Spatial branch-and-bound for nonconvex separable piecewise
linear optimization

Thomas Hiibner* Akshay Gupte' Steffen Rebennack?

May 1, 2024

Abstract

Nonconvex separable piecewise linear functions (PLFs) frequently appear in applications
and to approximate nonlinearitites. The standard practice to formulate nonconvex PLFs is
from the perspective of discrete optimisation, using special ordered sets and mixed integer
linear programs (MILPs). In contrast, we take the viewpoint of global continuous optimiza-
tion and present a spatial branch-and-bound algorithm (sBB) for optimizing a separable
discontinuous PLF over a closed convex set. It offers slim and sparse linear programming
relaxations, sharpness throughout the search tree, and an increased flexibility in branching
decisions. The main feature of our algorithm is the generation of convex underestimators
at the root node of the search tree and their quick and efficient updates at each node after
branching. Convergence to the global optimum is achieved when the PLFs are lower semi-
continuous. A Python implementation of our algorithm is tested on knapsack and network
flow problems and compared with logarithmic MILP formulations solved by a commercial
MILP solver. The numerical experiments indicate significant performance gains up to an
order of magnitude for medium- to large-sized PLFs.

Keywords. Piecewise linear functions, Spatial branch-and-bound, Global optimization, Lower semi-
continuity, Convex underestimators, Branching rules

AMS 2020 subject classification. 90C26, 90C57

1 Introduction

A piecewise linear function (PLF) is a multivariate function whose domain can be partitioned
into pieces such that the function is affine in each piece. Such a nonsmooth function arises
naturally in some optimization problems or more commonly as approximation of a nonlinear
nonconvex function [Gei+12, DG15, Nag+19, BGS20, BHH22, Biar+23, WR24]. When a PLF
is convex and is either minimized or appears in a < constraint, it can be modelled as a linear
program (LP). In general, a PLF is NP-hard to optimize [KFN0G6] even for separable PLFs which
can be written as a sum of univariate PLFs each of which is in a different coordinate. Separable
PLFs appear naturally in a wide variety of problems in various fields dealing with economies of
scale, such as logistics, management, finance or engineering [MM57, Dan60, BF76]. Univariate
PLFs also arise as approximations to one-dimensional nonconvex functions in a global opti-
mization problem [LSWO08, NP09, RK15, GK20, PUK20, SSN22]. In fact, a separable concave

*Power Systems Laboratory, ETH Ziirich, Switzerland, thuebner@ethz.ch

tSchool of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, United
Kingdom, akshay.gupte@ed.ac.uk

Hnstitute for Operations Research, Karlsruhe Institute of Technology, Germany, steffen.rebennack@kit.edu

mailto: thuebner@ethz.ch
mailto: akshay.gupte@ed.ac.uk
mailto: steffen.rebennack@kit.edu

function minimization can be approximated to an arbitrary precision by a single separable PLF
problem [MS04].

The common way to approach problems with nonconvex PLFs is by developing exact for-
mulations based on either mized-integer linear programming (MILP) models or special ordered
sets of type 2 (SOS2). In both approaches, the problem is reformulated by using a number
of additional variables, some of which are binary, and constraints for each breakpoint of the
PLF. This reformulation is then solved with a MILP solver. Classical MILP and SOS2 mod-
elling approaches (see surveys in [VAN10, Reb16]) initially focused on continuous separable
PLFs, but were later extended by [VAN10] to the non-separable case. It is known that their
LPs provide the same relaxation strength [She0l, CGMO03, KFNO04]. However, they have the
drawback of using as many binary variables as the number of segments of a PLF. This was
remedied by [VN09, HV22] who produced MILPs that require only a logarithmic number of
binary variables, thereby allowing for greater scalability of such models. Other research has
focused on specialized valid inequalities for the SOS2-based models of separable PLFs [KFNOG,
VKNO08, ZF12, Far+13]. Extensions of MILP models to lower semicontinuous (l.s.c.) PLFs have
been studied [VKNO08, VAN10]. For general discontinuous PLFs, one cannot expect a MILP
formulation with bounded integer variables [Mey76, Theorem 2.1], but the SOS2 branching
scheme has been adapted [FZZ08]. Many of these modelling and algorithmic advances have
been implemented in state-of-the-art MILP solvers, and leveraged to build stronger polyhedral
relaxations of nonconvex functions [Reb16, KRT22, LHH23].

1.1 Owur contributions

We study the global optimization of a separable nonconvex PLF over a closed convex set.
Contrary to the standard combinatorial approach of using a MILP or SOS formulation to model
the PLF, we take the nonlinear approach to solving such problems. We do not reformulate the
PLF with integer variables, but instead generate convex underestimators for it and refine them
to develop a spatial branch-and-bound (sBB) algorithm. A key ingredient of our algorithm
is how the underestimator is generated even when the PLF is discontinuous, and how it is
efficiently and quickly updated at a child node using the information from the parent node and
without having to generate it from scratch. Our contribution of adding a new method to the
literature complements the MILP and SOS2 approaches by offering the following advantages:
(i) slim and sparse LP relaxations, (ii) sharpness throughout the search tree, (iii) more freedom
in branching decisions. Through extensive computational experiments we demonstrate that
even a rudimentary Python implementation of the sBB can provide speed-ups of an order of
magnitude over modern logarithmic models solved by Gurobi if the number of segments is
sufficiently high and that these speed-ups grow with every segment added to the PLFs.

The existing approaches for PLF optimization would use integer branch-and-bound (B&B)
where branching takes place on integer (mostly binary) variables in a binary search tree and
bounding is through LP relaxations (enhanced with cutting planes). Our sBB also uses LP
relaxations (albeit of a different kind) for bounding, but branches on continuous variables only
(hence the term spatial). Hence, finite convergence to the global optimum is not obvious with
our approach and in fact is not possible for all branching rules. We provide a rule that branches
only at the breakpoints and enables the sBB to converge finitely. The classical largest-error
branching rule is known to converge asymptotically for a continuous separable objective, and we
present an independent and self-contained proof using Lipschitz continuity of PLFs. For general
objective functions that are either lower semi-continuous or such that their values at infeasible
points are no lower than the global minimum, the longest-edge branching rule has been shown

to achieve asymptotic convergence, and this carries over to our PLF optimization problem also.
The lack of finite convergence for any branching rule could be perceived as a drawback of sBB
versus integer B&B which always terminates finitely for bounded integer variables. However,
our experiments show that this convergence issue arises only when the number of segments in
a PLF is small and the sBB generally terminates quicker for larger instances.

To the best of our knowledge, the various sBB-based state-of-the-art global solvers cannot
handle PLFs directly unless they are explicitly input to the solver formulated as MILPs. Thus,
we see our work as a first step in the direction of creating an sBB solver that can optimize a
separable PLF without creating integer variables. § 2.2 introduces the basic concepts of our
sBB algorithm and relates it to the MILP and SOS2 approaches. § 3 studies various properties
of a univariate PLF that underpin our algorithm. The sBB algorithm, with all its elements,
is described and analyzed for convergence in § 4. Computational testing is done in § 5 where
comparisons are also drawn with logarithmic-sized MILP models. Lastly, conclusions and some
future directions are mentioned in § 6.

1.2 Need for scalable algorithms

Since our experiments show the sBB to have better computational performance than MILP
or SOS2 models as the number of segments in the PLF increases, we briefly discuss here the
importance of a method with such good scalability properties.

PLFs are commonly employed to linearize nonlinear terms and thereby create a tractable
approximation to a nonconvex optimization problem. PLF approximations can be constructed
either as relaxations (outer approximations) or through discretizations (inner approximations).
The latter can be achieved only when the nonconvexities are in the objective only and not in
the constraints. Large segments in the PLF give fine approximations of the problem which
may translate into sharp primal or dual bounds. Thus, a key question when building PLF
approximations is to determine how many pieces each PLF should have if the approximation
error, defined as the largest distance between the function value and the approximate value,
is to be no more than some given error bound. We mention some results for a continuous
univariate function over a closed interval since that is the focus of this paper, but note that some
error-bounding analysis has also been done for higher-dimensional functions [DG15, AGX19,
Bér+23).

The errors in the PLF relaxation of a univariate function is an elementary calculation
because this relaxation is constructed by first partitioning the interval into alternate regions
of convexity and concavity for the function, and then drawing tangents at different points
in the convex regions and drawing secants in the concave regions. The analysis is nontrivial
for the case of the PLF approximation which is constructed by choosing some breakpoints
in the interval (either equidistant or not) and connecting them at their function values. For
this discretization, Frenzen et al. [FSB10, Theorems 1 and 2| gave an asymptotic answer by
showing that for thrice-continuously differentiable functions, the number of breakpoints to
achieve an error of ¢ is roughly ¢/1/¢ as ¢ — 0, where the constant ¢ depends on the second-
order derivative of the function. For functions that are Lipschitz continuous, which is a weaker
condition than differentiability, Proposition 3.9 derives a non-asymptotic formula for the number
of breakpoints in a PLF approximation with uniformly spaced breakpoints. This shows that
¢/e many breakpoints is sufficient, for ¢ = [2Lw] with L being the Lipschitz constant and w
the width of the interval.

There are computationally intensive MILP-based methods for computing best-fit PLFs
[TV12, KM20, RK20, WR22]. Even if logarithmically many binary variables are used, the

number of continuous variables generally scales linearly with the number of pieces in each func-
tion. Therefore, in order to obtain tight approximations of nonlinear functions, large-sized
MILPs have to be solved and branch-cut algorithms do not always converge very quickly on
these. Recognising this obstacle, some recent studies [Nag+19, BGS20, GKK22] have looked
at algorithms that adapt the location of the breakpoints in the PLF approximation so that
large-sized mixed-integer formulations do not have to be created a priori, but their results are
far from conclusive and there is still scope for devising new methods with better scalability.

2 Background & Overview

We consider the separable nonconvex piecewise linear optimization problem given by

P v =inf F(x):= ifz(acz), st. e SNH, (1)

i=1

where every f; : [l;,u;] — R is a univariate PLF, possibly nonconvex and discontinuous, over
an interval H; := [l;,u;]. The feasible set is the intersection of a closed convex set S C R"
and a hyper-rectangle H := {x €¢ R": [; < x; < u;, ¢ = 1,...,n}. When each f; is L.s.c. over
[;, u;], the problem is solvable in the sense that the optimal value v* is attained by some feasible
solution. For general discontinuous functions, optimal solutions may not exist and so we can
only hope to find v*. Note that when H is not given explicitly in the description of the feasible
set, variable bounds can be computed if S is compact. For simplicity and ease of notation, we
assume that the intervals in each coordinate satisfy H; = projection of SN H onto z;. This can
be achieved after some pre-processing and optimality-based bound tightening techniques.

