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Abstract

Goldstein’s 1977 idealized iteration for minimizing a Lipschitz objective
fixes a distance — the step size — and relies on a certain approximate sub-
gradient. That “Goldstein subgradient” is the shortest convex combination
of objective gradients at points within that distance of the current iterate.
A recent implementable Goldstein-style algorithm allows a remarkable com-
plexity analysis (Zhang et al. 2020), and a more sophisticated variant (Davis
and Liang, 2022) leverages typical objective geometry to force near-linear con-
vergence. To explore such methods, we introduce a new modulus, based on
Goldstein subgradients, that robustly measures the slope of a Lipschitz func-
tion. We relate near-linear convergence of Goldstein-style methods to linear
growth of this modulus at minimizers. We illustrate the idea computationally
with a simple heuristic for Lipschitz minimization.
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1 Introduction: the Goldstein subgradient

We consider a Euclidean space X with closed unit ball B, and a Lipschitz function
f : X → R with Lipschitz constant L ≥ 0. Following [3], the Clarke subdifferential
of f at any point x ∈ X, denoted ∂f(x), is the closed convex hull of all those vectors
of the form limr→∞∇f(xr) that arise from sequences xr → x. The Clarke subdif-
ferential is always nonempty, compact, and convex. We say that x is Clarke-critical
when 0 ∈ ∂f(x). For any radius ε ≥ 0, following [8], the Goldstein subdifferential of
f at x is the set

∂εf(x) = conv
(
∂f(x+ εB)

)
,
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and it too is nonempty, compact, and convex. The associated Goldstein subgradient,
denoted gε(x) is the shortest vector in ∂εf(x).

As observed in [8], whenever the Goldstein subgradient is nonzero, it satisfies
a striking descent property: for any current point x ∈ X and radius ε ≥ 0, the
Goldstein update

(1.1) g = gε(x) and xnew = x− ε g
|g|
,

ensures

(1.2) f(xnew) ≤ f(x)− ε|g|.

Iterating this update thus results in a simple conceptual minimization procedure,
using a step of constant size ε from one iterate to the next.

Practical approximations of this procedure confront two fundamental challenges.

• How should we choose the step size ε?

• How should we approximate the Goldstein subgradient gε(x)?

With respect to the second challenge, the Goldstein subgradient is not computable
in practice, except when the objective f is simply structured, such as piecewise
linear, or piecewise linear-quadratic. However, approximation schemes have led
to several recent advances. Using one such approach, [20] presents a randomized
algorithm for general Lipschitz minimization that, given any ε > 0, finds a point x
satisfying |gε(x)| ≤ ε using no more than O(ε−4) calls to a specialized subgradient
oracle. This algorithm is a remarkable accomplishment, notwithstanding the slow
rate, inspiring several follow-up studies: [4, 11–14, 19]. All the more striking, then,
is a recent breakthrough algorithm [5] whose convergence is “nearly linear” (a term
on which we expand later). This subtle algorithm resolves both challenges above in
an ingenious fashion.

Extensive earlier literature on linear convergence in nonsmooth optimization
includes the seminal work [18] on ε-subgradient descent methods, and was surveyed
recently in [1], with a particular focus on bundle methods. Those earlier works
typically enumerate “serious” steps in procedures rather than all the subgradients
needed to approximate the epsilon subdifferential for each serious step. Crucially,
the near-linear convergence result of [5] simply counts all subgradients used.

Linear convergence results in nonsmooth optimization typically rely on growth
conditions at minimizers. For ε-subgradient descent methods, [18] uses an upper
Lipschitz condition on the objective subdifferential. For the Goldstein-style method
of [5], the proof of near-linear convergence relies on a standard quadratic growth
condition, along with several structural assumptions that are sophisticated, albeit
generic for semi-algebraic objectives.

2



Our aim here is to isolate a simple growth condition that might underly near-
linear convergence of Goldstein-style subgradient methods. We skirt the sophisti-
cation inherent in the algorithm of [5] by decoupling the two challenges above. We
lay aside the challenge of approximating the Goldstein subgradient, imagining the
following ideal oracle.

Oracle 1.3 (Goldstein subgradient)
Input: a point x ∈ X and a radius ε ≥ 0.
Output: the Goldstein subgradient gε(x).

We focus instead on the first challenge — choosing the step size ε. We identify a
natural growth property of the objective f at its minimizer that, in conjunction
with a simple step-size strategy, ensures nearly linear convergence for Goldstein’s
iteration. We furthermore verify the growth property for a representative class of
nonsmooth objectives.

The conceptual optimization method we describe is simple but far from imple-
mentable. Nonetheless, we believe that the new growth condition underlying it may
prove illuminating, both for variational analysts and for algorithm designers.

2 The Goldstein modulus

We begin by constructing a robust measure of the slope of f , starting with the
following simple observation.

Proposition 2.1 For any L-Lipschitz objective function f : X → R, any point
x ∈ X, and any radius ε ≥ 0, the Goldstein subgradient satisfies |gε(x)| ≤ L.

The Goldstein update (1.1) guarantees an objective decrease of ε|gε(x)|. If ε is
small, then this guaranteed decrease is also small, being no larger than Lε. On the
other hand, the guaranteed decrease usually vanishes for large ε, because the ball
x+ εB then contains a Clarke critical point. Choosing the step size ε thus requires
a compromise.

To address this compromise, the following definition introduces a modulus that
robustly controls the size of Goldstein subgradients. The growth condition in the
definition is a central idea in our development. We argue that this condition of-
ten holds in nonsmooth optimization, and illustrate its potential in explaining the
convergence rate of Goldstein-style algorithms.

