models.

1.2 Our contributions

We study the global optimization of a separable nonconvex PLF over a closed convex set.
Contrary to the standard combinatorial approach of using a MILP or SOS formulation to model
the PLF, we take the nonlinear approach to solving such problems. We do not reformulate the
PLF with integer variables, but instead generate convex underestimators for it and refine them
to develop a spatial branch-and-bound (sBB) algorithm. A key ingredient of our algorithm
is how the underestimator is generated even when the PLF is discontinuous, and how it is
efficiently and quickly updated at a child node using the information from the parent node and

2

without having to generate it from scratch. Our contribution of adding a new method to the
literature complements the MILP and SOS2 approaches by offering the following advantages:
(i) slim and sparse LP relaxations, (ii) sharpness throughout the search tree, (iii) more freedom
in branching decisions. Through extensive computational experiments we demonstrate that
even a rudimentary Python implementation of the sBB can provide speed-ups of two orders
of magnitude over modern logarithmic models solved by Gurobi if the number of segments is
sufficiently large and that these speed-ups tend to grow with every segment added to the PLFs.

The existing approaches for PLF optimization would use integer branch-and-bound (B&B)
where branching takes place on integer (mostly binary) variables in a binary search tree and
bounding is through LP relaxations (enhanced with cutting planes). Our sBB also uses LP
relaxations (albeit of a different kind) for bounding, but branches on continuous variables only
(hence the term spatial). Hence, finite convergence to the global optimum is not obvious with
our approach and in fact is not possible for all branching rules. We provide a rule that branches
only at the breakpoints and enables the sBB to converge finitely. The classical largest-error
branching rule is known to converge asymptotically for a continuous separable objective, and we
present an independent and self-contained proof using Lipschitz continuity of PLFs. For general
objective functions that are either lower semi-continuous or such that their values at infeasible
points are no lower than the global minimum, the longest-edge branching rule has been shown
to achieve asymptotic convergence, and this carries over to our PLF optimization problem also.
The lack of finite convergence for any branching rule could be perceived as a drawback of sBB
versus integer B&B which always terminates finitely for bounded integer variables. However,
our experiments show that this convergence issue arises only when the number of segments in
a PLF is small and the sBB generally terminates quicker for larger instances.

To the best of our knowledge, the various sBB-based state-of-the-art global solvers cannot
handle PLFs directly unless they are explicitly input to the solver formulated as MILPs. Thus,
we see our work as a first step in the direction of creating an sBB solver that can optimize a
separable PLF without creating integer variables. We begin in § 2 by describing the problem
input and basics of sBB from literature. § 3 introduces the basic concepts of our sBB algorithm
and relates it to the MILP and SOS2 approaches. § 4 studies various convexification properties
of a univariate PLF that underpin our algorithm. The sBB algorithm, with all its elements,
is described and analyzed for convergence in § 5. Computational testing is done in § 6 where
comparisons are also drawn with logarithmic-sized MILP models, Gurobi’s PLF solver and
Gurobi’s global solver. § 7 derives a bound on the number of segments necessary in a good PLF
approximation of separable Hölder-continuous functions. Lastly, conclusions and some future
directions are mentioned in § 8.

1.3 Importance of scalable algorithms

Since our experiments show the sBB to have better computational performance than MILP
or SOS2 models as the number of segments in the PLF increases, we briefly discuss here the
importance of a method with such good scalability properties.

PLFs are commonly employed to linearize nonlinear terms and thereby create a tractable
approximation to a nonconvex optimization problem. PLF approximations can be constructed
either as relaxations (outer approximations) or through discretizations (inner approximations).
When the nonconvexities are present in the constraints, the PLF approximation resulting from
discretization may not necessarily produce an inner approximation of the feasible region, but
can nonetheless be used to obtain some approximate solution. Small segments in the PLF give
fine approximations of the problem which may translate into sharp primal or dual bounds.

3

Thus, a key question when building PLF approximations is to determine how many pieces
each PLF should have if the approximation error, defined as the largest distance between the
function value and the approximate value, is to be no more than some given error bound. We
mention some results for a continuous univariate function over a closed interval since that is
the focus of this paper, but note that some error-bounding analysis has also been done for
higher-dimensional functions [DG15, AGX19, DN22, Bär+23].

The errors in the PLF relaxation of a univariate function is an elementary calculation
because this relaxation is constructed by first partitioning the interval into alternate regions
of convexity and concavity for the function, and then drawing tangents at different points
in the convex regions and drawing secants in the concave regions. The analysis is nontrivial
for the case of the PLF approximation which is constructed by choosing some breakpoints in
the interval (either equidistant or not) and connecting them at their function values. For this
discretization, Frenzen et al. [FSB10, Theorems 1 and 2] gave an asymptotic answer by showing
that for thrice-continuously differentiable functions, the number of breakpoints to achieve an
error of ε is roughly c/

√
ε as ε→ 0, where the constant c depends on the second-order derivative

of the function. Another related question is to consider optimization of a separable function
and determine the number of breakpoints necessary to construct a PLF approximation whose
optimal value is no worse than a given tolerance ε away from the true optimum. Such bounds
on the number of segments have been derived using first- and second-order derivatives when
the function is convex or caoncave [Tha78, Kon00, MS04]. When the objective function is
nonseparable, it is possible to construct separable PLF underestimators and use their error
bounds to obtain a globally convergent algorithm [FM88].

There are computationally intensive MILP-based methods for computing best-fit PLFs
[TV12, Ngu19, KM20, RK20, WR22] as well as efficient algorithms [WR24]. Even if loga-
rithmically many binary variables are used, the number of continuous variables generally scales
linearly with the number of pieces in each function. Therefore, in order to obtain tight approxi-
mations of nonlinear functions, large-sized MILPs have to be solved and branch-cut algorithms
do not always converge very quickly on these. Recognizing this obstacle, some recent studies
[Nag+19, BGS20, GKK22] have looked at algorithms that adapt the location of the breakpoints
in the PLF approximation so that large-sized mixed-integer formulations do not have to be cre-
ated a priori, but their results are far from conclusive and there is still scope for devising new
methods with better scalability.

2 Preliminaries

2.1 Problem Input

We consider the separable nonconvex piecewise linear optimization problem given by

P : v∗ = inf F (x) :=
n∑

i=1

fi(xi), s.t. x ∈ S ∩H, (1)

where every fi : [li, ui] → R is a univariate PLF, possibly nonconvex and discontinuous, over
an interval Hi := [li, ui]. Some of the fi’s can be constant functions. The feasible set is the
intersection of a closed convex set S ⊂ Rn and a hyper-rectangle H := {x ∈ Rn : li ⩽ xi ⩽
ui, i = 1, . . . , n}. When each fi is l.s.c. over [li, ui], the problem is solvable in the sense that
the optimal value v∗ is attained by some feasible solution. For general discontinuous functions,
optimal solutions may not exist and so we can only hope to find v∗. Note that when H is not

4

given explicitly in the description of the feasible set, variable bounds can be computed if S is
compact. For simplicity and ease of notation, we assume that the intervals in each coordinate
satisfy Hi = projection of S ∩H onto xi. This can be achieved after some pre-processing and
optimality-based bound tightening techniques.

Each PLF fi is input with its Ki + 1 breakpoints in [li, ui], for some integer Ki ⩾ 1, and
these are indexed by the set Ki := {0, 1, . . . ,Ki}. The breakpoints include the two endpoints li
and ui and the points where fi either changes its slope or is discontinuous. Denote the x-values
of the breakpoints by

Bi := {bki : k ∈ Ki}, with li = b0i < b1i < b2i < · · · < bKi
i = ui. (2a)

The function values at the breakpoints are {yki : k ∈ Ki}. Since we allow discontinuities at the
breakpoints, we also need to know the left and right limits at each breakpoint to characterize
fi. The left limit is denoted by yk,−i and the right limit by yk,+i . For the left (resp. right)
endpoint, we set the left (resp. right) limit to the function value. Thus, for every k ∈ Ki we
have as input the tuple (

bki , y
k
i , y

k,−
i , yk,+i

)
.

Using this input, a univariate PLF can be defined over [bki , b
k+1
i), for any k ∈ Ki, as

fi(xi) =

yki , xi = bki

yk+1,−
i − yk,+i

bk+1
i − bki

(
xi − bki

)
+ yk,+i , bki < xi < bk+1

i .
(2b)

If fi is continuous at a breakpoint bki , i.e., yki = yk,−i = yk,+i , we write (bki , y
k
i), knowing that

the left and right limit coincide with the function value.

2.2 Background on sBB

The spatial branch-and-bound (sBB) is similar to the integer branch-and-bound (B&B) but has
some major differences. In sBB, lower bounds are computed by a convex relaxation (convexifi-
cation) which is obtained after replacing every nonconvex function by a convex underestimator
over its bounded function domain. The strength of relaxations is important for convergence of
the algorithm and a fast numerical performance depends on the speed and efficiency with which
the relaxations are generated and updated throughout the branching tree. Secondly, branch-
ing takes place on continuous variables (hence the term spatial) which leads to a partition of
the feasible region in hyperrectangles. Thirdly, after branching has occurred and any bound
tightening has been performed on the variables, the underestimator is updated and refined to
obtain a stronger relaxation than what is implied by the original relaxation with new variable
bounds on it. Convergence in limit to the global optimum can then be obtained under mild
conditions and assumption of lower-semicontinuity of the functions, since branching results into
smaller hyperrectangles which allow for tighter underestimators that force the gap between the
function and its underestimator to converge to zero. The reader is referred to [LS13, chap.
5.4] for a more detailed description of the general convergence theory of sBB algorithms. It is
known that for optimizing any nonconvex function over a closed convex set, an sBB algorithm
converges in finitely many iterations for any ε > 0 optimality tolerance if the following two
properties are satisfied :

5

1. exhaustiveness of branching (which means that any nested infinite subsequence of hyper-
rectangles used for branching converges to a point), and

2. exactness in the limit for the underestimators (which means their gap to the function
value at any point goes to zero as the branching hyper-rectangles shrink to a point) .

With ε = 0, only convergence in the limit is guaranteed if besides the above two properties the
sBB also selects nodes infinitely often using the best bound rule. Some of the branching rules
can also lead to finite convergence with ε = 0 if there is some special structure on the optimal
solutions such as an extreme point property [SS98, AS00].

3 Overview of our sBB

3.1 Main Ideas

There are two main components to our sBB — convex relaxations using underestimators to
obtain lower bounds, and branching rules to guarantee convergence to global optimum. We do
not employ any heuristics, and so upper bounds are calculated in the standard way of evaluating
the value of F at a solution to a node relaxation in the sBB search tree. One could possibly
obtain stronger upper bounds by employing derivative-free optimization algorithms to minimize
F using the node relaxation solution as a starting point, but exploring this idea is out of scope
for this paper. Our branching rules are adopted from literature and explained later in § 5.2. In
the remainder of this section, we outline our convex relaxation.

The convex envelope of a function over a compact convex set is defined as the pointwise
supremum of all the convex underestimators of that function over the set. Minimizing the
function over the set is equivalent to minimizing its convex envelope. However, this envelope is
generally intractable to compute and the same is true for nonconvex PLFs also. The difficulty
generally arises from the presence of the set S which could be nontrivial and complicated, and
so the standard approach in global optimization is to generate convex underestimators of the
objective function over the hyperrectangle H, instead of over S ∩H. Since H is the Cartesian
product of one-dimensional convex compact intervals and F is a separable function, the enve-
lope of F over H is a sum of univariate envelopes. Using cvx to denote the convex envelope
operator, we can write cvxH F (x) =

∑n
i=1 cvxHi fi(xi). Each cvxHi fi is a PLF but since fi

is allowed to be discontinuous, this PLF may not be l.s.c.. For computational tractability, we
need the underestimators to be l.s.c. so that they have a polyhedral representation, otherwise
the corresponding feasible set of the relaxation will not be a closed set which creates numerical
difficulties in solving this relaxation. Hence we carry out one additional step for the underesti-
mators. For each i, we take the envelope of an l.s.c. function underestimating fi. The resulting
function is not only convex and l.s.c., but in fact convex and continuous due to convex functions
being u.s.c. over polytopes. Let us denote this underestimator for each i by vexHi fi. Summing
these yields a convex continuous PLF underestimator on F ,

vexH F (x) :=

n∑
i=1

vexHi fi(xi), x ∈ H (3a)

6

This yields a convex relaxation for problem (1) whose value we denote by v(H),

v∗ ⩾ v(H) := inf
x

n∑
i=1

vexHi fi(xi) s.t. x ∈ S ∩H (3b)

= inf
x,z

n∑
i=1

zi s.t. vexHi fi(xi) ⩽ zi, x ∈ S ∩H (3c)

where the second equality is from using the epigraph modelling step. Since each vexHi fi is a
convex continuous PLF, its epigraph is a polyhedron and so vexHi fi is equal to the pointwise
maximum of finitely many affine functions. Thus, there is a finite set Ei(H) and coefficients
(aik, bik) for k ∈ Ei(H) such that

vexHi fi(xi) = max
k∈Ei(H)

aikxi + bik, xi ∈ Hi.

Our construction of vexHi fi is such that Ei(H) ⊆ Ki with {0,Ki} ⊆ Ei(H), where we recall
from (2a) that Ki indexes the breakpoints of fi. Hence, the coefficients (aik, bik) for each
k ∈ Ei(H) can be obtained in terms of the values of fi at these breakpoints. Therefore, our
convex relaxation of problem P is as follows:

v∗ ⩾ v(H) = min

n∑
i=1

zi (4a)

s.t. aikxi + bik ⩽ zi, k ∈ Ei(H), i = 1, . . . , n (4b)
x ∈ S ∩H. (4c)

A salient feature of this work is the efficient computation of the underestimator vexHi fi and
this is presented in Algorithm 1. However, this only represents the root node relaxation. In the
search tree of sBB, H is successively partitioned into a sequence of hyper-rectangles Ht ⊂ H
and so the relaxation (4) has to be constantly updated and solved again over S ∩Ht. In order
to make our algorithm competitive and efficient, for any Ht ⊂ H, we do not compute the
lower bound v(Ht) by computing vexHt

i
fi from scratch using the breakpoints of fi, although

this is certainly an option. Instead we update the underestimator that was computed for the
parent node of the node corresponding to Ht by exploiting structural properties of PLFs. Let
us elaborate on this point. If Hs is the hyper-rectangle for the parent node of the node for Ht

and xit was the branching variable used to create Ht from Hs, then our underestimators at the
two nodes differ only in the coordinate xit so that

vexHt F (x) =

∑
i ̸=it

vexHs
i
fi(xi)

 + vexHt
it
fit(xit).

