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Abstract

Dantzig-Wolfe decomposition is a well-known classical method for solving huge linear optimization
problems with a block-angular structure. The most computationally expensive process in the method
is pricing: solving block subproblems for a dual variable to produce new columns. Therefore, when
we want to solve a slightly perturbated problem in which the block-angular structure is preserved by
warm-start Dantzig-Wolfe decomposition, the method’s speed highly depends on whether we must
generate new columns or not. Nevertheless, theoretical analysis from this point of view has yet to be
investigated.

We consider two types of perturbations in this paper and give their sensitivity analysis. First, we
propose the range of the right-hand side parameters where no new column generation is necessary.
Second, we consider adding a new block to the original problem or removing an existing one. We
demonstrate that we do not have to generate any new columns for existing blocks if our proposed
condition, a small-sized linear equation has a positive solution, is satisfied under a mild assumption.
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1 Introduction

In this paper, we focus on linear optimization problems of the form,

(P ) minimize c>x

subject to Ax = b, (1.1)

x ∈ X,

where x ∈ Rn is a vector of decision variables, A ∈ Rm×n, b ∈ Rm and c ∈ Rn are parameters, and X is
a polyhedron.

It is well known that any polyhedron can be represented as a convex combination of its extreme points
and positive combination of its extreme rays [3, Theorem 16.2]. Therefore, we can convert problem (P)
into another linear optimization problem in which variables are positive weights of extreme points and
rays. The new form of optimization problems is called Full Master Problem. We abbriviate it as (FMP).
It can be described in the following.

(FMP ) minimize f>λ

subject to Gλ = b,

ξ>λ = 1,

λ ≥ 0,
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where K and L are the number of extreme points and extreme rays, respectively, λ ∈ RK+L is a vector
of variables corresponding to weight of extreme points and rays, f ∈ RK+L, G ∈ Rm×(K+L), and
ξ = (1, · · · , 1︸ ︷︷ ︸

K

, 0, · · · , 0︸ ︷︷ ︸
L

) ∈ RK+L are parameters. We will explain the precise relationship between (P)

and (FMP) in section 2.
In general, (FMP) is not an attractive alternative to (P) because the number of extreme points and

rays are usually much larger than that of variables, i.e., K + L � n. Moreover, obtaining all extreme
points and rays is a formidable task [3]. Fortunately, not all extreme points and rays are necessary to
solve (FMP). We can use this fact to construct an algorithm for solving (FMP). It recursively generates
a new column and solves a master problem of which extreme points and extreme rays are restricted.
The algorithm is known as Dantzig-Wolfe decomposition or column generation [7, 20][6, Chapter 23][3,
Chapter 26][4, Part II, Section 2.4]. It is often called Dantzig-Wolfe decomposition algorithm or Dantzig-
Wolfe decomposition method to stress that it is the name of an algorithm. From a dual point of view, the
algorithm is equivalent to Kelley’s cutting plane method [13][1, Section 6.3][2, Section 9.3.3][19, Section
3.3.2]. To confirm the relationships, see [1, Section 6.4][8, Chapter I]. Dantzig-Wolfe decomposition is also
helpful for mixed integer linear optimization problems. In branch-and-bound procedures, the algorithm is
applicable to solveing their relaxed subproblems. The combined framework is known as branch-and-price
[5, Chapter 8.2.3][21, Section 11.4]. However, this is not the scope of this paper.

Let us go back to the original problem (P). When we want to solve a slightly perturbated (P), we
can use some information about an optimal solution of (P). Such techniques are known as sensitivity
analysis. When X = {x ∈ Rn|x ≥ 0}, slightly perturbating b, c, and adding a new variable are
typical themes of sensitivity analysis covered in lots of optimization textbooks. On the other hand,
we are interested in the case that X is an arbitrary polyhedron and solving (FMP) instead of (P) by
Dantzig-Wolfe decomposition. Although Dantzig-Wolfe decomposition has been broadly investigated
[20, 16, 8, 15], its sensitivity analyses from theoretical points of view has yet to be reported to our
knowledge. We will demonstrate two sensitivity analyses in the context of Dantzig-Wolfe decomposition.
First, we will clarify the range of the right-hand side(RHS) parameters b that preserves the optimal basis
in (FMP). At first glance, the result just directly applies a well-known classical fact to (FMP) with an
elementary modification. However, the result can be improved when X has a block-angular structure
such that X =

∏
i∈I X

i and the number of blocks |I| is large, which is an attractive and original situation
for applying Dantzig-Wolfe decomposition [7]. Under the same condition, we consider another likely
situation: adding a new block to (FMP) or removing an existing block from it. We demonstrate that it
does not change the optimal basis of existing blocks if a small-sized linear equation has a positive solution.

The paper is organized as follows. Section 2 demonstrates some preliminary results for sensitivity
analysis and Dantzig-Wolfe decomposition. In section 3, we consider the perturbation of the RHS pa-
rameters b and propose the range of perturbation that preserves the optimal basis. Section 4 is the main
section of this paper. In this section, we consider the case of adding a new block or removing an existing
block. We demonstrate that this manipulation preserves the optimal basis of existing blocks if an easily
confirmed condition is satisfied. In section 5, we observe the proposed results from a dual point of view.
In the final section, we conclude the paper and suggest for further research.

As described in this paper, we use the following notation. We use the bold style, such as x, to stress
that it is a vector. Let A = (a1, · · · ,an) ∈ Rm×n be a matrix, where ai ∈ Rm are column vectors. We
denote the convex hull of the column vectors {a1, · · · ,an} by conv (A). Similarly, we denote the cone
hull of {a1, · · · ,an} by cone (A). We use the cursive style, such as B, to stress that it is a set of indices.
We denote the partial matrix of A of which columns are limited to an index set B by AB. For example
A{1,3} = (a1,a3). We denote the optimal objective value of a problem (P) by obj(P). We denote n

dimensional one vector (1, · · · , 1) ∈ Rn as 1n. We denote the direct sum of B and B̃ as B
⊕
B̃ in order to

distinguish the same indices derived from different origins. We denote the open ball of radius r centered
at point z as Br(z) = { x | ‖x− z‖ < r }.
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2 Preliminary Results

This section prepares known results regarding Dantzig-Wolfe decomposition and sensitivity analysis. We
start by describing the precise relationships between (P) and (FMP).

2.1 Master Problems

It is well known that any polyhedron can be represented by its extreme points and rays [3, Theorem
16.2][18, Part I, Theorem 4.8].