Definition 2.2 For any Lipschitz function f : X → R and any point x ∈ X, the
Goldsten modulus is the value

Γf(x) = inf{ε ≥ 0 : |gε(x)| ≤ ε}.
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The Goldstein modulus grows linearly at a point x̄ ∈ X if there exists a constant
α > 0 such that

(2.3) Γf(x) ≥ α|x− x̄| for all x ∈ X near x̄.

We collect some elementary properties of the Goldstein modulus in the following
result.

Proposition 2.4 The Goldstein modulus for an L-Lipschitz function f : X→ R at
a point x ∈ X satisfies the following properties.

(i) 0 ≤ Γf(x) ≤ L.

(ii)

|gε(x)|


> ε

(
if ε < Γf(x)

)
≤ ε

(
if ε = Γf(x)

)
< ε

(
if ε > Γf(x)

)
(iii) Γf(x) = 0 if and only if x is Clarke critical.

(iv) If x̄ is a Clarke critical point, then Γf(x) ≤ |x− x̄|.

(v) For any positive radius ε < Γf(x), the Goldstein update (1.1) ensures an
objective decrease larger than ε2.

Proof Property (i) follows from Proposition 2.1. We next turning to property (ii).
For any value ε ∈

[
0,Γf(x)

)
, by definition we have |gε(x)| > ε. Choose a

sequence (εr) decreasing strictly to Γf(x). Let m = 1 + dim X. By definition
we have |gεr(x)| ≤ εr for each r = 1, 2, 3, . . ., so there exist points xir ∈ x + εrB,
subgradients yir ∈ ∂f(xir) ⊂ LB, and weights λir ∈ [0, 1] for i = 1, 2, . . . ,m, satisfying

m∑
i=1

λir = 1 and
m∑
i=1

λiry
i
r = gεr(x).

After taking a subsequence, we can suppose that, for each i = 1, 2, . . . ,m, as r →∞
the points xir converge to some vector xi ∈ x+Γf(x)B, the subgradients yir converge
to some vector yi ∈ LB, and the weights λir converge to some weight λi ∈ [0, 1].
We deduce

∑
i λ

i = 1, and the vector y =
∑

i λ
iyi satisfies |y| ≤ Γf(x). Since

the Clarke subdifferential ∂f has closed graph, we know yi ∈ ∂f(xi) for each i, so
y ∈ ∂Γf(x)f(x). We have thus proved

|gΓf(x)(x)| ≤ Γf(x).

Finally, for any value ε > Γf(x) we have ∂εf(x) ⊃ ∂Γf(x)(x), and hence

|gε(x)| ≤ |gΓf(x)(x)| ≤ Γf(x) < ε.
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Property (ii) follows.
From property (ii) we deduce Γf(x) = 0 if and only if |g0(x)| = 0, or equivalently

g0(x) = 0, which amounts the point x being Clarke critical. Property (iv) follows
from the observation 0 ∈ ∂|x−x̄|f(x). Property (v) follows from inequality (1.2). 2

We return to the question of how to choose the radius ε for the Goldstein update
(1.1). By property (v) in Proposition 2.4, any choice of radius in the interval[1

2
Γf(x) , Γf(x)

)
ensures an objective decrease of at least 1

4

(
Γf(x)

)2
. Furthermore, we can use Ora-

cle 1.3 to find such a radius by bisection search, as follows.

Algorithm 2.5 (Goldstein modulus approximation)
input: point x ∈ X, Lipschitz constant L > 0
if g0(x) = 0 then

return 0
end if
ε = 1

2
L

while |gε(x)| ≤ ε do
ε = 1

2
ε

end while
return ε

Proposition 2.6 For any L-Lipschitz function f : X → R and any point x ∈ X,
Algorithm 2.5 returns a radius

(2.7) ε ∈
[1

2
Γf(x) , Γf(x)

)
.

The number of oracles calls is 1 if x is Clarke critical, and otherwise is

(2.8) 2 +
⌊

logL− log
(
Γf(x)

)⌋
.

Proof If x is Clarke critical, then the first oracle call finds g0(x) = 0, and the
algorithm returns the value 0. We therefore turn to the case when x is not Clarke
critical.

After 1 + m oracle calls, for m = 1, 2, 3, . . ., we have ε = L2−m. The algorithm
terminates as soon as |gε(x)| > ε, or in other words, by Proposition 2.4, as soon as
ε < Γf(x). This latter condition is equivalent to L2−m < Γf(x), or equivalently
m > logL− log

(
Γf(x)

)
. The smallest such integer m is

m̄ = 1 +
⌊

logL− log
(
Γf(x)

)⌋
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and formula (2.8) follows. At termination, we know |gε(x)| > ε. We furthermore
know |g2ε(x)| ≤ 2ε: if m̄ > 1, this follows from the condition in the while loop for
the previous value of ε, and if m̄ = 1 it follows from the Proposition 2.1. Property
(2.7) follows. 2

3 A simple Goldstein descent algorithm

By combining the Goldstein descent iteration (1.1) with the modulus approximation
procedure, Algorithm 2.5, we arrive at the following simple algorithm.

