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Problem description: We study the problem of designing large-scale resilient relay logistics hub networks.

We propose a model of Capacitated Relay Network Design under Stochastic Demand and Consolidation-Based

Routing (CRND-SDCR), which aims to improve a network’s efficiency and resilience against commodity

demand variability through integrating tactical decisions. Methodology: We formulate CRND-SDCR as a

two-stage stochastic optimization program where we locate relay logistics hubs and decide their capacities

in the first stage and design a minimum-cost consolidation plan in the second stage. As an exact solution

approach, we design a branch-and-cut algorithm with a nested Benders decomposition and integer L-shaped

method. We decompose CRND-SDCR twice: (i) across the stochastic demand scenarios, and (ii) across each

origin-destination pair within the scenario-dependent subproblems; and utilize Benders decomposition at

each of these decomposition stages to add the associated Benders feedback cuts. We guarantee the exactness

of our solution approach by adding integer L-shaped cuts, obtained by solving the second-stage subproblem

exactly through Benders decomposition as well. Results: We apply our methodology to design large-scale

resilient relay networks to be used for finished vehicle deliveries for a US-based car manufacturer partner. Our

computational experiments demonstrate that our developed approach can obtain near-optimal solutions for

practically relevant instances using sample average approximation. The resulting logistics networks showcase

a significant improvement in capabilities to sustain commodity demand variability, in comparison with

relay networks designed to fulfill average commodity demand. In particular, our networks lead to a ∼ 7%

decrease in average delivery costs as compared to networks designed under a deterministic demand setting.

Moreover, we depict the importance of considering consolidation-based routing at the network design stage

through benchmarking against literature-proposed relay networks that continuously approximate the routing

operations. Implications: Our analysis provides decision-makers with recommendations regarding inducing

network flexibility to hedge against commodity demand uncertainty.

Key words : Relay Network Design; Stochastic Demand; Consolidation-based Routing;

Decomposition-based Branch-and-Cut; Nested Benders Decomposition; Integer L-Shaped Method;
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1. Introduction
1.1. Motivation

Freight transportation forms an integral part of the modern-day economy. It aids manufacturing

processes through the timely availability of raw materials, facilitates global trade by delivering
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finished goods to corresponding customers, and in turn fosters economic growth via creating job

opportunities across geographies (Crainic 2000). These freight transportation services are pro-

vided through multiple modes, such as railways, trucks, container shipping liners, and airplanes.

Among all these modes, truck transportation serves as the dominant land transportation mode

and accounts for the largest fraction of revenue and freight movement. For instance, the trucking

companies in the US transported 64.7% of total domestic tonnage in 2019, which corresponded to

$940.8 billion in gross freight revenues (U.S. Bureau of Transportation Statistics 2023).

In order to transport such high freight volumes, trucking companies consolidate the loads between

multiple locations to achieve better service offerings to customers, substantial transportation cost

savings, and overall lesser emissions (Grove and O’Kelly 1986, Hall 1989). Although such trips

provide economies of scale, they require the truck drivers to drive for more than 2,000 miles in

a single journey thus keeping drivers away from their home for extended periods of time. These

unsustainable working conditions for drivers force them to quit their jobs leading to a high driver

turnover rate. This driver turnover rate has been consistently reported to be between 80% and 90%

every year for the past decade (American Trucking Associations 2018) and has led the trucking

industry to accrue substantially high unproductive costs estimated to be between $2.8 - $3 billion

annually (Keller and Ozment 1999, Rodriguez et al. 2000). As a direct consequence, the trucking

industry is facing a chronic issue of driver shortage as well. There was a reported shortage of 64,000

truck drivers in 2019 and it is expected to reach 160,000 by 2030 in the US (American Trucking

Associations 2019). One potential remedy to the situation is to modify transportation networks and

the operations conducted on them to better satisfy the needs of truck drivers. Relay transportation

provides such an opportunity by making trucking a daily job.

Relay transportation consists of constructing relay facilities to permit the fulfillment of demand

via short-haul transportation segments (Hunt 1998, Cabral et al. 2007, Montreuil 2011). These

relay facilities or hubs act as sortation facilities where commodities are transferred between delivery

vehicles, and serve as pit stops for drivers. In relay logistics, the delivery drivers can advance

commodities for half of their daily driving limit from one relay to the next, and then return to the

original relay—ideally with other commodities—before reaching their home by the end of the day

(Ali et al. 2002, Hu, Askin, and Hu 2019).

All freight networks whether operated through long-haul or short-haul transportation, face a

myriad of uncertainties in terms of travel time, commodity demand, vehicle breakdowns, etc.,

with commodity demand uncertainty causing the most undesirable consequences. These demand

fluctuations occur across both space and time, due to which the trucking companies struggle

to devise effective consolidation plans causing poor truck utilization in the delivery trips and

ultimately high operational costs (Lium, Crainic, and Wallace 2009, Hewitt et al. 2019). Hence,
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consideration of demand stochasticity becomes imperative, and even more so when there are more

frequent commodity delivery trips, such as in the relay logistics paradigm. Furthermore, such

consideration impacts the tactical plans for commodity transportation which in turn affects the

strategic decisions of relay network design.

The literature on relay logistics network design primarily designs small-scale networks under

deterministic commodity demand setting (Cabral et al. 2007, Yıldız, Karaşan, and Yaman 2018,

Leitner et al. 2019), and the investigation that considers the stochastic counterpart assumes con-

tinuous flow routing decisions, which do not account for the important consolidation features in

logistics planning (Hu, Askin, and Hu 2019). The current research addresses these gaps by answer-

ing the following research question: How to design large-scale relay logistics hub networks under

stochastic commodity demand and consolidation-based routing?

1.2. Contributions

To address the research question, we introduce the problem of Capacitated Relay Network Design

under Stochastic Demand and Consolidation-Based Routing (CRND-SDCR), which focuses on

improving network efficiency and resilience against demand variability through integrating tactical

planning decisions. We model commodity demand uncertainty through a finite set of stochastic sce-

narios and formulate CRND-SDCR as a two-stage stochastic program with mixed-integer recourse.

The first stage comprises long-term decisions on where to locate relay hubs and decide their respec-

tive sizes, while the second stage designs a minimum-cost consolidation plan for a given stochastic

commodity demand realization.

We develop a branch-and-cut algorithm with nested Benders decomposition and integer L-shaped

methods (Algorithm 3). We employ Benders decomposition at two stages: Akin to classical stochas-

tic programs, we solve for each stochastic scenario ω the dual Lω of the linear programming (LP)

relaxation of the second-stage subproblem to add Benders feedback cuts to the first-stage master

problem. However, as the LP relaxation of the second-stage problem entails solving a capacitated

multi-commodity minimum-cost network flow problem, solving it and its dual by directly feeding

it to an off-the-shelf optimization solver is not computationally efficient. Instead, we use Benders

decomposition (again) to solve Lω, by decomposing it on the basis of each O-D pair. Here, we

leverage the underlying network-flow structure to generate Benders cuts in polynomial time using

shortest-path routines. In order to enhance the computational efficiency of our solution approach

even further, we add valid inequalities and strengthen the formulations by adding specific dummy

variables. Finally, to guarantee the exactness of our solution approach, we add integer L-shaped

cuts by solving the second-stage subproblem exactly through Benders decomposition as well.

We conduct an extensive case study pertaining to the design of large-scale relay networks to be

used for finished vehicle deliveries for a US-based car manufacturer company that partnered with
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our research team. We show that our solution approach can obtain near-optimal solutions for practi-

cally relevant instances using sample average approximation, and that our tailored implementation

of decomposition-based branch-and-cut scales better in comparison to its classical counterpart with

an increase in demand scenarios and network size. We assess the performance of the generated

networks by determining minimum-cost consolidation plans for all available stochastic demand sce-

narios, and compare it with that of relay networks designed for an average parcel demand scenario.

Our designed networks showcase significantly higher robustness against demand variability, as they

can fulfill more demand by short-haul transportation and at a lower cost. Specifically, our net-

works are able to reduce the unfulfilled demand by a factor of 2 and lead to lower average delivery

costs of around ∼ 7% across instances. Finally, we benchmark the performance of our generated

relay networks against literature-proposed relay networks designed by continuously approximating

the tactical planning decisions and depict the importance of considering such tactical planning

decisions at the network design stage.