Each PLF f; is input with its K; + 1 breakpoints in [l;, u;], for some integer K; > 1, and
these are indexed by the set K; := {0, 1,..., K;}. The breakpoints include the two endpoints ;
and u; and the points where f; either changes its slope or is discontinuous. Denote the z-values
of the breakpoints by

By :={bf: keK;}, with ;=0 <bl <b?<-- <bfi=u, (2a)

The function values at the breakpoints are {y¥ : k € K;}. Since we allow discontinuities at the
breakpoints, we also need to know the left and right limits at each breakpoint to characterise
fi- The left limit is denoted by yf " and the right limit by yf . For the left (resp. right)
endpoint, we set the left (resp. right) limit to the function value. Thus, for every k € K; we

have as input the tuple
k,— kAt
(bi‘cayzkvyi > Ui)

Using this input, a univariate PLF can be defined over [bf , bf“), for any k € K;, as

Y; i k
i Y
If f; is continuous at a breakpoi kg k= gyl = gyt i kb i
i point b7, i.e., yf =y, =y, ", we write (b7,y;), knowing that

the left and right limit coincide with the function value.

2.1 Background on sBB

The use of a sBB for optimizing a separable function (not necessarily PLF) was first done
by Falk and Soland [FS69]. This was improved upon by [Hor86, TH88| to general nonconvex
functions and since then sBB algorithms for global optimization have matured immensely [cf.
LS13, Tuy16] and there are many sophisticated implementations in global solvers for optimizing
smooth functions. The sBB is similar to the integer branch-and-bound (B&B) but has some
major differences. Lower bounds are computed by a convex relaxation (convexification) which is
obtained after replacing every nonconvex function by a convexr underestimator over its bounded
function domain. The strength of relaxations is important for convergence of the algorithm and
a fast numerical performance depends on the speed and efficiency with which the relaxations
are generated and updated throughout the branching tree. Secondly, branching takes place
on continuous variables (hence the term spatial) which leads to a partition of the feasible
region in hyperrectangles. Thirdly, after branching has occurred and any bound tightening
has been performed on the variables, the underestimator is updated and refined to obtain a
stronger relaxation than what is implied by the original relaxation with new variable bounds
on it. Convergence in limit to the global optimum can then be obtained under mild conditions
and assumption of lower-semicontinuity of the functions, since branching results into smaller
hyperrectangles which allow for tighter underestimators that force the gap between the function
and its underestimator to converge to zero. The reader is referred to [L.S13, chap. 5] for a more
detailed description of the general convergence theory of sBB algorithms. It is known that for
optimizing any nonconvex function over a closed convex set, an sBB algorithm converges in
finitely many iterations for any € > 0 optimality tolerance if the following two properties are
satisfied :

1. exhaustiveness of branching (which means that any nested infinite subsequence of hyper-
rectangles used for branching converges to a point), and

2. exactness in the limit for the underestimators (which means their gap to the function
value at any point goes to zero as the branching hyper-rectangles shrink to a point) .

With € = 0, only convergence in the limit is guaranteed if besides the above two properties the
sBB also selects nodes infinitely often using the best bound rule. Some of the branching rules
can lead to finite convergence if there is some special structure on the optimal solutions such
as an extreme point property [SS98, AS00].

Remark 1. The sBB algorithm developed here can be modified to accommodate separable PLFs
in constraints using similar arguments as the classical results by Soland [Sol71]. Yet, for ease of
exposition, we restrict our attention in this paper to PLFs in the objective only. Similarly, it is
possible to integrate the methods developed here in general-purpose (spatial) branch-and-bound
based solvers and solve a broader class of mixed-integer nonlinear problems.

2.2 Main Ideas

There are two main components to our sBB — convex relaxations using underestimators to
obtain lower bounds, and branching rules to guarantee convergence to global optimum. We do
not employ any heuristics, and so upper bounds are calculated in the standard way of evaluating
the value of F' at a solution to a node relaxation in the sBB search tree. Our branching rules
are adopted from literature and explained later in § 4.1. In the remainder of this section, we
outline our convex relaxation.

The convex envelope of a finite-valued function over a compact convex set is defined as the
pointwise supremum of all the convex underestimators of that function over the set. Minimising

the function over the set is equivalent to minimising its convex envelope. However, this envelope
is generally intractable to compute and the same is true for nonconvex PLFs also. The difficulty
generally arises from the presence of the set S which could be nontrivial and complicated, and
so the standard approach in global optimization is to generate convex underestimators of the
objective function over the hyperrectangle H, instead of over SN H. Since H is the Cartesian
product of one-dimensional convex compact intervals and F' is a separable function, the enve-
lope of F' over H is a sum of univariate envelopes. Using cvx to denote the convex envelope
operator, we can write cvxy F(z) = Y.; | cvxp, fi(x;). Each cvxy, f; is a PLF but since f;
is allowed to be discontinuous, this PLF may not be l.s.c.. For computational tractability, we
need the underestimators to be l.s.c. so that they have a polyhedral representation, otherwise
the corresponding feasible set of the relaxation will not be a closed set which creates numerical
difficulties in solving this relaxation. Hence we carry out one additional step for the underesti-
mators. For each i, we take the envelope of an l.s.c. function underestimating f;. The resulting
function is not only convex and l.s.c., but in fact convex and continuous due to convex functions
being u.s.c. over polytopes. Let us denote this underestimator for each ¢ by covxy, f;. Summing
these yields a convex continuous PLF underestimator on F,

covxy F(z) := Z covxy, fi(z;), =€ H (3a)
i=1

This yields a convex relaxation for problem (1) whose value we denote by v(H),

n
v* > v(H) = inf ZCOVXHZ. fi(zi) st. xe€eSNH (3b)
x
i=1
n
= inf Zz,» s.t. covxy, fi(xi) <z, x€ SNH (3c)
R

where the second equality is from using the epigraph modelling step. Since each covxpy, f; is a
convex continuous PLF, its epigraph is a polyhedron and so covxp, f; is equal to the pointwise
maximum of finitely many affine functions. Thus, there is a finite set & (H) and coefficients
(a;k, bix) for k € E;(H) such that

covxpy, filz) = max apx; + bi, x; € H;.
ke&; (H)
Our construction of covxy, f; is such that & (H) C K; with {0, K;} C & (H), where we recall
from (2a) that K; indexes the breakpoints of f;. Hence, the coefficients (a;x,b;;) for each
k € &(H) can be obtained in terms of the values of f; at these breakpoints. Therefore, our
convex relaxation of problem P is as follows:

v* > v(H) =min Zzi (4a)
i=1

s.t. agpx; + bk < 2, ke&(H),i=1,...,n (4b)

reSNH. (4c)

A salient feature of this work is the efficient computation of the underestimator covxp, f;
and this is presented in Algorithm 1. However, this only represents the root node relaxation. In
the search tree of sSBB, H is successively partitioned into a sequence of hyper-rectangles H* ¢ H

and so the relaxation (4) has to be constantly updated and solved again over S N H?. In order
to make our algorithm competitive and efficient, for any H' C H, we do not compute the
lower bound v(H?) by computing covxy+ f; from scratch using the breakpoints of f;, although
this is certainly an option. Instead we ﬁpdate the underestimator that was computed for the
parent node of the node corresponding to H! by exploiting structural properties of PLFs. Let
us elaborate on this point. If H* is the hyper-rectangle for the parent node of the node for H'
and x;, was the branching variable used to create H' from H*, then our underestimators at the
two nodes differ only in the coordinate x;, so that

covxyt F(x) = ZCOVXHf fi(zi)| + covxyt fi (xi,).
i

Thus, if the underestimator over H® is stored in memory, then the underestimator for H*
requires update only in one coordinate 7;. This is simply due to separability of the functions.
The crucial thing though is whether covxy: f;, needs to be computed from scratch using the

breakpoints of f;, and employing Algorithm 1 for univariate PLFs. This is not necessary because
of a property of PLFs that only a subset of the breakpoints of covxpt fi, are different than
those of covx Hy fi,, as we show in § 3.1. This allows for (on average) a q1tliCk and fast update to
the underestimator of f;, over H; (assuming it is stored in memory), although in the worst-case
it is possible that all the breakpoints have to be updated. Hence, we calculate v(H?) by starting
with the relaxation (4) for v(H?®) and modifying some of the linear constraints in (4b) as needed
for i = i; and k € &;,(H?). If S is a polyhedron, we can then employ the dual-simplex method
to compute v(H?!) starting from v(H?), which is generally significantly faster than using the
primal-simplex for v(H?).

2.3 Relation to MILP and SOS2 approaches

It is well-known that all the MILP models for PLFs share the sharpness property when the
functions are l.s.c.: their LP relaxations (when S is a polyhedron) give the same lower bound
as convexifying each function over its interval domain, which is equivalent to our relaxation (4).
However, upon branching, most relaxations loose this guarantee of providing the same bound
as (4). In fact, only the Incremental and SOS2 model share this property called hereditary
sharpness [HV22]. This property is very desirable since it leads to balanced search trees [YV13].
Indeed, experiments indicate that the Incremental and SOS2 model perform very well on PLFs
with a small number of segments and are only outperformed by the Logarithmic model with
growing number of segments [cf. Reb16, HV22]. These considerations have been summarized by
Huchette and Vielma [HV22] with the remark that “the high performance of the [logarithmic]
formulation is due to its strength and small size and in spite of its poor branching behavior”.
The addition of some valid inequalities and cutting planes to the MILP model would strengthen
the LP relaxation, but the fact remains that a desirable method for solving problems with PLFs
should combine both hereditary sharpness and a small-scale formulation.

This gave the motivation to our sBB approach. By updating the convex envelope over every
subset H*, we manually achieve relaxations of the strength (4) at every node of the branch-
and-bound tree. Moreover, the LP relaxations are particularly small. In contrast to SOS2 and
MILP formulations, the size of the relaxation (4) does not grow with the number of segments
of f;, but with the number of segments of its envelope. To illustrate this, let K; be the number
of segments of f; and E; be the number of segments of covxpy, f;. If each f; is continuous,

the Logarithmic MILP model adds) ; K; continuous variables, > " | [logy(K; — 1)] binary
variables and Y7 | (2 - [logy(K; — 1)] + 3) constraints [cf. VAN10]. In contrast, the sBB
relaxation (4) adds n continuous variables, 0 integers and » . ; E; constraints. Since K; > 1
typically, we have far fewer variables. For the constraints, F; is no more than K, although it
can be more than log, K;. Hence, if the PLFs are such that their envelopes have few segments,
then our relaxations will be smaller in size, while being of the same strength as the conventional
models. An extreme case of this is when each f; is concave where our relaxations will add n
constraints, which can be much smaller than the number of constraints in MILP and SOS2 due
to K; being arbitrary.