Thus, if the underestimator over Hs is stored in memory, then the underestimator for Ht

requires update only in one coordinate it. This is simply due to separability of the functions.
The crucial thing though is whether vexHt

it
fit needs to be computed from scratch using the

breakpoints of fit and employing Algorithm 1 for univariate PLFs. This is not necessary because
of a property of PLFs that only a subset of the breakpoints of vexHt

it
fit are different than those

of vexHs
it
fit , as we show in § 4.2. This allows for (on average) a quick and fast update to the

underestimator of fit over Hs
it

(assuming it is stored in memory), although in the worst-case it

7

is possible that all the breakpoints have to be updated. Hence, we calculate v(Ht) by starting
with the relaxation (4) for v(Hs) and modifying some of the linear constraints in (4b) as needed
for i = it and k ∈ Eit(Ht). If S is a polyhedron, we can then employ the dual-simplex method
to compute v(Ht) starting from v(Hs), which is generally significantly faster than using the
primal-simplex for v(Ht).
Remark 1. The sBB algorithm developed here can be modified to accommodate separable PLFs
in constraints using similar arguments as the classical results by Soland [Sol71]. Yet, for ease of
exposition, we restrict our attention in this paper to PLFs in the objective only. Similarly, it is
possible to integrate the methods developed here in general-purpose (spatial) branch-and-bound
based solvers and solve a broader class of mixed-integer nonlinear problems.

3.2 Relation to MILP and SOS2 approaches

It is well-known that all the MILP models for PLFs share the sharpness property when the
functions are l.s.c.: their LP relaxations (when S is a polyhedron) give the same lower bound
as convexifying each function over its interval domain, which is equivalent to our relaxation (4).
However, upon branching, most relaxations loose this guarantee of providing the same bound
as (4). In fact, only the Incremental and SOS2 model share this property called hereditary
sharpness [HV22]. This property is very desirable since it leads to balanced search trees [YV13].
Indeed, experiments indicate that the Incremental and SOS2 model perform very well on PLFs
with a small number of segments and are only outperformed by the Logarithmic model with
growing number of segments [cf. Reb16, HV22]. These considerations have been summarized by
Huchette and Vielma [HV22] with the remark that “the high performance of the [logarithmic]
formulation is due to its strength and small size and in spite of its poor branching behavior”.
The addition of some valid inequalities and cutting planes to the MILP model would strengthen
the LP relaxation, but the fact remains that a desirable method for solving problems with PLFs
should combine both hereditary sharpness and a small-scale formulation.

This gave the motivation to our sBB approach. By updating our convex underestimator
over every subset Hk, we manually achieve relaxations of the strength (4) at every node of the
branch-and-bound tree. Moreover, the LP relaxations are particularly small. In contrast to
SOS2 and MILP formulations, the size of the relaxation (4) does not grow with the number of
segments of fi, but with the number of segments of its envelope. To illustrate this, let Ki be the
number of segments of fi and Ei be the number of segments of vexHi fi. If each fi is continuous,
the Logarithmic MILP model adds

∑n
i=1Ki continuous variables,

∑n
i=1dlog2(Ki − 1)e binary

variables and
∑n

i=1

(
2 · dlog2(Ki − 1)e + 3

)
constraints [cf. VAN10]. In contrast, the sBB

relaxation (4) adds n continuous variables, 0 integers and
∑n

i=1Ei constraints. Since Ki � 1
typically, we have far fewer variables. For the constraints, Ei is no more than Ki, although it
can be more than log2Ki. Hence, if the PLFs are such that their envelopes have few segments,
then our relaxations will be smaller in size, while being of the same strength as the conventional
models. An extreme case of this is when each fi is concave where our relaxations will add n
constraints, which can be much smaller than the number of constraints in MILP and SOS2 due
to Ki being arbitrary.

Furthermore, the sBB offers the advantage of a sparser constraint matrix. Rebennack
[Reb16] pointed out that formulations like the Logarithmic model result in a dense constraint
matrix. On the other hand, the sBB relaxation (4) is in particular sparse: each added inequality
has exactly two non-zeros. Indeed, LPs with convex PLFs can be solved very efficiently by
exploiting its structure [Fou85, Gor22]. Finally, spatial branching offers a higher degree of
flexibility in branching decisions compared to integer or SOS2 branching. Both integer and

8

spatial branching choose a branching variable xi. However, while spatial branching can branch
at any point in the interval [li, ui], integer branching in MILP and SOS2 models can be mapped
to specific points in each interval. Therefore, spatial branching can mimic integer and SOS2
branching, but the converse is not true.

4 Convexifying univariate PLFs
It was outlined in § 3.1 that the key ingredient of this work is generation and efficient updates
of convex continuous underestimators of univariate PLFs. Therefore, in this section we focus
on a univariate (possibly discontinuous) PLF f : I = [l, u]→ R, where we omit the subscript i
for ease of notation and better readability. The results derived here will be utilized in the sBB
algorithm in the next section by applying them to the PLFs fi in problem (1).

Let f have K +1 breakpoints in I for some integer K ⩾ 1 and these are indexed by the set
K := {0, 1, . . . ,K} with the x-values of the breakpoints being given by the set Bf := {bk : k ∈
K}, where l = b0 < b1 < b2 < · · · < bK = u. The function values at the breakpoints are
yk = f(bk) for k ∈ K. The left and right limits at each breakpoint are yk,− and yk,+. For the
left (resp. right) endpoint, we set the left (resp. right) limit to the function value. Thus, f is
completely defined by the following finite collection of tuples as input{(

bk, yk, yk,−, yk,+
)

: k ∈ K
}
.

Note the following obvious fact.

Observation 4.1. Any finite set of points in R2 corresponds to a continuous univariate PLF
obtained by doing linear interpolation between consecutive (taken w.r.t. x coordinates) points.

4.1 PLF underestimator

We construct a tight convex and continuous PLF underestimator for f . To describe this, define
the following PLF over I

f(x) :=

min{yk, yk,−, yk,+}, x = bk for some k ∈ K

f(x), x ∈ I \Bf .
(5a)

Lemma 4.1. f is a l.s.c. PLF underestimator of f over I.
Proof. It is clear that f(x) ⩽ f(x) for all x ∈ I. It is continuous at x /∈ Bf since f is a PLF.
At any breakpoint bk, we have

lim inf
x→bk

f(x) = min

{
lim
x↑bk

f(x), lim
x↓bk

f(x)

}
= min

{
lim
x↑bk

f(x), lim
x↓bk

f(x)

}
= min

{
yk,−, yk,+

}
⩾ f(x),

and so f is a l.s.c. function over I.

But this l.s.c. underestimator need not be convex. Hence, we convexify it to obtain the
function

vexI f(x) := cvxI f(x), x ∈ I, (5b)
where cvxI denotes the convex envelope operator over I. This underestimator has the following
properties.

9

Proposition 4.2. vexI f is a convex and continuous PLF underestimator of f whose break-
points are given by the set

BvexI f = {l, u}
⋃ {

bk ∈ Bf : slope(i, k) < slope(j, k), ∀ 0 ⩽ i < k < j ⩽ K
}
,

where slope(i, k) :=
(
f(bk)− f(bi)

)
/(bk − bi) for all i 6= k. Furthermore, we have

vexI f(x) = f(x), x ∈ BvexI f .

We use the following technical results to establish the above claims on vexI f .

Lemma 4.3 (cf. [Tuy16, Proposition 2.17]). A convex function is u.s.c. over any polyhedron
P in its domain. Hence, if the function is l.s.c. over P , then it is actually continuous over P .

Lemma 4.4. A continuous univariate PLF is convex if and only if the slopes of its linear pieces
form an increasing sequence when arranged from left to right.

In the following condition from planar geometry we say that three points form a convex
(resp. concave) triangle when the point in between lies below (resp. above) the segment joining
the other two points.

Lemma 4.5. The continuous PLF formed by joining a finite set of points in R2 is a convex
function if and only if every triplet of points forms a convex triangle. Consequently, if the PLF
is nonconvex, then a point is not a breakpoint if and only if it forms a concave triangle with
two other points, one to its left and one to its right.

Proof. Necessity is obvious from the definition of convexity. Sufficiency can be argued by
contraposition. Suppose that the PLF is not convex. We will use Lemma 4.4. Therefore,
nonconvexity means there exists some breakpoint xi such that the slope to the left of xi is
greater than the slope to the right (equality of slopes is impossible due to xi being a breakpoint).
This implies that there is a nonconvex (concave) triangle with xi as its apex. In particular,
letting xi = λxi−1 + (1 − λ)xi+1 for some λ ∈ (0, 1), we have yi−yi−1

1−λ > yi+1−yi

λ , which after
rearranging becomes yi > λyi−1 + (1 − λ)yi+1, leading to a nonconvex triangle formed by the
points indexed by (i− 1, i, i+ 1).

Proof of Proposition 4.2. Since vexI f is the convex envelope of the PLF f , it is obviously a
convex PLF over I. Lemma 4.1 implies that this PLF is an underestimator of f . The convex
envelope of a l.s.c. function is l.s.c. convex and is continuous over the interior of its domain and
can only be discontinuous on the boundary. Combining this fact with Lemma 4.3, where we
use I being a polyhedron in R, gives us that vexI f is a convex and continuous underestimator.

The breakpoints of vexI f must be breakpoints of f , and hence of f . The convex continuous
PLF vexI f is formed by joining its finitely many breakpoints. From Lemma 4.5 the charac-
terization of the breakpoints of the underestimator follows immediately. The breakpoints of a
PLF form what is more generally called the generating set in global optimization literature for
general nonconvex functions, and it is known that the the envelope of an l.s.c. function equals
the function value at points in its generating set. Hence, the underestimator equals f at its
breakpoints.

Another convex underestimator to f is the convex envelope of f , denoted by cvxI f . This
equals f at its breakpoints in (l, u), whereas at the endpoints {l, u} we may have inequality and

10

so can only say that cvxI f(b
k) ⩾ f(bk) for k ∈ {0,K}. It is also not hard to see that vexI f

and cvxI f have the same set of breakpoints. Therefore,

vexI f(x) = cvxI f(x), x ∈ BvexI f \ {b
0, bK}, vexI f(x) ⩽ cvxI f(x), x ∈ {b0, bK}. (6)

Thus, the only difference between vexI f and cvxI f is in their values at the endpoints where
the latter will be u.s.c. due to Lemma 4.3 but may not be l.s.c..

We now build upon the characterization of breakpoints in Proposition 4.2 to derive an
efficient algorithm for computing vexI f given f as an input through its breakpoints.

Proposition 4.6. Algorithm 1 produces vexI f after O(K) iterations.

Proof. Each application of the while loop is repeatedly checking the necessary and sufficient
conditions for the slopes from Lemma 4.5. Furthermore, due to the updates done to the lists
where the last element is removed, at any stage the last two elements in the lists yield a lower
bound on the slope required to make the kth point a breakpoint. This implies that the while
loop executes only a constant number of times for each k, and so the entire algorithm runs in
O(K) iterations. The points in the lists that it outputs indeed represent the breakpoints of
vexI f since they were obtained by checking the conditions in Lemma 4.5 and so correspond to
the characterization in Proposition 4.2.

Algorithm 1: Generating a convex continuous underestimator to a discontinuous PLF
Data: Lists B = {b0, b1, . . . , bK} and Y = {(yk, yk,−, yk,+) : k ∈ K} of PLF

f : [l, u]→ R
Result: Lists B and Y defining the tuples of vexI f : [l, u]→ R.
Compute yk = min{yk, yk,−, yk,+} for k = 0, 1, . . . ,K
Initialize B = {b0} and Y = {y0}
for k = 1 to K do

while |B| ⩾ 2 and Y [k]− Y [−1]
B[k]− B[−1]

<
Y[−1]− Y [−2]
B[−1]− B[−2]

do

Remove last element of B and Y.
end
Update B = B ∪ {bk} and Y = Y ∪ {yk}

end
return B and Y

The worst-case running time of O(K) for our algorithm cannot be improved further since
a convex f would take K iterations due to every breakpoint of f also being a breakpoint of its
envelope. However, it may be possible to improve the average running time by considering one
of the many different algorithms in literature [cf. Cor+09, chap. 33.3] for generating the convex
hull of a finite set of points in R2 (note that this convex hull is comprised of the convex envelope,
the concave envelope, and at most two vertical segments). For example, the classical Graham’s
scan algorithm begins with a reference point having the smallest y-coordinate, calculates the
polar angles of the other points w.r.t. the reference point (equivalent to slopes of the line
segments joining the two points), and then applies Lemma 4.5 to discard points that will not
be breakpoints of the envelope [Gra72]. Our algorithm starts with the leftmost breakpoint as
the reference point and compares slopes w.r.t. the previous candidate breakpoint. Although
there are conceptual similarities with Graham’s scan, it is not clear (and probably not true)
that the two algorithms are in a bijection.

11

4.2 Updating envelope over subintervals

The branching procedure of sBB algorithms requires constant updating/recomputing of the
underestimator vexI f over a subinterval

I ′ := [l̃, ũ] ⊂ [l, u] = I.