Theorem 2.1. (Minkowski’s theorem) Let X be a nonempty polyhedron, then it can be represented by

X =

{
K∑
k=1

λkvk +

K+L∑
k=K+1

λkrk

∣∣∣∣∣
K∑
k=1

λk = 1, λk ≥ 0, ∀k ∈ {1, · · · ,K + L}

}
,

where {vk}Kk=1 and {rk}K+L
k=K+1 are extreme points and extreme rays of X, respectively.

Unlike its original description, we use same symbols, k and λk, for both extreme points and extreme
rays to simplify the description in this paper. By theorem 2.1, we have

c>x = c>

(
K∑
k=1

λkvk +

K+L∑
k=K+1

λkrk

)
=

K+L∑
k=1

λkfk = f>λ,

where f is defined by fk = c>vk for k = 1, · · · ,K and fk = c>rk for k = K + 1, · · · ,K + L. We also
have

Ax = A

(
K∑
k=1

λkvk +

K+L∑
k=K+1

λkrk

)
=

K+L∑
k=1

λkgk = Gλ,

where gk is defined by gk = Avk for k = 1, · · · ,K and, gk = Ark for k = K + 1, · · · ,K + L, and G is
defined by G = (g1, · · · , gK+L). Using these parameters f and G, we can construct (FMP) as a linear
optimization problem to obtain optimal weight variables λ. The reformulation is said to be Dantzig-Wolfe
relaxation, in the context of mixed integer linear optimization problems [5, Chapter 8.2].

For an arbitrary subset of indices S ⊂ {1, · · · ,K + L}, we can construct its corresponding master
problem of which extreme points and extreme rays are restricted. These restricted problems are called
Restricted Master Problems. We denote it as (RMP).

(RMP ) minimize (fS)>λS

subject to GSλS = b,

(ξS)>λS = 1,

λS ≥ 0.

2.2 Relationships between Dual Problems

This subsection considers the relationships between dual problems of (P) and (FMP). Let the dual
problem of (P) be (D). Then, we can describe its formulation as follows.

(D) maximize b>π + d(π),

where π ∈ Rm are dual variables, and d(π) is a piecewise-linear concave function defined as

d(π) ≡ min{(c−A>π)>x |x ∈ X}.

The minimization problems obtaining d(π) are said to be Lagrangian relaxation problems concerning
constraint (1.1). We denote it by (LR). The solution of (LR) gives a lower bound of (P), i.e.

obj(P) ≥ obj(LR) = d(π).
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Similarly, let the dual problem of (FMP) as (FMD). We give its formulation in the following.

(FMD) maximize b>π + σ

subject to G>π + ξσ ≤ f ,

where π ∈ Rm and σ ∈ R are dual variables.
Some readers may feel confused that we use the same symbol π in both (D) and (FMD). However,

the following proposition suggests a valid correspondence between them.

Proposition 2.2. A dual variable π ∈ Rm is feasible in (D), if and only if (π, d(π)) is feasible in (FMD).

Proof. We first prove ⇒. Since π is feasible, we have d(π) > −∞. It follows that fk − g>k π ≥ 0 for all
k = K + 1, · · · ,K + L. Therefore, by definition, d(π) = mink=1,··· ,K(fk − g>k π). Combining the two
properties, we have G>π + ξd(π) ≤ f . Hence, (π, d(π)) is feasible in (FMD). Conversely, if (π, d(π)) is
feasible in (FMD), we have G>π + ξd(π) ≤ f . Thus, fk − g>k π ≥ 0 holds for all k = K + 1, · · · ,K + L,
i.e., Then, by definition, d(π) = mink=1,··· ,K(fk − g>k π) > −∞. π is feasible in (D).

Corollary 2.3. A dual variable π∗ is optimal in (D) if and only if (π∗, d(π∗)) is optimal in (FMD).

Proof. The claim directly follows from Proposition 2.2 and obj(D) = obj(FMD).

Tebboth [20, Section 3] describes the relationships between the original and master problem in more
detail. In fact, Proposition 2.2 corresponds to [20, Proposition 14, Section 3]. A simpler explanation is
given in [5, Section 8.2]. However, their description uses an outer explicit representation of X, which is
not provided in this paper to simplify the description.

2.3 Dantzig-Wolfe Decomposition

In this subsection, we briefly describe the process of Dantzig-Wolfe decomposition. Dantzig-Wolfe de-
composition repeatedly solves (RMP) and (LR). The former provides a new dual variable, and the latter
generates a new extreme point or extreme ray.

Algorithm 1 Dantzig-Wolfe decomposition

1: Inputs:
Prepare initial feasible extreme points {vk}k0k=1 and extreme rays {rk}K+`0

k=K+1.
2: Initialize:

Set k̄ = k0 and ¯̀= `0. Set S = {1, · · · , k̄,K, · · · ,K + ¯̀}.
Calculate fk and gk for all k ∈ S.

3: repeat
4: Solve (RMP) for S to obtain its optimal dual solution (π̄, σ̄). . Step 1: Dual update
5: Solve (LR) for π = π̄. . Step 2: Pricing
6: if (LR) has an optimal solution then
7: There exists an extreme point v̄ such that v̄ ∈ arg minx∈X(c−A>π̄)>x.
8: Calculate fk̄+1 = c>v̄ and gk̄+1 = Av̄.
9: Insert k̄ + 1 into S, and update k̄ = k̄ + 1.

10: else
11: There exists an extreme ray r̄ such that (c−A>π̄)>r̄ < 0.
12: Calculate fK+¯̀+1 = c>r̄ and gK+¯̀+1 = Ar̄.
13: Insert K + ¯̀+ 1 into S, and update ¯̀= ¯̀+ 1.
14: end if
15: until obj(RMP) = b>π̄ + obj(LR) . Step 3: Optimality Test

Although explaining the algorithm’s validity is outside the scope of the paper, we will provide several
comments to help readers understand the procedure. We need initial sets of extreme points and rays to
be feasible in inputs. If difficult, we can use artificial columns that act as slack variables [8, Chapter 12].
The optimality test implies that the solution of (RMP) is also optimal for (FMP). In practice, we finish
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the algorithm if its difference becomes sufficiently small. Since we have combined the index set of extreme
points and that of extreme rays, there exists a side effect; we have to prepare K, which is generally not
known beforehand, to describe Dantzig-Wolfe decomposition. In practice, K is not necessary. Its role is
to distinguish the index set of extreme points and extreme rays.

We have not prepared any examples to trace the process of the algorithm. To confirm them, see
[20],[3, Section 26], [4, Part II, Section 2.4].