Furthermore, the sBB offers the advantage of a sparser constraint matrix. Rebennack
[Reb16] pointed out that formulations like the Logarithmic model result in a dense constraint
matrix. On the other hand, the sBB relaxation (4) is in particular sparse: each added inequality
has exactly two non-zeros. Indeed, LPs with convex PLFs can be solved very efficiently by
exploiting its structure [Fou85, Gor22]. Finally, spatial branching offers a higher degree of
flexibility in branching decisions compared to integer or SOS2 branching. Both integer and
spatial branching choose a branching variable x;. However, while spatial branching can branch
at any point in the interval [l;, u;], integer branching in MILP and SOS2 models can be mapped
to specific points in each interval. Therefore, spatial branching can mimic integer and SOS2
branching, but the converse is not true.

3 Univariate PLFs

It was outlined in § 2.2 that the key ingredient of this work is generation and efficient updates
of convex continuous underestimators of univariate PLFs. Therefore, in this section we focus
on a univariate PLF f : I = [l,u] — R, where we omit the subscript i for ease of notation and
better readability. The results derived here will be utilised in the sBB algorithm in the next
section by applying them to the PLFs f; in problem (1).

Let f have K + 1 breakpoints in I for some integer K > 1 and these are indexed by the set
K:={0,1,..., K} with the z-values of the breakpoints being given by the set By := {bF: ke
K}, where [= b° < b! < b? < --- < b® = u. The function values at the breakpoints are
y* = f(b¥) for k € K. The left and right limits at each breakpoint are *~ and y**. For the
left (resp. right) endpoint, we set the left (resp. right) limit to the function value. Thus, f is
completed defined by the following finite collection of tuples as input for every k € K; we have

as input the tuple
{(ﬁlyﬁzﬁ’,yh+> rkéEK}~

Define the following function over I

min{y*, y&~, yPt}, x = b¥ for some k € K
f(z) = (ba)
f (@), zel\ By

Lemma 3.1. [is a l.s.c. PLF underestimator of f over I.

Proof. 1t is clear that f(x) < f(x) for all x € I. It is continuous at x ¢ By since f is a PLF.

At any breakpoint b*, we have

Uminf f(z) = min {limf(x), lim f(x)} = min {lim f(z), limf(a:)}

z—bk bk — xlbk — x1bk)bk
— min {yk,*7yk7+} >i(m)7
and so f is a l.s.c. function over I. O

But this l.s.c. underestimator need not be convex. Hence, we convexify it to obtain the
function
covxy f(x) = cvxg f(x), xel, (5b)

where cvx; denotes the convex envelope operator over I. We use the following technical results
to establish several properties of covxy f.

Lemma 3.2 (cf. Tuy [Tuyl6, Proposition 2.17]). A convez function is u.s.c. over any poly-
hedron P in its domain. Hence, if the function is l.s.c. over P, then it is actually continuous
over P.

Lemma 3.3. A continuous PLF in R? is convex if and only if the slopes of its linear pieces
form an increasing sequence when arranged from left to right.

In the following condition from planar geometry we say that three points form a convex
(resp. concave) triangle when the point in between lies below (resp. above) the segment joining
the other two points.

Lemma 3.4. The continuous PLF formed by joining a finite set of points in R? is a convex
function if and only if every triplet of points forms a convex triangle. Consequently, if the PLF
is nonconvex, then a point is not a breakpoint if and only if it forms a concave triangle with
two other points, one to its left and one to its right.

Proof. Necessity is obvious from the definition of convexity. Sufficiency can be argued by
contraposition. Suppose that the PLF is not convex. We will use Lemma 3.3. Therefore,
nonconvexity means there exists some breakpoint 2’ such that the slope to the left of z° is
greater than the slope to the right (equality of slopes is impossible due to z* being a breakpoint).
This implies that there is a nonconvex (concave) triangle with z’ as its apex. In particular,
letting #° = Az~ 4+ (1 — \)z**! for some A € (0,1), we have yll_i/:l > ywi_yz, which after
rearranging becomes y* > A\y'~! + (1 — \)y**!, leading to a nonconvex triangle formed by the
points indexed by (i — 1,4, + 1). O

Proposition 3.5. covxy f is a conver and continuous PLF underestimator of f whose break-
points are given by the set

Beow, f = {l,u} U {bk € By : slope(i, k) < slope(j, k), VO<i<k<j< K},
where slope(i, k) := (i(bk) - i(b’)) /(bF —b?) for all i # k. Furthermore, we have

covxy f(x) = f(x), x € Beovx f-

Proof. Since covxy f is the convex envelope of the PLF f, it is obviously a convex PLF over
I. Lemma 3.1 implies that this PLF is an underestimator of f. The convex envelope of a
L.s.c. function is l.s.c. convex and is continuous over the interior of its domain and can only be
discontinuous on the boundary. Combining this fact with Lemma 3.2, where we use I being a
polyhedron in R, gives us that covx; f is a convex and continuous underestimator.

The breakpoints of covx; f must be breakpoints of f, and hence of f. The convex con-
tinuous PLF covx; f is formed by joining its finitely many breakpoints. From Lemma 3.4 the
characterisation of the breakpoints of the underestimator follows immediately. The breakpoints
of a PLF form what is more generally called the generating set in global optimization literature
for general nonconvex functions, and it is known that the the envelope of an l.s.c. function
equals the function value at points in its generating set. Hence, the underestimator equals f at
its breakpoints. O

Another convex underestimator to f is the convex envelope of f, denoted by cvx; f. This

equals f at its breakpoints in (/,u), whereas at the endpoints {/, u} we may have inequality and
so can only say that cvx; f(b*) > f(b¥) for k € {0, K}. It is also not hard to see that covxs f

and cvx; f have the same set of breakpoints. Therefore,

covxr f(z) = cvxg f(x), = € Beow, 5 \ {8°, 05}, covxy f(z) < evxy f(z), € {°, b5},
(6)
Thus, the only difference between covx; f and cvxy f is in their values at the endpoints where
the latter will be u.s.c. due to Lemma 3.2 but may not be Ls.c..
We now build upon the characterisation of breakpoints in Proposition 3.5 to derive an
efficient algorithm for computing covx;y f given f as an input through its breakpoints.

Proposition 3.6. Algorithm 1 produces covxy f after O(K) iterations.

Proof. Each application of the while loop is repeatedly checking the necessary and sufficient
conditions for the slopes from Lemma 3.4. Furthermore, due to the updates done to the lists
where the last element is removed, at any stage the last two elements in the lists yield a lower
bound on the slope required to make the k¥ point a breakpoint. This implies that the while
loop executes only a constant number of times for each k, and so the entire algorithm runs in
O(K) iterations. The points in the lists that it outputs indeed represent the breakpoints of
covxy f since they were obtained by checking the conditions in Lemma 3.4 and so correspond
to the characterisation in Proposition 3.5. O

The running time of O(K) for our algorithm is the best possible in the worst-case since a
convex f would take K iterations due to every breakpoint of f also being a breakpoint of its
envelope. However, it may be possible to improve the average running time by considering one
of the many different algorithms in literature [cf. Cor4-09, chap. 33.3] for generating the convex
hull of a finite set of points in R? (note that this convex hull is comprised of the convex envelope,
the concave envelope, and at most two vertical segments). For example, the classical Graham’s
scan algorithm begins with a reference point having the smallest y-coordinate, calculates the
polar angles of the other points w.r.t. the reference point (equivalent to slopes of the line
segments joining the two points), and then applies Lemma 3.4 to discard points that will not
be breakpoints of the envelope. Our algorithm starts with the leftmost breakpoint as the
reference point and compares slopes w.r.t. the previous candidate breakpoint. Although there
are conceptual similarities with Graham’s scan, it is not clear (and probably not true) that the
two algorithms are in a bijection.

10

Algorithm 1: Generating a convex continuous underestimator to a discontinuous PLF
Data: Lists B = {b°,b,..., 05} and Y = {(v*, y*~, y®*) : k € K} of PLF
fillbu] =R
Result: Lists B and) defining the tuples of covx; f : [I,u] — R.
Compute 7% = min{y*, v, y®»*} for k=0,1,..., K
Initialize B = {$°} and Y = {7°}

for k=1 to K do
. VK] -Y[-1] Y[-1] - Y[-2]
while |B| > 2 and Blk = B-1] < BI=1] = B2
Remove last element of B and).
end
Update B=BU {V*} and Y = Y U {7*}
end
return B and Y

do

3.1 Updating over subintervals

The branching procedure of sBB algorithms requires constant updating/recomputing of the
underestimator covxy f over a subinterval

I':=[l,a] C [l,u] = I.

Of course, Algorithm 1 can be used to compute covxy: f, but this would scan the breakpoints
from scratch, which can be computationally expensive when there are many segments, and we
show that this is not necessary. Yet, using Algorithm 1 to calculate covx f requires rescanning
all breakpoints of f in I’. Especially for PLFs with many segments, this can be expensive
computation. However, this is usually not necessary since we show that covx;s f equals covxs f
over some part of I’ in th middle and needs to be updated only over the end pieces. In particular,
the envelope does not change between the leftmost and rightmost breakpoint in I’, which can
lead to substantial savings in computation if the subinterval is large w.r.t. I. To describe our
result, let us denote

b == min {b’f: b € Beowe, s N I, a)} . b = max {bk: b € Beowe, s N (1, a]}. (7a)

Note that if b° and b*P do not exist then the updated envelope is trivial. Henceforth, assume
they exist and partition I’ into three intervals

=L, = e, 1= 5. (Tb)

Proposition 3.7. Assume b’ and b*P exist. The underestimator over I' can be described as
follows:

covxp f(z), wxell
covxy f(x) = { covxy f(x), rel?
covxps f(x), x €I

Proof. The function on the right side of the equality is obtained by gluing together three
different convex functions. Hence, we need to argue convexity of this glued function. But this

11

follows rather immediately from the necessary and sufficient conditions in Lemmas 3.3 and 3.4.
Since the breakpoints of f in I' were not breakpoints of covxs f, they form a concave triangle
with the breakpoints in I2, and so after convexifying over I* the slopes of the resulting linear
segments can be no more than the slopes of the segments in I?. Similar arguments hold for
I3 O

3.2 An Illustrative Example

The PLF in Figure 1 has 5 segments (so K = 5) with the breakpoints »° = 1,b' = 3,b? =
7,63 = 8,b* = 11,1° = 13. Note that f is discontinuous at b> but otherwise continuous. The
tuples corresponding to the breakpoints are (1, 3), (3,5), (7,2,1,3), (8,5), (11,7), (13,7).