The remainder of the article is organized as follows: Section 2 reviews the existing literature

on Relay Network Design. We then formulate our two-stage stochastic optimization problem in

Section 3. In Section 4 we present the developed solution approach to solve the problem exactly.

Section 5 presents results from a case study to validate our model and solution approach when

designing a relay hub network for finished vehicle delivery in the south-east of the US. Finally,

Section 6 presents the concluding remarks and lays out the avenues for future research.

2. Related Work

The Hub Location Problem (HLP), one of the widely studied problems in location science, aims

to select locations from a discrete set of candidates to build one or more hub facilities and serve

commodity demand between a given set of origin-destination (O-D) pairs (Hall 1989). HLP seeks

to optimize the trade-off between hub construction and transportation costs. Due to typically

high hub construction costs and substantial transportation cost savings through consolidation, the

resulting network designs contain very few hubs and rely heavily on long-haul delivery trips. Such

long-haul delivery trips often last for multiple days and result in large away-from-home time for

the delivery drivers, ultimately taking a toll on the drivers’ mental and physical well-being (Sieber

2015, Nosowitz 2017). Such unsustainable working conditions for delivery drivers warrant the need

to modify trucking operations. Recently, relay logistics has been proposed as an alternate logistics

operational paradigm to render trucking a daily job.

Relay logistics involves building relay facilities and operating them to support commodity deliv-

ery for a given set of O-D pairs while respecting the drivers’ driving limit (Kewcharoenwong, Li,

and Üster 2023). Relay operations decompose shipments into short segments in a network of relay
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hubs, each traveled by a separate driver. Thus, a driver moves commodities from one relay hub to

the next, drops the commodities for another driver to pick up, and then travels back to the orig-

inal relay hub (ideally, moving another set of commodities in the opposite direction) (Jacquillat,

Schmid, and Wang 2022). In addition, relay logistics can provide other benefits as well such as:

(i) improved truck utilization and, consequently, higher driver utilization, which leads to better

compensation for drivers (drivers are primarily paid based on mileage and relay logistics facilitates

a more continuous driving schedule as opposed to a long waiting time between each pickup and

delivery in classical operations); (ii) reduction in delivery times as the commodities do not have

to wait (due to driver rests) because they are relayed by multiple drivers; and (iii) the reduc-

tion in accidents, training costs, and insurance rates because of more experienced drivers with job

continuity (Taylor, Whicker, and Usher 2001, Üster and Kewcharoenwong 2011).

While the advantages of adopting relay logistics are enticing, it also presents a distinct set of

challenges. One of the major challenges the logistics service provider faces in this operational set-

ting is increased overall transportation costs due to additional distance traveled and coordination

between multiple commodities across space and time (Üster and Kewcharoenwong 2011). To tackle

these challenges, appropriate relay hub networks have to be designed. This relay network design

problem aims to select relay hub locations that minimize total relay hub construction and trans-

portation costs to satisfy commodity demand while respecting the driver tour length constraints

(Hunt 1998, Ali et al. 2002, Cabral et al. 2007, Üster and Maheshwari 2007, Ballot, Gobet, and

Montreuil 2012).

The earliest efforts in this direction simply involved locating a minimum number of relay hubs

on the shortest-path delivery routes and did not consider fixed-charge costs for the relay hub

construction (Hunt 1998, Ali et al. 2002). Although results from these studies provided efficient

delivery routes that respected the driver tour length constraints, they did not optimize the trade-

off between relay hub construction costs and transportation costs. Such an issue was partially

addressed by considering a fixed-charge network design type of formulation wherein relay hubs were

established and deterministic commodity demand was routed between O-D pairs (Cabral et al.

2007, Üster and Maheshwari 2007, Kulturel-Konak and Konak 2008, Üster and Kewcharoenwong

2011, Konak 2012, Kewcharoenwong and Üster 2017, Yıldız, Karaşan, and Yaman 2018, Leitner

et al. 2019, Kewcharoenwong, Li, and Üster 2023, Ziaeifar and Üster 2023). However, one limitation

of these investigations, is that they designed small-scale relay networks for narrower geographical

regions and did not consider relay-hub sizing nor commodity demand variability.

Another important characteristic of relay networks designed in the literature is their hierarchical

nature: The non-hub nodes such as commodity origins and destinations, commonly referred to as
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spoke nodes, are allocated to specific hubs, forcing commodities to travel only along the associ-

ated legs (Cabral et al. 2007, Üster and Maheshwari 2007, Kulturel-Konak and Konak 2008, Üster

and Kewcharoenwong 2011, Konak 2012, Kewcharoenwong and Üster 2017, Yıldız, Karaşan, and

Yaman 2018, Hu, Askin, and Hu 2019, Leitner et al. 2019, Kewcharoenwong, Li, and Üster 2023,

Ziaeifar and Üster 2023). However, such restriction constrains commodity flows and leads to an

increase in traveled distances and potential commodity congestion at the hub nodes (Tu and Mon-

treuil 2019, Montreuil et al. 2018). To overcome the aforementioned issues, the concept of Physical

Internet recently emerged to design hyperconnected networks, which are multi-tier hub networks

that interconnect open-access hub facilities at multiple planes (Montreuil 2011, Montreuil, Meller,

and Ballot 2013). This hyperconnectivity provides better degrees of freedom for commodity move-

ment while preserving cost savings achieved through consolidation opportunities (Kulkarni, Dahan,

and Montreuil 2023). To the best of our knowledge, only (Kulkarni et al. 2021, Kulkarni, Dahan,

and Montreuil 2022, 2024) designed such large-scale hyperconnected relay logistics networks. These

studies, in particular, addressed the problem of relay network design from a logistics resilience

perspective but again did not consider decisions related to hub sizing and demand variability.

To the best of our knowledge, only Hu, Askin, and Hu (2019) considered stochastic commodity

demands in the relay network design problem with sizing considerations. However, one of the

major drawbacks of Hu, Askin, and Hu (2019) and other investigations that considered fixed-

charge relay network design lies in their restrictive modeling approach to transportation costs. The

transportation costs are considered linear in terms of commodity flow. Such a representation does

not favor commodity consolidation and is less indicative of trucking industry operations. We address

this gap by accounting for fixed trucking costs in addition to linear commodity costs to represent

real-life trucking operating costs well. Hence, in this work, we design large-scale capacitated relay

hub networks under stochastic demand and consolidation-based routing.

3. Capacitated Relay Network Design under Stochastic Demand and
Consolidation-Based Routing Modeling

In this section, we first present the Capacitated Relay Network Design under Stochastic Demand

and Consolidation-Based Routing (CRND-SDCR) problem. We then formulate it as a two-stage

stochastic optimization program with mixed-integer recourse.

3.1. Problem Definition

We consider a logistics service provider (trucking carrier) or a consortium of such providers inter-

ested in designing a large-scale logistics hub network for efficient relay transportation. This problem

is motivated by existing unsustainable long-haul delivery trip schedules that affect drivers’ mental

and physical health (Sieber 2015, Nosowitz 2017). The Capacitated Relay Network Design under
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Stochastic Demand and Consolidation-Based Routing (CRND-SDCR) problem seeks to locate logis-

tics hubs and decide their respective capacities to minimize costs of hub construction and future

transportation costs for satisfying stochastic commodity demand between each origin-destination

(O-D) pair via consolidation-based trucking.

Formally, let S (respectively, T ) represent the discrete set of origin (respectively, destination)

locations of all future commodities. Considering the inherent uncertainty in demand, we model

demand variability through a finite set of stochastic demand scenarios denoted by Ω with each

demand scenario ω ∈Ω having a probability of occurrence πω. Within each demand scenario ω ∈Ω,

and for each O-D pair p∈P ⊆S ×T , we denote by dωp the associated commodity demand.

To serve such uncertain commodity demand, the service provider intends to open relay logistics

hubs from a pre-selected set of discrete candidate locations H aimed to facilitate commodity deliv-

eries from their origins to their corresponding destinations through short-haul segments. These

logistics hubs act as sortation facilities where commodities are transferred between delivery vehicles

depending on the respective destinations, and serve as pit stops for drivers. Specifically, to support

commodity transfer between delivery vehicles, the logistics hubs require appropriate (un)loading

capacities, usually measured in terms of total number of available vehicle docking lanes (or bays).

