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Adriana Nicolae§

May 3, 2024

Abstract

We consider geodesically convex optimization problems involving distances
to a finite set of points A in a CAT(0) cubical complex. Examples include
the minimum enclosing ball problem, the weighted mean and median prob-
lems, and the feasibility and projection problems for intersecting balls with
centers in A. We propose a decomposition approach relying on standard Eu-
clidean cutting plane algorithms. The cutting planes are readily derivable
from efficient algorithms for computing geodesics in the complex.
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1 Introduction: optimization in Hadamard space

Metric spaces in which points can always be joined by geodesics — isometric im-
ages of real intervals — support a wide variety of interesting convex optimization
problems [4,31]. Convex optimization is best understood in Hadamard spaces : com-
plete geodesic spaces satisfying the CAT(0) inequality, which requires that squared-
distance functions to given points are all 1-strongly convex. Manifolds comprise the
most familiar examples, including Hilbert space, hyperbolic space, and the space of
positive-definite matrices with its affine-invariant metric.
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From a computational perspective, in the special case of manifolds, gradient-
based methods are available [8]. On the other hand, even with no differentiable
structure, some Hadamard spaces allow efficient computation of geodesics. Par-
ticularly interesting are phylogenetic tree spaces [7] and more general CAT(0) cu-
bical complexes [2]. In these spaces, geodesics can be computed in polynomial
time [16, 26]. Along with phylogenetic models, applications include reconfigurable
systems in robotics [1, 12].

Unfortunately, optimization algorithms in the setting of a general Hadamard
space are scarce and slow. Methods based on alternating projections are sometimes
available [5], but other general-purpose algorithms typically rely on some predeter-
mined sequence of step sizes. The quintessential example is the problem of com-
puting the mean of a finite set A in the geodesic space (X, d), which is the unique
minimizer of the function

(1.1) mA(x) =
∑
a∈A

d2(a, x) (x ∈ X).

To compute the mean, the only known general methods iteratively update the nth
iterate xn to a point on the geodesic between xn and some point an ∈ A, chosen
randomly [28] or via some deterministic strategy [6, 17,22]: a standard example is

xn+1 =
n

n+ 1
xn +

1

n+ 1
an.

To compute the mean of the set {−1,+1} ⊂ R by this method, for example, starting
at the point x1 = 1

2
and using an = (−1)n, results in the slowly converging sequence

xn = 1
2n

(−1)n+1. Computation in practice confirms this slow convergence: see [24]
for experiments in the manifold of positive definite matrices, and [10] for experiments
in phylogenetic tree space.

In this work, we focus on the particular case of geodesically convex optimization
on a CAT(0) cubical complex. This setting has several features suggesting faster
algorithmic possibilities. First, as we have noted, computing geodesics is tractable.
Secondly, the underlying space, by definition, decomposes into Euclidean cubes.
Lastly, restricted to each cube, geodesically convex optimization problems reduce
to standard Euclidean convex optimization. Using these ingredients, we suggest
a new cutting plane approach. Our central technique uses geodesics in CAT(0)
cubical complexes to derive Euclidean subgradients of distance functions restricted
to individual cells in the complex. We illustrate the new algorithm on a simple
computational example.

2 CAT(0) cubical complexes

We begin with some standard definitions [9]. Let (X, d) be a metric space. A
geodesic path is a distance-preserving mapping γ : [0, l] ⊆ R → X. The image
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γ([0, l]) is called a geodesic segment. We say that X is a (uniquely) geodesic space
if every two points in X are joined by a (unique) geodesic segment. A function
f : X→ R is convex when its composition with every geodesic path is convex.

Given three points x, y, z in a geodesic space, a geodesic triangle ∆ = ∆(x, y, z)
is the union of three geodesic segments (its sides) joining each pair of points. A
comparison triangle for ∆ is a triangle ∆(x̄, ȳ, z̄) in R2 that has side lengths equal
to those of ∆. A geodesic metric space is called CAT(0) if in every geodesic triangle,
distances between points on its sides are no larger than corresponding distances in a
comparison triangle. CAT(0) spaces are uniquely geodesic. A Hadamard space is a
complete CAT(0) space. For any nonempty closed convex subset C of a Hadamard
space X, every point in X has a unique nearest point in C.

Let γ : [0, l] → X and η : [0, r] → X be two nonconstant geodesics paths in a
CAT(0) space issuing at the same point x = γ(0) = η(0). For t ∈ [0, l] and s ∈ [0, r],
denote γt = γ(t) and ηs = η(s), and let ∆(γ̄t, x̄, η̄s) be a comparison triangle for
∆(γt, x, ηs). Then the angle ∠γ̄tx̄η̄s is a nondecreasing function of both t and s, and
the Alexandrov angle between γ and η is defined by

∠(γ, η) = ∠γlxηr = lim
t,s↘0

∠γ̄tx̄η̄s.

A polyhedral cell C is a geodesic metric space isometric to the convex hull Ĉ of
finitely many points in a Euclidean space Rn: we usually identify C and Ĉ. By
a face of C, we mean a nonempty set that is either C itself, or is the intersection
of C with a hyperplane H such that C belongs to one of the closed half-spaces
determined by H. The dimension of a face is the dimension of the intersection of
all affine subspaces containing it. The 0-dimensional faces of a cell are called its
vertices, and the 1-dimensional faces are called its edges. A polyhedral complex is a
set of polyhedral cells of various dimensions such that the face of any cell is also a
cell of the complex, and the intersection of any two cells is either empty or a face of
both. The complex is finite if it consists of finitely many cells, and is cubical if each
n-dimensional cell is isometric to the unit cube [0, 1]n.