1 3 5 7 9 11 13
T

Figure 1: PLF f(z) with discontinuity at 7 as solid line and convex envelope cvx f(x) over
domain I = [l,u] = [1,13] as dashed line.

Applying Algorithm 1 to this function over I = [1,13] receives as input the lists B =
[1,3,7,8,11,13] and Y = [3,5,1,5,7,7] and outputs the lists B = [1,7,13] and Y = [3,1,7].
They define the continuous PLF covx; f(z) formed by the tuples (1, 3), (7,1) and (13,7) which
equals cvxy f(x) depicted in the figure. If Algorithm 1 is invoked to compute covxy f over
I' = [7,13] C [1,13], the input lists are B = [7,8,11,13] and Y = [2,5,7,7]. Realize that
Y[0] = 2 # 1 since the discontinuity at b° = 7 is at the edge of I’ and hence 7° = min{2,2, 7}
since y~ = o/°.

Let I = [1,13] and I’ = [3,10]. covx; f is given by (1,3),(7,1) and (13,7). Hence, bl® =
buP = 7. Consequently, I' = [3,7], I? = [7,7] and I3 = [7,10]. ¢ is given by (3,5), (7,1), (8,5)
and (10, 6%). Hence, covxy1 ¢ is formed by (3,5), (7,1) and covxys ¢ by (7,1),(10,63). Finally,
covxy f is given by (3,5), (7,1) and (10,63).

This example illustrates that Proposition 3.7 does not always lead to a reduction in the
number of breakpoints to be scanned. However, if f is highly nonconvex with many segments,
the savings can be enormous. Therefore, Proposition 3.7 is particularly useful for PLFs that
accurately approximate a highly nonlinear function.

3.3 Lipschitz continuity

We close this section on univariate PLFs by noting two key properties. The first one is that
when these functions are continuous they are also Lipschitz continuous with a constant equal
to the largest magnitude of the slopes of the linear segments. This may perhaps be a known
fact but since we could not find an explicit reference we present a proof, which uses elementary
arguments.

12

Proposition 3.8. If f is continuous over I, then it has a Lipschitz constant L = maxg—o 1. k—1|mk|,

k+1_,k | .
where my, 1= ﬁ is the slope between breakpoints b* and bF+1.

Proof. Take any z,z' € I with 2’ € [b¥,b**1] and = € [b7,b/!] for some k < j. The case k = j
is trivial due to linearity in each piece, so assume k < j. We have

J(@) = J@) = [J(@) = J@)] + [F®) = FO)] 4+ + [1@F) = f(a)]
=mj(x— V) +mi (=) 4 my (P -)

< nkax,mi} (m—bj—i—bj—bj_1+..._|_bk+1 -,
Li=k,....J

= | max mz} (x —2')

_i:k7"'7j

= [f(z) - f(2)]

N

.max']mi@ |t —a2'| < L|z—2'|.
Li=k,....J

O]

The second property, which is argued in the next subsection, is that when a continuous PLF
is used to approximate a univariate Lipschitz function then there is a formula for the number of
uniformly spaced breakpoints required so that the PLF does not exceed a given approximation
error.

3.3.1 Approximation of Lipschitz functions

Suppose we are given a L-Lipschitz univariate function f : I — R on the interval I := [l,u] C R.
For every integer k > 0 there is a unique continuous PLF, which we denote by gi : I — R, that
approximates f through interpolation with &+ 2 uniformly spaced breakpoints which are given
by {b; =1+ iA(k):i=0,1,...,k+ 1} where A(k) := (u—1)/(k + 1) is the uniform spacing.
The k + 1 segments of g are obtained by joining consecutive points so that the i*" segment
joins the points (b;, h;) and (bjy1, hit1) for hy := h(b;). The error of a PLF with respect to f
is defined as the largest approximation gap over the domain. Since the PLF interpolation is
uniquely determined by the integer k, we can write the error function as

&(k) = max |h(z) — gr(z)| = zl%axk weT[lrzE?bziﬂ |h(z) — [miz + hi — m;b;]

: (8)

where m; := (hi+1 — h;)/(bit1 — b;) in the second equality comes from using the definition of g
in each subinterval. Straightforward arguments lead to a formula for the number of breakpoints
required to achieve a given error.

Proposition 3.9. For any e > 0, a continuous PLF approzimation of f has the same Lipschitz

constant L, and it has an error at most € when c/e many uniformly spaced breakpoints are used,
where ¢ = [2L(u —1)].

Proof. The first assertion about the Lipschitz constant follows directly from Proposition 3.8.

For the second claim, we need the following observation on Lipschitz continuity.

Lemma 3.10. Let hy : X — R be Lq-Lipschitz and hy : X — R be Lo-Lipschitz on a closed
set X CR™. Then hy —hg :x € X — hi(x) — ha(z) and h1 + ha : x € X — hy(x) + ha(x) are
L1+ Lo-Lipschitz on X.

13

Proof. For any x,y € X, we have

(1 = h2)(@) = O = h))| = | (@) = B (9) = (ha() — ha(w) |

<|h(@) = ha ()] + || ha(z) = ha(y)]|
< Lillz =yl + Lollz —]
= (L1 + La)l|z — yll,

where the first inequality is the triangle inequality for norms, and the second inequality is
Lipschitz continuity of h; and hy. Similar derivation works for the sum. 0

Consider the function h;(z) := h(z) — gp(x) = h(z) — mjz — h; + myb;, for x € [b;, bit1],
that appears in the error function £(k). From Lemma 3.10, h; has a Lipschitz constant of
L +|m;|. Note that h;(b;) = 0 due to exactness of gy at breakpoints. Hence, for any = €
[bi, bi+1], the definition of Lipschitz continuity for h; gives us ‘hl(az)’ < (L +|mg|)(x — b;) <
(L 4+|m;|)A(k), where the last inequality is due to uniform spacing between breakpoints. For

hiv1—hi . o . . o
m; we have|m;| = | Zl(k) | < L, where the inequality is due to Lipschitz continuity of f. Hence,

|hi(z)| < 2L A(k). Since £(k) = maxi—,...k MAXye(b;bs11] |2i(2)], it follows that 2L A(k) < e
is a sufficient condition for (k) < ¢, and then using the definition of A(k) := (v —1)/(k + 1)
implies that k£ must be at least (2L(u —1)/e) — 1. O

4 Spatial branch-and-bound algorithm

Our main ideas for an sBB algorithm to solve the PLF optimization problem (1) were sketched
in § 2.2. The algorithm is presented formally in Algorithm 2. The bounding operation is
specified next and the branching schemes in § 4.1. Convergence is discussed in § 4.2.

Each node of the search tree corresponds to a hyper-rectangle H* C H and the subproblem

PF . w(H®) =inf F(z) st. z€ SNH" (9a)

Our lower bound on this nonconvex problem is denoted by v(H¥) which is obtained by solving
the following convex relaxation

R+ w(HY) > v(H") = min covxy F(z) st. zeSnH, (9b)

where the underestimator is defined as
n
covxgr F(z) = Z covx gk fi(x;). (9¢)
i=1

Since covxyr F' is polyhedral as per the results of the previous section, using the epigraph mod-
elling trick as in (4) leads to a tractable convex formulation for the node relaxation subproblem.
It will be useful to separate a single coordinate from the above sum so that we can write

covxr F(x) = covx g fi(xj) + E covx gk fi(xs). (9d)
J 7
i#]
In our context, the coordinate j will correspond to the branching variable that was used to

create this node subproblem from its parent node in the sBB tree. In particular, if this node

14

H* was created from its parent node H? by branching on z;,, then using j = i; in (9d) gives
us
covxgr F(z) = covxyr fi, (xi,) + Z covxyr fi(i). (9e)
F iy

Note that when using Proposition 3.7 to update the underestimator over a child node, the
breakpoints of covxyx F' must be stored for each partition element H¥. It is common for
sBB/B&B methods to store LP relaxation data in order to solve the child node relaxation in a
few iterations using the dual simplex rather than from scratch. However, if memory is scarce,
Algorithm 1 can be called at each child node H' to compute covxy: F' from scratch and no
additional data need to be stored.

The following notation is used to describe our algorithm. Iteration number is k. For each k,
HF is the partition element, 2* and v(H") are optimal solution and optimal value of relaxation
RE, o* and B¥ are the global upper and lower bound, respectively, to v*, and Z* is the incumbent
solution. L denotes the list of unfathomed subproblems at any stage of the algorithm. The
user-defined absolute termination gap is €.

Algorithm 2: Spatial branch-and-bound algorithm for PLF optimization

Root node: Compute covxy F' as per 77 using Algorithm 1 for covxg, f; for all 4
Solve R? to obtain 2° and r°
if RY is infeasible then return P is infeasible

else Set £L={H}, k=0, a’ = F(2°), 8 =7r% and 2° = 2°

while £ # () do
Node selection: Find a H € argmin{r!: H' € £}. Mark it as parent node and
set HF = H" and gF = "
Branching: Partition H* into H = {H"!, H*?} using a branching rule from § 4.1.
Let z;, denote the branching variable
Bounding: for [€ {1,2} do
Compute covxyr: F' as per (9e) with p =k and k = k,[and using
Proposition 3.7 to update the envelope in the coordinate i
Solve relaxation R to obtain z! and r!
if R! is infeasible then remove H*! from H

end
Update: Set k < k + 1. Examine whether the previous global upper bound o*~!
can be improved,

of =min{ ol min F(a)}.
HkleH

Update the incumbent Z* accordingly.
Add child nodes to list: £ < (c \ {Hk}) UH

Pruning: Fathom subproblems by bound dominance as £ + £\ {H': r! > oF —¢}.
end

15

4.1 Branching rules

Consider partition element H* with the optimal solution z* to its relaxation R*. We give
three different rules for the branching step of Algorithm 2 to partition H* into H*! and H*?2.
The first follows the common concept to branch on the variable x; which causes the largest
violation, i.e. contributes most to the convexification gap. It was first proposed by [FS69] and
variations of it can be found for instance in the solver BARON [TS04]. It is similar to the
integer branching rule where the variable with the largest fractional part is chosen. The second
branching rule follows the simple concept of branching at the midpoint of the longest edge and
was used for instance in the solver BB [Adj+98].
Largest-error branching rule: Select the index which contributes most to the convexi-
fication gap at z* by
T € argmax [fl(:cf) — covxpk fl(:cf)} ; (10a)

i=1,...n

breaking ties using the smallest index rule. Partition H* at the point z¥,
H* = {z e H*: 2. < xlj} and H%? = {z € H*: 2. > xlj} (10b)
Longest-edge branching rule: Select the index with the longest edge by

T € argmax uf — ¥, (11a)
1=1,....n

breaking ties using the smallest index rule. Partition H* at the midpoint of the longest edge,

uk _ lk uk: _ lk
HR = xEHk:ng% and H*? ={zeH': 2z, > 727 . (11b)
Breakpoint branching rule: Select the index 7 by the largest-error rule (10a) applied
only to breakpoints, i.e. select a breakpoint b* with the largest error. Partition H* at this
breakpoint,

gl ={re H*: 2, <b'} and H? ={re H*: a2, > b} (12)

Preliminary computational experiments conducted on our test problems indicated a superi-
ority of the largest-error branching rule. This computational superiority is also intuitive, as this
rule provides the maximum tightness at the former solution z* for both child nodes, allowing
for a visible increase in the lower bound and a balanced search tree. The other two branching
rules do not possess these desirable computational properties, but they do have theoretical su-
periority because they allow for stronger convergence results, as we explore in the next sections.
We also note that integer branching applied to MILP-PLF models leads to unbalanced trees
[cf. YV13].