Algorithm 3.1 (Lipschitz minimization)
input: initial point x ∈ X, Lipschitz constant L > 0, maximum iterations s̄
s = 0 {counts Goldstein subgradient evaluations}
loop
ε = 1

2
L

g = gε(x)
s = s+ 1
while |g| ≤ ε do
ε = 1

2
ε {bisection search}

g = gε(x)
s = s+ 1
if s > s̄ then

return x
end if

end while
x = x− ε g|g|

end loop

To study the complexity of Algorithm 3.1, we consider how the Goldstein mod-
ulus typically grows at a local minimizer. That growth is at most linear, by Propo-
sition 2.4(iv); the following result assumes that it also satisfies a lower linear bound.

Theorem 3.2 (Convergence rate) Consider an L-Lipschitz objective function
f : X → R and a minimizer x̄ ∈ X at which the Goldstein modulus grows linearly.
Then, starting from any point x0 ∈ X with sufficiently small initial gap f(x0)−f(x̄),
after s subgradient calls to Oracle 1.3, the current point x in Algorithm 3.1 satisfies

f(x)− f(x̄) = O
( log s

s

)
as s→∞,

where the implicit constant depends only the Lipschitz constant L, the initial gap,
and the Goldstein modulus linear growth constant α in inequality (2.3).
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Proof Denote the current point x after k = 0, 1, 2 . . . bisections searches by xk.
The descent property (1.2) guarantees

f(xk)− f(xk+1) ≥ 1

4

(
Γf(xk)

)2
.

Define the objective gap γk = f(xk)− f(x̄). The Lipschitz and linear growth condi-
tions imply Γf(xk) ≥ αγk

L
, and hence

γk − γk+1 >
(αγk

2L

)2

.

With the change of variable γ̂ = ( α
2L

)2γ, we deduce γ̂k − γ̂k+1 > γ̂2
k. Hence

1

γ̂k+1

>
1

γ̂k
+

1

1− γ̂k
>

1

γ̂k
+ 1.

By induction, we deduce
1

γ̂k
>

1

γ̂0

+ k.

Summarizing, for some constant β, depending only on the linear growth constant α,
the Lipschitz constant L, and the initial gap γ0, we have bounded the nondecreasing
sequence of gaps γk in terms of the number of bisection searches k, by

γk ≤
β

k + 1
.

Turning to the number of oracle calls, we also have

Γf(xk) ≥ α|xk − x̄| ≥
α

L
γk.

By Proposition 2.6, the bisection search at xk takes a number of oracle calls not
exceeding

2 + logL− log
(
Γf(xk)

)
≤ 2 + logL− log

(α
L
γk

)
= κ− log γk,

for some constant κ > 0 depending only on α and L. The total number sk of oracle
calls accumulated before updating xk to xk+1 therefore satisfies

sk ≤
k∑
j=0

(κ− log γj) ≤ (k + 1)(κ− log γk) ≤
β(κ− log γk)

γk
.

The strictly increasing continuous function φ : (0, 2κ)→ (0,+∞) defined by

φ(t) =
t

β(κ− log t)
.
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has a strictly increasing continuous inverse φ−1 : (0,+∞)→ (0, 2κ). Notice

lim
s→+∞

s

log s
φ−1
(1

s

)
= − lim

t↓0

t

φ(t) log φ(t)
= − lim

t↓0

β(κ− log t)

log t− log(β(κ− log t))
= β.

We deduce

φ−1
(1

s

)
= O

( log s

s

)
,

where the constant depends only on β. Since we have proved φ(γk) ≤ 1
sk

for all

k = 0, 1, 2, . . ., we deduce γk = O( log sk
sk

), and the result follows. 2

The idealized Goldstein descent complexity result in Theorem 3.2 is illuminating
for two reasons. First, it highlights how much stronger our imagined Oracle 1.3 is
than a standard subgradient oracle. For comparison, in terms of the number s of
calls to standard oracles, the method of [20] for nonsmooth nonconvex objectives
has complexity O(s−1/4). For convex objectives, the usual subgradient method has
complexity O(s−1/2), which improves to O(1

s
) only in the strongly convex or smooth

cases [9].
The second and more important reason that we present Theorem 3.2 is to high-

light quite simply the impact on complexity of a single assumption: linear growth
in the Goldstein modulus. We will argue that this assumption often holds, even in
the absence of strong convexity or smoothness. For now, we simply illustrate the
linear growth condition with three simple examples.

Example 3.3 Consider three functions, defined, for a constant α > 0 and points
x ∈ X, by

f1(x) =
1

2
α|x|2, f2(x) = α|x|, f3(x) =

1

4
α|x|4.

Each function has a unique minimizer at the point 0, and the functions f1 and f2

grow at least quadratically there, but f3 does not. The corresponding Goldstein
modululi for the first two functions, namely

Γf1(x) =
α

1 + α
|x|, Γf2(x) = min{|x|, α},

both grow linearly at 0, but the third modulus satisfies

Γf3(x) ≤ α|x|3,

so its growth is slower than linear.
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4 Nearly linear convergence

We turn next from the simple sublinear rate guarantee in Theorem 3.2 to our main
focus, which is linear convergence. For many classical first-order algorithms, linear
convergence is associated with quadratic growth, as described in the following defi-
nition. This property is indispensable, both in this section, and in the remainder of
this work.

Definition 4.1 The function f : X → R grows quadratically at the point x̄ when
there exists a constant δ > 0 such that

f(x)− f(x̄) ≥ δ

2
|x− x̄|2 for all x ∈ X near x̄.

The relationship between linear convergence and quadratic growth is explored in
detail in [7].

Two distinct avenues to proving linear convergence suggest themselves. We
might focus on the iterates themselves, proving the existence of a constant θ ∈ (0, 1)
such that for all r = 0, 1, 2, . . .,

(4.2) |xr+1 − x̄| ≤ θ|xr − x̄|.