Given two points x, y in a polyhedral complex X, the distance d(x, y) is the
infimum of lengths of piecewise geodesic paths joining x to y. A piecewise geodesic
path from x to y is an ordered sets of points x0 = x, x1, . . . , xk = y in X such
that for every i ∈ {1, . . . , k}, there exists a cell Ci with xi−1, xi ∈ Ci; its length is∑k

i=1 |xi−1 − xi|. If X is connected and finite, then (X, d) is a complete geodesic
metric space.

In what follows, we will, in general, consider finite cubical complexes. As proved
by Gromov [14], a cubical complex is CAT(0) if and only if it is simply connected and
satisfies the following “link” condition at each vertex. Consider the edges containing
that vertex. Any set of k distinct such edges, each pair of which is contained in a
common 2-dimensional cell, must consist of edges all contained in a common k-
dimensional cell. For more discussion, see [16].
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Example 2.1 (A simple CAT(0) cubical complex) Consider the space

X = {x ∈ [−1, 1]2 : x1 ≤ 0 or x2 ≤ 0},

with the distance induced by the Euclidean metric: in other words, the distance
between points is the Euclidean length of the shortest path between them in X.
This space is a finite CAT(0) cubical complex, consisting of the three 2-dimensional
cells

P1 = [−1, 0]× [0, 1], P2 = [−1, 0]× [−1, 0], P3 = [0, 1]× [0,−1].

More generally than the example above, any simply connected subcomplex of
Z2, the integer lattice cubing of R2, is CAT(0), because no three edges containing a
vertex can, pairwise, be edges of common squares, so the link condition holds. On
the other hand, consider the cubical complex formed from the cube [0, 1]3 in R3 by
taking just the three faces containing zero. This simply connected cubical complex
is not CAT(0) because it fails the link condition: the edges connecting zero with the
three standard unit vectors are pairwise contained in common squares, but no cell
contains all three.

3 Decomposition

Before describing a decomposition approach to convex optimization on cubical com-
plexes, we first illustrate by considering the mean of three points in the simple space
of Example 2.1.

Example 3.1 (A simple mean calculation) In the CAT(0) cubical complex X
described in Example 2.1, consider the set A consisting of the standard unit vectors
e1 and e2, along with −e1. To compute the mean of A, we must solve the underlying
optimization problem (1.1). To do so, we decompose X into the union of three cells
P1, P2, and P3, and solve the restricted problem over each cell in turn:

min
x∈P1

{(1 + |x|)2 + |x− e2|2 + |x+ e1|2}

min
x∈P2

{|x− e1|2 + |x− e2|2 + |x+ e1|2}

min
x∈P3

{|x− e1|2 + (1 + |x|)2 + |x+ e1|2}.

Worth noting is that the first and third problems are not smooth. The optimal
solution of both the second and third problems is the point (0, 0). However, the
optimal solution of the first problem is the strictly better point (−α, α), where
α = 1

6
(2−

√
2). This point is therefore the mean.
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This example illustrates a significant feature of mean calculations in cubical
complexes or other Hadamard spaces that are not manifolds. Even when we can
compute geodesics efficiently, that tool alone does not immediately allow us to rec-
ognize whether or not a given point is the mean, let alone compute the mean. For
example, along the geodesics between the point (0, 0) and each point in the set A,
the objective mA defined by equation (1.1) is minimized at (0, 0). However, (0, 0) is
not the mean: it does not minimize mA over the whole space X.

Returning to our general problem, we can minimize a convex function f over
a finite cubical complex X by minimizing f over each of the finitely many cells
comprising X separately. To each of these subproblems we can apply a standard
algorithm for Euclidean convex minimization. Rather than exhaustively optimizing
over every cube, we can instead consider the following conceptual method, inspired
by a somewhat analogous conceptual approach sketched in [25, Algorithm 4.4].

Algorithm 3.2 (Minimize convex f on cubical complex X)
input: initial point x ∈ X
P = ∅ % set of optimized cells
for iteration = 1, 2, 3, . . . do
Q = {cells P 6∈ P : x ∈ P} % unoptimized cells containing x
if Q = ∅ then

return x % x optimal
end if
choose P ∈ Q
choose xP minimizing f over P % solve new subproblem
if f(xP ) < f(x) then
x = xP % best point so far

end if
P = P ∪ {faces of P} % update set of optimized cells

end for

While unnecessary formally, we would naturally always choose a maximal cell P ,
meaning that no strictly larger cell contains x.

Proposition 3.3 (Termination) For any finite cubical complex X and any convex
function f : X→ R, Algorithm 3.2 terminates, returning a minimizer of f .