2.4 Optimality Condition and Sensitivity Analysis

In this subsection, we assume that X = {x ∈ Rn |x ≥ 0} to review the optimality condition and
sensitivity analysis for standard linear optimization problems. We first describe several definitions [18,
Part I, Definition 3.1]. Let (P0) be linear optimization problems such that X = {x ∈ Rn |x ≥ 0} in (P).
Let B be an arbitrary index set of (P0) such that |B| = m, and let N = {1, · · · , n} \B. Then, the m×m
nonsingular matrix AB is called a basis. The variables xB are called basic variables and the variables xN
are called nonbasic variables. If (xB,xN ) = (A−1

B b,0) is an optimal solution of (P0), then AB is called
an optimal basis.

In this paper, we often focus on the index set B of a basis AB. To simplify the description, we use
the word basis not only for the nonsingular matrix AB, but also for its set of indices B as the same way
in [10].

The following theorem, the optimality condition for standard linear optimization problems (P0), is
elementary but fundamental. It is covered in many optimization textbooks. For example, see [3, Section
5][18, Part I.2, Proposition 3.1].

Theorem 2.4. Let B be a basis of (P0). Then, the basis B becomes an optimal basis of (P) if and only
if the following two conditions hold.

(a) (dual feasibility) c>N − c>BA
−1
B AN ≥ 0>.

(b) (primal feasibility) A−1
B b ≥ 0.

As described above, if A−1
B b ≥ 0, we call that AB is a primal feasible basis. Similarly, if c>N −

c>BA
−1
B AN ≥ 0>, then AB is called a dual feasible basis.

Corollary 2.5. Let B be an optimal basis of (P0). Then, A−TB cB is an optimal dual solution of (P0).

Among many topics in sensitivity analysis, we focus on the perturbation of the RHS parameter. The
following fact directly follows from theorem 2.4.

Corollary 2.6. Let B be an optimal basis of (P0). Then, perturbating b to b+∆b preserves the optimality
of B as far as A−1

B (b+ ∆b) ≥ 0 holds.

2.5 Block-Angular Structure

In this subsection, we consider the case that X has a block structure such that X =
∏
i∈I X

i and Xi is
a polyhedron for each i ∈ I. Let us denote the problem as (PB).

(PB) minimize
∑
i∈I

(ci)>xi

subject to
∑
i∈I

Aixi = b, (2.1)

xi ∈ Xi, ∀i ∈ I,

where xi ∈ Rni are decision variables , and Ai ∈ Rm×ni , b ∈ Rm and ci ∈ Rn are parameters. In
describing its master problems, we have two options: Applying Theorem 2.1 to whole X, or to Xi for
each i ∈ I. The former and latter are said to be aggregated and disaggregated forms, respectively [9].
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The superiority of the disaggregated form is described in [12, 9]. We denote the disaggregated form of
the master problem as (FMPB). Its precise formulation is given as follows.

(FMPB) minimize
∑
i∈I

(f i)>λi

subject to
∑
i∈I

Giλi = b,

(ξi)>λi = 1, ∀i ∈ I, (2.2)

λi ≥ 0, ∀i ∈ I,

where Ki and Li are the numbers of extreme points and extreme rays for each i ∈ I, respectively,
λi ∈ RKi+Li is a variable vector corresponding to the weight of extreme points and extreme rays for each
i ∈ I, and f i ∈ RKi+Li , Gi ∈ Rm×(Ki+Li), and ξi = (1, · · · , 1︸ ︷︷ ︸

Ki

, 0, · · · , 0︸ ︷︷ ︸
Li

) ∈ RKi+Li are parameters for

each i ∈ I. Let {vik}
Ki

k=1 and {rik}
Ki+Li

k=Ki+1 be extreme points and extreme rays of the polyhedron Xi for
each i ∈ I. Then, theorem 2.1 implies that

Xi =

{
Ki∑
k=1

λikvk +

Ki+Li∑
k=Ki+1

λikrk

∣∣∣∣∣
Ki∑
k=1

λik = 1, λik ≥ 0

}
.

Using the representation, we have

(ci)>xi = (ci)>

(
Ki∑
k=1

λikv
i
k +

Ki+Li∑
k=Ki+1

λikr
i
k

)
=

Ki+Li∑
k=1

λikf
i
k = (f i)>λi,

where f i is defined by f ik = (ci)>vik for k = 1, · · · ,Ki and f ik = (ci)>rik for k = Ki + 1, · · · ,Ki +Li. We
also have

Aixi = Ai

(
Ki∑
k=1

λikv
i
k +

Ki+Li∑
k=Ki+1

λikr
i
k

)
=

Ki+Li∑
k=1

λikg
i
k = Giλi,

where gik is defined by gik = Aivik for k = 1, · · · ,Ki and, gik = Airik for k = Ki + 1, · · · ,Ki + Li, and Gi

is defined by Gi = (gi1, · · · , giKi+Li
).

Let the dual problem of (PB) be (DB). Then, its formulation is given as follows.

(DB) maximize b>π +
∑
i∈I

di(π),

where π ∈ Rm are dual variables, and di(π) is a piecewise-linear concave function defined as

di(π) ≡ min{(ci − (Ai)>π)>xi |xi ∈ Xi},

for each i. The minimization problems obtaining di(π) are said to be Lagrangian relaxation subproblems
with respect to constraint (2.1). We denote it by (LR(i)). The solutions of (LR(i)) give a lower bound
of (PB), i.e.

obj(PB) ≥ b>π +
∑
i∈I

obj(LR(i)) = b>π +
∑
i∈I

di(π).

Let (FMDB) be a dual problem of (FMPB) defined as follows.

(FMDB) maximize b>π +
∑
i∈I

σi,

where π ∈ Rm and σ ∈ R|I| are dual variables. In the same way as in section 2.2, the following properties
hold.
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Proposition 2.7. A dual variable π ∈ Rm is feasible in (DB), if and only if (π, d1(π), · · · , d|I|(π))) is
feasible in (FMDB).

Corollary 2.8. A dual variable π∗ is optimal in (DB), if and only if (π∗, d1(π∗), · · · , d|I|(π∗)) is optimal
in (FMDB).

Applying Dantzig-Wolfe decomposition for (PB) or (FMPB), pricing is necessary for each i ∈ I.
In addition, the optimality test becomes obj(RMPB) = b>π̄ +

∑
i∈I obj(LR(i)), where (RMPB) is a

restricted master problem of (PB).