Alternatively, we might consider instead the objective values, instead proving

(4.3) f(xr+1)− f(x̄) ≤ θ
(
f(xr)− f(x̄)

)
.

Instead of linear convergence, suppose that we are prepared to accept a somewhat
relaxed rate. Following [5], we say that xr → x̄ nearly linearly if, for some exponent
m > 0, ensuring an error |xr − x̄| less than any small tolerance δ > 0 requires only
r = O

(
(log 1

δ
)m
)

iterations. (Linear convergence corresponds to the case m = 1.)
We prove next that if each iteration satisfies either inequality (4.2) or inequality
(4.3), then xr → x̄ nearly linearly.

Theorem 4.4 (Near-linear convergence) Consider a locally Lipschitz function
f : X → R that grows quadratically at a point x̄ ∈ X, and a sequence of points
(xr) in X with initial point x0 near x̄. For some constant θ ∈ (0, 1), suppose that
successive points in the sequence always satisfy f(xr+1) ≤ f(xr) and one of the
inequalities (4.2) and (4.3). Then there exist constants α, β > 0 such that

|xr − x̄| ≤ αe−β
√
r

for all r.
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Proof To simplify notation, we suppose x̄ = 0 and f(0) = 0. For sufficiently small
initial points x0, we know that there exist constants δ, L > 0 such that each point
xr satisfies

δ

2
|xr|2 ≤ f(xr) ≤ L|xr|.

For any nonnegative integers r, s, if f(xr+s) > θf(xr), then

θ

L
f(xr) <

1

L
f(xr+s) ≤ |xr+s| ≤ θs|xr| ≤ θs

√
2f(xr)

δ

so

θs >
θ
√
δ

L
√

2

√
f(xr),

and hence
s < µ− ν log

(
f(xr)

)
for suitable constants µ, ν > 0. We deduce

f(xr+s) ≤ θf(xr) for s =
⌈
µ− ν log

(
f(xr)

)⌉
.

Arguing inductively, we see, for t = 0, 1, 2, . . .,

f(xr) ≤ θtf(x0)

for

r ≥
t−1∑
u=0

⌈
µ− ν log

(
θuf(x0)

)⌉
and hence in particular for

r ≥
t−1∑
u=0

(
1 + µ− ν(u log θ + log

(
f(x0)

))
= t(1 + µ− ν log

(
f(x0)

)
− ν

2
t(t− 1) log θ.

Thus there exists an integer ψ > 0 such that, for all t = 0, 1, 2 . . .,

f(xr) ≤ f(xψt2) ≤ f(x0)θt

for any integer r ≥ ψt2. We deduce

δ

2
|xr|2 ≤ f(xr) ≤ f(x0)θ

⌊√
1
ψ
r
⌋

and hence

2 log |xr| ≤ log
(2f(x0)

δ

)
+
(√ 1

ψ
r − 1

)
log θ,
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from which the result follows. 2

To capture the two possible ways to control linear convergence, (4.2) and (4.3),
in the context of the Goldstein iteration (1.1), we make the following definition.

Definition 4.5 A locally Lipschitz function f : X→ R has the Goldstein property
at a point x̄ ∈ X if there exist constants ν > µ > 0 and θ ∈ (0, 1) such that, for any
point x 6= x̄ near x̄, and any step size ε satisfying

µ ≤ ε

|x− x̄|
≤ ν,

the Goldstein subgradient g = gε(x) is nonzero, and the point x+ = x− ε g|g| satisfies

either f(x+)− f(x̄) ≤ θ
(
f(x)− f(x̄)

)
or |x+ − x̄| ≤ θ|x− x̄|.

We call the interval [µ, ν] a proportionality bracket.

Corollary 4.6 Consider a locally Lipschitz function f : X→ R that grows quadrat-
ically and has the Goldstein property at point x̄ ∈ X, with proportionality bracket
[µ, ν]. Then any sequence of points generated iteratively from an initial point near
x̄ and updating iterates x 6= x̄ according to the rule

x ← x− ε g
|g|

for any ε satisfying µ ≤ ε

|x− x̄|
≤ ν and g = gε(x)

converges nearly linearly to x̄ in the sense of Theorem 4.4.

Even assuming access to Oracle 1.3 for Goldstein subgradients, the updating
rule in Corollary 4.6 is not realistic in general because we do not know the distance
between the current iterate x and the minimizer x̄. Our strategy will be to estimate
that distance from the Goldstein modulus, using the linear growth property.

5 Robust growth relative to a manifold

To verify linear growth of the Goldstein modulus for a locally Lipschitz function
f : X → R at a point x̄ ∈ X, we will rely on two further conditions, each of which
concern some distinguished set M ⊂ X. The first is a type of Lipschitz condition
on the subdifferential ∂f .

Definition 5.1 The subdifferential ∂f is upper Lipschitz relative to a set M ⊂ X
at a point x̄ ∈M when there exists a constant K > 0 such that all points x, y near
x̄ with x ∈M satisfy

∂f(y) ⊂ ∂f(x) +K|x− y|B.
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The second property, which plays an important role in [5], describes how the
value f(x) grows as the point x ∈ X moves away from the set M. It assumes in
particular that the setM is C2-smooth manifold around x̄. In that case, every point
x near x̄ has a unique nearest point in M, which we denote PM(x).