Of course, Algorithm 1 can be used to compute vexI′ f , but this would scan the breakpoints
from scratch, which can be computationally expensive when there are many segments, and we
show that this is not necessary. Yet, using Algorithm 1 to calculate vexI′ f requires rescanning
all breakpoints of f in I ′. Especially for PLFs with many segments, this can be expensive
computation. However, this is usually not necessary since we show that vexI′ f equals vexI f
over some part of I ′ in th middle and needs to be updated only over the end pieces. In particular,
the envelope does not change between the leftmost and rightmost breakpoint in I ′, which can
lead to substantial savings in computation if the subinterval is large w.r.t. I. To describe our
result, let us denote

blo := min
{
bk : bk ∈ BvexI f ∩ [l̃, ũ)

}
, bup := max

{
bk : bk ∈ BvexI f ∩ (l̃, ũ]

}
. (7a)

Note that if blo and bup do not exist then the updated envelope is trivial. Henceforth, assume
they exist and partition I ′ into three intervals

I1 := [l̃, blo], I2 := [blo, bup], I3 := [bup, ũ]. (7b)

Proposition 4.7. Assume blo and bup exist. The underestimator over I ′ can be described as
follows:

vexI′ f(x) =

vexI1 f(x), x ∈ I1

vexI f(x), x ∈ I2

vexI3 f(x), x ∈ I3.

Proof. The function on the right side of the equality is obtained by gluing together three
different convex functions. Hence, we need to argue convexity of this glued function. But this
follows rather immediately from the necessary and sufficient conditions in Lemmas 4.4 and 4.5.
Since the breakpoints of f in I1 were not breakpoints of vexI f , they form a concave triangle
with the breakpoints in I2, and so after convexifying over I1 the slopes of the resulting linear
segments can be no more than the slopes of the segments in I2. Similar arguments hold for
I3.

4.3 An Illustrative Example

The PLF in Figure 1 has 5 segments (so K = 5) with the breakpoints b0 = 1, b1 = 3, b2 =
7, b3 = 8, b4 = 11, b5 = 13. Note that f is discontinuous at b2 but otherwise continuous. The
tuples corresponding to the breakpoints are (1, 3), (3, 5), (7, 2, 1, 3), (8, 5), (11, 7), (13, 7).

Applying Algorithm 1 to this function over I = [1, 13] receives as input the lists B =
[1, 3, 7, 8, 11, 13] and Y = [3, 5, 1, 5, 7, 7] and outputs the lists B = [1, 7, 13] and Y = [3, 1, 7].
They define the continuous PLF vexI f(x) formed by the tuples (1, 3), (7, 1) and (13, 7) which
equals cvxI f(x) depicted in the figure. If Algorithm 1 is invoked to compute vexI′ f over
I ′ = [7, 13] ⊂ [1, 13], the input lists are B = [7, 8, 11, 13] and Y = [2, 5, 7, 7]. Realize that

12

1 3 7 9 11 13

3

5

1

7

5

Figure 1: PLF f(x) with discontinuity at 7 as solid line and convex envelope cvxI f(x) over
domain I = [l, u] = [1, 13] as dashed line.

Y [0] = 2 6= 1 since the discontinuity at b0 = 7 is at the edge of I ′ and hence y0 = min{2, 2, 7}
since y0,− = y0.

Let I = [1, 13] and I ′ = [3, 10]. vexI f is given by (1, 3),(7, 1) and (13, 7). Hence, blo =
bup = 7. Consequently, I1 = [3, 7], I2 = [7, 7] and I3 = [7, 10]. φ is given by (3, 5), (7, 1), (8, 5)
and (10, 61

3). Hence, vexI1 φ is formed by (3, 5), (7, 1) and vexI3 φ by (7, 1),(10, 61
3). Finally,

vexI′ f is given by (3, 5), (7, 1) and (10, 61
3).

This example illustrates that Proposition 4.7 does not always lead to a reduction in the
number of breakpoints to be scanned. However, if f is highly nonconvex with many segments,
the savings can be enormous. Therefore, Proposition 4.7 is particularly useful for PLFs that
accurately approximate a highly nonlinear function.

5 Spatial branch-and-bound algorithm
Our main ideas for an sBB algorithm to solve the PLF optimization problem (1) were sketched
in § 3.1. The algorithm is presented formally in Algorithm 2. The bounding operation is
specified next, the branching schemes in § 5.2, and convergence is discussed in § 5.3.

The following notation is used to describe our algorithm. Iteration number is k. For each k,
Hk is the partition element, xk and v(Hk) are optimal solution and optimal value of relaxation
Rk, αk and βk are the global upper and lower bound, respectively, to v∗, and xk is the incumbent
solution. L denotes the list of unfathomed subproblems at any stage of the algorithm. The
user-defined absolute termination gap is ε.

5.1 Node relaxations

Each node of the search tree corresponds to a hyper-rectangle Hk ⊆ H and the subproblem

Pk : v(Hk) = inf
x

F (x) s.t. x ∈ S ∩Hk. (8a)

Our lower bound on this nonconvex problem is denoted by v(Hk) which is obtained by solving
the following convex relaxation

Rk : v(Hk) ⩾ v(Hk) = min
x

vexHk F (x) s.t. x ∈ S ∩Hk, (8b)

13

where the underestimator is defined as

vexHk F (x) =
n∑

i=1

vexHk
i
fi(xi). (8c)

Since vexHk F is polyhedral as per the results of the previous section, using the epigraph mod-
elling trick as in (4) leads to a tractable convex formulation for the node relaxation subproblem.
It will be useful to separate a single coordinate from the above sum so that we can write

vexHk F (x) = vexHk
j
fj(xj) +

∑
i ̸=j

vexHk
i
fi(xi). (8d)

In our context, the coordinate j will correspond to the branching variable that was used to
create this node subproblem from its parent node in the sBB tree. In particular, if this node
Hk was created from its parent node Hp by branching on xik , then using j = ik in (8d) gives
us

vexHk F (x) = vexHk
ik

fik(xik) +
∑
i ̸=ik

vexHp
i
fi(xi). (8e)

Note that when using Proposition 4.7 to update the underestimator over a child node,
the breakpoints of vexHk F must be stored for each partition element Hk. It is common for
sBB/B&B methods to store LP relaxation data in order to solve the child node relaxation in a
few iterations using the dual simplex rather than from scratch. However, if memory is scarce,
Algorithm 1 can be called at each child node H l to compute vexHl F from scratch and no
additional data need to be stored.

5.2 Branching rules

Consider partition element Hk with the optimal solution xk to its relaxation Rk. We give
three different rules for the branching step of Algorithm 2 to partition Hk into Hk,1 and Hk,2.
The first follows the common concept to branch on the variable xi which causes the largest
violation, i.e. contributes most to the convexification gap. It was first proposed by [FS69] and
variations of it can be found for instance in the solver BARON [TS04]. It is similar to the
integer branching rule where the variable with the largest fractional part is chosen. The second
branching rule follows the simple concept of branching at the midpoint of the longest edge and
was used for instance in the solver αBB [Adj+98].

Largest-error branching rule: Select the index which contributes most to the convexi-
fication gap at xk

τ ∈ argmax
i=1,...,n

[
fi(x

k
i)− vexHk

i
fi(x

k
i)
]
, (9a)

breaking ties using the smallest index rule. Partition Hk at the point xkτ ,

Hk,1 =
{
x ∈ Hk : xτ ⩽ xkτ

}
and Hk,2 =

{
x ∈ Hk : xτ ⩾ xkτ

}
. (9b)

Longest-edge branching rule: Select the index with the longest edge by

τ ∈ argmax
i=1,...,n

uki − lki , (10a)

breaking ties using the smallest index rule. Partition Hk at the midpoint of the longest edge,

Hk,1 =

{
x ∈ Hk : xτ ⩽ ukτ − lkτ

2

}
and Hk,2 =

{
x ∈ Hk : xτ ⩾ ukτ − lkτ

2

}
. (10b)

14

Algorithm 2: Spatial branch-and-bound algorithm for PLF optimization
Root node: Compute vexH F as per (8c) using Algorithm 1 for vexHi fi for all i
Solve R0 to obtain x0 and r0

if R0 is infeasible then return P is infeasible

else Set L = {H}, k = 0, α0 = F (x0), β0 = r0, and x0 = x0

while L 6= ∅ do
Node selection: Find a H l∗ ∈ argmin{rl : H l ∈ L}. Mark it as parent node and
set Hk = H l∗ and βk = rl

∗

Branching: Partition Hk into H = {Hk,1,Hk,2} using a branching rule from § 5.2.
Let xik denote the branching variable
Bounding: for l ∈ {1, 2} do

Compute vexHk,l F as per (8e) with p = k and k = k, l and using Proposition 4.7
to update the envelope in the coordinate ik
Solve relaxation Rl to obtain xl and rl

if Rl is infeasible then remove Hk,l from H

end
Update: Set k ← k + 1. Examine whether the previous global upper bound αk−1

can be improved,

αk = min

{
αk−1, min

Hk,l∈H
F (xl)

}
.

Update the incumbent xk accordingly.
Add child nodes to list: L ←

(
L \ {Hk}

)
∪H

Pruning: Fathom subproblems by bound dominance as L ← L\ {H l : rl ⩾ αk − ε}.
end

Breakpoint branching rule: Select the index τ by the largest-error rule (9a) applied
only to breakpoints, i.e. select a breakpoint b∗τ with the largest error. Partition Hk at this
breakpoint,

Hk,1 =
{
x ∈ Hk : xτ ⩽ b∗τ

}
and Hk,2 =

{
x ∈ Hk : xτ ⩾ b∗τ

}
. (11)

Preliminary computational experiments conducted on our test problems indicated a superi-
ority of the largest-error branching rule. This computational superiority is also intuitive, as this
rule provides the maximum tightness at the former solution xk for both child nodes, allowing
for a visible increase in the lower bound and a balanced search tree. The other two branching
rules do not possess these desirable computational properties, but they do have theoretical su-
periority because they allow for stronger convergence results, as we explore in the next sections.
We also note that integer branching applied to MILP-PLF models leads to unbalanced trees
[cf. YV13].

5.3 Convergence guarantees

Falk and Soland [FS69, Theorem 2] established asymptotic convergence of the largest-error
branching rule when F is any continuous separable function. They also gave an example

15

showing that for this rule, continuity of the functions is necessary for convergence. Under the
weaker assumption of F being l.s.c., Theorem 1 in their paper established convergence under
a stronger branching rule that creates more than two nodes at each step and thus does not
lead to binary search trees. Their results directly apply to our PLF optimization problem since
we also consider a separable objective. Furthermore, as mentioned in § 2.2 and described in
[LS13, chap. 5], finite convergence can also be obtained for general nonconvex optimization
with ε > 0. However, we give some independent and self-contained proofs in this section. First
we show that the breakpoint rule yields finite convergence even with ε = 0.

Proposition 5.1. When each fi is l.s.c., Algorithm 2 using the breakpoint branching rule
converges finitely for any ε ⩾ 0.

Proof. The l.s.c. condition implies that fi(x) = fi(x) at a breakpoint x ∈ Bfi and so our
underestimator vexI f is exact at each breakpoint as per Proposition 4.2. Hence, a breakpoint
is chosen at most once for branching because once it is branched upon the underestimator will
have zero error at this point throughout the subtree from this node. Since there are finitely
many breakpoints, the claim follows because every feasible leaf node of the sBB tree will yield
an exact representation of some restriction of the original problem (1), and the union of all
these leaves will be problem (1).

The largest-error rule is finitely convergent when ε > 0 and has asymptotic convergence
when ε = 0. We give an independent proof of the second result by exploiting Lipschitz continuity
of PLFs, which makes our arguments different than those of Falk and Soland [FS69] for general
separable functions.

Proposition 5.2. When each fi is continuous, Algorithm 2 using the largest-error branching
rule converges in the limit for ε = 0.

Proof. By construction, βk ⩽ v∗ ⩽ αk for every k, and the sequence {αk} is decreasing whereas
{βk} is increasing. Hence, if the sBB algorithm terminates at iteration p, we have αp− βp ⩽ ε,
and thus the infimum v∗ is found with ε-precision.

If the sBB algorithm does not terminate after a finite number of iterations, the sequence
{Hk}k of partition elements is infinite. Thus, there must be at least one infinite nested subse-
quence of {Hk}k∈N, denoted by

{Hq}q∈Q with Hq+1 ⊂ Hq and Q ⊆ N.

We have to show the consistent bounding property, i.e., there exists an infinite nested sub-
sequence {Hq}q∈Q of {Hk}k∈N for which limq→∞ αq = limq→∞ βq. By boundedness of the
sequences, we can extract subsequences such that {Hq}q∈Q ⊂ {Hk}k∈N with

(i) the sequence of optimal solutions xq of relaxation Rq converges to a limit point x+.
(ii) only one index τ ∈ I gets branched on infinitely often.

Since we are only interested in the limit behavior, we can therefore focus exclusively on the
index τ . First, note that fτ and thus also vexHq

τ
fτ is Lipschitz-continuous with constant Lτ

for all iterations q. Now, let us define function ψq
τ (xτ) = fτ (xτ)− vexHq

τ
fτ (xτ) over Hq

τ . Note
that ψq

τ is Lipschitz with constant 2Lτ . By the largest-error branching rule, namely (9b), we
obtain xq−1

τ ∈ bd(Hq
τ) and thus xqτ , xq−1

τ ∈ Hq
τ . Consequently,∣∣ψq

τ (x
q
τ)− ψq

τ (x
q−1
τ)

∣∣ ⩽ 2Lτ ·
∣∣xqτ − xq−1

τ

∣∣.
16

Since fτ is continuous and xq−1
τ ∈ bd(Hq

τ), we obtain that ψq
τ (x

q−1
τ) = 0 and hence∣∣fτ (xqτ)− vexHq

τ
fτ (x

q
τ)
∣∣ ⩽ 2Lτ ·

∣∣xqτ − xq−1
τ

∣∣ .
Since, lim

q→∞
xqτ = x+τ , we have that lim

q→∞
|xqτ − xq−1

τ | = 0 and therefore

lim
q→∞

∣∣fτ (xqτ)− vexHq
τ
fτ (x

q
τ)
∣∣ = 0 .