3 Perturbing the Right-Hand Side Parameters

In this section, we focus on the perturbation of the RHS parameters. We start with the case that X is a
general polyhedron. Then, we consider the case that X has a block-angular structure.

3.1 General Case

Let B be an optimal index set of (FMP). To describe the restricted index set within extreme points and
extreme rays, we denote

K ≡ B ∩ {1, · · · ,K}, L ≡ B ∩ {K + 1, · · · ,K + L}.

By definition, we have B = K ∪ L, K ∩ L = ∅. We assume the following (A1) for (FMP) to ensure the
existence of an optimal basis.

(A1) rank

(
G
ξ>

)
= m+ 1.

Proposition 3.1. Let B be an optimal basis of (FMP), then perturbating b to b + ∆b preserves its
optimality if and only if the following condition holds.

b+ ∆b ∈ conv (GK) + cone (GL)

Proof. Applying Corollary 2.6 to (FMP) we have

(
GB
ξ>B

)−1(
b
1

)
≥ 0. By definition, it is equivalent to

∃λ ≥ 0,

(
GB
ξ>B

)
λ =

(
b+ ∆b

1

)
⇔∃λ ≥ 0,

∑
k∈K

λk = 1, GBλ = b+ ∆b

⇔ b+ ∆b ∈ conv (GK) + cone (GL)

3.2 Block-Angulared Case

For a general polyhedron X, the result of proposition 3.1 is straightforward. In this subsection, we
consider the case that X has a block-angular structure such that X =

∏
i∈I X

i and Xi is a polyhedron
for each i ∈ I.

Let B be an optimal basis of (FMPB). In (FMPB), we have to distinguish the same indices each of
which belongs to a different block. Therefore, we describe the whole optimal basis as B =

⊕
i∈I B(i),

where B(i) be the optimal basis in block i ∈ I. To represent the restricted index set within extreme
points and extreme rays for each block i ∈ I, we denote

K(i) ≡ B(i) ∩ {1, · · · ,Ki}, L(i) ≡ B(i) ∩ {Ki + 1, · · · ,Ki + Li}.

By definition, we have B(i) = K(i) ∪ L(i) and K(i) ∩ L(i) = ∅ for each i ∈ I. For (FMPB), we assume
the following (A3) to ensure the existence of an optimal basis.
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(A3) rank


G1 G2 · · · G|I|

(ξ1)> 0> · · · 0>

0> (ξ2)> · · · 0>

...
...

. . .
...

0> 0> · · · (ξ|I|)>

 = m+ |I|.

Let B =
⊕

i∈I B(i) an optimal basis of (FMPB). Then, due to corollary 2.5, its corresponding optimal

dual solution

(
π∗

σ∗

)
is given by

(
π∗

σ∗

)>
=


f1
B(1)

...

f
|I|
B(|I|)


>


G1
B(1) · · · G

|I|
B(|I|)

(ξ1
B(1))

> · · · 0>

...
. . .

...

0> · · · (ξ
|I|
B(|I|))

>


−1

. (3.1)

For the problems with a block-angular structure, we can generalize proposition 3.1 as follows.

Proposition 3.2. Let B =
⊕

i∈I B(i) be an optimal basis of (FMPB), then perturbating b to b + ∆b
preserves its optimality if and only if the following condition holds.

b+ ∆b ∈
∑
i∈I

(
conv

(
GiK(i)

)
+ cone

(
GiL(i)

))
Proof. Applying Corollary 2.6 to (FMPB), we have

G1
B(1) · · · G

|I|
B(|I|)

(ξ1
B(1))

> · · · 0>

...
. . .

...

0> · · · (ξ
|I|
B(|I|))

>


−1(

b+ ∆b
1|I|

)
≥ 0.

By definition, it is equivalent to

∃

 λ
1

...
λ|I|

 ≥ 0,


G1
B(1) · · · G

|I|
B(|I|)

(ξ1
B(1))

> · · · 0>

...
. . .

...

0> · · · (ξ
|I|
B(|I|))

>


 λ

1

...
λ|I|

 =

(
b+ ∆b

1|I|

)
(3.2)

⇔∀i ∈ I, ∃λi ≥ 0,
∑
k∈K(i)

λik = 1,
∑
i∈I

GiB(i)λ
i = b+ ∆b

⇔ b+ ∆b ∈
∑
i∈I

(
conv

(
GiK(i)

)
+ cone

(
GiL(i)

))
.

To confirm the condition in Proposition 3.2, we have to solve m + |I| dimensional linear equation
(3.2). If the number of the blocks |I| is too large, the confirmation appears to be a hard task at first
glance. However, it is easier than it appears; we prove that the linear equation can be compressed into a
2m-dimensional one under the following assumption.

(A3) The number of blocks is larger than the number of constraints, i.e., |I| ≥ m.

Lemma 3.3. Let
⊕

i∈I B(i) be an optimal basis of (FMPB) and assumption (A3) holds, then there exists
at least |I| −m blocks i such that B(i) becomes a singleton.
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Proof. Since (FMPB) has m+ |I| equality constraints, |
⊕

i∈I B(i)| = m+ |I|. Therefore,
∑
i∈I |B(i)| =

m + |I|. On the other hand, B(i) 6= ∅, i.e, |B(i)| ≥ 1 for all i, due to constraint (2.2). Let Ī be a set of
indices of singletons, namely, Ī = {i ∈ I||B(i)| = 1}. Assume that |Ī| < |I|−m to achieve a contradiction.
Then, we have ∑

i∈I
|B(i)| =

∑
i∈Ī

|B(i)|+
∑
i/∈Ī

|B(i)| ≥ |Ī|+ 2(|I| − |Ī|) > |I|+m.

It contradicts to
∑
i∈I |B(i)| = m+ |I|. Hence, we have reached the desired result.

Lemma 3.3 is inspired by a proof of Shapley-folkman theorem[22][1, Exercise 5.1.3].

Proposition 3.4. Let B =
⊕

i∈I B(i) be an optimal basis of (FMPB) and assumption (A3) holds, then
perturbating b to b+ ∆b preserves its optimality if and only if the following condition holds.

b+ ∆b−
∑
i∈Ī

gik(i) ∈
∑
i/∈Ī

(
conv

(
GiK(i)

)
+ cone

(
GiL(i)

))
, (3.3)

where Ī = {i ∈ I||B(i)| = 1} be a set of indices each of which block is a singleton, B(i) = {k(i)} for each
i ∈ Ī. Furthermore, we have |Ī| ≥ |I| −m.