Definition 5.2 If a set M ⊂ X is a C2-smooth manifold around a point x̄ ∈ M,
then a locally Lipschitz function f : X → R satisfies the aiming condition relative
to M at x̄ when there exists a constant µ > 0 such that all points x ∈ X near x̄
and subgradients v ∈ ∂f(x) satisfy

〈v, x− PM(x)〉 ≥ µdM(x).

Some standard variational-analytic terminology [3] helps illuminate the aiming con-
dition. We therefore pause to review this language.

Consider a locally Lipschitz function f : X→ R, and a point x ∈ X. The Clarke
directional derivative of f at x in a direction y ∈ X is the quantity

f ◦(x; y) = max
v∈∂f(x)

〈v, y〉.

The function f is subdifferentially regular at x when the Clarke and classical direc-
tional derivatives agree in every direction:

lim
t↓0

1

t

(
f(x+ ty)− f(x)

)
= f ◦(x; y) for all y ∈ X.

For example, sums of smooth and continuous convex functions are everywhere sub-
differentially regular. The slope of f at x is the quantity

|∇f |(x) = lim sup
y→x

f(x)− f(y)

|x− y|
,

unless x is a local minimizer, in which case the slope is zero. The following result is
well known [10, Proposition 8.5].

Proposition 5.3 (Slope and subgradients) At every point x ∈ X, the slope of
a locally Lipschitz function f : X→ R satisfies the inequality

|∇f |(x) ≥ min |∂f(x)|,

with equality if f is subdifferentially regular at x.

With this terminology in hand, we return to the aiming condition. Definition 5.2
states that, at points x outside the manifold M but near the point x̄, the Clarke
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directional derivative of the function f in the unit direction from x towards its
nearest point in M is uniformly negative:

f ◦
(
x ;

1

dM(x)
(PM(x)− x)

)
≤ − µ.

We can understand the aiming condition further by considering both the direc-
tion and the norm of subgradients v ∈ ∂f(x). First, the angle between v and the
direction from x to its nearest point PM(x) is uniformly larger than π

2
: this is pre-

cisely the “aiming” behavior from which the property derives its name. Secondly,
the subgradients v are uniformly bounded away from zero:

(5.4) lim inf
x→x̄, x6∈M

|∇f |(x) > 0,

In [15], property (5.4) is called identifiability of the setM for the function f at the
point x̄. To summarize, if the aiming condition holds for f relative toM at x̄ ∈M,
thenM is identifiable at x̄ for f and subgradients at nearby points outsideM aim
uniformly away from M.

At any point x ∈ X and for any radius ε ≥ 0, the slope and the Goldstein
subgradient clearly satisfy

|∇f |(x) ≥ |gε(x)|,

by Proposition 5.3. With this in mind, we note that the aiming condition in fact
implies a stronger property than identifiability, captured in the following crucial
tool [5, Lemma 4.1].

Lemma 5.5 The aiming condition, Definition 5.2, implies the existence of a con-
stant γ > 0 such that

lim inf
x→x̄, x6∈M

|gγdM(x)(x)| > 0.

We next combine the conditions we need for linear growth of the Goldstein
modulus in the following property.

Definition 5.6 If a set M ⊂ X is a C2-smooth manifold around a point x̄ ∈M,
then a locally Lipschitz function f : X→ R grows robustly relative toM at x̄ when
the following properties hold.

• f grows quadratically at x̄ (Definition 4.1).

• f is subdifferentially regular throughout M.

• The restriction fM : M→ R is C2-smooth.

• The subdifferential ∂f is upper Lipschitz relative to M at x̄ (Definition 5.1).
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• f satisfies the aiming condition relative to M at x̄ (Definition 5.2).

Two simple examples are worth keeping in mind.

Example 5.7 (Strongly convex functions) If the function f is C2-smooth and
strongly convex then it grows robustly at a minimizer relative to the whole space X.

Example 5.8 (The norm) The norm grows robustly at 0 relative to the mani-
fold {0}.

As a first step towards proving linear growth of the Goldstein modulus, we first
observe an easier version: linear growth of the slope.

Proposition 5.9 (Local linear growth of slope) Consider a set M ⊂ X that
is a C2-smooth manifold around a point x̄ ∈M, and a locally Lipschitz function
f : X→ R that grows robustly relative to M at x̄. Then, at x̄, the slope of f grows
linearly: there exists a constant β > 0 such that

(5.10) |∇f |(x) ≥ β|x− x̄| for all x ∈ X near x̄.

Proof The C2-smooth restriction fM : M → R grows quadratically at its local
minimizer x̄, so it is strongly convex on a neighborhood of x̄ [2, Theorem 11.21],
and hence, by [2, Lemma 11.28], its Riemannian gradient grows linearly at x̄. In
other words, using the notation of [2], there exists a constant β > 0 such that all
points x ∈M near x̄ satisfy

‖grad(fM)‖x ≥ β|x− x̄|

and consequently

|∇f |(x) ≥ |∇fM|(x) = ‖grad(fM)‖x ≥ β|x− x̄|.

Combined with the identifiability condition (5.4), we deduce local linear growth of
the slope. 2

We can strengthen this result, as follows.

Theorem 5.11 If a locally Lipschitz function f : X→ R grows robustly at a point,
then its Goldstein modulus grows linearly there.