Proof The procedure terminates, since the space X is a finite complex. Throughout
the procedure, at the current iterate x, the value f(x) never increases. At termina-
tion, x therefore minimizes the objective f over every cell containing x. Since f is
convex, x therefore minimizes it over the whole space X. 2

As an example, consider the simple example above, on the space (2.1). In Al-
gorithm 3.2, as soon as we choose the cube P1, the procedure terminates with the
iterate x equal to the mean, whether or not P2 or P3 have already been searched.
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Means in metric trees

It is illuminating to consider the behavior of Algorithm 3.2 for computing means
for the simplest class of CAT(0) cubical complex: the case when the space X is
a finite metric tree. In that case, X consists of the edges and vertices of a finite
connected acyclic graph, where we identify edges with 1-dimensional cells of unit
length, intersecting at common 0-dimensional cells — the vertices. The Gromov
link condition holds trivially.

We consider the problem of computing the mean of a finite subset A of finite
metric tree. We illustrate with the following example [18, Example 1], which is a
special case of the “open books” [18] discussed in Appendix A.

Example 3.4 (Stickiness) The 3-spider is the finite metric tree consisting of three
copies of the interval [0, 1] joined at the shared origin 0. Denote the three copies
P 1, P 2, P 3, and consider a set A consisting of three points ai ∈ intP i satisfying

ai <
∑
j 6=i

aj for i = 1, 2, 3.

(One particular example is ai = 1
2

for each i.) A quick calculation shows that the
mean is the shared origin 0. Unlike in the Euclidean case, the mean is insensitive
to small changes in the points ai: it is sticky in the sense of [18].

Consider a general finite metric tree X, with vertex set V and edge set E. Via
a finite computation, we can exactly compute the mean of a finite subset A using
Algorithm 3.2 to minimize the function mA in equation (1.1). The data of the
problem, in addition to the graph (V,E), consists, for each point a ∈ A, of an
endpoint va ∈ V of an edge ea ∈ E containing a, and the distance δa between a and
va along the edge ea.

Problems of this kind have been widely studied in the operations research lit-
erature, in the context of facility location problems [15]. More typical than the
mean problem in that context are the “median” or “minimax” problems, involving
the sum or maximum of the distance functions rather than sum of their squares,
although [15, Section 3.4] notes an efficient algorithm for the mean problem due
to Goldman. Goldman’s 1972 algorithm [13] for the “1-center problem on a tree
network”, in the terminology of [29], involves a “trichotomy” at each iteration: af-
ter checking an edge the algorithm stops or is confined to one of the two subtrees
resulting from deleting that edge.

Algorithm 3.2, it transpires, has the same trichotomy property. At the outset of
each iteration, we have a current vertex v ∈ V , and a current set E ⊂ E of already
optimized edges. For each point a ∈ A, we first find the unique sequence Pa of edges
joining v to va: its cardinality |Pa| is the distance d(v, va). The distance from a to
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v is therefore given by

d(a, v) =

{
|Pa|+ δa (ea 6∈ Pa)
|Pa| − δa (ea ∈ Pa).

We next choose a vertex v′ neighboring the vertex v and with corresponding edge
e = vv′ outside the set E , terminating if there is no such edge. We then minimize
mA over e. Denote the set of those points a ∈ A for which e ∈ Pa by Â. If we
identify e with the unit interval [0, 1], where v corresponds to the point 0 and v′

corresponds to the point 1, then for any point x on e = [0, 1], we have

d(a, x) =

{
d(a, v) + x (e 6∈ Pa)
d(a, v)− x (e ∈ Pa).

We now find the unique point x ∈ [0, 1] minimizing the strictly convex function∑
a∈Â

(d(a, v)− x)2 +
∑
a6∈Â

(d(a, v) + x)2.

The unconstrained minimizer is

x̄ =
1

|A|

(∑
a∈Â

d(a, v)−
∑
a6∈Â

d(a, v)
)
.

If 0 < x̄ < 1, then the algorithm terminates: the mean is the point on e at a distance
x̄ from v. Otherwise, we update E to include e, update the current iterate to v′ if
x̄ ≥ 1, and repeat.

Solving the subproblems

In the case of mean computations for metric trees, Algorithm 3.2 involves one-
dimensional subproblems with closed-form solutions. In general, however, the sub-
problems are multivariate, requiring iterative techniques.

The approach outlined in [25, Algorithm 4.4] for computing means in the phy-
logenetic tree space of [7] relies on a smooth but nonconvex interior-penalty philos-
ophy, the complexity of which is unclear. By contrast, our approach via Algorithm
3.2 generates subproblems that, while nonsmooth, are convex. At each iteration
of Algorithm 3.2 we can identify the cell P isometrically with a cube [0, 1]n, for
some dimension n, and then apply a linearly convergent Euclidean cutting plane
algorithm, efficient in theory and reliable in practice.

One such cutting plane approach for general convex objectives f would be to
apply the randomized method of [19], which needs just Õ(n2) evaluations of f(x) to
approximately solve the minimization problem over the cube [0, 1]n. More precisely,
if maxP f − minP f ≤ 1, then with constant probability the excess f(x) − minP f
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is reduced to ε > 0 after no more than O
(
n2 logO(1)(n

√
n
ε

)
)

function evaluations.
In essence, the method is subgradient-based: at each iteration, it approximates a
subgradient, using Õ(n) function evaluations.