Let K represent the pre-selected set of pragmatic capacity configurations, where each configuration

k ∈K corresponds to a specific number of vehicle docking lanes denoted by Sk. The service provider

incurs a cost of Ck
i to open a logistics hub at the candidate location i∈H with a capacity configu-

ration k ∈K. These hub opening costs include land acquisition costs and hub facility construction

costs.

Building upon the principles of the Physical Internet, we permit each origin, destination, and

potential hub location to be connected to multiple other locations to allow the design of a hyper-

connected network. We represent as A⊆ (S ∪T ∪H)2 the set of potential (directed) transportation

legs, which satisfy the traveled distance or driving time regulations to ensure a daily return for all

drivers to their respective homes. The distance of each leg (i, j)∈A is denoted by ℓi,j.

In order to transport commodities on each leg (i, j) ∈ A, the service provider incurs a fixed

scheduling cost Cs for each required truck, and a variable fuel-related cost Cf per commodity

and per unit of distance traveled. Such fixed plus linear cost structure realistically represents

several real-world freight costs (Greening, Dahan, and Erera 2023). Then at the commodity origin

location and at each relay hub, we suppose that commodities are sorted depending on their next

transportation leg. Thus, the service provider faces a handling cost of Ch per unit commodity at

every visited relay hub and their origin locations. After sorting, these commodities are consolidated

in trucks. We denote by q the average cubic volume of a commodity, and by Q the total cubic

volume capacity of each truck.
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The goal of the CRND-SDCR problem is then to select a subset of hub locations Ho ⊆H and

their respective sizes so as to minimize the total cost of hub opening and expected transportation

costs across the stochastic commodity demand scenarios Ω.

3.2. Two-Stage Stochastic Programming Model

To model CRND-SDCR, we formulate a two-stage stochastic program with mixed-integer recourse.

In the first stage, the design decisions of hub locations and their respective sizes are determined:

For every hub i∈H and every capacity configuration k ∈K, we consider a binary variable yki that

takes a value of 1 if hub at location i with configuration k is opened, and 0 otherwise.

In the second stage, after a demand scenario ω is realized, the hub network is used to design

a minimum-cost consolidation plan of all commodities. To this end for each scenario ω, we define

continuous decision variables fp,ωi,j ∈R≥0 that denote the volume of commodity for O-D pair p∈P

transported on leg (i, j)∈A, and discrete variables xωi,j ∈Z≥0 that represent the number of delivery

trucks used to transport commodities on leg (i, j) ∈ A. We then derive the following two-stage

stochastic optimization problem:

CRND-SDCR : min
y

∑
i∈H

∑
k∈K

Ck
i · yki +Eω[T(y,ω)] (1a)

s.t.
∑
k∈K

yki ≤ 1, ∀i∈H, (1b)

yki ∈ {0,1}, ∀i∈H,∀k ∈K. (1c)

The objective (1a) minimizes the total cost of logistics hub opening and expected transporta-

tion costs across demand scenarios. We note that relay hub opening cost Ck
i are scaled to match

the temporality of the long-term opening costs with the that of the short-term transportation

costs. Constraints (1b) ensure at most one capacity configuration is selected at each hub location.

Subsequently, the transportation costs for every ω ∈Ω are given by:

T(y,ω) = min
x,f

∑
p∈P

∑
(i,j)∈A

(Cf · ℓi,j +Ch)f
p,ω
i,j +

∑
{(i,j)∈A|i<j}

Cs ·xωi,j (2a)

s.t.
∑

{j∈H∪{t}
| (i,j)∈A}

fpi,j −
∑

{j∈H∪{s}
| (j,i)∈A}

fpj,i =


dωp if i= s

0 if i∈H
−dωp if i= t

, ∀p= (s, t)∈P, ∀i∈H∪{s, t},

(2b)∑
p∈P

q · fp,ωi,j ≤Q ·xωi,j, ∀(i, j)∈A, (2c)∑
{j∈S∪H∪T |(i,j)∈A}

xωi,j ≤
∑
k∈K

Sk · yki , ∀i∈H, (2d)
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xωi,j = xωj,i, ∀(i, j)∈A|i < j, (2e)

xωi,j ∈Z≥0, ∀(i, j)∈A, (2f)

fp,ωi,j ≥ 0, ∀(i, j)∈A,∀p∈P. (2g)

The transportation costs are given by the objective (2a), obtained by minimizing the total cost

of commodity handling, truck scheduling, and truck fuel consumption for commodity delivery.

Constraints (2b) are flow conservation constraints to route commodities from their respective

origins to their destinations. Constraints (2c) ensure that enough delivery vehicles are scheduled

on each leg to feasibly transport the commodities planned to travel along that leg. Constraints

(2d) ensure that the number of trucks visiting each hub respects the corresponding hub capacity.

Finally, Constraints (2e) ensure that scheduled trucks on each transportation leg return to their

origin locations, which in turn facilitates the single-day driver trips. We note that the generated

consolidation plan will leverage the backhauling opportunities offered by the back-and-forth trips

in the relay network to efficiently transport commodities that may travel in opposite directions.

The two-stage stochastic program is a challenging optimization formulation to solve exactly due

to two major reasons. First, the number of decision variables and constraints grows with the number

of demand scenarios (|Ω|). Second, for each demand scenario ω ∈Ω, the second-stage subproblem

(2) aims to consolidate multiple commodities at minimum cost, which in itself is computationally

a challenging problem. Embedding the minimum-cost consolidation planning problem (2) into a

facility location, resulting in CRND-SDCR, complicates its solvability even further.

4. Decomposition-Based Branch-and-Cut

Two-stage stochastic programs are typically solved using decomposition-based algorithms, includ-

ing Benders decomposition (Benders 1962), integer L-shaped method (Laporte and Louveaux 1993),

dual decomposition (Carøe and Schultz 1999), and progressive hedging (Rockafellar andWets 1991).

Our formulation (1)-(2) exhibits a nested block-angular structure, which enables us to derive an

exact solution approach using the branch-and-cut algorithm, nested with Benders decomposition

and the integer L-shaped method.

Classically, Benders decomposition and the integer L-shaped method reformulate a two-stage

optimization problem to obtain a (relaxed) master problem and scenario-wise subproblems. The

master problem comprises first-stage variables and an additional set of variables that estimate

the second-stage objective function value, whereas the scenario-wise subproblems comprise second-

stage variables. An iteration in such decomposition algorithms involves: (i) solving the master

problem to fix the first-stage variables and in turn making the scenario-wise subproblems inde-

pendently solvable, (ii) solving each independent scenario-wise subproblem with a fixed master
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problem solution, (iii) deriving a cut (or multiple cuts) based on the subproblems’ solutions and

adding it (them) to the master problem, and (iv) repeating this process until a provably optimal

solution to the original problem is found.

To this end, we first reformulate the model (Section 4.1) and then lay out the process of gen-

erating integer L-shaped cuts (Section 4.2), guaranteeing the exactness of our solution approach.

To accelerate the typically slow convergence, we then describe the process of deriving Benders

feedback cuts through nested decomposition (Section 4.3) and embed these cut generation schemes

within a branch-and-bound process, resulting in a branch-and-cut algorithm (Section 4.4). Finally,

we provide valid inequalities and additional computational enhancements employed to accelerate

the convergence of the branch-and-cut algorithm (Section 4.5).