Finally, there is a q so that for all q > q the branching index τ is selected by (9a). Hence, we
get that

∀i ∈ I \ {τ} : lim
q→∞

(
fi(x

q
i)− vexHq

i
fi(x

q
i)
)
= 0 . (12a)

Statement (i) follows then as a consequence of the definition of αk, βk and Hq by

lim
q→∞

αq ⩽ lim
q→∞

F (xq) = lim
q→∞

vexHq F (xq) = lim
q→∞

rq = lim
q→∞

βq. (12b)

For statement (ii) realize that fτ has only finitely many breakpoints. Hence, after a finite
iteration p ∈ Q holds that fτ is affine over Hp

τ and thus ψp
τ (x

p
τ) = fτ (x

p
τ) − vexHp

τ
fτ (x

p
τ) = 0.

By similar arguments like in (12a) and (12b) follows then βp = αp and hence {Hk}k∈N is finite.
Now that consistent bounding has been established, convergence can be concluded by stan-

dard arguments from literature [cf. TH88, Theorem 2.3], i.e., limk→∞ βk = v∗ = limk→∞ αk

and every accumulation point of {xk} solves P. Remember that {Hq}q∈Q is a subsequence of
{Hk}k∈N and thus αk = αq and βk = βq for all k = q ∈ Q. By the monotony of the sequences
{βk} and {αk}, convergence follows then directly by lim

q→∞
αq = lim

q→∞
βq.

Wechsung and Barton [WB14] imposed the requirement of strongly consistent on the branch-
ing scheme to obtain asymptotic convergence for general l.s.c. functions with the longest-edge
branching rule. Their underestimators applied to PLFs are possibly no stronger than ours
and so their convergence result might carry over to our sBB for l.s.c. PLFs, but a rigorous
exploration of this is left for future research.

6 Computational experiments

6.1 Design of experiments

We compare the computational performance of the sBB algorithm with MILP approaches from
the literature as well as the state-of-the-art solver Gurobi. In § 6.2, we consider continuous
PLFs in network flow problems with concave PLFs (§ 6.2.1) and knapsack problems with both
nonconcave and concave PLFs (§ 6.2.2). Discontinuous l.s.c. PLFs are tested for a network
flow problem with fixed charges in § 6.3. Further, we test our SBB algorithm against the global
solver Gurobi in § 6.4. We conclude with a general discussion of our numerical results in § 6.5.

Let us begin by outlining the design of our experiments. Algorithm 2 was implemented in
Python version 3.11.9. The largest-error branching rule is chosen because in our initial testing
it seemed to do better than the other rules described in § 5.2. Nodes were selected using
the best-bound rule. The LPs on the nodes are solved with Gurobi. The MILP models are
generated in Julia version 1.10 using the package PiecewiseLinearOpt developed by Huchette
and Vielma [HV22] and are solved by Gurobi. We use Gurobi version 11.0.3 with standard
settings. All tests were carried out on a workstation with 4.70GHz and 128GB RAM running

17

Windows 11 Enterprise. For termination, we used a relative optimality gap of 10−5 and a time
limit of 30 minutes. All times given are wall-clock times. The code of the sBB implementation,
the MILP generation as well as the instance generator are available at GitHub under https:
//github.com/ThomasHubner/sBB_PiecewiseLinOpt.git.

We compare our SBB algorithm (sBB) against the PLF-solver inside Gurobi (GRB) and four
state-of-the-art logarithmic-sized MILP models available in the package PiecewiseLinearOpt.
In particular, these are the Logarithmic (Log) and Disaggregated Logarithmic (DLog) [VAN10],
and the recently introduced Binary Zig-Zag (ZZB) and General Integer Zig-Zag (ZZI) models
[HV22]. In contrast to these four logarithmically-sized MILP formulations, to our knowledge,
Gurobi’s PLF solver is built on a linear-sized MILP model.

Similar to findings in the literature [cf. VAN10], first experiments indicated that linear-sized
MILP models are not competitive to logarithmic-sized models when nonconvex PLFs with 50 or
more segments are involved. Therefore, we restrict our comparisons to the four logarithmic-sized
MILP models above available in the literature.

6.2 Continuous PLFs

6.2.1 Network flow problem with concave cost

Network flow problems with nonconvex PLFs occur in many applications ranging from telecom-
munications to logistics [CGM07]. They can be defined as follows:

min

n∑
i=1

n∑
j=1

fij(xij)

s.t.
n∑

j=1

xij −
n∑

j=1

xji = di i = 1, . . . , n

lij ⩽ xij ⩽ uij i, j = 1, . . . , n .

An instance of the network flow problem is created similar to [KFN06, VAN10, HV22] as
follows. First, declare each node i = 1, . . . , n − 1 a demand, supply or transshipment node
with equal probability 1

3 . The transshipment nodes have di = 0 whereas the demand and
supply nodes have di ∼ ±Uniform(5, 50). To obtain a balanced problem the final node n has
dn = −

∑n−1
i=1 di. The breakpoints

(
bki , f(b

k
i)
)
, k = 0, . . . ,K of the concave PLFs fi(xi) are

determined as follows: Set b0i = li = 0 and bKi = ui ∼ Uniform(5, 50) and generate K−1 points
bki ∼ Uniform(li, ui), k = 1, . . . ,K − 1 and order them. Subsequently, generate K slopes by
slopesk ∼ Uniform(1, 2000)/1000, k = 1, . . . ,K and order them in decreasing order to obtain
a concave PLF. Finally, set fi(b0i) = 0 and compute the y-coordinates of the breakpoints by
fi(b

k
i) = slopek · (bki − b

k−1
i) + fi(b

k−1
i), k = 1, . . . ,K.

We perform our computational test on network flow problems with n = 10 nodes. For each
K, 50 random network flow instances are generated and solved. The statistics of the solve
times are given in Table 1. We display the median (med.), the arithmetic mean (avg.) and the
standard deviation (std.) as well as the number of instances that cannot be solved by a method
within the time limit (fail) and the number of instances in which each method was the fastest
(win).

6.2.2 Knapsack problem with approximated nonlinearities

As discussed in the introduction, PLFs are often used to approximate difficult nonlinear ex-
pressions in optimization problems. To test the sBB and MILP methods in this context, we

18

https://github.com/ThomasHubner/sBB_PiecewiseLinOpt.git
https://github.com/ThomasHubner/sBB_PiecewiseLinOpt.git

Table 1: Solve times [s] for network flow problems with continuous concave PLFs. sBB is the
proposed method in this paper.

Method Med. Avg. Std. Win Fail

a) 10 segments
ZZI 0.26 0.28 0.12 20 0
Log 0.26 0.34 0.50 12 0

DLog 0.33 0.32 0.14 9 0
ZZB 0.39 0.41 0.22 4 0
GRB 0.40 0.36 0.14 5 0
sBB 4.55 8.96 14.65 0 0

b) 100 segments
ZZI 1.82 2.11 1.06 24 0
ZZB 1.95 2.30 1.15 15 0
Log 2.36 2.68 1.19 5 0

DLog 3.90 4.67 2.20 0 0
sBB 4.11 6.17 7.08 6 0
GRB 9.38 9.65 3.95 0 0

c) 500 segments
sBB 8.2 11.1 11.2 39 0
Log 15.1 17.2 8.0 6 0
ZZI 15.5 18.0 9.0 4 0
ZZB 15.8 19.4 11.9 1 0
DLog 23.6 27.6 14.6 0 0
GRB 90.0 114.6 94.8 0 0

Method Med. Avg. Std. Win Fail

d) 1,000 segments
sBB 5.8 10.9 14.6 50 0
Log 45.7 49.5 18.2 0 0

DLog 46.5 57.4 32.4 0 0
ZZI 48.4 48.9 21.1 0 0
ZZB 61.6 61.2 23.9 0 0
GRB 270.6 363.4 241.9 0 0

e) 5,000 segments
sBB 7.2 11.0 11.0 50 0
Log 330 331 132 0 0
ZZI 333 329 152 0 0

DLog 379 405 200 0 0
ZZB 515 518 198 0 0
GRB 1,800 1,800 0 0 50

f) 10,000 segments
sBB 8 12 15 50 0
Log 729 763 294 0 0

DLog 940 876 374 0 1
ZZI 976 924 299 0 1
ZZB 1,419 1,368 410 0 9
GRB 1,800 1,800 0 0 50

consider the following nonlinear continuous knapsack problem:

min

n∑
i=1

fi(xi) s.t.
n∑

i=1

xi = d, li ⩽ xi ⩽ ui, i = 1, . . . , n.

Each fi(xi) is a nonconvex continuous PLF randomly generated by approximating a smooth
nonconvex function from Table 2. The functions therein are mostly taken from Casado et al.
[Cas+03].

Nonconvex, nonconcave knapsack problems A random instance of the knapsack problem
is then generated as follows. First, n functions hi with bounds li and ui are arbitrarily drawn
from Table 2. Second, K−1 points bki ∼ Uniform(li, ui), k 6= {0,K} are generated and ordered.
The first and last breakpoint is set to b0i = li and bKi = ui. Each hi is then approximated by
a PLF fi with K segments given by the breakpoints

(
bki , hi(b

k
i)
)
. The demand parameter d is

then as well randomly determined by d ∼ Uniform
(
l + 1

4 · (u − l), u −
1
4 · (u − l)

)
in which

l =
∑n

i=1 li and u =
∑n

i=1 ui. We perform our computational test on knapsack problems of
dimension n = 100. For each K, 50 random knapsack instances are generated and solved. The
statistics of the solve times are given in Table 3.

In addition, we are interested in the impact of more segments on the approximation qual-
ity. Thereby, a knapsack problem is generated like described above and each function hi is

19

Table 2: Nonconvex univariate functions.

Function Domain # Function Domain
1 e−3x−12 − x2 + 20 [−5, 5] 11 x4 − 12x3 + 47x2 − 60x [−1, 7]
2 −0.2 · e−x + x2 [−5, 5] 12 x6 − 15x4 + 27x2 + 250 [−4, 4]
3 x3 · e−x2

[−5, 5] 13 x4 − 10x3 + 35x2 − 50x+ 24 [0, 5]

4 x5 − 20x2 + 5

x4 + 1
[−10, 10] 14 0.2x5 − 1.25x4 + 2.33x3 − 2.5x2 + 6x [−1, 4]

5 log(3x) · log(2x)− 1 [0.1, 10] 15 x3 − 7x+ 7 [−4, 4]
6 10 log(x)− 3x+ (x− 5)2 [0.1, 10] 16 (x4−4x+10)

(x2+1) − 1 [−5, 5]

7 −x5 − 10x2

x6 + 5
[−10, 10] 17 −x5 · e−x2

[−10, 10]

8 x · e−x2

[−5, 5] 18 x5 − 3x4 + 4x3 + 2x2 − 10x− 4 [−1.5, 3]

9 − x7

5040
+

x5

120
− x3

3
+ x [−4, 4] 19 (x3 − 5x+ 6)

(x2 + 1)
− 1 [−5, 5]

10 x2 − 5x+ 6

x2 + 1
− 1 [−10, 10] 20 1

x
+ 2 log(x)− 2 [0.1, 10]

Table 3: Solve times [s] for nonconcave knapsack problems. sBB is the proposed method in this
paper.

Method Med. Avg. Std. Win Fail

a) 10 segments
GRB 0.03 0.04 0.02 36 0
Log 0.04 0.12 0.50 7 0
ZZI 0.05 0.05 0.02 6 0

DLog 0.05 0.06 0.04 1 0
ZZB 0.06 0.07 0.03 0 0
sBB 0.15 0.24 0.27 0 0

b) 100 segments
Log 0.50 0.53 0.23 44 0
ZZI 0.72 0.77 0.40 5 0

DLog 0.82 1.08 1.15 0 0
ZZB 0.82 0.87 0.47 1 0
sBB 1.05 1.75 2.33 0 0
GRB 1.05 1.19 0.66 0 0

c) 500 segments
Log 2.5 3.0 1.7 41 0
sBB 4.0 9.8 23.1 4 0
ZZI 4.2 5.3 4.5 3 0
ZZB 5.0 6.3 7.4 1 0
DLog 5.9 9.2 11.0 1 0
GRB 24.8 486.9 786.5 0 13

Method Med. Avg. Std. Win Fail

d) 1,000 segments
sBB 7.0 18.3 33.8 13 0
Log 7.6 8.5 7.2 34 0

DLog 15.9 22.9 23.6 2 0
ZZI 18.1 18.1 12.1 1 0
ZZB 19.7 20.1 14.2 0 0
GRB 1,800 962.6 880.6 0 26

e) 5,000 segments
sBB 58.8 100.0 98.5 25 0
Log 71.8 103.1 86.5 24 0

DLog 149.4 331.3 380.9 0 1
ZZI 188.9 213.3 131.9 1 0
ZZB 197.8 240.7 202.2 0 0
GRB 1,800 1,800 0 0 50

f) 10,000 segments
sBB 111 229 359 31 2
Log 208 470 550 17 5

DLog 327 549 543 2 5
ZZB 462 649 521 0 6
ZZI 487 611 484 0 4

GRB 1,800 1,800 0 0 50

approximated by a PLF fi which has K + 1 equidistantly distributed breakpoints. Then, the

20

piecewise linear optimization problem is solved with solution xK . The real objective value of the
nonlinear problem given this point is vK =

∑
i hi(x

K
i). Table 4 shows the relative improvement

in the real objective value if the approximation is refined, i.e. the value −(vK+1 − vK)/|vK |
where K + 1 means the next K value in the table e.g. K = 20 and K + 1 = 50.

Table 4: Relative improvement in real objective value over previous number of segments K. For
K = 20 the improvement in real objective value is measured relative to the value of K = 10.

K Min. Med. Avg. Max. Std.

20 -486.67 % 25.87 % 39.00 % 347.59 % 100.62 %
50 -3.37 % 5.32 % 7.78 % 37.73 % 7.81 %
100 -0.87 % 1.33 % 1.84 % 9.77 % 1.82 %
500 0.072 h 5.974 h 7.646 h 21.176 h 5.246 h
1000 -0.197 h 0.205 h 0.302 h 2.060 h 0.415 h
5000 0.011 h 0.107 h 0.168 h 0.839 h 0.173 h
10000 -0.001 h 0.003 h 0.004 h 0.027 h 0.005 h

Concave knapsack problems To evaluate the impact of non-concavity on the solution
methods, we also solve instances of knapsack problems where the PLFs are concave. Results
are presented in Table 5. The knapsack problems are generated as before. To obtain a concave
PLF, the slopes of the segments are computed and sorted in decreasing order. Subsequently,
the y-value of each breakpoint is recomputed by using the new slopes and x-coordinate of the
breakpoints. The table shows that problems with concave PLFs are in general harder to solve
for every method than problems with nonconcave PLFs. Indeed, nonconcave PLFs have at least
one more convex segment than concave PLFs which allows for tighter lower bounds.