Proof. Due to proposition 3.2, we have

b+ ∆b ∈
∑
i∈I

(
conv

(
GiK(i)

)
+ cone

(
GiL(i)

))
. (3.4)

On the other hand, we have K(i) = {k(i)} and L(i) = ∅ for each i ∈ Ī due to constraint (2.2). It follows

that gik(i) = conv
(
GiK(i)

)
+ cone

(
GiL(i)

)
for each i ∈ Ī. Substituting it to (3.4), we conclude (3.3). Last

inequality |Ī| ≥ |I| −m follows from lemma 3.3.

Example 3.5. Consider an example of (PB) such that I = {1, · · · , 5} in the following.

minimize

(
6
0

)>
x1 +

(
0
8

)>
x2 +

(
4
0

)>
x3 +

(
0
3

)>
x4 +

(
0
5

)>
x5

subject to

(
6 0
0 1

)
x1 +

(
1 0
0 8

)
x2 +

(
2 0
0 1

)
x3 +

(
1 0
0 2

)
x4 +

(
5 0
0 4

)
x5 =

(
10
6

)
,

xi ∈ Xi, i ∈ I,

where Xi = {(xi1, xi2) ∈ R2 | 0 ≤ xi1 ≤ 1, 0 ≤ xi2 ≤ 1, xi1 + xi2 ≥ 1}.

The solution of the problem is (x1,x2,x3,x4,x5) =

((
1/2
1

)
,

(
1

1/2

)
,

(
0
1

)
,

(
1
0

)
,

(
1
0

))
. It is clear

that extreme points of Xi are

(
1
0

)
,

(
0
1

)
, and

(
1
1

)
, and Xi has no extreme rays. Let us denote them

vi1,v
i
2, and vi3, respectively. Therefore, its full master problem (FMPB) becomes

minimize

6
0
6

> λ1 +

0
8
8

> λ2 +

4
0
4

> λ3 +

0
3
3

> λ4 +

0
5
5

> λ5

subject to

(
6 0 6
0 1 1

)
λ1 +

(
1 0 1
0 8 8

)
λ2 +

(
2 0 2
0 1 1

)
λ3 +

(
1 0 1
0 2 2

)
λ4 +

(
5 0 5
0 4 4

)
λ5 =

(
10
6

)
,

1>λi = 1, i ∈ I,
λi ≥ 0, i ∈ I,

where λi ∈ R3. Furthermore, B =
⊕5

i=1 B(i), where

B(1) = {2, 3}, B(2) = {1, 3}, B(3) = {2}, B(4) = {1}, B(5) = {1}, (3.5)
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is an optimal basis of the (FMPB). Because of lemma 3.3, at least 5−2 = 3 blocks become singletons. In-
deed, B(3),B(4), and B(5) are singletons. Since Xi has no extreme rays, we have B(i) = K(i). Therefore,
we have

G1
K(1) =

(
0 6
1 1

)
, G2

K(2) =

(
1 1
0 8

)
, g3

2 =

(
0
1

)
, g4

1 =

(
1
0

)
, g5

1 =

(
5
0

)
.

Due to proposition 3.4,

(
10
6

)
+ ∆b preserves the optimality of B as far as

(
10
6

)
+ ∆b−

(
0
1

)
−
(

1
0

)
−
(

5
0

)
∈ conv

(
0 6
1 1

)
+ conv

(
1 1
0 8

)
holds. We can confirm the condition by solving a 4-dimensional linear equation in the following:

0 6 1 1
1 1 0 8
1 1 0 0
0 0 1 1



λ1

2

λ1
3

λ2
1

λ2
3

 =


4 + ∆b1
5 + ∆b2

1
1

 .

The linear equation is a compressed version of its original 7-dimensional linear equation

0 6 1 1 0 1 5
1 1 0 8 1 0 0
1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





λ1
2

λ1
3

λ2
1

λ2
3

λ3
2

λ4
1

λ5
1


=



10 + ∆b1
6 + ∆b2

1
1
1
1
1


,

which is obtained by proposition 3.2. The optimality of B preserves if the linear equation has a positive
solution.

4 Adding or Removing a Block

In this section, we consider the case of adding a new block to or removing an existing block from the
original problem (PB), which X has a block-angular structure. Under some mild assumptions, we consider
the conditions that preserves the optimality of the basis when we add a new block or remove an existing
one. We demonstrate that these conditions are perturbations of the RHS parameters that has been
discussed in the previous chapter, under some mild assumptions.

4.1 Adding a New Block

We first consider the case of adding a new block to the original problem (PB), in which X has a block
structure. Let us denote new block’s index by τ and the new problem by (PB+).

(PB+) minimize
∑

i∈I∪{τ}

(ci)>xi

subject to
∑

i∈I∪{τ}

Aixi = b,

xi ∈ Xi, ∀i ∈ I ∪ {τ},

10



Then, we can describe its full master problem in the following. We denote it by (FMPB+).

(FMPB+) minimize
∑

i∈I∪{τ}

(f i)>λi

subject to
∑

i∈I∪{τ}

Giλi = b,

(ξi)>λ(i) = 1, ∀i ∈ I ∪ {τ},
λ(i) ≥ 0, ∀i ∈ I ∪ {τ}.

where Kτ , Lτ ,f
τ , Gτ , ξτ ,λτ are defined as the same way for i = τ in section 2.5. For the index τ and a

basis B, we consider the following assumption (A4).

(A4) Lagrangina relaxation subroblem (LR(τ)) has a unique solution for π = π∗ defined in (3.1).

When the assumpition (A4) holds, we denote its unique solution by vτk(τ).

Proposition 4.1. Let B =
⊕

i∈I B(i) be an index set of (FMPB), and assumption (A4) holds. Then,
two claims (i) and (ii) in the following are equivalent.

(i) (a) The index set
⊕

i∈I B(i) is an optimal basis for (FMPB).

(b) Condition b− gτk(τ) ∈
∑
i∈I
(
conv

(
GK(i)

)
+ cone

(
GL(i)

))
holds.

(ii) (a) The index set
⊕

i∈I∪{τ} B(i), where B(τ) = {k(τ)}, is an optimal basis for (FMPB+).

(b) Condition b ∈
∑
i∈I
(
conv

(
GK(i)

)
+ cone

(
GL(i)

))
holds.