In this work, however, we are primarily interested in structured functions f com-
posed simply from distance functions: a typical example is the mean objective mA

in equation (1.1). Our central observation is that such objectives support meth-
ods based on explicit subgradients, an approach with three potential advantages.
First, we arrive at a deterministic rather than randomized algorithm. Secondly,
the complexity of the available algorithms is better: the classical ellipsoid method
still requires Õ(n2) function evaluations, but more recent cutting plane algorithms
improve this to Õ(n) [30]. Lastly, we can experiment with algorithms known to be
effective in practice, like proximal or level bundle methods [20].

4 Subgradients of distance functions

In a CAT(0) cubical complex X, the geodesic between any two points, a and x, is
computable in polynomial time [2]. Suppose that x lies in a cell P , and consider
the distance function to a, restricted to P . We next show how to use the geodesic
to calculate a subgradient of this function at the point x.

We start with a simple tool.

Lemma 4.1 Let X be a CAT(0) space and consider three points a, x, w ∈ X with
a 6= x and w 6= x. Then

d(a, x)− d(a, w)

d(x,w)
≤ cos(∠axw).

Proof From the triangle inequality we know

|d(a, x)− d(a, w)| ≤ d(x,w).

We deduce
d2(a, x)− 2d(a, x)d(a, w) + d2(a, w) ≤ d2(x,w),

and hence

2d(a, x)
(
d(a, x)− d(a, w)

)
≤ d2(a, x) + d2(x,w)− d2(a, w).

Consequently we have

d(a, x)− d(a, w)

d(x,w)
≤ d(a, x)2 + d(x,w)2 − d(a, w)2

2d(a, x)d(x,w)
≤ cos(∠axw),

where the second inequality follows from the law of cosines. 2
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Theorem 4.2 In a CAT(0) cubical complex X, consider two cells P and Q with a
common face F , and points x ∈ F and y ∈ Q. Denote the nearest point to y in P
by z. Then z is also the nearest point to y in F . Furthermore, for any point w ∈ P ,
if w 6= x and x 6= z, then the following angle inequality holds:

(4.3) cos(∠yxw) ≤ cos(∠yxz) · cos(∠zxw).

Before proving the theorem, it helps to keep in mind a simple example.

Example 4.4 Consider any cubical subcomplex X of Z3 containing the cells

P = [0, 1]× [0, 1]× [0, 1] and Q = [−1, 0]× [0, 1]× {0}.

Their common face is the cell

F = {0} × [0, 1]× {0}.

Consider the two points

x =
(

0,
1

3
, 0
)
∈ F and y =

(
− 1,

2

3
, 0
)
∈ Q.

The closest point to y in P , in either the Euclidean distance or the distance it
induces in X, is

z =
(

0,
2

3
, 0
)
∈ F.

At x, the angle between the nontrivial geodesic [x, y] and any nontrivial geodesic
[x,w] with w ∈ P is minimized (either in X or in Rn) when w = z. In fact, the
stronger inequality (4.3) holds.

Proof of Theorem 4.2. The result only involves geodesics with endpoints in P
and Q. All such geodesics lie in the interval between P and Q, in the terminology
of [2], so without loss of generality we can suppose by [2, Theorem 3.5] that X is a
subcomplex of Zn, the integer lattice cubing of Rn.

Without loss of generality, we can suppose that P and Q are unit cubes in Zn that
are contained in [−1, 1]n and both contain 0. Corresponding to any two partitions
of the index set {1, 2, 3, . . . , n} into disjoint subsets,

I≤ ∪ I= ∪ I≥ and I≤ ∪ I= ∪ I≥,

we can define such cubes in [−1, 1]n using the relationship set Ω = {≤,=,≥} by

u ∈ P ⇔ ui ∼ 0 for all i ∈ I∼ and ∼ ∈ Ω

u ∈ Q ⇔ ui ∼ 0 for all i ∈ I∼ and ∼ ∈ Ω.
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We lose no generality in assuming that P and Q are of this form. To illustrate,
Example 4.4 corresponds to the partitions

I≤ = ∅ I= = ∅ I≥ = {1, 2, 3}
I≤ = {1} I= = {3} I≥ = {2}.

The point x lies in the common face F , which is the cube in [−1, 1]n defined by

u ∈ F ⇔ ui


≤ 0 if i ∈ I≤ ∩ I≤
≥ 0 if i ∈ I≥ ∩ I≥
= 0 otherwise.

Since y ∈ Q we deduce

yi ∼ 0 for all i ∈ I∼ and ∼ ∈ Ω.

It is easy to compute componentwise the Euclidean nearest point z′ to the point y
in the cube P : since y ∈ [−1, 1]n, for each i = 1, 2, 3, . . . , n we have

z′i =


min{yi, 0} (i ∈ I≤)
0 (i ∈ I=)
max{yi, 0} (i ∈ I≥)

=

{
yi if i ∈ I≤ and yi ≤ 0, or if i ∈ I≥ and yi ≥ 0
0 otherwise.

Since y ∈ Q, we deduce

z′i =

{
yi if i ∈ Ī
0 otherwise,

for the index set
Ī = (I≤ ∩ I≤) ∪ (I≥ ∩ I≥).

Clearly we have z′ ∈ F ⊂ Q, and hence the line segment [z′, y] is contained in Q.
That line segment is therefore also a geodesic in X. Since distances between points
in X are no less than their Euclidean distance, we deduce z′ = z.