6.2.3 Details on Computational Experiments

This section dives deeper into our numerical results. Means and medians are point estimators
that do not necessarily provide a complete picture of the algorithms’ performance on the ran-
domly generated data set, and means can be distorted by heavy outliers. Therefore, in addition
to the statistics provided in the preceding tables, we further investigate the behavior of the
different models and algorithms by plotting the performance profiles of their solution times.
We also investigate the amount of time that the sBB spends on its different operations.

Performance profiles Each model/algorithm gets one profile curve which is interpreted as
its approximate cumulative distribution function. This implies that the curve in the top left
corner in each figure has stochastic dominance over other curves and hence corresponds to
the best method. The horizontal axis are relative running times obtained by dividing by the
shortest running time. The vertical intercepts give the number of instances for which each
method solved the fastest (the Win column in the associated tables).

Figures 2 and 3 give these profiles, respectively, for the network flow problems and knapsack
problems with concave PLFs. In the former, the sBB profiles are consistent with Table 1 and
give superior performance for 500 segments and beyond. The profiles for the concave knapsacks
reveal that for up to 1,000 segments the actual performance of sBB is much better than the
high values for average times in Table 5. At 100 segments, sBB is quickest on same number

21

Table 5: Solve times [s] for concave knapsack problems. sBB is the proposed method in this
paper.

Method Med. Avg. Std. Win Fail

a) 10 segments
Log 0.04 0.05 0.02 26 0

GRB 0.04 0.06 0.03 15 0
DLog 0.05 0.06 0.02 1 0
ZZI 0.05 0.06 0.02 8 0
ZZB 0.05 0.06 0.03 0 0
sBB 0.12 0.19 0.19 0 0

b) 100 segments
Log 0.70 0.73 0.33 27 0
ZZI 1.00 1.06 0.71 3 0

DLog 1.07 1.05 0.48 1 0
sBB 1.12 2.42 4.56 19 0
ZZB 1.12 1.11 0.58 0 0
GRB 3.19 3.35 1.70 0 0

c) 500 segments
sBB 2.3 33.4 83.3 32 0
Log 5.0 8.4 10.6 16 0
ZZI 8.6 19.9 33.3 0 0
ZZB 8.8 20.1 30.5 0 0
DLog 10.6 25.0 57.6 2 0
GRB 164.4 621.8 743.0 0 13

Method Med. Avg. Std. Win Fail

d) 1,000 segments
sBB 2.6 95.2 309.9 37 1
Log 10.8 28.3 41.4 12 0

DLog 21.7 74.0 253.2 1 1
ZZI 31.8 102.9 275.5 0 1
ZZB 36.0 109.3 279.4 0 1
GRB 1,800 1,220 731.9 0 29

e) 5,000 segments
sBB 22.4 390.3 658.5 40 8
Log 97.2 584.1 735.2 2 10

DLog 147.1 719.7 782.6 0 16
ZZB 580.5 948.6 741.0 0 19
ZZI 714.2 948.6 681.2 0 17

GRB 1,800 1,800 0.0 0 50

f) 10,000 segments
sBB 9 300 604 45 5
Log 215 666 697 0 12

DLog 401 786 700 0 14
ZZB 1,518 1,269 574 0 24
ZZI 1,571 1,288 593 0 24

GRB 1,800 1,800 0 0 50

of instances as Log and dominates DLog and the two zig-zag models, whereas beyond 500
segments, the dominance of sBB keeps growing steadily. Similar behavior is observed for the
nonconcave PLFs and so their profiles are omitted. This underscores the point that the average
numbers in Table 5 are a bit distorted and do not provide complete information on performance
of the algorithms.

Timing statistics for the sBB Here, we take a look at some details of the operation of
the sBB implementation. Table 6 indicates that solving LPs take only a small share of the
sBBs solution time although it is by far the most complicated operation in a branch-and-bound
algorithm. Instead, operations like building the model and repeatedly adding constraints over
the Python-Gurobi interface, evaluating PLFs and generating the envelope take a high share.
This is another indicator that an integration into a fully developed solver such as Gurobi or
BARON would result in considerable speed-ups.

In addition, Table 6 indicates that the generation of the convex envelope takes more time
if the PLF is concave. The reason for that is the while loop of Algorithm 1 which is always
entered since every point results in a concave turn. However, if it is a priori known that the
PLF is concave, then one could modify the algorithm to make it simply output the first and
last breakpoint of the PLF without entering any loop.

22

1 2 3 4 5 6 7 8 9 10
Time relative to best ()

0

20

40

60

80

100

Pr
ob

le
m

s s
ol

ve
d

(%
)

sBB
GRB
Log
DLog
ZZB
ZZI

(a) 10 segments

1 2 3 4 5 6 7 8 9 10
Time relative to best ()

0

20

40

60

80

100

Pr
ob

le
m

s s
ol

ve
d

(%
)

sBB
GRB
Log
DLog
ZZB
ZZI

(b) 100 segments

1 2 3 4 5 6 7 8 9 10
Time relative to best ()

0

20

40

60

80

100

Pr
ob

le
m

s s
ol

ve
d

(%
)

sBB
GRB
Log
DLog
ZZB
ZZI

(c) 500 segments

1 10 20 30 40 50 60 70 80 90 100
Time relative to best ()

0

20

40

60

80

100

Pr
ob

le
m

s s
ol

ve
d

(%
)

sBB
GRB
Log
DLog
ZZB
ZZI

(d) 1,000 segments

1 10 20 30 40 50 60 70 80 90 100
Time relative to best ()

0

20

40

60

80

100

Pr
ob

le
m

s s
ol

ve
d

(%
)

sBB
GRB
Log
DLog
ZZB
ZZI

(e) 5,000 segments

1 100 200 300 400 500 600 700 800 900 1000
Time relative to best ()

0

20

40

60

80

100

Pr
ob

le
m

s s
ol

ve
d

(%
)

sBB
GRB
Log
DLog
ZZB
ZZI

(f) 10,000 segments

Figure 2: Performance profiles for network flow problems with continuous concave PLFs from
Table 1.

6.3 Discontinuous l.s.c. PLF

In many real-world applications in logistics, supply chains, and telecommunications, the network
flow problem involves fixed charges [RNP09]. Those are fixed costs which are incurred as soon
as a flow fij is strictly positive (fij > 0). They can represent real-world setup costs like opening
shipping lanes or starting equipment. However, they turn the continuous concave piecewise-

23

1 2 3 4 5 6 7 8 9 10
Time relative to best ()

0

20

40

60

80

100

Pr
ob

le
m

s s
ol

ve
d

(%
)

sBB
GRB
Log
DLog
ZZB
ZZI

(a) 10 segments

1 2 3 4 5 6 7 8 9 10
Time relative to best ()

0

20

40

60

80

100

Pr
ob

le
m

s s
ol

ve
d

(%
)

sBB
GRB
Log
DLog
ZZB
ZZI

(b) 100 segments

1 2 3 4 5 6 7 8 9 10
Time relative to best ()

0

20

40

60

80

100

Pr
ob

le
m

s s
ol

ve
d

(%
)

sBB
GRB
Log
DLog
ZZB
ZZI

(c) 500 segments

1 10 20 30 40 50 60 70 80 90 100
Time relative to best ()

0

20

40

60

80

100

Pr
ob

le
m

s s
ol

ve
d

(%
)

sBB
GRB
Log
DLog
ZZB
ZZI

(d) 1,000 segments

1 10 20 30 40 50 60 70 80 90 100
Time relative to best ()

0

20

40

60

80

100

Pr
ob

le
m

s s
ol

ve
d

(%
)

sBB
GRB
Log
DLog
ZZB
ZZI

(e) 5,000 segments

1 100 200 300 400 500 600 700 800 900 1000
Time relative to best ()

0

20

40

60

80

100

Pr
ob

le
m

s s
ol

ve
d

(%
)

sBB
GRB
Log
DLog
ZZB
ZZI

(f) 10,000 segments

Figure 3: Performance profiles for concave knapsack problems from Table 5.

linear cost function of § 6.2.1 into a discontinuous but lower semicontinuous PLF.
To test the sBB algorithm under this discontinuous setting, we generate the network flow

problem as described in § 6.2.1 but add to every cost function a fixed-charge-jump at fij = 0
given by a random uniformly distributed number between 10 and 50. We compare the sBB
with the largest error branching rule against the built-in PLF solver of Gurobi, which can
also handle discontinuous l.s.c. PLFs. The logarithmic formulations either do not support

24

Table 6: Average proportion of runtime that is allotted to the various sub-operations of the
sBB algorithm when solving knapsack problems.

Operation Nonconcave Concave

K = 10 K = 10, 000 K = 10 K = 10, 000

Gurobi Interface 68% 76% 33% 10%
Solving LPs 2% 15% 2% 1%

Envelope Generation 0% 1% 0% 35%
PLF Evaluations 28% 1% 62% 49%
Other Operations 2% 8% 3% 4%

discontinuous PLFs or are not implemented in the package PiecewiseLinearOpt [HV22]. The
results are displayed for 50 random instances in Table 7.

Table 7: Solve times [s] for network flow problems with fixed charges (discontinuous PLFs).
sBB is the proposed method in this paper.

Method Med. Avg. Std. Win Fail

a) 10 segments
GRB 0.76 0.78 0.41 50 0
sBB 18.52 59.92 98.25 0 0

b) 100 segments
GRB 16.63 17.18 8.86 34 0
sBB 24.29 71.05 111 16 0

c) 500 segments
sBB 17.2 84.5 159.5 46 0
GRB 90.0 147.6 183.4 4 0

Method Med. Avg. Std. Win Fail

d) 1,000 segments
sBB 22.0 61.6 96.3 50 0
GRB 291.2 599.9 629 0 5

e) 5,000 segments
sBB 25.8 110.8 232.8 50 0
GRB 1,800 1,800 0 0 50

f) 10,000 segments
sBB 33 92 134 50 0
GRB 1,800 1,800 0 0 50

Note that the sBB with the largest error branching rule has no asymptotic convergence
guarantee in general. Falk and Soland [FS69] present an example which showcases a corner
case where the SBB never converges. However, in our experiments, the sBB with the largest
error branching rule always converged. In § 5.3, we pointed out that the breakpoint branching
rule could achieve finite convergence even for discontinuous PLFs. However, we did not fully
implement the breakpoint branching rule, as early experiments indicated poor performance.
This poor performance is caused by the failure to provide good improvements in the lower
bounds after branching. The breakpoint branching rule does not necessarily branch in the
surrounding of the solution of the parent node – in contrast to the largest error rule – and
thus cannot guarantee a tighter convex envelope around the parents solution after branching.
Consequently, the parents optimal point might also be the optimal point of the child node and
no improvement in the lower bound is gained. This branching behaviour is similar to that
of integer PLF branching rules and leads to imbalanced search trees [YV13]. This sharply
contrasts the largest-error branching rule, which branches directly at the parents solution, thus
guaranteeing an increase in lower bounds and a balanced search tree. The following example
illustrates this:

25

Example 1. Consider the problem

min f1(x1) + f2(x2) s.t. x1 + x2 ⩾ 1, x1, x2 ∈ [0, 2]

with continuous PLFs f1 and f2 given by the three breakpoints (0,0), (1,10) and (2,15) as well
as (0,0), (1,2) and (2,1), respectively.

It is easy to verify that the optimal solution of the above problem is (0,2) with an optimal
value of 1. Given the convex envelopes of both PLFs, the root node solution would be (0,1).
The breakpoint branching rule would then branch at the breakpoint (1,10) of f1. The convex
envelopes of f1 and f2 would thus not be tightened around (0,1). Point (0,1) would still
be a solution for the left child node, leading to no improvement of the lower bound and an
imbalanced search tree. This contrasts the largest-error branching rule, which would branch at
(0,1), tightening the convex envelope of f2 at (0,1) and ensuring the solution is found in the
next iteration.

By adding breakpoints to function f1, it would not be difficult to extend the above example
so that the breakpoint branching rule would continue to branch on the unimportant variable x1
for any number in N. The breakpoint branching rule would not be able to detect that finding
the optimal solution would require a single branching on variable x2. □

We believe that when designing convergent and computationally efficient branching rules
for discontinuous PLFs, the idea of branching around the previous solution should be the
guiding star as only that guarantees balanced search trees which are essential for efficient B&B
algorithms. However, the design of tailored branching rules for discontinuous PLFs, which have
both theoretical convergence guarantees and are computationally efficient, is out of the scope
of this work and is left for future research.

6.4 Comparison with Global MINLP Solvers

As mentioned before to motivate this work, PLFs can be used to approximate nonlinear func-
tions within MINLP problems to yield MILP problems [FR22]. Therefore, we want to compare
our proposed sBB with a global solver on some nonconvex nonlinear optimization problems.
However, the results of this comparison need to be interpreted carefully, as global solvers guar-
antee global optimality of the computed solutions – if they converge and the assumptions of
the underlying algorithms are met – while our tested sBB method uses a static, a priori ap-
proximation of the problem with 10,000 segments. Nevertheless, such a comparison can give
insights into the scalability of our sBB vs. the global solver tested.

The most well-know global solvers are ANTIGONE, BARON, SCIP and LindoGLOBAL.
These are all based on an sBB algorithm that computes lower bound by disaggregating functions
into elementary functions, such as log(x), a polynomial, or a bilinear function x ·y. To compute
lower bounds, those elementary functions are replaced by a known convex underestimator. For
more details on global solvers, we refer to [BL12]. Since its recent release of version 11, Gurobi
also provides a global solver. This global solver is also based on an sBB using disaggregation
into elementary functions. See the documentation on the website of Gurobi [Gur24] for more
details.