4.2 Convergence guarantees

Falk and Soland [FS69, Theorem 2] established asymptotic convergence of the largest-error
branching rule when F' is continuous. They also gave an example showing that for this rule,
continuity of the functions is necessary for convergence. Under the weaker assumption of
F being l.s.c., Theorem 1 in their paper established convergence under a stronger branching
rule that creates more than two nodes at each step and thus does not lead to binary search

16

trees. Their results directly apply to our PLF optimization problem since we also consider a
separable objective. Furthermore, as mentioned in § 2.1 and described in [LS13, chap. 5], finite
convergence can also be obtained for general nonconvex optimization with € > 0. However,
we give some independent and self-contained proofs in this section. First we show that the
breakpoint rule yields finite convergence even with € = 0.

Proposition 4.1. When each f; is l.s.c., Algorithm 2 wusing the breakpoint branching rule
converges finitely for any € > 0.

Proof. The ls.c. condition implies that f;(x) = fi(x) at a breakpoint € By, and so our
underestimator covxy f is exact at each ‘breakpoint. Hence, a breakpoint is chosen at most
once for branching because once it is branched upon the underestimator will have zero error at
this point throughout the subtree from this node. Since there are finitely many breakpoints, the
claim follows because all feasible leaf nodes of the sBB tree will yield an exact representation
of the original problem (1). O

The largest-error rule is finitely convergent when € > 0 and has asymptotic convergence
when € = 0. We give an independent proof of the second result by exploiting Lipschitz continuity
of PLFs, which makes our arguments different than those of Falk and Soland [FS69] for general
separable functions.

Proposition 4.2. The largest-error branching rule converges in the limit for continuous PLFs.

Proof. By construction, 3% < v* < aF for every k, and the sequence {a¥} is decreasing whereas
{Bk } is increasing. Hence, if the sBB algorithm terminates at iteration p, we have of — P < e,
and thus the infimum v* is found with e-precision.

If the sBB algorithm does not terminate after a finite number of iterations, the sequence
{H"}}, of partition elements is infinite. Thus, there must be at least one infinite nested subse-
quence of {H*}rcn, denoted by

{H%eq with H?' Cc HY and QCN.

We have to show the consistent bounding property, i.e., there exists an infinite nested sub-
sequence {H%},cq of {H 1ren for which im0 @ = limyo0 9. By boundedness of the
sequences, we can extract subsequences such that {H%},cq C {H"}ren with

(i) the sequence of optimal solutions ¢ of relaxation R? converges to a limit point z*.
(ii) only one index 7 € Z gets branched on infinitely often.

Since we are only interested in the limit behaviour, we can therefore focus exclusively on
the index 7. First, note that f; and thus also covxys f- is Lipschitz-continuous with constant
L, for all iterations g. Now, let us define function ¥7(z,) = fr(2z+) — covxya fr(z,) over H7.
Note that 17 is Lipschitz with constant 2L.. By the largest-error branching rule, namely (10b),
we obtain 247! € bd(H7) and thus z%, 247! € HY. Consequently,

() — (1) < 2Ly - [0 — 2271,
Since f, is continuous and 22! € bd(HY), we obtain by ?? that ¥%(z%) = 0 and hence
| fr(22) — covxya fr(22)| < 2L, - |22 — xg—l\ .

Since, lim 24 = 277, we have that lim |22 — 297'| = 0 and therefore

q—0 q—0o0

tim | (22) — covx s f-(29)] = 0.
q—00 T

17

Finally, there is a g so that for all ¢ > g the branching index 7 is selected by (10a). Hence, we
get that

VieZ\{r}: lim (fi(z]) — covxpa fi(z])) = 0. (13a)
g—00 i
Statement (i) follows then as a consequence of the definition of o*, 8¥ and HY by

lim a? < lim F(29) = im covxpe F(z?) = im r? = lim 9. (13b)
For statement (ii) realize that f; has only finitely many breakpoints. Hence, after a finite
iteration p € @ holds that f; is affine over HY and thus o7 (27) = fr(2) — covxyr fr(27) = 0.
By similar arguments like in (13a) and (13b) follows then 8 = a” and hence { H*}cy is finite.
Now that consistent bounding has been established, convergence can be concluded by stan-
dard arguments from literature [cf. TH88, Theorem 2.3], i.e., limy_o BF = v* = limy_,o oF
and every accumulation point of {Z¥} solves P. Remember that {H%},cq is a subsequence of
{H"} ey and thus of = a? and g% = 9 for all k = ¢ € Q. By the monotony of the sequences
{B*} and {a*}, convergence follows then directly by lim a? = lim 9. O
q—o0 q—00
Wechsung and Barton [WB14] imposed the requirement of strongly consistent on the branch-
ing scheme to obtain asymptotic convergence for general l.s.c. functions with the longest-edge
branching rule. Their underestimators applied to PLFs are possibly no stronger than ours
and so their convergence result might carry over to our sBB for l.s.c. PLFs, but a rigorous
exploration of this is left for future research.

5 Computational experiments

We compare the computational performance of the sBB algorithm with MILP approaches from
literature. In § 5.1, we consider network flow problems with concave PLFs and in § 5.2 knapsack
problems with both nonconcave and concave PLFs. Details on our experiments, including
performance profiles and timing statistics, are in § 5.3 and a discussion of our numerical results
isin § 5.4.

Let us begin by outlining the design of our experiments. Algorithm 2 was implemented in
Python version 3.9. The largest-error branching rule is chosen because in our initial testing
it seemed to do better than the other rules described in § 4.1. Nodes were selected using the
best-bound rule. The LPs on the nodes are solved with Gurobi version 9.5. The MILP models
are generated in Julia version 1.7 using the package PiecewiseLinearOpt developed by Huchette
and Vielma [HV22] and are solved by Gurobi version 9.5 with standard settings. Similar to
findings in literature [cf. VAN10], first experiments indicated that linear-sized MILP models
and the SOS2 branch-and-cut procedure inside Gurobi are not competitive to logarithmic-sized
models when nonconvex PLFs with 50 or more segments are involved. To avoid excessive
computation times due to vast timeouts, we therefore compare only against the four state-
of-the-art logarithmic-sized MILP models available in the package PiecewiseLinearOpt. In
particular, these are the Logarithmic (Log) and Disaggregated Logarithmic (DLog) [VAN10],
and the recently introduced Binary Zig-Zag (ZZB) and General Integer Zig-Zag (ZZI) models
[HV22]. All tests were carried out on a server with 3.70GHz and 128GB RAM. For termination,
we used a relative optimality gap of 107° and a time limit of 30 minutes. All times given are
wall-clock times. The code of the sBB implementation, the MILP generation as well as the
instance generator are available at GitHub under https://github.com/ThomasHubner/sBB_
PiecewiseLinOpt.git.

18

https://github.com/ThomasHubner/sBB_PiecewiseLinOpt.git
https://github.com/ThomasHubner/sBB_PiecewiseLinOpt.git

Instance generation is described in the following sections. We restricted to continuous
PLFs since our sBB does not yet have a convergence guarantee in the presence of general
discontinuities, and we believe that extensive experiments with continuous functions are enough
to achieve the primary aim of this study which is to analyze the numerical performance with
respect to scalability in the number of segments. Although convergence is achieved for l.s.c.
PLFs using the longest-edge branching rule, as remarked at the end of the previous section, this
rule works poorly in practice and so we do not expect it will outperform the MILP models. It is
also worth noting that the only algorithm for general discontinuous PLFs provided by Farias Jr.
et al. [FZZ08] is only available as a proof of concept and has never been fully implemented.

5.1 Network flow problem with concave cost

Network flow problems with nonconvex PLFs occur in many applications ranging from telecom-
munications to logistics [CGMO07]. They can be defined as follows:

min Z Z fw(asm)

=1 j=1
n n
s.t. E xij—g xﬂ:dl izl,...,n
j=1 j=1
lijgzcijguij i,j:1,...,n.

An instance of the network flow problem is created similar to [KFN06, VAN10, HV22] as
follows. First, declare each node ¢ = 1,...,n — 1 a demand, supply or transshipment node
with equal probability % The transshipment nodes have d; = 0 whereas the demand and
supply nodes have d; ~ +Uniform(5,50). To obtain a balanced problem the final node n has
dp, = =" 'd;. The breakpoints (b, F(F)), k = 0,..., K of the concave PLFs f;(z;) are
determined as follows: Set b? =1, =0and bZ-K = u; ~ Uniform(5, 50) and generate K — 1 points
bi? ~ Uniform(l;,u;), k = 1,..., K — 1 and order them. Subsequently, generate K slopes by
slopes;, ~ Uniform(1,2000)/1000, k¥ = 1,..., K and order them in decreasing order to obtain
a concave PLF. Finally, set f;(bY) = 0 and compute the y-coordinates of the breakpoints by
fi(bF) = slopey, - (BF =051 + £i(0F 1), k=1,... K.

We perform our computational test on network flow problems with n = 10 nodes. For each
K, 100 random network flow instances are generated and solved. The statistics of the solve
times are given in Table 1. We display the median (med), the arithmetic mean (avg) and the
standard deviation (std) as well as the number of instances that cannot be solved by a method
within the time limit (fail) and the number of instances in which each method was the fastest
(win).

5.2 Knapsack problem with approximated nonlinearities

As discussed in the introduction, PLFs are often used to approximate difficult nonlinear ex-
pressions in optimization problems. To test the sBB and MILP methods in this context, we
consider the following nonlinear continuous knapsack problem:

n
min Zfz(l'z) s.t. in:d, li <J}z éui, izl,...,n.
i=1 i

19

Table 1: Solve times [s] for network flow problems with continuous concave PLFs.