Since [x,w] ⊂ P and [x, y] ⊂ Q, those line segments are also geodesics in X.
The distance in X between pairs of points, one on each line segment, is never less
than the Euclidean distance, so in X, the angle between those geodesics is never
less than their Euclidean angle. Moreover, since the points y, x, and z all lie in
the cube Q, and the points z, x, and w all lie in the cube P , the angles ∠yxz and
∠zxw in X equal the corresponding Euclidean angles. Thus, it is enough to prove
(4.3) for Euclidean angles, and hence, in what follows, we consider all angles to be
Euclidean.
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Since x ∈ F , the formula above for z shows ∠yzx = π/2. Consequently we
deduce |x− y|2 = |x− z|2 + |z − y|2 and

cos(∠yxz) =
|x− z|
|x− y|

.

Applying the law of cosines, we get

cos(∠yxw) =
|x− y|2 + |x− w|2 − |w − y|2

2|x− y||x− w|

and

cos(∠zxw) =
|x− z|2 + |x− w|2 − |w − z|2

2|x− z||x− w|
.

Thus,

cos(∠yxw)− cos(∠yxz) cos(∠zxw) =
|z − y|2 + |w − z|2 − |w − y|2

2|x− y||x− w|
≤ 0,

where the last inequality follows because z is the Euclidean nearest point to y in P
and w ∈ P . 2

Consider any distinct points x and a in a CAT(0) cubical complex X. The
CAT(0) property ensures that the distance function to a, denoted by da is a convex
function on X [4, Example 2.2.4]. Using the algorithm of [2], we can compute the
geodesic [x, a]: it passes via a sequence of nontrivial geodesics

[x, y0] , [y0, y1] , [y1, y2] , . . . , [ym, a]

through some corresponding connected sequence of cells Q0, Q1, Q2, . . . , Qm+1 (nei-
ther sequence being necessarily unique). We refer to [x, y0] as an initial segment and
to Q0 as a corresponding initial cell.

Given a cube P ⊂ Rn, a vector v ∈ Rn is a subgradient of a convex function
e : P → R at a point x ∈ P if

〈v, w − x〉 ≤ e(w)− e(x) for all w ∈ P.

The subdifferential ∂e(x) is just the set of such subgradients.
We can now derive our central tool, which allows us to compute subgradients of

distance functions restricted to cells in cubical complexes.

Theorem 4.5 (Subgradients of distance functions) Consider a cube P ⊂ Rn

and a point x ∈ P . Suppose that P is a cell in a CAT(0) cubical complex X, and
consider any point a ∈ X. Let dPa denote the restriction of the distance function
da to P . If a = x then 0 ∈ ∂dPa (x). Suppose, on the other hand, that a 6= x. In
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the geodesic [x, a], let [x, y] be an initial segment corresponding to an initial cell Q.
Denote by F the common face of P and Q. In any ambient Euclidean space for Q,
denote the nearest point to y in F by z. If z = x, then 0 ∈ ∂dPa (x). On the other
hand, if z 6= x, then

cos(∠yxz)

|x− z|
(x− z) ∈ ∂dPa (x).

Proof The case a = x is trivial, so assume henceforth a 6= x. By definition, we
have y 6= x.

Consider first the case z = x. In that case, by Theorem 4.2, x is the nearest
point to y in P , and since y ∈ [x, a], we deduce that x is also the nearest point to a
in P (see [9, Proposition II.2.4]), so 0 ∈ ∂dPa (x) follows.

On the other hand, consider the case z 6= x. We must prove

cos(∠yxz)

|x− z|
〈x− z, w − x〉 ≤ dPa (w)− dPa (x) for all w ∈ P.

This inequality holds when w = x. When w 6= x, we have

d(a, x)− d(a, w)

d(x,w)
≤ cos(∠axw) = cos(∠yxw) ≤ cos(∠yxz) · cos(∠zxw),

by Lemma 4.1 and Theorem 4.2. The result now follows. 2

To illustrate the result, we consider a simple example.

Example 4.6 (Calculating a subgradient of a distance function)
Consider the CAT(0) cubical complex X the cells of which are the following squares
in R2, along with their edges and vertices:

P = [0, 1]× [0, 1] Q = [0, 1]× [−1, 0]

S = [0, 1]× [−2,−1] T = [−1, 0]× [−2,−1].

For the point a = (−1
2
,−2) ∈ X, the distance function da : X→ R is given by

da(w) =


1
2

√
5 +

√
w2

1 + (w2 + 1)2 (w1 ≥ 0 and w2 ≥ 2w1 − 1)√
(w1 + 1

2
)2 + (w2 + 2)2 (otherwise).

This function must be convex on X, so in particular it is convex on P ∪Q. Differ-
entiating shows that, for points w in the interior of the set X, regarded as a subset
of R2, we have

∇da(w) =


1√

w2
1+(w2+1)2

(w1, w2 + 1) (w1 > 0 and w2 > 2w1 − 1)

1√
(w1+

1
2
)2+(w2+2)2

(w1 + 1
2
, w2 + 2) (w1 < 0 or w2 < 2w1 − 1).
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The two cases in this formula describe a set of full measure around the point x =
(1
2
, 0), and as w approaches x within this set, the gradient has a unique limit:

1√
5
(1, 2). Standard properties of Euclidean convex functions therefore show that the

function da restricted to P ∪Q has Gateaux derivative 1√
5
(1, 2) at x. The Euclidean

normal cone to P at x is {0} × −R+, so we deduce

(4.7) ∂dPa (x) =
1√
5

(1, 2) + ({0} × −R+).