Global solvers disaggregate more complex functions, such as those in Table 2, into a cascade
of supported univariate functions [BL12]. Solvers such as ANTIGONE, BARON, SCIP and
LindoGLOBAL do this behind the scenes. However, in the current version of Gurobi, the user
needs to disaggregate this manually [Gur24]. Either way, the disaggregation may result in
weaker lower bounds compared to a direct treatment like our sBB is capable of. The following
example illustrates the disaggregation and the resulting lower bounds:

26

Example 2. Consider the function f(x) = log(ex) over the interval [1, e]. By definition, this
function equals h(x) = x and is convex. However, by the process of disaggregation, a variable
y is introduced, and f is rewritten as

f∗(y) = log(y) and y = ex with x ∈ [1, e].

The concave function log(y) is then underestimated over the interval y ∈ [e, ee] by its convex
envelope given by the linear function

e− 1

ee − e
· (y − e) + 1.

Finally, the convex underestimator of f(x) = log(ex) over the interval [1, e] is given by

e− 1

ee − e
· (ex − e) + 1.

The largest distance to the function h(x) = x – the convex envelope of f(x) – to this underes-
timator is approximately at x ≈ 2 and amounts to ≈ 0.35. Consequently, in the worst case, the
convex underestimator resulting from disaggregation is around 17% smaller than the convex
envelope. □

In the following, we compare Gurobis global solver (G-sBB) regarding computation time and
root note lower bounds with a static piecewise-linear approximation using 10,000 equidistant
segments. We solve this piecewise linear approximation with our sBB algorithm. We do not
test the other PLF formulations, as an extensive comparison for 10,000 segments was already
provided in Tables 1, 3 and 5. As the other mentioned global solvers are also based on sBB and
disaggregation, we treat Gurobi as a representative for this algorithm class and do not test the
other solvers.

Therefore, consider the knapsack problem from § 6.2.2 with the approximated functions
from Table 2 again. Next to the PLF approximation of these nonlinear functions, we hand
them over to a global MINLP solver that treats them directly within the algorithm. For those
experiments, we construct knapsack problems as described in § 6.2.2 but only consider functions
2, 9, 11, 12, 13, 14, 15 and 20 of Table 2, as we encountered numerical issues in Gurobi with the
other functions. We believe this is due to the relative novelty of Gurobi’s solver and the difficult
concatenation of elementary functions (exp, log, etc.) within the functions in Table 2. This
causes problems with disaggregation.

Table 8 provides results for different numbers of variables, each for 50 random instances.
Table 9 presents descriptive statistics of the lower bound obtained at the root node of our sBB
and the lower bound at the root node of Gurobi’s sBB method and the difference between them.
This table explains why Gurobis sBB solver is not competitive for this knapsack problem. It
can be seen that the root node bound of Gurobi is always considerably lower than that of the
sBB. Whereas our sBB computes the convex envelope of the PLF (and thus approximately also
a convex envelope of the original non-PLF function), this cannot be said about Gurobis sBB
solver, which employs disaggregation. Consequently, the underestimator is less tight and results
in weaker lower bounds. This, in turn, leads to longer runtimes as it takes longer to close the
gap between upper and lower bounds.

To obtain tight lower bounds of concatenated univariate functions like in Table 2, global
MINLP solvers could either (i) approximate them by a PLF, thus obtaining an approximation
of the convex envelope, or (ii) use a method like introduced in [GF08] to directly compute the
(possibly piecewise nonlinear) convex envelope of f .

27

Table 8: Solve times [s] for knapsack problems with Gurobi’s MINLP global solver (G-sBB).
sBB is the proposed method in this paper.

Method Med. Avg. Std. Win Fail

a) 10 variables
G-sBB 5.15 147.77 397.56 28 2
sBB 9.20 9.47 2.05 22 0

b) 11 variables
sBB 10.54 10.60 2.32 27 0

G-sBB 17.16 312.19 584.67 23 5

c) 12 variables
sBB 12.44 13.05 3.50 34 0

G-sBB 55.65 450.99 698.20 16 8

d) 13 variables
sBB 14.07 13.99 2.50 37 0

G-sBB 243.29 781.63 834.28 13 18

Method Med. Avg. Std. Win Fail

e) 14 variables
sBB 14.64 15.32 3.74 46 0

G-sBB 579.94 914.11 804.96 4 20

f) 15 variables
sBB 16.33 16.76 3.73 45 0

G-sBB 1,800 1,236 794.76 5 32

g) 20 variables
sBB 22.53 23.65 7.82 49 0

G-sBB 1,800 1,665 441.88 1 45

h) 30 variables
sBB 36.15 40.40 16.15 50 0

G-sBB 1,800 1,800 0.59 0 50

6.5 Discussion

Due to the difference in implementation quality — a rudimentary sBB implementation in
Python compared to a commercial branch-and-cut solver in a low-level language (such as C)
— it is difficult to draw firm conclusions from these computational results. Nevertheless, we
sketch a summary of our observations.

Tables 1 and 3 indicate a superior scalability of the sBB: each added segment leads to a
relative improvement in the computation time of the sBB compared to logarithmic approaches.
This is further illustrated in performance profiles given in Figures 2 and 3. This superior
scalability can be attributed to the sBB’s slim and sparse LP relaxations, which may not
always grow linearly with the number of segments (see § 3.2). The value of a method with good
scalability is illustrated in Table 4: significant improvements in solution quality are possible by
refining the PLF, even if it already contains many segments. This is usually even more true for
obtaining an appropriate optimality certificate.

As discussed in § 3.2, the Incremental and SOS2 models, which guarantee sharpness in
the entire search tree, usually outperform logarithmic models for problems with few segments.
Since the sBB also guarantees these sharpness properties, one might expect similar results for
problems with smaller segments. One could even assume that this effect is enhanced, since
spatial branching can additionally lead to more balanced search trees by branching at the
previous solution instead of at the breakpoints (see § 5.2). However, the computational results
do not support this claim. We believe that the poor performance of the sBB compared to
logarithmic approaches on problems with few segments is due to the superior implementation
of Gurobi’s branch-and-cut solver. When the sBB is integrated into a full-featured solver, such
as Gurobi or BARON, the advantage of a balanced search tree may lead the sBB to outperform
logarithmic models even on problems with few segments, as SOS2 and the Incremental model
do. In fact, a closer look at the performance of the sBB implementation (cf. Table 6) reveals
that up to 50% of the solution time is spent on the Python-Gurobi interface. This is significant
time that could be saved by integrating our sBB algorithm into a full-featured solver.

28

Table 9: Distribution of root node lower bounds of our sBB and Gurobi’s sBB and the differences
between them.

Method Min. Med. Avg. Max. Std.

a) 10 variables
sBB -149 -92 -94 -31 32

G-sBB -13,083 -3,586 -3,813 -147 3,239
Diff 39 3,496 3,718 13,039 3,255

b) 11 variables
sBB -155 -87 -83 5 37

G-sBB -9,803 -3,624 -4,267 -84 2,672
Diff 68 3,557 4,184 9,744 2,679

c) 12 variables
sBB -160 -90 -91 5 40

G-sBB -16,081 -6,535 -5,871 -205 3,563
Diff 61 6,398 5,780 16,039 3,573

d) 13 variables
sBB -166 -84 -87 8 42

G-sBB -13,137 -5,275 -5,409 -198 3,374
Diff 119 5,182 5,322 13,060 3,388

Method Min. Med. Avg. Max. Std.

e) 14 variables
sBB -175 -117 -104 -15 40

G-sBB -13,184 -4,156 -6,260 -557 3,337
Diff 422 4,044 6,157 13,073 3,351

f) 15 variables
sBB -236 -104 -114 -36 47

G-sBB -13,455 -6,962 -7,252 -331 3,571
Diff 250 6,859 7,139 13,370 3,584

g) 20 variables
sBB -257 -167 -165 44 55.37

G-sBB -16,562 -7,450 -8,190 -532 3,981
Diff 347 7,331 8,025 16,516 3,998

h) 30 variables
sBB -379 -263 -252 -51 89

G-sBB -28,956 -13,225 -13,215 -4,169 5,360
Diff 384 12,981 12,963 28,792 5,390

The computational results for discontinuous l.s.c PLFs shows that the discontinuity results
in more difficult to solve instances (cf. Table 7 vs. Tables 3 and 5). None of the 50 instances
for 5,000 segments could be solved by Gurobi within the 1,800 seconds; the same for the 50
instances of 10,000 segments. The relative performance of our sBB to Gurobi’s PLF solver is
similar to the continuous PFL instances in that our sBB is superior for 500 and more segments
(cf. Tables 1, 3 and 5).

The comparisons with Gurobi as global solver confirmed the good scalability of our sBB
method (Table 8). While the running time our sBB method scales approximately linearly with
the number of variables, the global solver scales approximately exponentially. Already with 11
variables, our sBB is clearly superior. Remarkable is the extremely low standard deviation of the
running times of our sBB which shows that the computational performance is very consistent
among the 50 instances tested. The superior performance of our SBB can be explained by the
better lower bounding (cf. Table 9).

7 Approximating separable functions
We mentioned earlier in § 1.3 the need for computationally efficient scalable algorithms and
the various error bounds that have been calculated in literature to determine the number of
breakpoints needed from a good PLF approximation. We present an error bound for the number
of breakpoints required in a PLF approximation to achieve a desired error to the problem of
optimizing a separable function. Our bound is different than existing results because we do
not assume differentiability of the function that is being approximated. Instead, we work with
Hölder continuous functions which are defined as follows.

29

Definition 1. A function h : X → R over a closed set X ⊆ Rn is said to be (α, β)−Hölder
continuous for some constants α, β > 0 if∣∣f(x)− f(x′)∣∣ ⩽ β ‖x− x′‖α2 x, x′ ∈ X.

The function is Lipschitz continuous when α = 1, , whereas for α > 1 the function must be
constant over its domain. We assume α ∈ (0, 1].

For some closed convex set S and hyper-rectangle H, consider the nonconvex separable
minimization problem,

ϕ∗ := min ϕ(x) :=

n∑
i=1

ϕi(xi) s.t. x ∈ S ∩H,

where for each i = 1, . . . , n, the univariate function ϕi : [li, ui] → R, whose domain is some
closed interval [li, ui] ⊂ R, is (αi, βi)-Hölder continuous. This means that∣∣ϕi(t)− ϕi(t′)∣∣ ⩽ βi

∣∣t− t′∣∣αi , t, t′ ∈ [li, ui].

Let x∗ denote its optimal solution, which exists because ϕ is continuous and S ∩H is compact.
Suppose that for each ϕi we construct a continuous PLF approximation ϕ̂i : [li, ui] → R with
Ki+1 breakpoints that are indexed by the set {bki : k = 0, 1, . . . ,Ki}. This PLF is constructed
in the natural way by joining consecutive breakpoints, so that the kth segment is obtained
by joining the points (bk−1

i , ϕi(b
k−1
i)) and (bki , ϕi(b

k
i)) for k = 1, . . . ,Ki. Summing these over

i = 1, . . . , n creates the PLF ϕ̂(x) =
∑n

i=1 ϕ̂i(xi), whose optimization yields a finite value ϕ̂ and
solution x̂,

ϕ̂ = ϕ̂(x̂) := min

n∑
i=1

ϕ̂i(xi) s.t. x ∈ S ∩H.

There is no immediate relation between ϕ∗ and ϕ̂, but we can deduce two inequalities. Firstly,
the optimal solution x̂ of the PLF problem being feasible to S ∩H implies that the optimum
of the original problem can be upper bounded.

Observation 7.1. ϕ∗ ⩽ ϕ(x̂).

Secondly, if the approximate solution x̂ belongs to subintervals of concavity1, then we can
also lower bound the global optimum.

Observation 7.2. ϕ̂ ⩽ ϕ∗ if for each i = 1, . . . , n, ϕi is concave over the subinterval [bki , b
k+1
i]

containing x̂i.

Proof. This is because the stated assumption implies ϕ̂(x∗) ⩽ ϕ(x∗), and we know from the
optimality of x̂ that ϕ̂(x̂) ⩽ ϕ̂(x∗).

In general, ϕ̂ := ϕ̂(x̂) is neither a lower nor an upper bound on ϕ∗. Our main result here is
that to control the additive gap on ϕ̂, there is a formula for the number of breakpoints in the
PLFs that depends on the continuity parameters and the width of interval bounds.

1Every continuous univariate function on an interval can be partitioned into subintervals such that over each
subinterval it is either convex or concave.

30

Proposition 7.1. Let ε, δ > 0 be given and denote

θi :=
ui − li
δ

, ρi :=
αi

√
βi
ε

[
1 + θ1−αi

i

]
i = 1, . . . , n.

Solving the PLF approximate problem by creating for each i at least θi −
n−1/αi

δ ρi
segments such

that the breakpoints are spaced at least δ-apart, yields an approximate value ϕ̂ that satisfies
ϕ̂ ⩾ ϕ∗ − ε.

We argue this by establishing the approximation error for univariate functions, and then
gluing together the individual pieces.

7.1 PLF approximations of univariate functions

Suppose that we are given a univariate function f : I → R that is (α, β)-Hölder continuous on
the interval I := [l, u] ⊂ R, meaning that

∣∣f(t)− f(t′)∣∣ ⩽ β
∣∣t− t′∣∣α for all t, t′ ∈ I. For any

finite integer K ⩾ 1 and δ > 0, let

BK,δ :=
{
B := {b0, b1, . . . , bK} : b0 = l, bK = u, bi+1 − bi ⩾ δ ∀i

}
be the collection of all sets of K + 1 breakpoints (sorted in increasing order) in interval I
that are at least δ apart from each other. For every B ∈ BK,δ, we have a continuous PLF
gB : I → R that approximates f by interpolation with K + 1 breakpoints. In particular, the
K segments of gB are obtained by joining consecutive points so that for i = 1, . . . ,K, the
ith segment joins the points (bi−1, f(bi−1)) and (bi, f(bi)) with a line segment whose slope is
mi := (f(bi)− f(bi−1))/(bi − bi−1). Each of these slopes can be upper bounded by parameters
for f , which leads to a Lipschitz constant for gB that is independent of K.