4.1. Model Reformulation

The two-stage stochastic program (1)-(2) exhibits a block angular structure: If we fix the y vari-

ables, then the second-stage subproblem for each ω ∈Ω can be independently solved. We leverage

this structure to define an equivalent optimization problem of CRND-SDCR, master problem

M(I,B,Ω). The master problem comprises the first-stage binary variables y, and a newly defined

continuous decision variable θ ∈ R that estimates the expected transportation costs across the

demand scenarios. The master problem is then given by:

M(I,B,Ω) : min
y,θ

∑
i∈H

∑
k∈K

Ck
i · yki + θ (3a)

s.t.
∑
k∈K

yki ≤ 1, ∀i∈H, (3b)

Integer L-shaped cuts I, (3c)

Benders feedback cuts B, (3d)

yki ∈ {0,1}, ∀i∈H,∀k ∈K. (3e)

Due to the very large number of constraints (3c) and (3d), we solveM(I,B,Ω) using a branch-

and-cut algorithm through lazy constraint callbacks in an off-the-shelf optimization solver. Such

implementation entails dynamically adding cuts (3c), (3d) whenever the solver encounters a solu-

tion (ŷ, θ̂) that satisfies integrality requirements (i.e., ŷki ∈ {0,1},∀i ∈H,∀k ∈ K) but violates the

corresponding integer L-shaped or Benders optimality cuts. The process is terminated when the

search space is fully explored and the estimator variable θ correctly records the expected trans-

portation costs. Next, we describe the process of generating integer L-shaped cuts.
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4.2. Generating Integer L-Shaped Cuts

Given a feasible first-stage solution of the master problem (ŷ, θ̂), we solve the second-stage sub-

problem Dω(ŷ) for each ω ∈Ω, given by:

Dω(ŷ) : min
x,f

∑
p∈P

∑
(i,j)∈A

(Cf · ℓi,j +Ch)f
p,ω
i,j +

∑
{(i,j)∈A|i<j}

Cs ·xωi,j (4a)

s.t.
∑

{j∈H∪{t}
| (i,j)∈A}

fpi,j −
∑

{j∈H∪{s}
| (j,i)∈A}

fpj,i =


dωp if i= s

0 if i∈H
−dωp if i= t

, ∀p= (s, t)∈P, ∀i∈H∪{s, t}, (4b)

∑
p∈P

q · fp,ωi,j ≤Q ·xωi,j, ∀(i, j)∈A, (4c)∑
{j∈S∪H∪T |(i,j)∈A}

xωi,j ≤
∑
k∈K

Sk · ŷki , ∀i∈H, (4d)

xωi,j = xωj,i, ∀(i, j)∈A|i < j, (4e)

xωi,j ∈Z≥0, ∀(i, j)∈A, (4f)

fp,ωi,j ≥ 0, ∀(i, j)∈A,∀p∈P. (4g)

The second-stage subproblem Dω(ŷ) devises for demand scenario ω a minimum-cost consolidation

plan on the capacitated hub network given by the first stage decisions ŷ. However, this problem

is challenging to solve. Instead of directly feeding Dω(ŷ) to an optimization solver, we decompose

it by first selecting the number of delivery trucks on each leg, and then determining the flow of

commodities:

Dω(ŷ) : min
x

∑
{(i,j)∈A|i<j}

Cs ·xωi,j +ψ∗
ω(x, ŷ) (5a)

s.t. (4d)− (4e),

xωi,j ∈Z≥0, ∀(i, j)∈A. (5b)

where the innermost subproblem and its dual are given by:

ψ∗
ω(x, ŷ) =min

f

∑
p∈P

∑
(i,j)∈A

(Cf · ℓi,j +Ch)f
p,ω
i,j

s.t. (4b)− (4c),
fp,ωi,j ≥ 0, ∀(i, j)∈A,∀p∈P.

=max
τ,ρ

∑
p∈P

dωp (τ
p,ω
s − τ p,ωt )−

∑
(i,j)∈A

Q

q
·xωi,j · ρωi,j

s.t. τ p,ωi − τ p,ωj − ρωi,j ≤Cf · ℓi,j +Ch, ∀(i, j)∈A,∀p∈P,
ρωi,j ≥ 0, ∀(i, j)∈A.

(6)
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To circumvent feasibility issues in the primal innermost subproblem (6), we add dummy truck

capacities with very high costs between each O-D pair that are sufficient to fulfill commodity

demands even when no hub is opened. Then, Dω(ŷ) is equivalent to the following master problem:

Eω(ŷ,Fω) : min
x,ψ

∑
{(i,j)∈A|i<j}

Cs ·xωi,j +ψω (7a)

s.t.
∑

{j∈S∪H∪T |(i,j)∈A}

xωi,j ≤
∑
k∈K

Sk · ŷki , ∀i∈H, (7b)

xωi,j = xωj,i, ∀(i, j)∈A|i < j, (7c)

ψω ≥
∑
p∈P

dωp (τ
s,ω
p − τ t,ωp )−

∑
(i,j)∈A

Q

q
·xωi,j · ρωi,j, ∀(τ, ρ)∈Fω, (7d)

xωi,j ∈Z≥0, ∀(i, j)∈A. (7e)

where Fω contains all basic feasible solutions to the dual innermost subproblem (6). We solve

Eω(ŷ,Fω) itself with a branch-and-cut algorithm using constraint generation through lazy con-

straint callback implementation of a modern off-the-shelf optimization solver. The algorithm starts

with the LP relaxation of the master problem Eω(ŷ,F ′
ω) where F ′

ω = ∅ at the root node of a

branch-and-bound tree. During the process, whenever the solver encounters a feasible solution

(x̂, ψ̂) that satisfies integrality constraints (7e), we determine if it violates any of the constraints

(7d) in the original relaxed master problem Eω(ŷ,Fω). To this end, we compute an optimal dual

solution (τ ∗, ρ∗) of the innermost subproblem (6). If the corresponding constraint (7d) is violated

by (x̂, ψ̂), then (τ ∗, ρ∗) is added to F ′
ω and the LP relaxation of Eω(ŷ,F ′

ω) is solved again. The

branching and pruning process is handled by the solver to explore the search space efficiently. This

Branch-and-Benders decomposition algorithm terminates when the optimal solution to the relaxed

master problem satisfies every constraint (7d) and the search space is completely explored. Our

implementation of Branch-and-Benders decomposition for solving Dω(ŷ) for each ω ∈Ω is detailed

in Algorithm 1.

Let S∗
ω(ŷ) be the optimal objective of Dω(ŷ) obtained through Algorithm 1 for each ω ∈ Ω. If

the corresponding integer L-shaped cut (3c) is violated by the current feasible first-stage solution

(ŷ, θ̂), we add it toM(I,B,Ω) as follows:

θ≥
(∑
ω∈Ω

πω ·S∗
ω(ŷ)

)(
1−

∑
{(i,k)∈H×K| ŷki =1}

(1− yki ) −
∑

{(i,k)∈H×K| ŷki =0}

yki

)
. (8)

4.3. Generating Benders Optimality Cuts

Despite guaranteeing termination to an exact solution of CRND-SDCR, solely adding integer L-

shaped cuts leads to a slow overall convergence. Hence, in order to accelerate the procedure’s
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Algorithm 1: Branch-and-Benders Decomposition for Solving Dω(ŷ) (BD(Dω(ŷ)))
Input : Stochastic demand scenario ω ∈Ω and integer feasible first-stage solution

ŷ ∈ {0,1}|H|×|K|

Output: Optimal objective function cost of Dω(ŷ) given by S∗
ω(ŷ)

1 Initialize: List of branch-and-bound tree nodes N ←{root node}, S∗
ω(ŷ)←+∞ ,

(x∗,ψ∗)←∅, F ′
ω←∅ ;

2 while N ≠ ∅ do
3 Choose a node i∈N and solve the LP relaxation of Eω(ŷ,F ′

ω) at node i: (x̂, ψ̂)←

optimal solution, Ŝω(ŷ)← optimal value ;

4 if Ŝω(ŷ)<S
∗
ω(ŷ) then

5 if x̂i,j ∈Z≥0,∀(i, j)∈A then

6 if ψ̂ <
∑

p∈P d
ω
p (τ

p,ω
s − τ p,ωt )−

∑
(i,j)∈A

Q
q
· x̂ωi,j · ρωi,j then

7 F ′
ω←F ′

ω ∪{τ, ρ} ;
8 if ψ̂=

∑
p∈P d

ω
p (τ

p,ω
s − τ p,ωt )−

∑
(i,j)∈A

Q
q
· x̂ωi,j · ρωi,j then

9 N ←N \{i} ;

10 (x∗,ψ∗)← (x̂, ψ̂), S∗
ω(ŷ)← Ŝω(ŷ);

11 else
12 Branch on a variable x̂i,j /∈Z≥0 to create two nodes i1 and i2 with additional

constraints of xi,j ≤ ⌊x̂i,j⌋ and xi,j ≥ ⌈x̂i,j⌉ in LP relaxations of Eω(ŷ,F ′
ω) at i1

and i2 respectively ;

13 N ← (N \{i})∪{i1, i2} ;

14 else
15 N ←N \{i} ;

16 return S∗
ω(ŷ)

convergence, we add Benders optimality cuts to M(I,B,Ω) as well. To this end, at any feasible

first-stage solution (ŷ, θ̂), we solve the dual of the LP relaxation of Dω(ŷ), given by:

Lω(ŷ) : max
α,β,γ,λ

∑
p∈P

dωp (α
s,ω
p −αt,ωp )−

∑
i∈H

∑
k∈K

Sk · ŷki · γωi (9a)

s.t. αi,ωp −αj,ωp −βωi,j ≤Cf · ℓi,j +Ch, ∀(i, j)∈A,∀p∈P, (9b)

Q

q
·βωi,j − γωi ·1{i∈H} =

{
Cs−λωi,j if i < j

λωj,i if i > j
, ∀(i, j)∈A, (9c)

βωi,j ≥ 0, ∀(i, j)∈A, (9d)

γωi ≥ 0, ∀i∈H, (9e)

λωi,j ≥ 0, ∀(i, j)∈A|i < j. (9f)
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We observe that Lω(ŷ) is the dual of a capacitated multi-commodity minimum-cost network flow

problem that requires substantial computational effort and time to be solved even by a modern

optimization solver due to the large number of commodities. Thus, we decompose the problem by

first selecting the dual variables (β,γ,λ), and then determining the optimal dual variables α for

each O-D pair independently. The resulting Benders decomposition is formulated as follows:

Lω(ŷ) : max
β,γ,λ

∑
p∈P

dωp · ηω
∗

p (β,γ,λ, ŷ)−
∑
i∈H

∑
k∈K

Sk · ŷki · γωi (10a)

s.t. (9c)− (9f)

where for every O-D pair p∈P, the innermost subproblem and its dual are given by

ηω
∗

p (β,γ,λ, ŷ) = max
α

αs,ωp −αt,ωp = min
u

∑
(i,j)∈A

(Cf · ℓi,j +Ch+βωi,j) ·u
p,ω
i,j

s.t. (9b), s.t.
∑

{j∈H∪{t}
| (i,j)∈A}

up,ωi,j −
∑

{j∈H∪{s}
| (j,i)∈A}

up,ωj,i =


1 if i= s

0 if i∈H
−1 if i= t

,

up,ωi,j ≥ 0, ∀(i, j)∈A.

(11)

With this, Lω(ŷ) is equivalent to the following problem:

Jω(ŷ,Cω) : max
β,γ,λ,η

∑
p∈P

dωp · ηωp −
∑
i∈H

∑
k∈K

Sk · ŷki · γωi (12a)

s.t.
Q

q
·βωi,j − γωi ·1{i∈H} =

{
Cs−λωi,j if i < j

λωj,i if i > j
, ∀(i, j)∈A, (12b)

ηωp ≤
∑

(i,j)∈A

(Cf · ℓi,j +Ch)u
p,ω
i,j +

∑
(i,j)∈A

up,ωi,j ·βωi,j, ∀up,ω ∈ Cp,ω,∀p∈P, (12c)

βωi,j ≥ 0, ∀(i, j)∈A, (12d)

γωi ≥ 0, ∀i∈H, (12e)

λωi,j ≥ 0, ∀(i, j)∈A|i < j. (12f)

Here, Cp,ω contains all basic feasible solutions to the dual innermost subproblem (11). Due to the

very large number of Benders optimality cuts (12c), we solve it using constraint generation. We

note that due to the presence of only continuous variables in Jω(ŷ,Cω), lazy constraint callback

implementation does not provide any additional benefit as compared to the classical implemen-

tation of Benders decomposition. Hence, we opt for the classical implementation where we start

with solving a relaxed version of Jω(ŷ,C′ω) with C′p,ω = ∅ for every p ∈ P; let (βω, γω, λω, ηω) be

its optimal solution. We then determine if this solution violates any of the constraints (12c) by

computing for each O-D pair p∈P an optimal dual solution up,ω of the innermost subproblem (11).
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If the corresponding constraint (12c) is violated by (βω, γω, λω, ηω), then up,ω is added to C′p,ω and

the relaxed master problem is solved again. Benders decomposition terminates when the optimal

solution to the relaxed master problem satisfies every constraint (12c).

At each iteration of the algorithm, we must solve the dual innermost subproblem (11) for each

O-D pair p∈P. A close inspection reveals that (11) can be cast as a shortest path problem between

O-D pair p. We construct a new graph Gpω that is identical to G and set the length of each edge (i, j)

to Cf · ℓi,j +Ch + βωi,j. Then, the dual innermost subproblem (11) can be solved by determining

a shortest path µωp between O-D pair p in the graph Gpω, which can be computed using Dijkstra’s

algorithm. Thus, the corresponding Benders optimality cut (12c) can be computed in polynomial

time. Our detailed implementation of Benders decomposition tailored for solving Lω(ŷ) is described

in Algorithm 2. We note that we use the multi-cut version of Benders decomposition, i.e., we

add a Benders optimality cut for each O-D pair instead of the single-cut option due to its better

convergence properties (Birge and Louveaux 1988).

Algorithm 2: Benders Decomposition for solving Lω(ŷ) (BD(Lω(ŷ)))
Input : Stochastic demand scenario ω ∈Ω, integer feasible first-stage solution

ŷ ∈ {0,1}|H|×|K|, optimality gap ϵ≥ 0

Output: Optimal objective function value of Lω(ŷ) given by L∗
ω(ŷ) and optimal solution of

Jω(ŷ,Cω) given by (βω, γω, λω, ηω)

1 Initialize: LB←−∞, UB←+∞, C′p,ω←∅ ∀p∈P ;

2 while UB−LB > ϵ do
3 Solve Jω(ŷ,C′p,ω) : (βω, γω, λω, ηω)← optimal solution, UB← optimal value ;

4 for every p∈P do
5 Create an auxiliary graph: Gpω←G ;

6 for each edge (i, j) in A do
7 Set the length of edge (i, j) in Gpω to Cf · ℓi,j +Ch+βωi,j ;

8 µp,ω← shortest path between O-D pair p in Gpω using Dijkstra’s algorithm , ℓµp,ω ←

shortest path length in Gpω ;

9 up,ωi,j ← 1{(i,j)∈µp,ω} for every (i, j)∈A;

10 if ηωp > ℓµp,ω then
11 C′p,ω←C′p,ω ∪{up,ω} ;

12 LB←max{LB,
∑

p∈P d
ω
p · ℓµp,ω −

∑
i∈H
∑

k∈K Sk · ŷki · γωi }, L∗
ω(ŷ)←LB ;

13 return (L∗
ω(ŷ), (β

ω, γω, λω, ηω))
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We can now complete the generation of Benders optimality cuts for the original master problem

M(I,B,Ω). Once Algorithm 2 computes the optimal solutions (βω, γω, λω, ηω) of Lω(ŷ) for every

ω ∈Ω, we then add the following cut, if violated by the current feasible first-stage solution (ŷ, θ̂):

θ≥
∑
ω∈Ω

πω ·

(∑
p∈P

dωp · ηωp −
∑
i∈H

∑
k∈K

Sk · yki · γωi

)
. (13)

4.4. Overall Branch-and-Cut Algorithm

In order to solve (1)-(2), we initially solve the LP relaxation ofM(I ′,B′,Ω) with I ′ω = ∅ and B′
ω = ∅

for every ω ∈Ω at the root node of a branch-and-bound tree. During the solution process, whenever

the solver encounters a feasible first-stage solution (ŷ, θ̂) that satisfies integrality constraints at a

node, we determine if it violates any Benders optimality cuts (13) and integer L-shaped cuts (8).

For the Benders optimality cuts, we solve the dual of the LP relaxation of Dω(ŷ), given by Lω(ŷ)

for every ω ∈ Ω using Benders decomposition via Algorithm 2. The expected optimal objective

function value of Lω(ŷ), given by
∑

ω∈Ω πω ·L∗
ω(ŷ), provides a lower bound on θ, and we add the

corresponding Benders optimality cut (13) if θ̂ violates that lower bound. For the integer L-shaped

cuts, we solve Dω(ŷ) for every ω ∈Ω through branch-and-Benders decomposition using Algorithm

1. The expected optimal objective function value of Dω(ŷ), given by
∑

ω∈Ω πω ·S∗
ω(ŷ), provides the

exact value of θ at the current first-stage solution ŷ. Thus, we add the integer L-shaped cut (8) if

θ̂ does not record this value correctly.