We now compare this with the subgradient provided by Theorem 4.5. Let y denote
the point (0,−1). The geodesic from x to a consists of the two line segments
[x, y] in the square Q and [y, a] in the square T . The common face of P and Q is
F = [0, 1] × {0}, and in the square Q, the nearest point to y in the face F is the
point z = (0, 0). The unit vector in the direction x − z is therefore (1, 0). The
angle angleyxz has cosine 1√

5
, so the theorem asserts that the vector 1√

5
(1, 0) is a

subgradient of dPa at x. This is confirmed by equation (4.7).

5 Means, medians, and circumcenters

In any metric space (X, d), we can consider a variety of interesting optimization
problems associated with a given nonempty finite set A ⊂ X, posed simply in terms
of the distance functions da to points a ∈ A. Foremost among these are weighted
mean problems, which entail minimizing functions f : X→ R defined by

(5.1) f(x) =
∑
a∈A

λad
q
a(x) (x ∈ X)

for some given weights λa > 0, for a ∈ A, and a given exponent q ≥ 1. The special
case q = 1 is known as the median problem. Another well-known example is the
minimum enclosing ball or circumcenter problem, which entails minimizing over X
the function

x 7→ max
a∈A

da(x).

When the space X is a finite CAT(0) cubical complex, we can solve weighted
mean and minimum enclosing ball problems using Algorithm 3.2 and Theorem 4.5.
Consider first the weighted mean problem [4, Example 6.3.4]. The function (5.1) is
convex, and a minimizer always exists, by [4, Lemma 2.2.19]. For q > 1, the function
f is strictly convex, so the minimizer is unique. In the case q = 1, minimizers may
not be unique.

To compute means and medians in general Hadamard spaces, the only methods
previously analyzed appear to be the splitting proximal point algorithms described
in [6]. As we noted in the introduction, such methods are inevitably slow. In the

13



case of a finite CAT(0) cubical complex, we instead propose Algorithm 3.2 as a
faster alternative.

To implement Algorithm 3.2, we first fix attention on some cell P in the complex
X. Via an isometric embedding, we make the identification P = [0, 1]n ⊂ Rn. Using
the notation of Theorem 4.5, we seek to minimize the convex function

fP =
∑
a∈A

λa(d
P
a )q : P → R.

For this purpose, we can use a standard Euclidean cutting plane method, of the
kind described in [11, Chapter 2]. Such methods require a separation/subgradient
oracle of the following form. Consider any input point x ∈ Rn.

• If x 6∈ P , then output a hyperplane separating x from P .

• Otherwise, return the value fP (x) and a subgradient v ∈ ∂fP (x).

Theorem 4.5 allows us to implement this oracle. Separating any point from P is
trivial. On the other hand, for any point x in P , for each point a ∈ A, the theorem
describes how to calculate a corresponding subgradient va ∈ ∂dPa (x). We deduce
qdq−1a (x)va ∈ ∂

(
(dPa )q

)
(x), and then adding gives a subgradient:∑

a

λaqd
q−1
a (x)va ∈ ∂fP (x).

Example 5.2 (A simple mean calculation, concluded) We return to the sim-
ple mean problem in Examples 2.1 and 3.1. On each of the three cells we solve the
corresponding subproblem using a standard subgradient-based method, deploying
the subgradients available through Theorem 4.5. We compare six methods: four
cutting plane methods, the classical subgradient method, and the cyclic proximal
point method from [6]. The cutting plane methods consist of the classical ellipsoid
algorithm and three standard bundle methods from [20]: a level bundle method, a
proximal bundle method, and a dual level method. The methods all converge to the
optimal solution of each subproblem: the true mean in the cell P1, and the point
(0, 0) in the other two cells. The behavior of the objective value in the case of the cell
P1 is shown in Figure 1, plotted against the number of geodesics computed: the be-
havior in the other cells is similar. Even on this small low-dimensional example, the
cyclic proximal point method is relatively slow. The subgradient method, although
clearly sublinear, converges reasonably quickly on this example, in part because the
objective function happens to be smooth around the optimal solution. The cutting
plane methods are all faster, and the plot suggests the linear convergence we expect.

Turning to the minimum enclosing ball problem [4, Example 2.2.18], we can
frame the problem as minimizing the strongly convex function f : X → R defined
by

f(x) = max
a∈A

d2a(x) (x ∈ X).
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Figure 1: A simple mean calculation. Five subgradient-based methods for minimiz-
ing, over a single cell, the sum of the squared distances to three points in a complex
of three squares, compared with the cyclic proximal point method. Each graph plots
the smallest objective value found so far against the number of geodesics computed.

The unique solution is called the circumcenter of A. Previous literature makes
no apparent reference to algorithms for the minimum enclosing ball problem in
general Hadamard spaces. A subgradient-style method has been proposed recently
in [21], with the slow convergence rate typical of subgradient methods. In the case of
CAT(0) cubical complexes, we again propose Algorithm 3.2 as a faster alternative.