Proof To simplify notation, suppose that the point of interest is x̄ = 0. We
argue by contradiction. If the result fails, then there exists a sequence of values
0 < αr ↓ 0 and a sequence of nonzero points xr → 0 in X such that Γf(xr) <
αr|xr| for each r = 1, 2, . . .. Each corresponding Goldstein subgradient must then
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satisfy |gαr|xr|(xr)| < αr|xr|. After taking a subsequence, we can suppose that the
normalized vectors xr

|xr| converge to some unit direction u ∈ X.
Following the notation of Lemma 5.5 and Definitions 5.1 and 5.6, suppose that

the direction u lies outside the tangent space T to the manifoldM at 0. As r →∞,
we have xr = |xr|u + o(|xr|), and hence dM(xr) = dT (u)|xr| + o(|xr|). For all large
r we deduce γdM(xr) > αr|xr| and hence

|gγdM(xr)(xr)| ≤ |gαr|xr|(xr)| < αr|xr| → 0 as r →∞,

contradicting Lemma 5.5.
The direction u must therefore lies in the tangent space T , so there exists a

sequence of points x′r ∈M satisfying x′r−|xr|u = o(|xr|) and hence xr−x′r = o(|xr|)
as r →∞. The upper-Lipschitz property ensures

gαr|xr|(xr) ∈ ∂αr|xr|f(xr) = conv
(
∂f(xr + αr|xr|B)

)
⊂ ∂f(x′r) +

(
Kαr|xr|+ o(|xr|)

)
B,

so there exist subgradients yr ∈ ∂f(x′r) satisfying

|gαr|xr|(xr)− yr| ≤ Kαr|xr|+ o(|xr|).

The linear growth property (5.10) along with the subdifferential regularity of f at
x′r shows |yr| ≥ |∇f |(x′r) ≥ β|x′r|, so we deduce

αr|xr| > |gαr|xr|(xr)| ≥ β|x′r| −Kαr|xr|+ o(|xr|) = β|xr| −Kαr|xr|+ o(|xr|,

which is a contradiction for large r. 2

6 Robust growth for max functions

Classical nonlinear programming furnishes a central example of robust growth. We
consider smooth max functions f : X → R, by which we mean functions having a
representation of the form

(6.1) f(x) = max
i∈I

fi(x) (x ∈ X)

for some family of continuously differentiable functions fi : X → R indexed by i
in some finite index set I. Under reasonable conditions, we will show that smooth
max functions grow robustly. We will furthermore develop a Goldstein-style descent
method that converges nearly linearly for such objectives.

At any point x ∈ X, the subdifferential of the function (6.1) is given by

(6.2) ∂f(x) = conv{∇fi(x) : fi(x) = f(x)}

(see [3]). The standard second-order sufficient conditions in nonlinear programming
motivate the following definition.
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Definition 6.3 A function f : X→ R is a strong C2 max function at a point x̄ ∈ X
if the following conditions hold.

• The point x̄ is Clarke critical and nondegenerate: 0 ∈ ri
(
∂f(x̄)

)
.

• The function f grows quadratically at x̄ (Definition 4.1).

• For some finite set I and C2-smooth functions fi : X→ R (for i ∈ I),

f(x) = max
i∈I

fi(x) for all x near x̄,

and furthermore the values fi(x̄) (for i ∈ I) are all equal, and the gradients
∇fi(x̄) (for i ∈ I) are affinely independent.

In that case, we call the set of those points x ∈ X where the values fi(x) (for i ∈ I)
are all equal the active manifold.

The various ingredients of Definition 6.3 correspond exactly to standard second-
order sufficient conditions for the nonlinear program

inf
x∈X, t∈R

{t : fi(x) ≤ t for all i ∈ I},

as presented in [17], for example. Denote the active manifold by M. The classi-
cal first-order necessary optimality condition requires the existence of a Lagrange
multiplier vector λ ∈ RI

+ satisfying
∑

i λi = 1 and
∑

i λi∇fi(x̄) = 0: exactly the
condition that x̄ is Clarke critical. The affine independence condition in the defi-
nition is just the usual linear independence constraint qualification, which ensures
that λ is unique, and furthermore that the set M is a C2-smooth manifold around
x̄, with tangent space

T = {∇fi(x̄)−∇fj(x̄) : i 6= j}⊥.

Nondegeneracy reduces to the condition λi > 0 for all i ∈ I, which is the classical
strict complementarity condition. The classical theory of second-order sufficient
conditions shows that this condition is equivalent to positive-definiteness of the
operator

∑
i λi∇2fi(x̄) on the subspace T .

In Definition 6.3, the active manifold is well defined in the following sense. Al-
though it depends on the functions fi involved in the representation of the function
f , the active manifold is identifiable for f at x̄, in the sense of inequality (5.4), and
identifiable manifolds must be locally unique around x̄: see [6].

Theorem 6.4 If f : X → R is a strong C2 max function at a point x̄ ∈ X, with
active manifoldM, then f grows robustly relative toM at x̄, and hence its Goldstein
modulus grows linearly at x̄.
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Proof Robust growth is proved in [5], and the result then follows. 2

The analogous result holds for any function f satisfying [5, Assumption A].
Definition 6.3 implies in particular that the restriction fM : M→ R is C2 smooth

around the point x̄. At any nearby point x ∈ M , we can identify the Riemannian
gradient of fM with a vector ∇fM(x) in the tangent space TM(x). This vector has
the following property.

Proposition 6.5 If f : X→ R is a strong C2 max function at a point x̄ ∈ X, with
active manifold M, then for all points x ∈ M near x̄, the Riemannian gradient
∇fM(x) is the shortest convex combination of the set of gradients {∇fi(x) : i ∈ I}.