Method Med. Avg. Std. Win Fail Method Med. Avg. Std. Win Fail
a) 10 segments d) 1,000 segments
Log 0.52 0.60 0.32 36 0 sBB 7.7 16.7 27.2 98 0
771 0.52 054 0.24 46 0 Log 58.5 655 384 1 0
77B 0.64 080 0.59 9 0 771 84.9 78.8 31.0 1 0
DLog 0.65 0.76 0.41 9 0 778 91.7 874 36.2 0 0
sBB 7.23 12.86 19.44 0 0 DLog 96.5 105.7 56.0 0 0
b) 100 segments e) 5,000 segments
771 3.62 450 2.36 44 0 sBB 13.5 21.7 33.6 100 0
778 3.76 425 2.20 35 0 Log 434.0 441.8 214.2 0 0
Log 4.66 5.89 3.66 10 0 771 631.0 631.7 287.4 0 0
DLog 7.19 931 6.15 0 0 778 748.6 786.4 357.4 0 1
sBB 9.15 14.13 16.51 11 0 DLog 843.2 909.9 459.8 0 6
¢) 500 segments f) 10,000 segments
sBB 9.7 159 16.9 86 0 sBB 16 28 39 100 0
778 22.6 26.8 13.0 7 0 Log 940 1,004 384 0 3
Log 23.2 28.1 15.4 6 0 771 1,496 1,469 336 0 30
771 37.8 350 148 1 0 778 1,818 1,677 246 0 60
DLog 49.2 534 27.7 0 0 DLog 1,825 1,609 394 0 68

Each f;(z;) is a nonconvex continuous PLF randomly generated by approximating a smooth
nonconvex function from Table 2. The functions therein are mostly taken from Casado et al.
[Cas+03].

A random instance of the knapsack problem is then generated as follows. First, n functions
h; with bounds [; and wu; are arbitrarily drawn from Table 2. Second, K — 1 points bf ~
Uniform(l;, w;), k # {0, K} are generated and ordered. The first and last breakpoint is set to
b? = [; and bZ-K = u;. Each h; is then approximated by a PLF f; with K segments given by
the breakpoints (bf, hl(bf)) The demand parameter d is then as well randomly determined
by d ~ Uniform(l + - (u— 1), u— 1 - (u—1)) in which { = 37" ;l; and u = > ; u;. We
perform our computational test on knapsack problems of dimension n = 100. For each K, 100
random knapsack instances are generated and solved. The statistics of the solve times are given
in Table 3.

In addition, we are interested in the impact of more segments on the approximation qual-
ity. Thereby, a knapsack problem is generated like described above and each function h; is
approximated by a PLF f; which has K + 1 equidistantly distributed breakpoints. Then, the
piecewise linear optimization problem is solved with solution 2. The real objective value of the
nonlinear problem given this point is v% = 3", h;(zX). Table 4 shows the relative improvement
in the real objective value if the approximation is refined, i.e. the value —(vE+1 — &) /[vF]
where K + 1 means the next K value in the table e.g. K =20 and K + 1 = 50.

20

Table 2: Nonconvex univariate functions.

| Function | Domain || # | Function | Domain
1 e 3712 _ 42 4 20 [-5,5] || 11 ot — 1223 + 4722 — 60z [—1,7]
2 —0.2- e + 22 [—5,5] || 12 26 — 152 4 2722 4 250 [—4, 4]
3 e [—5, 5] 13 xt — 1023 + 3522 — 502 + 24 [0, 5]
5 — 2022 +5
4 % [~10,10] || 14 | 0.22° — 1.252% + 2.332% — 2.52% + 62 | [—1,4]
xr
5 log(3z) - log(2z) — 1 [0.1,10] || 15 3 =T+ 7 [—4, 4]
z*—4x410
6 | 10log(x) - 3z + (Qm —5)2 | [0.1,10] || 16 | [—5, 5]
—x° — 10z 5 9
7 s [—10,10] || 17 —2° el —2?) [—10, 10]
8 x-e ” [—5, 5] 18 2% — 3zt + 423 + 222 — 102 — 4 [—1.5,3]
z’ x5 28 (23 — 52 + 6)
9 | — = —4,4] || 19 S -5,5
5049+120 g to | 4 (22 +1) [=5,5]
4 —5r+6 1
1 . | —10,10] || 2 — 421 —2 1,1
0 T [~10,10] || 20 ~+2log(x) [0.1, 10]

Table 3: Solve times [s] for nonconcave knapsack problems.

Method Med. Avg. Std. Win Fail Method Med. Avg. Std. Win Fail

a) 10 segments d) 1,000 segments
Log 0.09 0.19 0.95 38 0 sBB 8.1 73.0 2226 65 0
DLog 0.10 011 007 4 0 Log 14.2 174 103 31 0
771 0.10 0.10 0.05 24 0 771 30.6 359 29.2 1 0
sBB 0.12 0.26 0.74 33 0 DLog 34.5 1134 286.6 1 2
77B 0.13 0.13 0.07 1 0 778 35.6 41.3 275 2 0
b) 100 segments e) 5,000 segments
sBB 0.52 3.92 12.89 60 0 sBB 41.8 186.4 3614 79 2
Log 0.72 0.97 0.69 30 0 Log 173.5 4214 5269 11 8
77B 1.02 1.40 1.12 4 0 DLog 225.3 438.2 503.0 6 8
771 1.14 1.35 091) 0 771 257.6 365.1 327.5 3 1
DLog 1.42 2.23 5.02 1 0 778 278.8 363.4 299.3 1 1
c¢) 500 segments f) 10,000 segments
sBB 3.9 351 181.1 56 1 sBB 107 250 345 95 1
Log 5.0 6.0 4.1 39 0 771 663 762 404 1 4
771 8.3 9.7 10.1 3 0 778 675 796 406 0 6
77B 8.9 9.9 8.0 2 0 DLog 888 971 612 2 25
DLog 12.1 22.1 334 0 0 Log 899 1,011 663 1 34

5.2.1 Concave knapsack problems

To evaluate the impact of non-concavity on the solution methods, we also solve instances of
knapsack problems where the PLFs are concave. Results are presented in Table 5. The knapsack
problems are generated as before. To obtain a concave PLF, the slopes of the segments are
computed and sorted in decreasing order. Subsequently, the y-value of each breakpoint is

21

Table 4: Relative improvement in real objective value over previous number of segments K. For
K = 20 the improvement in real objective value is measured relative to the value of K = 10.

K Min. Med. Avg. Max. Std.

20 -37.0% 2584 % 8093 % 861.08 % 172.48 %
50 -6.58 % 6.26 % 12.08 % 81.73% 16.44 %
100 -1.55 % 1.03 % 2.16 % 11.96 % 2.714 %
500 0.939 %0 5.006 %0 7.624 %o 47.971 %o 8.565 %o
1,000 -0.128 %0 0.273 %0 0.531 %o 3.509 %o 0.718 %o
5,000 -0.006 %o 0.076 %0 0.127 %o 1.096 %0 0.178 %o
10,000 -0.004 %o 0.003 % 0.007 %o 0.054 %0 0.011 %o

recomputed by using the new slopes and x-coordinate of the breakpoints. The table shows that
problems with concave PLFs are in general harder to solve for every method than problems
with nonconcave PLFs. Indeed, nonconcave PLFs have at least one more convex segment than
concave PLFs which allows for tighter lower bounds.

Table 5: Solve times [s] for concave knapsack problems.

Method Med. Avg. Std. Win Fail Method Med. Avg. Std. Win Fail

a) 10 segments d) 1,000 segments
Log 0.09 0.20 095 51 0 sBB 6.1 180.4 4185 70 3
771 0.11 0.11 0.04 17 0 Log 17.6 60.2 94.3 29 0
DLog 0.11 0.12 0.06 9 0 DLog 61.2 269.9 454.1 0 4
778 0.12 0.13 0.05) 0 77B 72.5 243.7 403.0 0 2
sBB 0.16 0.23 0.24 18 0 771 76.2 220.8 357.2 1 1
b) 100 segments e) 5,000 segments
sBB 1.02 295 5.10 45 0 sBB 49.7 4424 691.7 79 18
Log 1.09 122 054 47 0 Log 258.1 648.7 698.6 3 24
771 1.84 2.03 1.11 7 0 771 1,110.3 1,137.6 631.7 0 38
778 1.90 210 1.28 0 0 77B 1,238.9 1,165.6 650.0 0 44
DLog 2.04 2.06 0.96 1 0 DLog 1,281.1 1,060.7 760.4 0 45
c¢) 500 segments f) 10,000 segments
sBB 2.9 727 246.0 67 1 sBB 22 466 733 78 22
Log 6.7 146 29.1 31 0 Log 502 904 706 0 33
778 16.0 51.1 126.2 0 0 DLog 1,309 1,168 658 0 46
771 17.0 44.8 103.6 1 0 771 1,818 1,520 479 0 65
DLog 17.7 411 77.3 1 0 77B 1,819 1,474 481 0 59

5.3 Details on Computational Experiments

This section dives deeper into our numerical results. Means and medians are point estima-
tors that don’t necessarily provide a complete picture of the algorithms’ performance on the
randomly generated data set, and means can be distorted by heavy outliers. Therefore, in

22

addition to the statistics provided in the preceding tables, we further investigate the behaviour
of the different models and algorithms by plotting the performance profiles of their solution
times. Such profiles are a standard tool in computational optimization. We also investigate the
amount of time that the sBB spends on its different operations.

5.3.1 Performance profiles

Each model/algorithm gets one profile curve which is interpreted as its approximate cumulative
distribution function, and the curve that is in the top left corner in each figure has stochastic
dominance over other curves and hence corresponds to the best method. In particular, any point
with coordinates (a,b), where a € [0,1] and b € {0,...,100}, on a curve means that for each of
the b many instances the solution time for the method was no greater than (1—a)T/™™ + a7,
where Tlmi“ and T are the minimum and maximum times to solve instance I across all
methods. The vertical intercept (a = 0) gives the number of instances for which that method
solved the fastest (the Win column in previous tables), and as a — 1 the method is solving
slower than others.

Figures 2 and 3 give these profiles, respectively, for the network flow problems and knapsack
problems with concave PLFs. In the former, the sBB profiles are consistent with Table 1 and
give superior performance for 500 segments and beyond. The profiles for the concave knapsacks
reveal that for up to 1000 segments the actual performance of sBB is much better than the
high values for average times in Table 5. At 100 segments, sBB is quickest on same number
of instances as Log and dominates DLog and the two zig-zag models, whereas beyond 500
segments, the dominance of sBB keeps growing steadily. Similar behaviour is observed for the
nonconcave PLFs and so their profiles are omitted. This underscores the point that the average
numbers in Table 5 are a bit distorted and do not provide complete information on performance
of the algorithms.