We follow the same approach, focusing on some cell P and minimizing the
strongly convex function fP : P → R defined by

fP (x) = max
a∈A

(dPa )2(x) (x ∈ X).

To compute a subgradient of fP at a point x ∈ P , we first select, from the set
A, a point a at maximum distance from x. We then appeal to Theorem 4.5 to
calculate a corresponding subgradient va ∈ ∂dPa (x). Standard Euclidean subgradient
calculus [27] now gives us the desired subgradient: 2da(x)va ∈ ∂fP (x).

To apply Algorithm 3.2 to a mean, median, or circumcenter problem, having im-
plemented the separation/subgradient oracle, we next choose a cutting plane method
to solve the subproblems over cells P . Most classically — albeit not the best choice
in theory or practice, as discussed in the introduction — we could apply the ellipsoid
algorithm, starting with the smallest Euclidean ball containing P . That algorithm
converges linearly: by [11, Theorem 2.4], if the cell P has dimension n, then after
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t ≥ n2 log n calls to the oracle, we find an iterate in P at which the value of f
exceeds minP f by no more than

2
√
n(max

P
f) exp

(
− t

2n2

)
.

If f is in fact strongly convex (as in the case of the mean or circumcenter problems),
then the iterates also converge linearly, to the unique minimizer of f on P .

6 The distance to an intersection of balls

In addition to mean and circumcenter problems, another fundamental problem as-
sociated with a given nonempty finite subset A of a metric space (X, d), and posed
simply in terms of distance functions, is the intersecting balls problem. Centered at
each point a ∈ A, given a radius ρa > 0, we consider the closed ball Bρa(a). We
seek a point in their intersection:

F =
⋂
a∈A

Bρa(a).

In any Hadamard space X, we could approach the intersecting balls problem
via the method of cyclic projections [3, 5]: the projection of any point x onto a
ball centered at a is easy to compute from the geodesic [x, a], since the projection
must lie on the geodesic. However, in a general Hadamard space, the rate at which
the method converges to a point in the intersection is not clear, and when the
intersection is empty, the behavior of the iterates is not well understood [23].

When the space X is a finite CAT(0) cubical complex, we take a different ap-
proach to the intersecting balls problem, again using Algorithm 3.2 and Theorem 4.5.
Consider the related problem of minimizing over X the objective function∑

a∈A

distBρa (a).

Since this function is coercive, it has a minimizer, by [4, Lemma 2.2.19]. Consider
any such minimizer x̄. If x̄ ∈ F , then we have solved our problem, and on the other
hand, if x̄ 6∈ F , then the set F must be empty. We therefore seek to minimize the
function f : X→ R defined by

f(x) =
∑
a∈A

max{da(x)− ρa, 0} (x ∈ X).

We follow the same strategy as for the mean problem in the previous section,
focusing on individual cells P in the complex X, making the identification P = [0, 1]n

and seeking to minimize the convex function fP : P → R defined by

fP (x) =
∑
a∈A

max{dPa (x)− ρa, 0} (x ∈ P ).
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As before, to implement a cutting plane algorithm, we need to find a subgradient
of fP at any input point x ∈ P . To that end, for each point a ∈ A, we compute
the distances da(x), and calculate a vector va as follows. If da(x) ≤ ρa, then we
define va = 0. On the other hand, if da(x) > ρa, then we appeal to Theorem 4.5 to
calculate a subgradient va ∈ ∂dPa (x). In that way, standard Euclidean subgradient
calculus [27] guarantees that va is a subgradient of the convex function given by

x 7→ max{dPa (x)− ρa, 0} (x ∈ P ),

from which we deduce our desired subgradient:∑
a∈A

va ∈ ∂fP (x).

We can now apply a cutting plane algorithm.
Refining the intersecting balls problem, we might seek to compute the distance

from a given point b ∈ X to the intersection of balls F . We can approach this
problem by a bisection search strategy. We first run the previous algorithm, either
finding a point x̂ ∈ F or detecting that none exists, in which case we terminate. If
we find x̂ ∈ F , we begin our bisection search, always maintaining an interval [ρ, ρ]
containing the distance from b to F . Initially we set ρ = 0 and ρ = d(b, x̂). At each
iteration, we consider the midpoint ρ of the current interval, and apply the previous
algorithm to the intersecting balls problem F ∩ Bρ(b). If the intersection is empty,
we update ρ = ρ; otherwise we update ρ = ρ. We then repeat.
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[21] A.S. Lewis, G. López-Acedo, and A. Nicolae. Horoballs and the subgradient method.
arXiv:2403.15749, 2024.

[22] Yongdo Lim and M. Palfia. Weighted deterministic walks for the least squares mean
on Hadamard spaces. Bulletin of the London Mathematical Society, 46:561–570, 2014.

18



[23] A. Lytchak and A. Petrunin. Cyclic projections in Hadamard spaces. J. Optim.
Theory Appl., 194:636–642, 2022.

[24] E.M. Massart, J.M. Hendrickx, and P.-A. Absil. Matrix geometric means based on
shuffled inductive sequences. Linear Algebra and its Applications, 542:334–359, 2018.

[25] E. Miller, M. Owen, and J.S. Provan. Polyhedral computational geometry for aver-
aging metric phylogenetic trees. Advances in Applied Mathematics, 68:51–91, 2015.