Proof Consider any point x ∈M near x̄. For all i ∈ I we know f = fi throughout
the manifoldM, the vector ∇fi(x)−∇fM(x) must lie in the normal space NM(x).
Equation (6.2) implies

∂f(x) = conv{∇fi(x) : i ∈ I} ⊂ ∇fM(x) +NM(x).

Furthermore, a partial smoothness argument [16, Proposition 4.3] shows ∇fM(x) ∈
∂f(x). Since ∇fM(x) is the shortest vector in the affine subspace ∇fM(x)+NM(x),
it must also be the shortest vector in ∂f(x), so the result follows. 2

The following tool is useful in what follows.

Proposition 6.6 Consider the map Λ: Xk → X that maps any list of k vectors to
its shortest convex combination. Then, around any affinely independent list whose
image lies in the relative interior of its convex hull, the map Λ is smooth.

Proof We map any list v = (v1, v2, . . . , vk) ∈ Xk to the shortest convex combination
of the vectors in the list. Denote the given affinely independent list by v̄. Then the
relative interior assumption ensures Λ(v̄) =

∑
i λ̄iv̄

i for some vector λ̄ > 0 solving
the optimization problem

min
λ∈Rk

+

{1

2

∣∣∣∑
i

λiv̄
i
∣∣∣2 :
∑
i

λi = 1
}

Since λ̄ > 0, convexity implies that λ̄ also solves the problem

min
λ∈Rk

{1

2

∣∣∣∑
i

λiv
i
∣∣∣2 :
∑
i

λi = 1
}

when v = v̄. The solutions of this latter problem are characterized by the linear
system in (α, λ) ∈ R×Rk

(6.7)

{
α +

∑
i 〈vi, vj〉λi = 0 (j = 1, 2, . . . , k)∑

i λi = 1.
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When v = v̄, this square system is invertible, because

α +
∑

i 〈v̄i, v̄j〉λi = 0 (j = 1, 2, . . . , k)∑
j λj = 0

implies

0 =
∑
i

∑
j

〈v̄i, v̄j〉λiλj =
∣∣∣∑

i

λiv̄
i
∣∣∣2

so
∑

i λiv̄
i = 0 and hence α = 0, and furthermore, by affine independence, λ = 0.

We deduce that the solution (α, λ) depends smoothly on the list v around v = v̄,
and furthermore satisfies λ > 0, since λ̄ > 0. Consequently we know Λ(v) =

∑
i λiv

i

also depends smoothly on v. 2

We end this section by proving that small Goldstein subgradients of strong C2

max functions must approximate Riemannian gradients on the active manifold.

Theorem 6.8 Consider a strong C2 max function f at a local minimizer x̄ with
active manifold M. Then there exists a constant µ > 0 such that all Goldstein
subgradients at points x ∈ X near x̄ for small radii ε ≥ 0 satisfy

|gε(x)| ≤ µ ⇒
{

x = PM(x) +O(ε) and
gε(x) = ∇Mf

(
PM(x)

)
+O(ε).

Proof Using the terminology of Definition 6.3, for each i ∈ I, consider the set

Xi = {x ∈ X : fi(x) = f(x)}.

The active manifold M is just ∩iXi. The affine independence assumption and a
standard metric regularity argument shows the existence of a constant C > 0 such
that

dM(x) ≤ C max
i
dXi(x)

for all points x ∈ X near x̄.
For each j ∈ I, denote by µj the distance from zero to the set

(6.9) conv{∇fi(x̄) : i 6= j},

which is strictly positive by Definition 6.3. Fix any constant µ in the interval
(0,mini µi), and consider any point x satisfying |gε(x)| ≤ µ.

We first claim that, if the point x is near x̄ and the radius ε ≥ 0 is small, then
dXj(x) ≤ ε for all j, and hence dM(x) ≤ Cε. To see this, we argue by contradiction.
If the claim fails, then there exists a sequence of points xr → x̄ in X and radii εr ↓ 0,
and elements jr ∈ I, such that |gεr(xr)| ≤ µ and dXjr (xr) > εr for all r = 1, 2, 3, . . ..
After taking a subsequence, we can suppose that some element j ∈ I satisfies jr = j
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for all r. Using Caratheodory’s theorem, for m = dim X + 1, there exist scalars
λrik ≥ 0 and points yrik ∈ xr + εrB for all i 6= j in I, k = 1, 2, . . . ,m, such that

gεr(xr) =
∑
i 6=j

m∑
k=1

λrik∇fi(yrik) and
∑
i 6=j

m∑
k=1

λrik = 1 for all r = 1, 2, 3, . . . .

Taking another subsequence, we can suppose the existence of the limits λik =
limr λ

r
ik ∈ [0, 1] for each i 6= j and k = 1, 2, . . . ,m, so some limit point ĝ of the

Goldstein subgradients gεr(xr) has the form

ĝ =
∑
i 6=j

m∑
k=1

λik∇fi(x̄), where
∑
i 6=j

m∑
k=1

λik = 1.

We deduce that ĝ lies in the set (6.9), and yet |ĝ| ≤ µ, contradicting the definition
of µ. We have thus proved our claim.

Assuming that the point x is near x̄ and the radius ε ≥ 0 is small, we now know
dXi(x) ≤ ε for all i ∈ I, so there exists a point yi ∈ (x + εB) ∩ Xi. There exist
scalars λik ≥ 0 and points yik ∈ (x + εB) ∩ Xi for i ∈ I and k = 1, 2, . . . ,m, such
that

gε(x) =
∑
i∈I

m∑
k=1

λik∇fi(yik) and
∑
i∈I

m∑
k=1

λik = 1.