Lemma 7.2. For every B ∈ BK,δ, gB has a Lipschitz constant equal to β/δ1−α.

Proof. Let us begin with the following general result which may be known, but since we could
not find a reference, a self-contained proof is given in Appendix A for completeness.

Claim 1 (Lipschitz continuity of PLF). A continuous univariate PLF on a closed interval has
its smallest Lipschitz constant equal to the maximum absolute value of the slope of its linear
segments.

We derive another technicality.

Claim 2. |mi| ⩽ β/δ1−α for all i = 1, . . . ,K.

Proof. By construction of gB we have gB(b
i) = f(bi) and gB(b

i+1) = f(bi+1), and so the
definition of slope gives us

∣∣f(bi+1)− f(bi)
∣∣ = |mi| (bi+1 − bi). The Hölder property leads to

|mi| (bi+1 − bi) ⩽ β (bi+1 − bi)α, which, after noting α ∈ (0, 1], reduces to

|mi| ⩽ β (bi+1 − bi)α−1 =
β

(bi+1 − bi)1−α
⩽ β

δ1−α
,

where the last inequality uses B ∈ BK,δ.

Our assertion follows after combining the above two claims.

31

We will need one more technical result.

Lemma 7.3. Let X ⊂ Rn be a compact set and R be the radius of a ball with its center in
X such that the ball encloses X. Let h1 : X → R be L−Lipschitz over X and h2 : X → R be
(α, β)−Hölder continuous over X. Then h1−h2 : x ∈ X 7→ h1(x)−h2(x) is (α,L(2R)1−α+β)-
Hölder continuous over X.

Proof. For any x, x′ ∈ X, we have∣∣(h1 − h2)(x)− (h1 − h2)(x′)
∣∣ = ∣∣∣h1(x)− h1(x′)− (h2(x)− h2(x′))∣∣∣
⩽
∣∣h1(x)− h1(x′)∣∣+∣∣h2(x)− h2(x′)∣∣

⩽ L
∥∥x− x′∥∥+ β

∥∥x− x′∥∥α ,
where the first inequality is the triangle inequality for absolute values, and the second inequality
is from Lipschitz and Hölder continuity of h1 and h2. The distance between any x, x′ ∈ X can
be bounded as

∥∥x− x′∥∥ ⩽ 2R, using the triangle inequality. Therefore, for any α ∈ (0, 1],(∥∥x− x′∥∥
2R

)α

⩾
∥∥x− x′∥∥

2R
=⇒

∥∥x− x′∥∥ ⩽ (2R)1−α
∥∥x− x′∥∥α .

Substituting this into the above inequality gives us∣∣(h1 − h2)(x)− (h1 − h2)(x′)
∣∣ ⩽ L(2R)1−α

∥∥x− x′∥∥α+β∥∥x− x′∥∥α =
(
L(2R)1−α + β

)∥∥x− x′∥∥α ,
and hence our claim that h1−h2 is Hölder continuous with parameters α and L(2R)1−α+β.

Now let us derive our error bound for a univariate function. The error of a continuous PLF
with respect to f is defined as the largest additive approximation gap over the domain. Thus,
we have the error function ξ : N× R>0 → R⩾0 given by

ξ : (K, δ) ∈ N× R>0 7→ max
B∈BK,δ

max
x∈I

∣∣f(x)− gB(x)∣∣ . (14)

To state our lower bound for the number of breakpoints required to achieve a given error, let
us introduce two parameters dependent on the minimum spacing parameter δ,

θ = θ(δ) :=
u− l
δ

, ρ = ρ(δ) :=
α

√
β

ε

[
1 + θ1−α

]
.

Proposition 7.4. Given any ε, δ > 0, we have ξ(K, δ) ⩽ ε if

K > θ − 1

δ ρ
.

Proof. Since gB is a PLF that can be described as gB(x) = mix+f(b
i)−mib

i when x ∈ [bi−1, bi]
for any i, the error function can be written as

ξ(K, δ) = max
B∈BK,δ

max
i=1,...,K

max
x∈[bi−1,bi]

∣∣∣∣f(x)− [mix+ f(bi)−mib
i
]∣∣∣∣ .

Consider the function hi : x ∈ [bi, bi+1] 7→ f(x)−mix− f(bi) +mibi that appears in the error
function. This is the difference of a (α, β)−Hölder continuous function and a linear function

32

which is Lipschitz continuous with constant |mi|. Applying Lemma 7.3 with R = (u− l)/2 for
the interval I, we obtain hi to be Hölder continuous with parameters α and |mi| (u− l)1−α + β.
Using the definition of Hölder continuity for any x ∈ [bi, bi+1] leads to∣∣hi(x)∣∣ = ∣∣hi(x)− hi(bi)∣∣ ⩽ (|mi| (u− l)1−α + β) (x− bi)α ⩽ (|mi| (u− l)1−α + β)∆(B)α,

where for the first equality we have used hi(bi) = 0 due to exactness of PLF at breakpoints,
and in the last inequality we denote ∆(B) := maxi=1,...,K bi− bi−1 to be the maximum distance
between consecutive breakpoints. We have u− l =

∑K
i=1 b

i−bi−1 ⩾ ∆(B)+(K−1)δ due to B ∈
BK,δ. This implies that ∆(B) ⩽ u−l−(K−1)δ. Substituting this upper bound into above leads
to
∣∣hi(x)∣∣ ⩽ (|mi| (u− l)1−α + β) (u− l− (K − 1)δ)α. Since ξ(K, δ) = maxB maximaxx

∣∣hi(x)∣∣,
after using Claim 2 which gives an upper bound on |mi| that is independent of i, it follows that

β(θ1−α + 1) (u− l − (K − 1)δ)α ⩽ ε

is a sufficient condition for ξ(K, δ) ⩽ ε. Rearranging terms yields our lower bound on K.

When uniformly spaced breakpoints are to be considered only, the above proof can be
modified at the step where we upper bound the maximum separation ∆(B). In particular, we
have ∆(B) = (u − l)/K in the uniform case, and the remaining proof carries through. Hence,
we can bound as follows the error ξ̃(K) := maxx∈I

∣∣f(x)− gB(x)∣∣ where B is the unique set of
K breakpoints that are uniformly spaced (note that δ is not needed as an input parameter in
the uniform case) .

Corollary 7.5. (u− l)ρ uniformly spaced segments guarantee an additive error of at most ε.

7.2 Proof of Proposition 7.1

We have ϕ∗ ⩽ ϕ(x̂) from Observation 7.1. For every i, we can apply Proposition 7.4 to control
the approximation error to ε/n by selecting the number of segments Ki to be large enough.
Our claim follows after recognising that the errors are additive and ϕ is a separable function.

8 Conclusion and future work
In this paper, a new perspective on piecewise linear optimization is taken. We adopt a global
and nonlinear continuous approach instead of discrete optimization. The developed spatial
branch-and-bound algorithm has small, sparse, and sharp LP relaxations throughout the search
tree. Computational experiments have shown that even a rudimentary sBB implementation in
Python can outperform state-of-the-art logarithmic models solved by Gurobi if the number
of segments is sufficiently high. Nonetheless, we advocate a problem-specific approach when
selecting a solution method for separable piecewise linear optimization problems. If the PLFs
involved have many segments, the sBB could be the method of choice due to its slim and sparse
LP relaxations. However, for PLFs with few segments, MILP models such as the classical
Incremental model might be faster due to their large formulation and the thus better possibilities
for cutting planes.

Discrete approaches in piecewise linear optimization have witnessed over 60 years of fruitful
research which led to the current state-of-the-art. In contrast, this paper is an initial attempt
towards an efficient method that is based on continuous optimization techniques and is glob-
ally convergent. We recognize that our implementation is rudimentary at this stage and can

33

benefit from several enhancements and sophistications that would accelerate its performance.
Therefore, there are still some open questions. Further research can focus on extensions to non-
separable cases, cutting planes, specialized branching rules, integration in a full branch-and-cut
solver or further development of sBB algorithms for discontinuous functions. We leave these
for future research but outline some of these ideas in the next paragraphs.

The ideas of pseudocost, strong and reliability branching from MILP [AKM05] could be
adopted here. Moreover, there have been many works [Ben90, Kes+04, DAm+20] on strength-
ening the relaxations for separable nonconvex terms in a branch-and-cut algorithm and it is
conceivable that some of these ideas can be applied to separable PLFs to accelerate our sBB.
This would be a counterpart to the valid inequalities and cutting planes that have been devel-
oped for MILP and SOS2 models.

Future work could also extend our work to non-l.s.c. PLFs. Although our sBB can generate
polyhedral relaxations of any separable PLF, we currently do not have a branching rule that
gives asymptotic convergence when the PLF is non-l.s.c.. This does not seem to be an easy
task since convergence issues for relaxations of discontinuous functions are well-known and also
easy to see with simple examples (cf. Figure 1). Nonetheless, it may be worth tackling this
problem at least for separable PLFs since the SOS2 branching rule has been generalized [FZZ08],
although only as a proof-of-concept and not something that has been implemented in MILP
solvers. Moreover, one could explore machine learning techniques for branching decisions, as
was done recently for nonconvex polynomial optimization problems [Gha+23].

Lastly, our approach could be extended to handle non-separable PLFs. While the Graham’s
scan algorithm is limited to two dimensions and thus only applicable to univariate or separable
PLFs, other algorithms, such as Quickhull [BDH96], can compute the convex hull in multiple
dimensions. This makes them suitable for identifying the convex envelope of non-separable
PLFs.

Acknowledgements The research of the third author is supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) [Grant 445857709].

A Proof of Claim 1
Claim 1 (Lipschitz continuity of PLF). A continuous univariate PLF on a closed interval has
its smallest Lipschitz constant equal to the maximum absolute value of the slope of its linear
segments.

Proof. Let h be a continuous PLF on I := [l, u] formed by breakpoints {b0, b1, . . . , bK} where
bi < bi+1 and b0 = l and bK = u. Denote the slope of the ith segment by mi :=

h(bi)−h(bi−1)
bi−bi−1 .

Take any distinct x, x′ ∈ I with x′ ∈ [bk−1, bk] and x ∈ [bj−1, bj] for some 1 ⩽ k ⩽ j ⩽ K. The
case k = j is trivial due to linearity in each piece, so assume k < j. We have

h(x)− h(x′) =
[
h(x)− h(bj−1)

]
+
[
h(bj−1)− h(bj−2)

]
+ · · ·+

[
h(bk)− h(x′)

]
= mj(x− bj−1) +mj−1(b

j−1 − bj−2) + · · ·+mk(b
k − x′)

⩽
[
max
i=k,...,j

mi

](
x− bj−1 + bj−1 − bj−2 + · · ·+ bk − x′

)
=

[
max
i=k,...,j

mi

]
(x− x′)

34

Switching the roles of x and x′ and following similar steps gives us

h(x′)− h(x) ⩽
[
max
i=k,...,j

−mi

]
(x− x′).

Recall that any four reals (a1, a2, a3, a4) with a1 ⩽ a2 and a3 ⩽ a4 also satisfy max{a1, a3} ⩽
max{a2, a4}. Using this fact with the above two inequalities gives us∣∣h(x)− h(x′)∣∣ ⩽ max{ max

i=k,...,j
mi, max

i=k,...,j
(−mi)} (x− x′)

=

[
max
i=k,...,j

|mi|
]
(x− x′)

⩽
[

max
i=1,...,K

|mi|
]
(x− x′).

Since x and x′ are arbitrary in I, the correctness of the Lipschitz constant follows from above.
This is also the best possible constant because we can take x and x′ to be between the break-
points where the slope has the highest absolute value.

Bibliography
[AKM05] T. Achterberg, T. Koch, and A. Martin. “Branching rules revisited”. In: Operations Research

Letters 33.1 (2005), pp. 42–54.
[AGX19] W. Adams, A. Gupte, and Y. Xu. “Error bounds for monomial convexification in polynomial

optimization”. In: Mathematical Programming 175 (2019), pp. 355–393.
[Adj+98] C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. “A global optimization method,

αBB, for general twice-differentiable constrained NLPs – I. Theoretical advances”. In: Com-
puters & Chemical Engineering 22.9 (1998), pp. 1137–1158.

[BDH96] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. “The quickhull algorithm for convex hulls”.
In: ACM Transactions on Mathematical Software (TOMS) 22.4 (1996), pp. 469–483.

[Bär+23] A. Bärmann, R. Burlacu, L. Hager, and T. Kleinert. “On piecewise linear approximations
of bilinear terms: structural comparison of univariate and bivariate mixed-integer program-
ming formulations”. In: Journal of Global Optimization 85.4 (2023), pp. 789–819.

[BHH22] B. Beach, R. Hildebrand, and J. Huchette. “Compact mixed-integer programming formu-
lations in quadratic optimization”. In: Journal of Global Optimization 84 (2022), pp. 869–
912.

[BF76] E. Beale and J. J. Forrest. “Global optimization using special ordered sets”. In: Mathemat-
ical Programming 10.1 (1976), pp. 52–69.

[Ben90] H. P. Benson. “Separable concave minimization via partial outer approximation and branch
and bound”. In: Operations Research Letters 9.6 (1990), pp. 389–394.

[BL12] S. Burer and A. N. Letchford. “Non-convex mixed-integer nonlinear programming: a sur-
vey”. In: Surveys in Operations Research and Management Science 17.2 (2012), pp. 97–
106.

[BGS20] R. Burlacu, B. GeiSSler, and L. Schewe. “Solving mixed-integer nonlinear programmes
using adaptively refined mixed-integer linear programmes”. In: Optimization Methods and
Software 35.1 (2020), pp. 37–64.

[Cas+03] L. G. Casado, J. A. Martínez, I. García, and Y. D. Sergeyev. “New interval analysis support
functions using gradient information in a global minimization algorithm”. In: Journal of
Global Optimization 25.4 (2003), pp. 345–362.

35

[Cor+09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2009.

[CGM03] K. L. Croxton, B. Gendron, and T. L. Magnanti. “A comparison of mixed-integer program-
ming models for nonconvex piecewise linear cost minimization problems”. In: Management
Science 49.9 (2003), pp. 1268–1273.