In the branch-and-bound process, we update the incumbent solution (y∗, z∗) whenever we

encounter an integer feasible solution (ŷ, θ̂), the solution records the subproblem objective func-

tion value correctly, and its objective function value is strictly better than that of the previous

incumbent. Due to the lazy constraint callback implementation, the optimization solver handles

the branch-and-bound process including branching and pruning. At termination, we return the

incumbent as the optimal solution for (1)-(2). The detailed algorithm is described in Algorithm 3

and the overview is presented in Figure 1.

4.5. Computational Enhancements

To further improve the computational performance of the decomposition-based branch-and-cut

algorithm presented above, we next develop strategies to strengthen our formulation and warm

start the algorithm.

4.5.1. Strengthening M(I,B,Ω). Typically, decomposition-based branch-and-cut algo-

rithms suffer from ineffective initial iterations due to the generation of low-quality solutions (Rah-

maniani et al. 2018). One of the strategies that we adopt to tackle this issue is to add valid

inequalities toM(I,B,Ω). In particular, all commodities originating at a location s∈ S must travel

to hubs that are adjacent in G to s. Thus, a valid inequality is ensures that there is sufficient
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Algorithm 3: Decomposition-Based Branch-and-Cut for Solving (1)-(2)

Input : Graph G = (S ∪H∪T ,A), stochastic demand scenarios ω ∈Ω, vector of

commodity demand (dωp )p∈P,ω∈Ω, vector of occurrence probability (πω)ω∈Ω, Cost

parameters Cs, Ch, Cf , and (Ck
i )(i∈H.k∈K)

Output: Optimal subset of hubs to open and their respective sizes y∗ and optimal

objective function cost of (1) z∗

1 Initialize: List of branch-and-bound tree nodes N ′←{root node}, z∗←+∞ , y∗←∅,

I ′ω←∅, B′
ω←∅, ∀ω ∈Ω ;

2 while N ≠ ∅ do
3 Choose a node i∈N ′ and solve the LP relaxation ofM(I ′,B′,Ω) at node i: (ŷ, θ̂)←

optimal solution, ẑ← optimal value ;

4 if ẑ < z∗ then
5 if ŷ ∈ {0,1}|H|×|K| then
6 for every ω ∈Ω do
7 S∗

ω(ŷ)← BD(Dω(ŷ)) using Algorithm 1 ;

8 (L∗
ω(ŷ), (β

ω, γω, λω, ηω))← BD(Lω(ŷ)) using Algorithm 2 ;

9 if θ̂ <
∑

ω∈Ω πω ·S∗
ω(ŷ) then

10 Add Integer L-Shaped Cut (8): I ′ω←I ′ω ∪{S∗
ω(ŷ)} ;

11 if θ̂ <
∑

ω∈Ω πω ·L∗
ω(ŷ) then

12 Add Benders Optiamlity Cut (13): B′
ω←B′

ω ∪{(βω, γω, λω, ηω)} ;
13 if θ̂=

∑
ω∈Ω πω ·S∗

ω(ŷ) then
14 N ′←N ′ \ {i} ;

15 y∗← ŷ, z∗← ẑ;

16 else
17 Branch on a variable ŷki /∈ {0,1} to create two nodes i1 and i2 with additional

constraints of yki = 0 and yki = 1 in LP relaxations ofM(I ′,B′,Ω) at i1 and i2,

respectively ;

18 N ′← (N ′ \ {i})∪{i1, i2} ;

19 else
20 N ′←N ′ \ {i} ;

21 return (y∗, z∗)

hub capacity adjacent to s to handle the largest commodity demand originating at that location.

Analogously, another valid inequality ensures that there is enough hub capacity adjacent to any

destination location t ∈ T to handle the largest commodity demand terminating at that location.

The valid inequalities are given by:
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Figure 1 Overview of the decomposition-based branch-and-cut algorithm.

∑
{i∈H| (s,i)∈A}

∑
k∈K

Sk · yki ≥
q

Q
·max
ω∈Ω

{ ∑
{t∈T

|p=(s,t)∈P}

dωp

}
, ∀s∈ S (14)

∑
{i∈H| (i,t)∈A}

∑
k∈K

Sk · yki ≥
q

Q
·max
ω∈Ω

{ ∑
{s∈S

|p=(s,t)∈P}

dωp

}
, ∀t∈ T (15)

Another strategy we adopt is to include information from the scenario subproblems (2) in the

master problemM(I,B,Ω). However, instead of including explicit information as in Crainic et al.

(2021), we only include implicit information about the origin and destination locations from the

subproblems. The underlying idea is to route a very small amount of commodity flow between

the O-D pairs in order to obtain a connected relay network even in the initial iterations of the

decomposition-based branch-and-cut algorithm.

To this end, we create a new graph G′, which consists of extending the original graph G by

adding a “super” sink node t′ and a set of transportation legs A′ between each t∈ T and t′. Then,

we define continuous dummy flow variables ws,t
′

i,j for each origin s∈ S and each transportation leg

(i, j) ∈ A† =A∪A′. We also define Ts as the set of destination locations each origin serves (i.e.,

Ts = {t∈ T | ∃ω ∈Ω, p= (s, t)∈P : dωp > 0}). Then, given a small number ϵ > 0, the updated master

problemM(I,B,Ω) becomes:

min
y,θ

∑
i∈H

∑
k∈K

Ck
i · yki + θ (16a)
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s.t. (3b)− (3d), (14)− (15),

∑
{j∈H∪Ts∪{t′}

| (i,j)∈A†}

ws,t
′

i,j −
∑

{j∈H∪Ts∪{s}
| (j,i)∈A†}

ws,t
′

j,i =


|Ts| · ϵ if i= s

0 if i∈H∪Ts
−|Ts| · ϵ if i= t′

, ∀s∈ S, ∀i∈H∪Ts ∪{s, t′},

(16b)∑
s∈S

∑
{j∈H∪Ts∪{t′}

| (i,j)∈A†}

ws,t
′

i,j ≤
∑
k∈K

Sk · yki , ∀i∈H, (16c)

ws,t
′

t,t′ ≤ ϵ, ∀(t, t′)∈A′ : t∈ Ts,∀s∈ S, (16d)

yki ∈ {0,1}, ∀i∈H,∀k ∈K, (16e)

ws,t
′

i,j ≥ 0, ∀(i, j)∈A†,∀s∈ S. (16f)

Constraints (16b)-(16d) ensure a feasible path through the relay hub network between each pos-

sible O-D pair with non-zero commodity demand in at least one demand scenario. Such constraints

remove solutions (ŷ, θ̂) in which the relay network is not connected. We also note that such a spe-

cific dummy flow variable definition limits the number of dummy variables to add to the master

problem.

4.5.2. Acceleration strategies for Algorithm 3. In order to increase the convergence rate

of Algorithm 3, we employ two acceleration strategies. First, we initialize the algorithm by adding

a pre-determined number of Benders cuts (13), which we compute by solving the LP relaxation of

M(I,B,Ω) iteratively. Such an initialization yields a lesser number of branches in the branch-and-

bound tree and helps reduce the overall computational burden of Algorithm 3 (Chen and Luedtke

2022).

Another acceleration strategy that we employ is to add a no-good type of cut whenever the

algorithm encounters a characteristic first-stage solution (ŷ, θ̂) that has positive amount of com-

modity flow on the dummy arcs. To ensure that the subproblem was Dω(ŷ) always feasible, we

previously added dummy arcs between each O-D pair at a high premium unit price. Thus, when-

ever the algorithm obtains a solution for each some commodity flow traverses these dummy arcs,

it actually represents an infeasible solution in practice. As a result, we add the following no-good

cut to discard the current first-stage solution:

∑
{(i,k)∈H×K| ŷki =1}

(1− yki ) +
∑

{(i,k)∈H×K| ŷki =0}

yki ≥ 1. (17)

5. Computational Study

This section presents the results from the computational experiments conducted using data

instances from a US-based car manufacturer company for its finished vehicle deliveries to (i) val-

idate the CRND-SDCR model, (ii) test the scalability of the solution approaches developed in
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Section 4, and (iii) analyze the efficiency of the designed networks under commodity demand vari-

ability. All algorithms were implemented in Python v.3.8 and all optimization problems were solved

using Gurobi v.10.0.3 on an AMD EPYC processor (with IBPB) 2.50 GHz (1 core), with 255 GB

assigned RAM and Windows Server 2012 R2 standards, 64-bit operating system, and x64-based

processor.