Proof. We first prove (i) ⇒ (ii). In view of theorem 2.4, we have (i)-(a) ⇒ (ii)-(b). Therefore, we need
to prove (ii)-(a). Due to assumption (A4), we have GτB(τ) = gτk(τ) and ξτB(τ) = 1. Then, Theorem 2.4

suggests that (ii)-(a) is equivalent to the following two conditions:(
fN
fτN (τ)

)>
−
(
fB
fτk(τ)

)>(
B Bτ

0> 1

)−1(
N Nτ

0> (ξτN (τ))
>

)
≥ 0>, (4.1)(

B Bτ

0> 1

)−1(
b

1|I|+1

)
≥ 0, (4.2)

where fB, B,B
τ ,fN , N,N

τ are defined as follows:

fB =


f1
B(1)

...

f
|I|
B(|I|)

 , B =


G1
B(1) · · · G

|I|
B(|I|)

(ξ1
B(1))

> · · · 0>

...
. . .

...

0> · · · (ξ
|I|
B(|I|))

>

 , Bτ =


gτk(τ)

0
...
0

 ,

fN =


f1
N (1)

...

f
|I|
N (|I|)

 , N =


G1
N (1) · · · G

|I|
N (|I|)

(ξ1
N (1))

> · · · 0>

...
. . .

...

0> · · · (ξ
|I|
N (|I|))

>

 , Nτ =


GτN (τ)

0>

...
0>

 .
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Condition (4.2) is equivalent to claim (i)-(b). Condition (4.1) is equivalent to(
fN
fτN (τ)

)>
−
(
fB
fτk(τ)

)>(
B−1 −B−1Bτ

0> 1

)(
N Nτ

0> (ξτN (τ))
>

)
≥ 0>

⇔
(
fN
fτN (τ)

)>
−
(
fB
fτk(τ)

)>(
B−1N B−1Nτ −B−1Bτ (ξτN (τ))

>

0> (ξτN (τ))
>

)
≥ 0>

⇔

{
f>N − f>B B−1N ≥ 0>,

(fτN (τ))
> − f>B (B−1Nτ −B−1Bτ (ξτN (τ))

>)− fτk(τ)(ξ
τ
N (τ))

> ≥ 0>
(4.3)

⇔


f>N −

(
π∗

σ∗

)>
N ≥ 0>,

(fτN (τ))
> −

(
π∗

σ∗

)>
Nτ ≥ (fτk(τ) −

(
π∗

σ∗

)>
Bτ )(ξτN (τ))

>.

First inequality follows from claim (i)-(a). Second inequality is equivalent to

fτk − (π∗)>gτk ≥

{
fτk(τ) − (π∗)>gτk(τ), ∀k ∈ {1, · · · ,Kτ},
0, ∀k ∈ {Kτ + 1, · · · ,Kτ + Lτ}.

It is deduced from the assumption (A4). Therefore, we conclude (i) ⇒ (ii).
Next, we will prove (ii) ⇒ (i). In view of theorem 2.4, we have (ii)-(a) ⇒ (i)-(b). The rest is to prove

(i)-(a). Due to theorem 2.4, (i)-(a) is equivalent to

f>N − f>B B−1N ≥ 0>, B−1

(
b

1|I|

)
≥ 0.

We have already shown that (ii)-(a)⇒ f>N−f>B B−1N ≥ 0> in (4.3). On the other hand, B−1

(
b

1|I|

)
≥ 0

is equivalent to claim (ii)-(b). Therefore, we deduce (ii) ⇒ (i). We complete the proof.

The proposition claims that if the assumption (A4) and condition (i)-(b) hold, the optimality of the
basis is preserved with an additional index for the new block τ . In other words, we do not have to generate
new columns for existing blocks to obtain the optimal basis of (FMPB+). To confirm condition (i)-(b),
we need to solve a (m + |I|)-dimensional linear equation. Fortunately, we can apply Proposition 3.4 to
condition (i)-(b), where ∆b = gτk(τ). Therefore, the (m+ |I|)-dimensional linear equation is equivalent to

at most 2m-dimensional one because at least |I| −m basic variables are fixed by nature. Therefore, the
question is to what extent the assumption (A4) holds. We give a positive answer to the question.

Let us consider a parametric minimization problem (Q) as follows.

(Q) minimize θ>y

subject to y ∈ Y,

where θ ∈ RN is a parameter, y ∈ RN is a variable, and Y is a polyhedron. By Theorem 2.1, Y can
be represented as a convex combination of its extreme points {wt}t∈T plus positive combination of its
extreme rays {su}u∈U . Positive combinations of its extreme rays form a cone. We denote the cone by S.
For the problem (Q), the following lemma holds.

Lemma 4.2. Problem (Q) has a unique optimal solution for almost every θ ∈ Θ∩BR(0), where Θ be a
set of parameters such that (Q) is bounded, and R > 0 is a sufficiently large parameter.

Proof. Let S∗ = {θ ∈ RN |〈θ,y〉 ≥ 0, ∀y ∈ S} be a dual cone of S. We can confirm that Θ = S∗ as
follows.

θ ∈ Θ⇔ 〈θ, su〉 ≥ 0, ∀u ∈ U ⇔ θ ∈ S∗.
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By definition, Θ is a set of parameters such that (Q) has an optimal solution. Let us divide the set
Θ = S∗ into two disjoint subsets; Let Θ1,ΘM be sets of parameters such that (Q) has a unique optimal
solution, and (Q) has multiple optimal solutions, respectively. By definition, we have

Θ = Θ1 ∪ΘM , Θ1 ∩ΘM = ∅.

We have already confirmed that (Q) has an optimal solution for all θ ∈ S∗ ∩BR(0). Therefore, to prove
the lemma, we need to show that the measure of ΘM ∩ BR(0) is negligible in S∗ ∩ BR(0). Let mN be
the Lubesgue measure in RN , it is sufficient that the following two statements hold.

mN (ΘM ∩BR(0)) = 0, mN (S∗ ∩BR(0)) > 0. (4.4)

We first show mN (ΘM ∩ BR(0)) = 0. If θ ∈ ΘM , there exists a pair of extreme points (wt1 ,wt2) in Y
such that θ>wt1 = θ>wt2 , where (t1, t2) ∈ T 2 and t1 6= t2. It follows that θ ∈ ker(wt1−wt2). Therefore,
we have

ΘM ⊆
⋃
t1∈T

⋃
t2∈T\{t1}

ker(wt1 −wt2)

Since dim(ker(wt1 −wt2)) = N − 1, we have mN (ker(wt1 −wt2) ∩BR(0)) = 0. It follows that

mN (ΘM ∩BR(0)) ≤
∑
t1∈T

∑
t2∈T\{t1}

mN (ker(wt1 −wt2) ∩BR(0)) = 0

Next, we are to prove mN (S∗ ∩ BR(0)) > 0. If dim(SpanS∗) = N , the statement obviously holds.
Assume that dim(SpanS∗) ≤ N − 1 to achieve a contradiction. Since dim(SpanS∗) ≤ N − 1, we have
dim((SpanS∗)⊥) ≥ 1. Then, there exists a non-zero vector d ∈ (SpanS∗)⊥. By definition, we have
〈d,θ〉 = 0 for all θ ∈ S∗. If follows that ±d ∈ (S∗)∗. Since S is closed and convex, we have (S∗)∗ = S.
Therefore, we have ±d ∈ S. Since Y is a polyhedron, at least one extreme point w ∈ Y exists. On the
other hand, we have w ± d ∈ Y , because ±d ∈ S. It follows that w = (w + d)/2 + (w − d)/2, which
contradicts to the extremity of w. Therefore, we have dim(SpanS∗) = N . Hence, we conclude that
mN (S∗ ∩BR(0)) > 0.