[CGM07] K. L. Croxton, B. Gendron, and T. L. Magnanti. “Variable disaggregation in network flow
problems with piecewise linear costs”. In: Operations Research 1 (2007), pp. 146–157.

[DAm+20] C. D’Ambrosio, J. Lee, D. Skipper, and D. Thomopulos. “Handling separable non-convexities
using disjunctive cuts”. In: Combinatorial Optimization : ISCO 2020. Vol. 12176. Lecture
Notes in Computer Science. Springer, Cham, 2020, pp. 102–114.

[Dan60] G. B. Dantzig. “On the significance of solving linear programming problems with some
integer variables”. In: Econometrica 28.1 (1960), pp. 30–44.

[DG15] S. S. Dey and A. Gupte. “Analysis of MILP techniques for the pooling problem”. In:
Operations Research 63.2 (2015), pp. 412–427.

[DN22] A. Duguet and S. U. Ngueveu. “Piecewise linearization of bivariate nonlinear functions:
minimizing the number of pieces under a bounded approximation error”. In: Combinatorial
Optimization : ISCO 2022. Vol. 13526. Lecture Notes in Computer Science. Springer, Cham,
2022, pp. 117–129.

[FS69] J. E. Falk and R. M. Soland. “An algorithm for separable nonconvex programming prob-
lems”. In: Management Science 15.9 (1969), pp. 550–569.

[Far+13] I. R. de Farias, E. Kozyreff, R. Gupta, and M. Zhao. “Branch-and-cut for separable piecewise
linear optimization and intersection with semi-continuous constraints”. In: Mathematical
Programming Computation 5.1 (2013), pp. 75–112.

[FZZ08] I. R. de Farias Jr., M. Zhao, and H. Zhao. “A special ordered set approach for optimizing
a discontinuous separable piecewise linear function”. In: Operations Research Letters 36.2
(2008), pp. 234–238.

[FM88] B. Feijoo and R. Meyer. “Piecewise-linear approximation methods for nonseparable convex
optimization”. In: Management Science 34.3 (1988), pp. 411–419.

[Fou85] R. Fourer. “A simplex algorithm for piecewise-linear programming I: Derivation and proof”.
In: Mathematical Programming 33.2 (1985), pp. 204–233.

[FSB10] C. L. Frenzen, T. Sasao, and J. T. Butler. “On the number of segments needed in a piecewise
linear approximation”. In: Journal of Computational and Applied mathematics 234.2 (2010),
pp. 437–446.

[FR22] C. Füllner and S. Rebennack. “Non-convex nested Benders decomposition”. In: Mathemat-
ical Programming 196.1 (2022), pp. 987–1024.

[Gei+12] B. GeiSSler, A. Martin, A. Morsi, and L. Schewe. “Using piecewise linear functions for
solving MINLPs”. In: Mixed Integer Nonlinear Programming, ed. by J. Lee and S. Leyffer.
Vol. 154. IMA Volumes in Mathematics and its Applications. Springer, 2012, pp. 287–314.

[Gha+23] B. Ghaddar, I. Gómez-Casares, J. González-Díaz, B. González-Rodríguez, B. Pateiro-López,
and S. Rodríguez-Ballesteros. “Learning for spatial branching: An algorithm selection ap-
proach”. In: INFORMS Journal on Computing 35.5 (2023), pp. 1024–1043.

[Gor22] B. L. Gorissen. “Interior point methods can exploit structure of convex piecewise linear
functions with application in radiation therapy”. In: SIAM Journal on Optimization 32.1
(2022), pp. 256–275.

[GF08] C. Gounaris and C. Floudas. “Tight convex underestimators for C2-continuous functions:
I. Univariate functions”. In: Journal of Global Optimization 42 (2008), pp. 51–67.

[Gra72] R. Graham. “An efficient algorithm for determining the convex hull of a finite planar set”.
In: Information Processing Letters 1.4 (1972), pp. 132–133.

36

[GK20] B. Grimstad and B. R. Knudsen. “Mathematical programming formulations for piecewise
polynomial functions”. In: Journal of Global Optimization 77.3 (2020), pp. 455–486.

[GKK22] A. Gupte, A. M. Koster, and S. Kuhnke. “An adaptive refinement algorithm for discretiza-
tions of nonconvex QCQP”. In: 20th International Symposium on Experimental Algorithms
: SEA 2022. Vol. 233. Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl Publishing, 2022, 24:1–24:14.

[Gur24] Gurobi Optimization. Documentation - General Constraints. Available online: https://
www.gurobi.com/documentation/current/refman/general_constraints.html. 2024.

[Hor86] R. Horst. “A general class of branch-and-bound methods in global optimization with some
new approaches for concave minimization”. In: Journal of Optimization Theory and Appli-
cations 51.2 (1986), pp. 271–291.

[HV22] J. Huchette and J. P. Vielma. “Nonconvex piecewise linear functions: advanced formulations
and simple modeling tools”. In: Operations Research (2022).

[KFN04] A. B. Keha, I. R. de Farias, and G. L. Nemhauser. “Models for representing piecewise linear
cost functions”. In: Operations Research Letters 32.1 (2004), pp. 44–48.

[KFN06] A. B. Keha, I. R. de Farias, and G. L. Nemhauser. “A branch-and-cut algorithm without
binary variables for nonconvex piecewise linear optimization”. In: Operations Research 5
(2006), pp. 847–858.

[Kes+04] P. Kesavan, R. J. Allgor, E. P. Gatzke, and P. I. Barton. “Outer approximation algorithms
for separable nonconvex mixed-integer nonlinear programs”. In: Mathematical Programming
100 (2004), pp. 517–535.

[AS00] F. A. Al-Khayyal and H. D. Sherali. “On finitely terminating branch-and-bound algorithms
for some global optimization problems”. In: SIAM Journal on Optimization 10.4 (2000),
pp. 1049–1057.

[KRT22] J. Kim, J.-P. P. Richard, and M. Tawarmalani. Piecewise polyhedral relaxations of multilin-
ear optimization. Preprint. 2022. Optimization Online: https://optimization-online.
org/?p=19069.

[KM20] L. Kong and C. T. Maravelias. “On the derivation of continuous piecewise linear approxi-
mating functions”. In: INFORMS Journal on Computing 32.3 (2020), pp. 531–546.

[Kon00] S. Kontogiorgis. “Practical piecewise-linear approximation for monotropic optimization”.
In: INFORMS Journal on Computing 12.4 (2000), pp. 324–340.

[LSW08] S. Leyffer, A. Sartenaer, and E. Wanufelle. “Branch-and-refine for mixed-integer nonconvex
global optimization”. Preprint ANL/MCS-P1547-0908. Mathematics and Computer Science
Division, Argonne National Laboratory, 2008, pp. 40–78.

[LS13] M. Locatelli and F. Schoen. Global optimization : Theory, algorithms, and applications.
Vol. MO15. MOS-SIAM Series on Optimization. SIAM, 2013.

[LHH23] B. Lyu, I. V. Hicks, and J. Huchette. Building formulations for piecewise linear relaxations
of nonlinear functions. Preprint. 2023. arXiv: 2304.14542 [math.OC].

[MS04] T. L. Magnanti and D. Stratila. “Separable concave optimization approximately equals
piecewise linear optimization”. In: Integer Programming and Combinatorial Optimization
: IPCO 2004. Vol. 3064. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg,
2004, pp. 234–243.

[MM57] H. M. Markowitz and A. S. Manne. “On the solution of discrete programming problems”.
In: Econometrica 25.1 (1957), pp. 84–110.

[Mey76] R. R. Meyer. “Mixed integer minimization models for piecewise-linear functions of a single
variable”. In: Discrete Mathematics 16.2 (1976), pp. 163–171.

37

https://www.gurobi.com/documentation/current/refman/general_constraints.html
https://www.gurobi.com/documentation/current/refman/general_constraints.html
https://optimization-online.org/?p=19069
https://optimization-online.org/?p=19069
https://arxiv.org/abs/2304.14542

[Nag+19] H. Nagarajan, M. Lu, S. Wang, R. Bent, and K. Sundar. “An adaptive, multivariate par-
titioning algorithm for global optimization of nonconvex programs”. In: Journal of Global
Optimization 74.4 (2019), pp. 639–675.

[NP09] J. M. Natali and J. M. Pinto. “Piecewise polynomial interpolations and approximations
of one-dimensional functions through mixed integer linear programming”. In: Optimization
Methods & Software 24.4-5 (2009), pp. 783–803.

[Ngu19] S. U. Ngueveu. “Piecewise linear bounding of univariate nonlinear functions and result-
ing mixed integer linear programming-based solution methods”. In: European Journal of
Operational Research 275.3 (2019), pp. 1058–1071.

[PUK20] M. Posypkin, A. Usov, and O. Khamisov. “Piecewise linear bounding functions in univariate
global optimization”. In: Soft Computing 24.23 (2020), pp. 17631–17647.

[Reb16] S. Rebennack. “Computing tight bounds via piecewise linear functions through the example
of circle cutting problems”. In: Mathematical Methods of Operations Research 84.1 (2016),
pp. 3–57.

[RK15] S. Rebennack and J. Kallrath. “Continuous piecewise linear delta-approximations for uni-
variate functions: computing minimal breakpoint systems”. In: Journal of Optimization
Theory and Applications 167.2 (2015), pp. 617–643.

[RK20] S. Rebennack and V. Krasko. “Piecewise linear function fitting via mixed-integer linear
programming”. In: INFORMS Journal on Computing 32.2 (2020), pp. 507–530.

[RNP09] S. Rebennack, A. Nahapetyan, and P. M. Pardalos. “Bilinear modeling solution approach
for fixed charge network flow problems”. In: Optimization Letters 3 (2009), pp. 347–355.

[SS98] J. P. Shectman and N. V. Sahinidis. “A finite algorithm for global minimization of separable
concave programs”. In: Journal of Global Optimization 12 (1998), pp. 1–36.

[She01] H. D. Sherali. “On mixed-integer zero-one representations for separable lower-semicontinuous
piecewise-linear functions”. In: Operations Research Letters 28.4 (2001), pp. 155–160.

[Sol71] R. M. Soland. “An algorithm for separable nonconvex programming problems ii: nonconvex
constraints”. In: Management Science 17.11 (1971), pp. 759–773.

[SSN22] K. Sundar, S. Sanjeevi, and H. Nagarajan. “Sequence of polyhedral relaxations for nonlinear
univariate functions”. In: Optimization and Engineering 23.2 (2022), pp. 877–894.

[TS04] M. Tawarmalani and N. V. Sahinidis. “Global optimization of mixed-integer nonlinear pro-
grams: a theoretical and computational study”. In: Mathematical programming 99.3 (2004),
pp. 563–591.

[Tha78] L. S. Thakur. “Error analysis for convex separable programs: the piecewise linear approx-
imation and the bounds on the optimal objective value”. In: SIAM Journal on Applied
Mathematics 34.4 (1978), pp. 704–714.

[TV12] A. Toriello and J. P. Vielma. “Fitting piecewise linear continuous functions”. In: European
Journal of Operational Research 219.1 (2012), pp. 86–95.

[Tuy16] H. Tuy. Convex Analysis and Global Optimization. 2nd edition. Vol. 110. Springer Opti-
mization and its Applications. Springer Cham, 2016.

[TH88] H. Tuy and R. Horst. “Convergence and restart in branch-and-bound algorithms for global
optimization. Application to concave minimization and DC optimization problems”. In:
Mathematical Programming 41.1 (1988), pp. 161–183.

[VAN10] J. P. Vielma, S. Ahmed, and G. Nemhauser. “Mixed-integer models for nonseparable
piecewise-linear optimization: unifying framework and extensions”. In: Operations Research
2 (2010), pp. 303–315.

[VKN08] J. P. Vielma, A. B. Keha, and G. L. Nemhauser. “Nonconvex, lower semicontinuous piece-
wise linear optimization”. In: Discrete Optimization 5.2 (2008), pp. 467–488.

38

[VN09] J. P. Vielma and G. L. Nemhauser. “Modeling disjunctive constraints with a logarithmic
number of binary variables and constraints”. In: Mathematical Programming 128.1-2 (2009),
pp. 49–72.

[WR22] J. A. Warwicker and S. Rebennack. “A comparison of two mixed-integer linear programs
for piecewise linear function fitting”. In: INFORMS Journal on Computing 34.2 (2022),
pp. 1042–1047.

[WR24] J. A. Warwicker and S. Rebennack. “Efficient continuous piecewise linear regression for
linearising univariate non-linear functions”. In: IISE Transactions 0.0 (2024), pp. 1–15.

[WB14] A. Wechsung and P. I. Barton. “Global optimization of bounded factorable functions with
discontinuities”. In: Journal of Global Optimization 58.1 (2014), pp. 1–30.

[YV13] S. Yldz and J. P. Vielma. “Incremental and encoding formulations for mixed integer pro-
gramming”. In: Operations Research Letters 41.6 (2013), pp. 654–658.

[ZF12] M. Zhao and I. R. de Farias. “The piecewise linear optimization polytope: new inequalities
and intersection with semi-continuous constraints”. In: Mathematical Programming 141.1-2
(2012), pp. 217–255.

39

	Introduction
	Literature review
	Our contributions
	Importance of scalable algorithms

	Preliminaries
	Problem Input
	Background on sBB

	Overview of our sBB
	Main Ideas
	Relation to MILP and SOS2 approaches

	Convexifying univariate PLFs
	PLF underestimator
	Updating envelope over subintervals
	An Illustrative Example

	Spatial branch-and-bound algorithm
	Node relaxations
	Branching rules
	Convergence guarantees

	Computational experiments
	Design of experiments
	Continuous PLFs
	Network flow problem with concave cost
	Knapsack problem with approximated nonlinearities
	Details on Computational Experiments

	Discontinuous l.s.c. PLF
	Comparison with Global MINLP Solvers
	Discussion

	Approximating separable functions
	PLF approximations of univariate functions
	Proof of approxgap

	Conclusion and future work
	Proof of lipsch1