5.1. Data Instances

Using the data of one of the US-based car manufacturer companies that partnered with our

research team, we create 5 representative problem instances of increasing size and complexity.

These instances differ in the number of O-D pairs, hub candidate locations, and transportation

legs with each instance representing end-to-end logistics operations of delivering finished vehicles

spanning over a broad geographical region of the south-east US. In every instance, the finished

vehicle or commodity demand originates at one of the company’s production facilities, railheads,

or seaports (S) and is destined for one of the dealerships of the company (T ). As the company

intends to implement relay transportation for finished vehicle delivery operations, it identified a

set H of candidate locations to open relay hubs, situated at the intersection of major highways

and in major cities. These relay hubs will serve as facilities where commodities are unloaded from

incoming trucks, sorted, and then loaded into the outgoing trucks. Figure 2 shows the locations of

hub candidates, origins, and destinations for Instance 5.

Figure 2 Instance 5 with hub candidate locations (blue asterisks), and origins and/or destinations (red circles)

To determine the set A of feasible transportation legs between facilities, we first compute the

distance ℓi,j between every pair of locations (i, j)∈ (S ∪T ∪H)2 using the Haversine formula for the

estimated traveled distance and using an average driving speed of 45 miles/hour. Since the Federal

Motor Carrier Safety Administration imposes an 11-hour daily driving limit for truck drivers, we

then only retain the transportation legs for which the distance does not exceed 45×5.5 = 250 miles.
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This ensures that commodities travel towards their respective destinations while drivers return

home daily. The characteristics for all data instances used in this study are described in Table 1.

Table 1 Data instance characteristics

Data # Origins # Destinations # O-D pairs # Candidates # Edges
instance |S| |T | |P| |H| |A|

1 4 15 27 31 617
2 8 26 94 50 1,207
3 8 42 134 65 1,487
4 10 47 158 76 1,890
5 15 87 460 88 3,626

To model demand stochasticity, we create a set of 272 stochastic demand scenarios (Ω) based

on the annual finished vehicle delivery demand recorded by our industry partner. Each stochastic

scenario ω ∈Ω represents a duration of 96 hours (4 days) of logistics operations of our partner and

provides the details of the upcoming finished vehicle demand dωp that each O-D pair p∈P will face

in the next 96 hours. Figure 3 represents the demand variability that each O-D pair p ∈ P faces

in Instance 1. It can be observed that the demand dωp varies dramatically across the scenarios and

hence requires a relay hub to be designed with the necessary capacity to withstand it. We remark

that designing relay networks for such instances is significantly complex. These instances, coupled

with the stochastic demand scenarios, serve as one of the largest instances for relay network design.

Next, we test our developed solution methodology and showcase their computational performance

in solving the CRND-SDCR problem for these representative data instances.

Figure 3 Demand variability for each O-D pair across the stochastic demand scenarios in Instance 1
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5.2. Solution Methodology Performance Assessment

We run the solution approach developed in Section 4 to solve CRND-SDCR for each data instance.

However, due to the large number of stochastic demand scenarios ω ∈ Ω, solving CRND-SDCR

to optimality for these instances is computationally challenging. Hence, we utilize sample average

approximation (SAA) to solve CRND-SDCR and provide a near-optimal solution with provable

statistical guarantees and moderate computational time (Kleywegt, Shapiro, and Homem-de Mello

2002). To this end, we create a set R of independent samples of stochastic scenarios. Each sample

r ∈R consists of N demand scenarios Ωr = {ω1, . . . , ωN} drawn randomly from the set of available

demand scenarios Ω with a probability distribution of πrω. Then, instead of solvingM(I,B,Ω), we

solve M(I,B,Ωr) for each sample r ∈ R. Let ẑr and ŷr be the optimal objective function value

and optimal solution to M(I,B,Ωr), respectively. Then, the provably near-optimal solution y∗

to CRND-SDCR is given by the solution ŷr that provides the lowest expected consolidation cost

across all stochastic scenarios, Eω[T(ŷr, ω)]. For the purpose of this case study, we created a set of

50 independent samples (|R|) and within each sample we picked 30 random demand scenarios i.e.,

N = 30 for every instance.

In order to benchmark our developed solution approach, we compare it with a classical

decomposition-based branch-and-cut algorithm wherein at every integer feasible first-stage solu-

tion ŷ, Dω(ŷ) and Lω(ŷ) are solved for each ω ∈ Ω directly using the off-the-shelf optimization

solver. For our proposed decomposition-based branch-and-cut algorithm, we run the computational

experiments with and without including the computational enhancements described in Section 4.5.

Table 2 compares the resulting average optimality gaps for the instances after 72-hour time limit.

Table 2 Average optimality gaps after a 72-hour time limit.

Data
instance

Classical Proposed Proposed decomposition-based
decomposition-based decomposition-based branch-and-cut +
branch-and-cut (%) branch-and-cut (%) computational enhancements (%)

1 32.74 11.28 3.69
2 47.91 17.83 6.25
3 60.02 23.19 10.93
4 69.77 30.55 18.44
5 81.32 34.18 24.89

We observe that despite the large-scale nature of these instances, our solution approach is capable

of solving CRND-SDCR to near-optimal solutions for most of the instances. As expected, the

optimality gaps increase with the size and complexity of the data instance. This trend can greatly be

attributed to the fact that these decomposition-based branch-and-cut algorithms rely on repeatedly

solving Dω(ŷ) and Lω(ŷ) at every integer-feasible first-stage solution ŷ, which requires more time

with increase in network complexity (in terms of |P| and |A|).
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More importantly, we observe that our proposed decomposition-based branch-and-cut algorithm

outperforms its classical counterpart for all the data instances. In particular, our proposed approach

performs at least twice as better as compared to the classical decomposition-based branch-and-cut

algorithm. The underlying reason for this occurrence can be traced to the fact that our proposed

algorithm leverages the structure of the subproblems Dω(ŷ) and Lω(ŷ) in a better manner as

opposed to the off-the-shelf solver and hence, the process of solving these subproblems is accelerated

in our proposed approach, which ultimately results in more cuts being added and better optimality

gaps are achieved at the termination of the algorithm.

A closer inspection of Table 2 also reveals that the computational enhancements employed in

addition to our proposed decomposition-based branch-and-cut algorithm reach better optimality

gaps. Especially these enhancements improve the performance by reducing the optimality gaps by

a factor of 1/3. The reason for this occurrence is that decomposition-based branch-and-cut algo-

rithms suffer from ineffective initial iterations due to the generation of low-quality solutions. These

computational enhancement strategies help bypass such ineffective initial iterations by generating

better solutions from the get-go.

Overall, Table 1 shows the effectiveness of our tailored solution method in solving CRND-SDCR

and designing relay networks for large-scale logistics operations. Next, we analyze the designed

networks and quantify their capabilities to sustain commodity variability.

5.3. Value of Incorporating Demand Uncertainty

To evaluate the importance of considering demand uncertainty in designing relay networks, we

compare the performance of the relay networks obtained by solving CRND-SDCR with that of relay

networks obtained by considering deterministic average commodity demand. In this deterministic

commodity demand setting, the demand for each O-D pair p ∈ P is then given by ⌈
∑

ω∈Ω πωd
ω
p ⌉.

To evaluate the performance of these designed relay networks, we optimally solve (2) to determine

a minimum-cost consolidation plan that transports the commodities from their respective origins

to their respective destinations for each of the 272 stochastic demand scenarios. We note that to

ensure feasibility while solving Dω(y∗), we included dummy long-haul transportation arcs between

each O-D pair with very high transportation costs that are only used when the commodity demand

cannot be transported through the relay network. Hence, we evaluate 3 key performance indicators

for each network: (i) the cost of constructing the relay hub network, (ii) the percentage amount of

demand that cannot be fulfilled through the relay network, and (iii) the average delivery cost of the

commodities that are transported through the relay network. Table 3 compares these evaluation

metrics.