5.3.2 Timing statistics for the sBB

Here, we take a look at some details of the operation of the sBB implementation. Table 6
indicates that solving LPs take only a small share of the sBBs solution time although it is
by far the most complicated operation in a branch-and-bound algorithm. Instead, operations
like building the model and repeatedly adding constraints over the Python-Gurobi interface,
evaluating PLFs and generating the envelope take a high share. This is another indicator
that an integration into a fully developed solver such as Gurobi or BARON would result in
considerable speed-ups.

Table 6: Average proportion of runtime that is allotted to the various sub-operations of the
sBB algorithm when solving knapsack problems.

Operation Nonconcave Concave
K =10 K =10,000 K =10 K =10,000
Gurobi Interface 31% 55% 15% 8%
Solving LPs 6% 30% 2% 2%
Envelope Generation 3% 3% 1% 50%
PLF Evaluations 57% 1% 78% 35%
Other Operations 3% 11% 4% 5%

23

10 segments
100 100 segments

—

80

60

40

20

— sBB — Log
— DLog 278
- 72

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) 10 segments (b) 100 segments

500 segments 1000 segments

75

50

25

0 0.1 02 0.3 0.4 0.5 0.6 07 0.8 09 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(c) 500 segments (d) 1,000 segments

5000 segments

0.8 0.9 1

10000 segments
100

100

75

— sBB — Log
— DLog zZB
|

50

25

0 0.1 0.2 03 04 05 0.6 07 0.8 0.9 1
0 0.1 0.2 03 0.4 05 06 0.7 0.8 0.9 1

(e) 5,000 segments (f) 10,000 segments

Figure 2: Performance profiles for network flow PLF problems.

In addition, Table 6 indicates that the generation of the convex envelope takes more time
if the PLF is concave. The reason for that is the while loop of Algorithm 1 which is always
entered since every point results in a concave turn. However, if it is a priori known that the
PLF is concave, then one could modify the algorithm to make it simply output the first and
last breakpoint of the PLF without entering any loop.

24

10 segments
€9 100 segments

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 02 03 04 05 06 07 0.8 09]
(a) 10 segments (b) 100 segments

500 segments 1000 segments

75

50

25

0 01 02 03 04 05 0.6 07 0.8 09 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(c) 500 segments (d) 1,000 segments

5000 segments 10000 segments
100

75 75

50

25

- — sBB — Log
— DLog z7ZB
,.// -z
0 S 0 ;
(e) 5,000 segments (f) 10,000 segments

Figure 3: Performance profiles for concave PLF knapsack problems.

5.4 Discussion

Due to the difference in implementation quality — a rudimentary sBB implementation in
Python compared to a commercial branch-and-cut solver in a low-level language (such as C)
— it is difficult to draw firm conclusions from these computational results. Nevertheless, we
sketch a summary of our observations.

Tables 1 and 3 indicate a superior scalability of the sBB: each added segment leads to a
relative improvement in the computation time of the sBB compared to logarithmic approaches.

25

This is further illustrated in performance profiles given in § 5.3.1. This superior scalability
can be attributed to the sBB’s slim and sparse LP relaxations, which may not always grow
linearly with the number of segments (see § 2.3). The value of a method with good scalability
is illustrated in Table 4: significant improvements in solution quality are possible by refining the
PLF, even if it already contains many segments. This is usually even more true for obtaining
an appropriate optimality certificate.

As discussed in § 2.3, the Incremental and SOS2 models, which guarantee sharpness in
the entire search tree, usually outperform logarithmic models for problems with few segments.
Since the sBB also guarantees these sharpness properties, one might expect similar results for
problems with smaller segments. One could even assume that this effect is enhanced, since
spatial branching can additionally lead to more balanced search trees by branching at the
previous solution instead of at the breakpoints (see § 4.1). However, the computational results
do not support this claim. We believe that the poor performance of the sBB compared to
logarithmic approaches on problems with few segments is due to the superior implementation
of Gurobi’s branch-and-cut solver. When the sBB is integrated into a full-featured solver, such
as Gurobi or Baron, the advantage of a balanced search tree may lead the sBB to outperform
logarithmic models even on problems with few segments, as SOS2 and the Incremental model
do. In fact, a closer look at the performance of the sBB implementation (cf. Table 6) reveals
that up to 50% of the solution time is spent on the Python-Gurobi interface. This is significant
time that could be saved by integrating our sBB algorithm into a full-featured solver.

6 Conclusion and future work

In this paper, a new perspective on piecewise linear optimization is taken. We adopt a global
and nonlinear continuous approach instead of discrete optimization. The developed spatial
branch-and-bound algorithm has small, sparse, and sharp LP relaxations throughout the search
tree. Computational experiments have shown that even a rudimentary sBB implementation in
Python can outperform state-of-the-art logarithmic models solved by Gurobi if the number
of segments is sufficiently high. Nonetheless, we advocate a problem-specific approach when
selecting a solution method for separable piecewise linear optimization problems. If the PLFs
involved have many segments, the sSBB could be the method of choice due to its slim and sparse
LP relaxations. However, for PLFs with few segments, MILP models such as the classical
Incremental model might be faster due to their large formulation and the thus better possibilities
for cutting planes.

Discrete approaches in piecewise linear optimization have witnessed over 60 years of fruitful
research which led to the current state-of-the-art. In contrast, this paper is an initial attempt
towards an efficient method that is based on continuous optimization techniques and is glob-
ally convergent. We recognize that our implementation is rudimentary at this stage and can
benefit from several enhancements and sophistications that would accelerate its performance.
Therefore, there are still some open questions. Further research can focus on extensions to non-
separable cases, cutting planes, specialized branching rules, integration in a full branch-and-cut
solver or further development of sBB algorithms for discontinuous functions. We leave these
for future research but outline some of these ideas in the next paragraph.

The ideas of pseudocost, strong and reliability branching from MILP [AKMO5] could be
adopted here. Secondly, there have been many works [Ben90, Kes+04, DAm+20] on strength-
ening the relaxations for separable nonconvex terms in a branch-and-cut algorithm and it is
conceivable that some of these ideas can be applied to separable PLFs to accelerate our sBB.

26

This would be a counterpart to the valid inequalities and cutting planes that have been devel-
oped for MILP and SOS2 models. Thirdly, although our sBB can generate polyhedral relax-
ations of any separable PLF, we currently do not have a branching rule that gives asymptotic
convergence when the PLF is non-l.s.c. (barring a special case). This does not seem to be an
easy task since convergence issues for relaxations of discontinuous functions are well-known and
also easy to see with simple examples (cf. Figure 1). Nonetheless, it may be worth tackling
this problem at least for separable PLFs since the SOS2 branching rule has been generalized
[FZZ08], although only as a proof-of-concept and not something that has been implemented in
MILP solvers. Lastly, one could explore machine learning techniques for branching decisions,
as was done recently for nonconvex polynomial optimization problems [Gha+23].

Acknowledgements The research of the third author is supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) [Grant 445857709].

Bibliography

[AKMO5] T. Achterberg, T. Koch, and A. Martin. “Branching rules revisited”. In: Operations Research
Letters 33.1 (2005), pp. 42-54.

[AGX19] W. Adams, A. Gupte, and Y. Xu. “Error bounds for monomial convexification in polynomial
optimization”. In: Mathematical Programming 175 (2019), pp. 355-393.

[Adj+98] C.S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. “A global optimization method,
aBB, for general twice-differentiable constrained NLPs — I. Theoretical advances”. In: Com-
puters & Chemical Engineering 22.9 (1998), pp. 1137-1158.

[Béar+-23] A. Barmann, R. Burlacu, L. Hager, and T. Kleinert. “On piecewise linear approximations
of bilinear terms: structural comparison of univariate and bivariate mixed-integer program-
ming formulations”. In: Journal of Global Optimization 85.4 (2023), pp. 789-819.

[BHH22] B. Beach, R. Hildebrand, and J. Huchette. “Compact mixed-integer programming formu-
lations in quadratic optimization”. In: Journal of Global Optimization 84 (2022), pp. 869—
912.

[BE76] E. Beale and J. J. Forrest. “Global optimization using special ordered sets”. In: Mathemat-
ical Programming 10.1 (1976), pp. 52-69.

[Ben90] H. P. Benson. “Separable concave minimization via partial outer approximation and branch
and bound”. In: Operations Research Letters 9.6 (1990), pp. 389-394.

[BGS20] R. Burlacu, B. GeiSSler, and L. Schewe. “Solving mixed-integer nonlinear programmes
using adaptively refined mixed-integer linear programmes”. In: Optimization Methods and
Software 35.1 (2020), pp. 37-64.

[Cas+03] L. G. Casado, J. A. Martinez, I. Garcia, and Y. D. Sergeyev. “New interval analysis support
functions using gradient information in a global minimization algorithm”. In: Journal of
Global Optimization 25.4 (2003), pp. 345-362.

[Cor+09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2009.

[CGMO3] K. L. Croxton, B. Gendron, and T. L. Magnanti. “A comparison of mixed-integer program-
ming models for nonconvex piecewise linear cost minimization problems”. In: Management

Science 49.9 (2003), pp. 1268-1273.

[CGMOT] K. L. Croxton, B. Gendron, and T. L. Magnanti. “Variable disaggregation in network flow
problems with piecewise linear costs”. In: Operations Research 1 (2007), pp. 146-157.

27

[DAm-+20]

[Dan60]
[DG15]
[FS69]

[Far+13]

[FZZ08]

[Fou85]

[FSB10]

[Gei+12]

[Gha+23]

[Gor22]

[GK20]

[GKK22]

[Hor86]

[HV?22]
[KFNO4]

[KFNO6]

[Kes+04]

C. D’Ambrosio, J. Lee, D. Skipper, and D. Thomopulos. “Handling separable non-convexities
using disjunctive cuts”. In: Combinatorial Optimization: ISCO 2020, ed. by M. Baiou, B.
Gendron, et al. Vol. 12176. Lecture Notes in Computer Science. Springer Cham, 2020,
pp- 102-114.

G. B. Dantzig. “On the significance of solving linear programming problems with some
integer variables”. In: Econometrica 28.1 (1960), pp. 30-44.

S. S. Dey and A. Gupte. “Analysis of MILP techniques for the pooling problem”. In:
Operations Research 63.2 (2015), pp. 412-427.

J. E. Falk and R. M. Soland. “An algorithm for separable nonconvex programming prob-
lems”. In: Management Science 15.9 (1969), pp. 550-569.