[26] M. Owen and S. Provan. A fast algorithm for computing geodesic distances in tree
space. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8:2–
13, 2011.

[27] R.T. Rockafellar. Convex analysis. Princeton Mathematical Series, No. 28. Princeton
University Press, Princeton, N.J., 1970.

[28] K.-T. Sturm. Nonlinear martingale theory for processes with values in metric spaces
of nonpositive curvature. Ann. Probab., 30:1195–1222, 2002.

[29] B.C. Tansel, R.L. Francis, and T.J. Lowe. State of the art — location on networks:
a survey. Part I: the p-center and p-median problems. Management Science, 29:482–
497, 1983.

[30] P.M. Vaidya. A new algorithm for minimizing convex functions over convex sets.
Mathematical Programming, 73:291–341, 1996.

[31] Hongyi Zhang and S. Sra. First-order methods for geodesically convex optimization.
Journal of Machine Learning Research, 49:1–22, 2016.

A Appendix: core cells

An interesting source of illustrative computational examples arises from the class of
cubical complexes X consisting of a collection of cells all sharing one common face.
As observed in [18], although this face is lower-dimensional than X it often contains
the mean of a set of points distributed throughout X.

Example A.1 (An open book [18]) Consider three copies of the square [0, 1]2

joined along the shared edge {0}× [0, 1]: the “spine” of the open book. Denote the
three copies P 1, P 2, P 3, and consider any points ai ∈ intP i satisfying

ai <
∑
j 6=i

aj for i = 1, 2, 3.

(An example is ai = (1
2
, 1
2
) for each i.) A quick calculation shows that the mean is

the following point on the spine:(
0,

1

3
(a12 + a22 + a32)

)
.
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The spine is thus sticky: the mean remains there for all small perturbations of the
three points.

Definition A.2 In a cubical complex, if all distinct pairs of maximal cells have the
same nonempty intersection F , then we call F the core.

The core, if it exists, is a common face of all the maximal cells. For example, the
3-spider has the core {0}. The maximal cells may not all have the same dimension.
For example, the complex consisting of the maximal cells in R3

[0, 1]× [0, 1]× [0, 1] and [−1, 0]× {0} × [0, 1] and {0} × [−1, 0]× [0, 1]

has core {0} × {0} × [0, 1].

Proposition A.3 Any cubical complex with a core is CAT(0).

Proof Consider a cubical complex X with a core F . The cells of X consist just of
all the faces of maximal cells. Since X is contractible to any point in F , it is simply
connected.

We next observe that Gromov’s link condition holds. To see this, given any
vertex, consider any finite set E of k incident edges, each pair of which lie in a
common 2-dimensional cell of X. For each maximal cell P , let EP denote those
edges in E that lie in P but not in the common face F . Consider any two maximal
cells P,Q. Suppose that there exist edges p ∈ EP \ EQ and q ∈ EQ \ EP . Any
2-dimensional cell containing both p and q must be a face of some maximal cell R.
The edge p lies in both R and P , but by assumption not in F , so in fact R = P . But
the same argument shows R = Q, giving a contradiction. We deduce that either
EP ⊂ EQ or EQ ⊂ EP , proving that the collection of sets EP for maximal cells P
is totally ordered by inclusion. The collection therefore has maximal element, EP
for some maximal cell P . Every edge in E lies in this cell P , and hence in some
k-dimensional face of P , as required. 2

We next compute geodesics.

Proposition A.4 Consider points x and y in a cubical complex X with a core F .
If some cell contains both points, then the geodesic [x, y] is the line segment joining
them in that cell. On the other hand, if no cell contains both, then there are maximal
cells P and Q such that x ∈ P \ Q and y ∈ Q \ P . In P , consider the distance
|x − xF | between x and xF , its orthogonal projection onto F . Analogously, in Q,
consider the distance |y − yF | between y and yF , its orthogonal projection onto F .
Consider the following convex combination in F :

z =
1

|x− xF |+ |y − yF |
(
|y − yF |xF + |x− xF |yF

)
.

Then the geodesic [x, y] is the union of the two geodesics [x, z] and [z, y].
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Proof Note that the geodesic [x, y] must pass through the face F , so it is the union
of two geodesics [x,w] and [w, y] for some point w ∈ F . The length of this path is√

|w − xF |2 + |x− xF |2 +
√
|w − yF |2 + |y − yF |2.

As w varies over F , this function is convex, and viewed on any ambient Euclidean
space in which F lives, its gradient is

(1.5)
1√

|w − xF |2 + |x− xF |2
(w − xF ) +

1√
|w − yF |2 + |y − yF |2

(w − yF ).

Notice

z − xF =
|x− xF |

|x− xF |+ |y − yF |
(yF − xF ),

so√
|z − xF |2 + |x− xF |2 =

|x− xF |
|x− xF |+ |y − yF |

√
|yF − xF |2 + (|x− xF |+ |y − yF |)2

and hence the first term in the expression (1.5), when w = z, becomes

1√
|yF − xF |2 + (|x− xF |+ |y − yF |)2

(yF − xF ).

By symmetry, the second term is identical, after multiplying by −1. Hence the
gradient (1.5) is zero when w = z, so z indeed minimizes the length. 2
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