Corollary 4.3. If Y is bounded, then problem (Q) has a unique solution for almost every θ ∈ BR(0)
where R > 0 is a sufficiently large parameter.

Let us review several types of researches related to lemma 4.2. There are necessary and sufficient
conditions for a standard linear optimization problems to have a unique solution in [17]. However, they
do not focus on to what extent the conditions are satisfied, which is a central theme of lemma 4.2.
The theme has been broadly researched in the community of parametric optimization for more general
optimization problems, such as [14][11].

Let us apply lemma 4.2 to block τ , i.e, θ = cτ − (Aτ )>π∗ and Y = Xτ with T = {1, · · · ,Kτ} and
U = {Kτ + 1, · · ·Kτ + Lτ}. Then, if the Lagrangian relaxation problem (LR)(τ) is bounded, it has a
unique solution in most cases. In case the problem has multiple solutions, lemma 4.2 also suggests that
slight perturbation of cτ recovers the uniqueness. We can summarize the result in the following.

Theorem 4.4. Let B =
⊕

i∈I B(i) be an optimal basis of (FMPB), and

(
π∗

σ∗

)
∈ Rm+|I| be its corre-

sponding optimal dual variables defined in (3.1). Then, the following two statements hold.

(1) Assumption (A4) holds for almost every cτ such that min{(cτ−(Aτ )>π∗)>xτ |xτ ∈ Xτ} is bounded.

(2) If assumption (A4) holds, following condition is a necessary and sufficient condition for
⊕

i∈I∪{τ} B(i),

where B(τ) = {k(τ)}, to be an optimal basis of (FMPB+).

b−
∑

i∈Ī∪{τ}

gik(i) ∈
∑
i/∈Ī

(
conv

(
GK(i)

)
+ cone

(
GL(i)

))
,

where Ī is the set of indices i ∈ I such that B(i) is a singleton.
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Example 4.5. Consider an example of (PB+) such that I = {1, · · · , 5} and τ = 6 in the following.

minimize

(
6
0

)>
x1 +

(
0
8

)>
x2 +

(
4
0

)>
x3 +

(
0
3

)>
x4 +

(
0
5

)>
x5 +

(
2
1

)>
x6

subject to

(
6 0
0 1

)
x1 +

(
1 0
0 8

)
x2 +

(
2 0
0 1

)
x3 +

(
1 0
0 2

)
x4 +

(
5 0
0 4

)
x5 +

(
2 0
1 2

)
x6 =

(
10
6

)
,

xi ∈ Xi, i ∈ I,

where Xi = {(xi1, xi2) ∈ R2 | 0 ≤ xi1 ≤ 1, 0 ≤ xi2 ≤ 1, xi1 + xi2 ≥ 1}.

Its original problem (PB) is Example 3.5. We are to add a new block X6 with c6 =

(
2
1

)
and A6 =(

2 0
1 2

)
. The optimal dual solution of the original problem is π∗ =

(
1
1

)
. Then, we have c6− (A6)>π∗ =(

−1
−1

)
. It follows that (LR(6)) has a unique solution v6

3 =

(
1
1

)
, which implies that assumption (A4)

holds. We have g6
3 =

(
2
3

)
. Therefore, due to theorem 4.4 (2), the index set

⊕6
i=1 B(i), where B(6) = {3},

becomes an optimal basis of the new full master problem (FMPB+) because the following condition(
10
6

)
−
(

0
1

)
−
(

1
0

)
−
(

5
0

)
−
(

2
3

)
=

(
2
2

)
∈ conv

(
0 6
1 1

)
+ conv

(
1 1
0 8

)
is satisfied.

Let us confirm Theorem 4.4 (1). Let us regard that c6 be a parameter, then c6−(A6)>π∗ =

(
c61 − 3
c62 − 2

)
.

Therefore, the space R2 can be divided into three regions C1, C2, and C3 of which corresponding optimal

solutions are

(
1
0

)
,

(
0
1

)
, and

(
1
1

)
, respectively.

C1

C3

C2

3

2
C1 =

{
(c1, c2) ∈ R2

∣∣ c2 ≥ 2, c1 − c2 ≤ 1
}

C2 =
{

(c1, c2) ∈ R2
∣∣ c1 ≥ 3, c1 − c2 ≥ 1

}
C3 =

{
(c1, c2) ∈ R2

∣∣ c1 ≤ 3, c2 ≤ 2
}

Figure 1: Parameters and their corresponding solutions

The topology illustrated in Figure 1 clearly suggests that (LR(6)) has a unique solution almost ev-
erywhere. In case the parameter c6 is in the intersection of the regions, (LR(6)) has multiple solutions.
Therefore, assumption (A4) does not hold. However, such a case seldom happens.

4.2 Removing an Existing Block

In this subsection, we consider the case of removing an existing block from the original problem (PB).
Let us denote the index of the existing block by γ and the new problem by (PB-).

(PB−) minimize
∑

i∈I\{γ}

(ci)>xi

subject to
∑

i∈I\{γ}

Aixi = b,

xi ∈ Xi, ∀i ∈ I \ {γ},
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Then, we can describe the full master problem without the block γ in the following. We denote it by
(FMPB-).

(FMPB−) minimize
∑

i∈I\{γ}

(f i)>λi

subject to
∑

i∈I\{γ}

Giλi = b,

(ξi)>λ(i) = 1, ∀i ∈ I \ {γ},
λ(i) ≥ 0, ∀i ∈ I \ {γ}.