L. R. de Farias, E. Kozyreff, R. Gupta, and M. Zhao. “Branch-and-cut for separable piecewise
linear optimization and intersection with semi-continuous constraints”. In: Mathematical
Programming Computation 5.1 (2013), pp. 75-112.

I. R. de Farias Jr., M. Zhao, and H. Zhao. “A special ordered set approach for optimizing
a discontinuous separable piecewise linear function”. In: Operations Research Letters 36.2
(2008), pp. 234-238.

R. Fourer. “A simplex algorithm for piecewise-linear programming I: Derivation and proof”.
In: Mathematical Programming 33.2 (1985), pp. 204-233.

C. L. Frenzen, T. Sasao, and J. T. Butler. “On the number of segments needed in a piecewise
linear approximation”. In: Journal of Computational and Applied mathematics 234.2 (2010),
pp. 437-446.

B. GeiSSler, A. Martin, A. Morsi, and L. Schewe. “Using piecewise linear functions for
solving MINLPs”. In: Mized Integer Nonlinear Programming, ed. by J. Lee and S. Leyffer.
Vol. 154. IMA Volumes in Mathematics and its Applications. Springer, 2012, pp. 287-314.

B. Ghaddar, I. Gomez-Casares, J. Gonzélez-Diaz, B. Gonzalez-Rodriguez, B. Pateiro-Lépez,
and S. Rodriguez-Ballesteros. “Learning for spatial branching: an algorithm selection ap-
proach”. In: INFORMS Journal on Computing 35.5 (2023), pp. 1024-1043.

B. L. Gorissen. “Interior point methods can exploit structure of convex piecewise linear
functions with application in radiation therapy”. In: SIAM Journal on Optimization 32.1
(2022), pp. 256-275.

B. Grimstad and B. R. Knudsen. “Mathematical programming formulations for piecewise
polynomial functions”. In: Journal of Global Optimization 77.3 (2020), pp. 455-486.

A. Gupte, A. M. Koster, and S. Kuhnke. “An adaptive refinement algorithm for discretiza-
tions of nonconvex QCQP”. In: 20th International Symposium on Experimental Algorithms:
SEA 2022, ed. by C. Schulz and B. Ucar. Vol. 233. Leibniz International Proceedings in
Informatics (LIPIcs). Schloss Dagstuhl Publishing, 2022, 24:1-24:14.

R. Horst. “A general class of branch-and-bound methods in global optimization with some
new approaches for concave minimization”. In: Journal of Optimization Theory and Appli-
cations 51.2 (1986), pp. 271-291.

J. Huchette and J. P. Vielma. “Nonconvex piecewise linear functions: advanced formulations
and simple modeling tools”. In: Operations Research (2022).

A. B. Keha, I. R. de Farias, and G. L. Nemhauser. “Models for representing piecewise linear
cost functions”. In: Operations Research Letters 32.1 (2004), pp. 44-48.

A. B. Keha, I. R. de Farias, and G. L. Nemhauser. “A branch-and-cut algorithm without
binary variables for nonconvex piecewise linear optimization”. In: Operations Research 5
(2006), pp. 847-858.

P. Kesavan, R. J. Allgor, E. P. Gatzke, and P. I. Barton. “Outer approximation algorithms

for separable nonconvex mixed-integer nonlinear programs”. In: Mathematical Programming
100 (2004), pp. 517-535.

28

[ASO0]

[KRT22]

[KM20]

[LSWO8]

[LS13]
[LHH23]

[MS04]

IMM57]
[Mey76]

[Nag+19]

[NP09)

[PUK20]

[Reb16]

[RK15]

[RK20]
[SS98]

[She01]
[Sol71]

[SSN22]

F. A. Al-Khayyal and H. D. Sherali. “On finitely terminating branch-and-bound algorithms
for some global optimization problems”. In: STAM Journal on Optimization 10.4 (2000),
pp- 1049-1057.

J. Kim, J.-P. P. Richard, and M. Tawarmalani. Piecewise polyhedral relazations of multilin-
ear optimization. Preprint. 2022. Optimization Online: https://optimization-online.
org/7p=19069.

L. Kong and C. T. Maravelias. “On the derivation of continuous piecewise linear approxi-
mating functions”. In: INFORMS Journal on Computing 32.3 (2020), pp. 531-546.

S. Leyffer, A. Sartenaer, and E. Wanufelle. “Branch-and-refine for mixed-integer nonconvex
global optimization”. Preprint ANL/MCS-P1547-0908. Mathematics and Computer Science
Division, Argonne National Laboratory, 2008, pp. 40-78.

M. Locatelli and F. Schoen. Global optimization: Theory, algorithms, and applications.
Vol. MO15. MOS-STAM Series on Optimization. STAM, 2013.

B. Lyu, I. V. Hicks, and J. Huchette. Building formulations for piecewise linear relaxations
of nonlinear functions. Preprint. 2023. arXiv: 2304.14542 [math.0C].

T. L. Magnanti and D. Stratila. “Separable concave optimization approximately equals
piecewise linear optimization”. In: Integer Programming and Combinatorial Optimization:
IPCO 2004, ed. by D. Bienstock and G. Nemhauser. Vol. 3064. Lecture Notes in Computer
Science. Springer, Berlin, Heidelberg, 2004, pp. 234-243.

H. M. Markowitz and A. S. Manne. “On the solution of discrete programming problems”.
In: Econometrica 25.1 (1957), pp. 84-110.

R. R. Meyer. “Mixed integer minimization models for piecewise-linear functions of a single
variable”. In: Discrete Mathematics 16.2 (1976), pp. 163-171.

H. Nagarajan, M. Lu, S. Wang, R. Bent, and K. Sundar. “An adaptive, multivariate par-
titioning algorithm for global optimization of nonconvex programs”. In: Journal of Global
Optimization 74.4 (2019), pp. 639-675.

J. M. Natali and J. M. Pinto. “Piecewise polynomial interpolations and approximations
of one-dimensional functions through mixed integer linear programming”. In: Optimization
Methods € Software 24.4-5 (2009), pp. 783-803.

M. Posypkin, A. Usov, and O. Khamisov. “Piecewise linear bounding functions in univariate
global optimization”. In: Soft Computing 24.23 (2020), pp. 17631-17647.

S. Rebennack. “Computing tight bounds via piecewise linear functions through the example
of circle cutting problems”. In: Mathematical Methods of Operations Research 84.1 (2016),
pp. 3-57.

S. Rebennack and J. Kallrath. “Continuous piecewise linear delta-approximations for uni-
variate functions: computing minimal breakpoint systems”. In: Journal of Optimization

Theory and Applications 167.2 (2015), pp. 617-643.

S. Rebennack and V. Krasko. “Piecewise linear function fitting via mixed-integer linear
programming”. In: INFORMS Journal on Computing 32.2 (2020), pp. 507-530.

J. P. Shectman and N. V. Sahinidis. “A finite algorithm for global minimization of separable
concave programs”. In: Journal of Global Optimization 12 (1998), pp. 1-36.

H. D. Sherali. “On mixed-integer zero-one representations for separable lower-semicontinuous
piecewise-linear functions”. In: Operations Research Letters 28.4 (2001), pp. 155-160.

R. M. Soland. “An algorithm for separable nonconvex programming problems ii: nonconvex
constraints”. In: Management Science 17.11 (1971), pp. 759-773.

K. Sundar, S. Sanjeevi, and H. Nagarajan. “Sequence of polyhedral relaxations for nonlinear
univariate functions”. In: Optimization and Engineering 23.2 (2022), pp. 877-894.

29

https://optimization-online.org/?p=19069
https://optimization-online.org/?p=19069
https://arxiv.org/abs/2304.14542

[TS04]

[TV12]
[Tuy16]

[THSS]

[VAN10]

[VKNOS]

[VN09]

[WR22]

[WR24]
[WB14]
[YV13]

[ZF12]

M. Tawarmalani and N. V. Sahinidis. “Global optimization of mixed-integer nonlinear pro-
grams: a theoretical and computational study”. In: Mathematical programming 99.3 (2004),
pp- 963-591.

A. Toriello and J. P. Vielma. “Fitting piecewise linear continuous functions”. In: Furopean
Journal of Operational Research 219.1 (2012), pp. 86-95.

H. Tuy. Convexr Analysis and Global Optimization. 2nd edition. Vol. 110. Springer Opti-
mization and its Applications. Springer Cham, 2016.

H. Tuy and R. Horst. “Convergence and restart in branch-and-bound algorithms for global
optimization. Application to concave minimization and DC optimization problems”. In:
Mathematical Programming 41.1 (1988), pp. 161-183.

J. P. Vielma, S. Ahmed, and G. Nemhauser. “Mixed-integer models for nonseparable
piecewise-linear optimization: unifying framework and extensions”. In: Operations Research
2 (2010), pp. 303-315.

J. P. Vielma, A. B. Keha, and G. L. Nemhauser. “Nonconvex, lower semicontinuous piece-
wise linear optimization”. In: Discrete Optimization 5.2 (2008), pp. 467—488.

J. P. Vielma and G. L. Nemhauser. “Modeling disjunctive constraints with a logarithmic
number of binary variables and constraints”. In: Mathematical Programming 128.1-2 (2009),
pp. 49-72.

J. A. Warwicker and S. Rebennack. “A comparison of two mixed-integer linear programs
for piecewise linear function fitting”. In: INFORMS Journal on Computing 34.2 (2022),
pp. 1042-1047.

J. A. Warwicker and S. Rebennack. “Efficient continuous piecewise linear regression for
linearising univariate non-linear functions”. In: IISE Transactions 0.0 (2024), pp. 1-15.

A. Wechsung and P. I. Barton. “Global optimization of bounded factorable functions with
discontinuities”. In: Journal of Global Optimization 58.1 (2014), pp. 1-30.

S. Yldz and J. P. Vielma. “Incremental and encoding formulations for mixed integer pro-
gramming”. In: Operations Research Letters 41.6 (2013), pp. 654—658.

M. Zhao and I. R. de Farias. “The piecewise linear optimization polytope: new inequalities
and intersection with semi-continuous constraints”. In: Mathematical Programming 141.1-2

(2012), pp. 217-255.

30

	Introduction
	Our contributions
	Need for scalable algorithms

	Background & Overview
	Background on sBB
	Main Ideas
	Relation to MILP and SOS2 approaches

	Univariate PLFs
	Updating over subintervals
	An Illustrative Example
	Lipschitz continuity
	Approximation of Lipschitz functions

	Spatial branch-and-bound algorithm
	Branching rules
	Convergence guarantees

	Computational experiments
	Network flow problem with concave cost
	Knapsack problem with approximated nonlinearities
	Concave knapsack problems

	Details on Computational Experiments
	Performance profiles
	Timing statistics for the sBB

	Discussion

	Conclusion and future work