Tables 3 showcases that with the increase in data instance size, the average commodity delivery

costs decrease, providing compelling evidence that larger relay networks are able to provide better
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Table 3 Network performance comparison against demand variability, averaged across demand scenarios

Commodity demand
setting

Data
instance

Hub construction
costs ($)

Unfulfilled demand
(%)

Average delivery
costs ($/car)

Deterministic
commodity demand
(average scenario)

1 10,164.66 32.86 1,726.34
2 49,156.07 27.39 1,447.28
3 66,235.61 20.55 1,389.05
4 82,967.34 17.83 1,266.17
5 91,459.57 13.41 1,135.88

Stochastic
commodity demand
(multiple scenarios)

1 13,875.68 18.96 1,645.96
2 56,012.05 15.77 1,387.52
3 78,620.58 11.54 1,231.30
4 96,121.26 9.25 1,218.95
5 110,309.95 7.92 1,049.56

consolidation opportunities to transport commodities and achieving the necessary economies of

scale. Moreover, the comparison results show that for every data instance, the relay networks

designed under a stochastic commodity demand setting outperform the relay networks designed

under the deterministic average commodity demand setting by fulfilling a larger proportion of

commodity demand through relay transportation and doing so at lower average delivery costs.

Consideration of commodity demand uncertainty induces the required flexibility in relay networks

in terms of relay hub capacities that help devise consolidation plans that are more economical and

able to transport higher amounts of commodities through relay transportation.

Overall, we observe that although relay networks designed under the deterministic demand

setting have lower hub construction costs, they are not robust against demand variability and

provide substandard transportation operations outcomes. Such issues are overcome by considering

demand stochasticity while designing relay networks. Next, we analyze the importance of consid-

ering consolidation-based routing while designing relay networks.

5.4. Value of Considering Consolidation-based Routing

To evaluate the importance of considering consolidation-based routing in designing relay networks,

we compare the performance of relay networks designed from CRND-SDCR with that of networks

that approximate routing decisions. Specifically, we also design networks by solving (1)-(2), but

with relaxed integrality constraints (2f). This approach assumes a continuous flow routing of com-

modities without consolidation considerations, and can be carried out using a simplified branch-

and-cut algorithm that only involves adding Benders optimality cuts (13) at every integer-feasible

first-stage solution encountered in the search tree.

We design both these types of networks for 3 different types of demand settings where the amount

of commodity demand that has to be transported is respectively low, medium, and high. To this

end, we define a scaling factor ζ that scales the commodity demand dωp for each p ∈ P and ω ∈Ω

in these 3 different demand settings. For the low-demand scenario, we use ζ = 0.1, meaning that
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the commodity demand here dω,′p = 0.1×dωp for each p∈P and ω ∈Ω. Similarly, we use ζ = 0.5 and

ζ = 1 for medium and high settings, respectively.

Table 4 Network performance comparison under various types of demand settings, averaged across demand

scenarios

Demand
setting

Data
instance

Approximated routing Consolidation-based routing
Hub

construction
costs ($)

Unfulfilled
demand

(%)

Average
delivery

costs ($/car)

Hub
construction

costs ($)

Unfulfilled
demand

(%)

Average
delivery

costs ($/car)

Low
(ζ = 0.1)

1 10,784.14 15.7 1,896.43 8,046.23 12.94 1,719.69
2 47,628.11 13.28 1,553.90 50,681.93 11.56 1,439.54
3 72,056.09 10.07 1,423.81 69,869.36 9.57 1,307.66
4 92,269.39 7.96 1,366.19 92,079.26 7.22 1,283.17
5 101,652.55 6.02 1,245.39 102,016.88 5.18 1,148.61

Medium
(ζ = 0.5)

1 11,028.95 17.32 1,791.44 11,264.08 15.29 1,698.35
2 57,153.26 16.19 1,499.02 54,291.02 13.07 1,408.64
3 76,269.16 11.48 1,379.23 75,953.57 10.33 1,290.75
4 94,008.66 9.13 1,303.77 95,647.29 8.97 1,244.19
5 110,369.26 7.86 1,181.57 108,268.15 6.01 1,127.93

High
(ζ = 1)

1 12,059.98 19.56 1,658.04 13,875.68 18.76 1,645.96
2 59,061.33 16.44 1,403.08 56,012.05 15.77 1,387.52
3 77,128.69 12.83 1,247.39 78,620.58 11.54 1,231.30
4 95,388.42 10.04 1,228.77 96,121.26 9.25 1,218.95
5 114,035.78 8.71 1,055.94 110,309.95 7.92 1,049.56

To compare the performance of these two types of networks, we employ the same evaluation

metric used in Section 5.3. These results are portrayed in Table 4. For both types of network designs,

we observe that with an increase in commodity demand, i.e., moving from a low to a high-demand

setting, the average delivery costs decrease. The networks leverage economies of scale by providing

better consolidation opportunities. As expected, we also observe that when the commodity demand

variability decreases, i.e., when moving from a high to a low-demand setting, a larger proportion

of commodity demand is transported through relay transportation.

We also observe that the networks designed by considering consolidation-based routing outper-

form the networks that do not consider it: they are able to fulfill more demand through relay

transportation and are able to do so at lower average delivery costs. Interestingly, the difference

in average delivery costs is more prominent for low and medium-demand settings, while the costs

are comparable for high-demand settings. The reason can be attributed to the fact that when the

demand is low to moderate, effective consolidation provides substantial transportation cost-savings,

and considering such routing decisions while designing the relay networks helps achieve these cost-

savings in operations, which can be seen from the Table 4. Overall, the comparable average delivery

costs for high-demand settings provide evidence that approximating the routing decisions while

designing relay networks is still acceptable in this case whereas, for the low to moderate-demand

cases, it provides sub-standard outcomes and leads to non-economical transportation costs.
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6. Conclusion

In this article, we studied the problem of designing large-scale resilient relay logistics hub net-

works with commodity demand uncertainty. We introduced a model that focuses on improving

efficiency and resilience against demand variability through integrating tactical planning decisions.

This model, for Capacitated Relay Network Design under Stochastic Demand and Consolidation-

Based Routing (CRND-SDCR), consists of locating logistics hubs and deciding their respective

capacities under uncertain demand, and routing stochastic commodity demand between each origin-

destination pair through consolidation-based trucking. We formulated this problem as a two-stage

stochastic optimization program where we located and capacitized the hubs in the first stage and

designed a minimum-cost consolidation plan for the realized demand scenarios in the second stage.

We leveraged the structure of the problem and devised a branch-and-cut algorithm with nested

Benders decomposition and integer L-shaped methods to solve CRND-SDCR exactly. We employed

a nested decomposition scheme where we decomposed CRND-SDCR twice, once across the stochas-

tic demand scenarios and the second across each origin-destination pair within the scenario sub-

problems, permitting us to efficiently add the associated Benders feedback cuts. We guaranteed

the exactness of our solution approach by adding integer L-shaped cuts, which are computed by

solving the second-stage subproblem exactly through Benders decomposition as well.

We then conducted computational experiments to design large-scale resilient relay logistics net-

works using data from a large US-based car manufacturer. We found that our developed algorithm

can obtain near-optimal solutions in a reasonable time with sample average approximation. Fur-

thermore, our tailored implementation of the decomposition-based branch-and-cut converges faster

and scales better with the instance size, in comparison with its classical implementation. To vali-

date our designed relay networks, we computed their performance by determining minimum-cost

consolidation plans for various demand realizations. For comparison purposes, we also created base-

line networks, designed solely to satisfy the average commodity demand. Overall, we observed that

our designed relay networks induced flexibility in the network and significantly outperformed the

baseline networks as they fulfill more demand through relay transportation and at a lower cost.

Finally, we compared our designed networks with the literature-proposed relay networks that con-

tinuously approximate consolidation-based routing operations. We observed that for demand real-

izations with low to medium commodity demand, our networks outperform the literature-proposed

networks, and for demand realizations with high commodity demand, our networks provided com-

parable performances.

While this work has focused on designing networks that can handle commodity demand vari-

ability, it does not factor in service level requirements. A natural extension, in this case, is to

consider the temporal aspect of commodity demand stochasticity, which will require modeling the
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tactical planning sub-problem more comprehensively and tailoring solution algorithms to facilitate

the coordination of transportation services across space and time. Another extension is to design

networks to tackle and sustain logistics disruptions such as hub failures, traffic congestion, etc. This

will require evaluating the impact of such disruptions on various network configurations in order

to guide the design of appropriate logistics networks. All this will result in complex multi-stage

optimization problems, which will require new heuristics and approximation algorithms to provide

practically relevant solutions. Finally, it will be worthwhile to study how the models and solution

techniques proposed in this work can be extended to design multi-layered hyperconnected logistics

networks for faster and resilient commodity delivery.
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