Theorem 4.6. Let B =
⊕

i∈I B(i) be an optimal basis of (FMPB), and γ be an index such that B(γ) is
a singleton. Then, the following condition is necessary and sufficient for

⊕
i∈I\{γ} B(i) to be an optimal

basis of (FMPB-)

b−
∑

i∈Ī\{γ}

gik(i) ∈
∑
i/∈Ī

(
conv

(
GK(i)

)
+ cone

(
GL(i)

))
, (4.5)

where Ī is the set of indices i ∈ I such that B(i) = {k(i)} is a singleton.

Proof. To apply proposition 4.1, let us regard (FMPB-), (FMPB), and γ be (FMPB), (FMPB+), and
τ , respectively. Then, assumption (A4) holds, because B(γ) is a singleton. In our context, claims in
proposition 4.1 become as follows.

(i) (a) The index set
⊕

i∈I\{γ} B(i) is an optimal basis for (FMPB-).

(b) Condition b ∈
∑
i∈I
(
conv

(
GK(i)

)
+ cone

(
GL(i)

))
holds.

(ii) (a) The index set
⊕

i∈I B(i), where B(γ) = {k(γ)}, is an optimal basis for (FMPB).

(b) Condition b ∈
∑
i∈I\{γ}

(
conv

(
GK(i)

)
+ cone

(
GL(i)

))
holds.

Since (ii)-(a) is assumed, (i)-(b) is also assumed. Therefore, (ii)-(b) is a necessary and sufficient condition
for (i)-(a). Furthermore, (ii)-(b) is equivalent to the proposed condition (4.5). We complete the proof.

Due to proposition 3.4, we have |Ī| ≥ |I| −m. Therefore, if |I| is large, assumption (A4) holds for
many blocks.

Example 4.7. Consider an example of (PB-) such that I = {1, · · · , 5} and γ = 3 in the following.

minimize

(
6
0

)>
x1 +

(
0
8

)>
x2 +

(
0
3

)>
x4 +

(
0
5

)>
x5

subject to

(
6 0
0 1

)
x1 +

(
1 0
0 8

)
x2 +

(
1 0
0 2

)
x4 +

(
5 0
0 4

)
x5 =

(
10
6

)
,

xi ∈ Xi, i ∈ I \ {γ},

where Xi = {(xi1, xi2) ∈ R2 | 0 ≤ xi1 ≤ 1, 0 ≤ xi2 ≤ 1, xi1 + xi2 ≥ 1}.

Its original problem (PB) is Example 3.5, again. We are to remove an existing block γ = 3. Since
B(3) = {2} is a singleton, assumption (A4) holds. We also have(

10
6

)
−
(

1
0

)
−
(

5
0

)
=

(
4
6

)
∈ conv

(
0 6
1 1

)
+ conv

(
1 1
0 8

)
.

Due to theorem 4.6, the index set
⊕

i∈{1,2,4,5} B(i) is an optimal basis of the new full master problem

(FMPB-).

15



Let us consider another case; we will remove another block γ = 5 from the original problem. Assump-
tion (A4) also holds, because B(5) = {1} is a singleton. On the other hand, we have(

10
6

)
−
(

0
1

)
−
(

1
0

)
=

(
9
5

)
/∈ conv

(
0 6
1 1

)
+ conv

(
1 1
0 8

)
.

Therefore, in view of theorem 4.6, the index set
⊕4

i=1 B(i) is not an optimal basis of the new full master
problem (FMPB-) where γ = 5.

5 Dual Interpretation

In this section, we observe the main results proved in the previous sections from a dual point of view.
Let B be an optimal basis of (PB), and π∗ be its corresponding optimal dual solution. By definition,
the optimality of (DB) is given by b ∈ ∂(−

∑
i∈I di)(π

∗). Let us visualize it. Note that
∑
i∈I di(π) is a

piecewise linear function. Figure 2 illustrates the optimality condition. It is clear that perturbating b to
b+ ∆b preserves the optimality as long as −

∑
i∈I di(π) is located on the line of which slope is b+ ∆b.

π∗

−
∑
i∈I di(π)

slope: b

π∗

−
∑
i∈I di(π)

slope: b+ ∆b

Figure 2: Dual optimality in perturbating b to b+ ∆b.

This visualization is also useful to understand Proposition 4.1. Function dτ (π) is equal to a line of
which slope is −gτk(τ) in the neighborhood of π∗ under assumption (A4). Therefore, whether π∗ maximize∑
i∈I∪{τ} di(π) + b>π or not is judged by whether −

∑
i∈I di(π) is located on the line of which slope is

b− gτk(τ) or not. See figure 3.

π∗

−
∑
i∈I di(π)

slope: b

π∗

dτ (π) (slope: −gτk(τ))

π∗

−
∑
i∈I di(π)

slope: b− gτk(τ)

Figure 3: Dual optimality in adding a new block τ .

Similarly, whether π∗ maximize
∑
i∈I\{γ} di(π) + b>π or not is judged by whether −

∑
i∈I di(π) is

located on the line of which slope is b+ gγk(γ) or not. See figure 4.
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π∗

−
∑
i∈I di(π)

slope: b

π∗

dγ(π) (slope: −gγk(γ))

π∗

−
∑
i∈I di(π)

slope: b+ gτk(γ)

Figure 4: Dual optimality in removing an existing block γ.

In understanding these visualizations, we stress that ∂(−
∑
i∈I di)(π

∗) is not always equivalent to∑
i∈I

(
conv

(
GiK(i)

)
+ cone

(
GiL(i)

))
. All we can prove is that

∑
i∈I

(
conv

(
GiK(i)

)
+ cone

(
GiL(i)

))
⊆

∂(−
∑
i∈I di)(π

∗).

6 Conclusion

In this paper, we have considered several perturbations in which no new column generation is neces-
sary in the context of Dantzig-Wolfe decomposition. Our first focus is on the perturbation of the RHS
parameter. When the RHS parameter is perturbed, solving a linear equation can judge whether new
column generations are necessary. The claim itself is a direct application of well-known results. However,
when the original problem has a block-angular structure, we have shown that we can compress the linear
equation.

Then, we consider other perturbations: adding a new block and removing an existing block. We
have demonstrated that they can be seen as special cases of the RHS parameter’s perturbation under
the condition that their corresponding Lagrangian relaxation subproblems have unique solutions. The
condition is very mild. In adding a new block, it is satisfied for almost all objective parameters. In
removing an existing block, it holds for at least |I| −m blocks.

Although we have focused on linear optimization problems, the most attractive application of Dantzig-
Wolfe decomposition is mixed integer linear optimization problems. We must combine our results into the
branch-and-price framework or agrangian primal heuristics for further research to recover the feasibility
problem.
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