For convenience, we can suppose yik = yi whenever λik = 0. The nonnegative scalars
λi =

∑
k λik, for i ∈ I, sum to one. Define

gi =


1
λi

∑m
k=1 λik∇fi(yik) (λi > 0)

∇fi(yi) (λi = 0).

For each i ∈ I, we also know

gi ∈ conv
(
∇fi(x+ εB)

)
⊂ ∇fi(x) + εLB,

for a suitable Lipschitz constant L > 0 for the gradients ∇fi around x̄. We have

gε(x) =
∑
i∈I

λigi ∈ conv{gi : i ∈ I} ⊂ conv{∇fi(yik) : i ∈ I, k = 1, 2, . . . ,m}

From its definition, gε(x) must therefore be the shortest convex combination of the
vectors ∇fi(yik), so it must also be the shortest convex combination of the vectors
gi, for i ∈ I.

On the other hand, by Proposition 6.5, the Riemannian gradient ∇fM
(
PM(x)

)
is the shortest convex combination of the gradients ∇fi(PM(x)

)
, for i ∈ I. Further-

more, for each i ∈ I we have

|∇fi(PM(x)
)
− gi| ≤ |∇fi(PM(x)

)
−∇fi(x)|+ |∇fi(x)− gi|

≤ LdM(x) + εL ≤ L(1 + C)ε.
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By assumption, when x = x̄, the Riemannian gradient ∇fM
(
PM(x)

)
= ∇fM(x̄) is

zero, which lies in the relative interior of the convex hull of the corresponding gradi-
ents ∇fi(PM(x)

)
= ∇fi(x̄). The result therefore now follows by Proposition 6.6. 2

7 Tempered growth relative to a manifold

Returning to our general theme, given a function f : X → R and a minimizer x̄,
we are interested in the behavior of Goldstein subgradients gε(x) for nearby points
x and radii ε > 0. Suppose that f grows robustly relative to a manifold M at
x̄, so the aiming condition holds. Lemma 5.5 then guarantees that, in the “small
radius” regime when the radius ε is small compared with the distance to the manifold
dM(x), the Goldstein subgradient cannot be too small. Consequently, the Goldstein
update (1.1) ensures a reasonable decrease in the objective value. We now consider,
by contrast, the “large radius” regime, where the radius is of the same order of
magnitude as the distance to the minimizer x̄.

Theorem 6.8 demonstrated, for strong C2 max functions, how small Goldstein
subgradients of the function f at points x must approximate Riemannian gradients
of the restriction fM at the corresponding nearest points on the manifold M. We
crystallize this general behavior in the following definition.

Definition 7.1 Consider a set M ⊂ X that is a C2-smooth manifold around a
point x̄ ∈ M, and a locally Lipschitz function f : X → R whose restriction f |M
is C2-smooth. We say that f has tempered growth at x̄ relative to M if, given any
angle θ > 0, for any sufficiently small β > 0 and sequences of points x̄ 6= xr → x̄ and
radii εr ≤ β|xr − x̄| with corresponding Goldstein subgradients gεr(xr) converging
to zero, the subgradients and corresponding Riemannian gradients ∇Mf

(
PM(xr)

)
are eventually nonzero and subtend an angle less than θ.

Theorem 7.2 Strong C2 max functions have tempered growth.

Proof Consider a strong C2 max function f as in Definition 6.3. By Theorem 6.8,
there exist constants C and D such that the projections x′r = PM(xr) satisfy

|xr − x′r| ≤ Cεr ≤ βC|xr − x̄|
|gεr(xr)−∇Mf(x′r)| ≤ Dεr ≤ βD|xr − x̄|

for all large r. Quadratic growth (Definition 4.1) ensures

|∇Mf(x′r)| ≥ δ|x′r − x̄|
≥ δ(|xr − x̄| − |xr − x′r|) ≥ δ(1− βC)(|xr − x̄|).
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We deduce
|gεr(xr)−∇Mf(x′r)|

|∇Mf(x′r)|
≤ βD

δ(1− βC)
< sin θ,

providing that β is sufficiently small. 2

Theorem 7.3 Consider a set M⊂ X that is a C2-smooth manifold around a point
x̄ ∈M, and a locally Lipschitz function f : X → R that grows robustly and has
tempered growth at x̄ relative to M. Then f has the Goldstein property at x̄, and
indeed, given any constant γ ∈ (0, 1), the interval [βγ, β] is a proportionality bracket
for all sufficiently small β > 0. Consequently, any sequence of points generated
iteratively from an initial point near x̄ and updating iterates x 6= x̄ according to the
rule

x ← x− ε g
|g|

for any ε satisfying γ ≤ ε

β|x− x̄|
≤ 1 and g = gε(x)

converges nearly linearly to x̄ in the sense of Theorem 4.4.

Proof By way of contradiction, consider any small constant β > 0, and suppose the
property in Definition 7.1 fails. Then there exists sequences of values 0 < µr → 0,
points x̄ 6= xr → x̄, radii εr satisfying

γ ≤ εr
β|xr − x̄|

≤ 1

and Goldstein subgradients gr = gεr(xr), such that either gr = 0 or the updates

x+
r = xr − εr

gr
|gr|

satisfy

f(x+
r ) > f(xr)− Lµr|xr − x̄|

|x+
r − x̄| > (1− µr)|xr − x̄|.

Taking a subsequence, we can suppose

(7.4)
εr

|xr − x̄|
→ some α ∈ (0, β].

If β is small, so is α, in which case gr cannot be zero infinitely often, by the definition
of tempered growth. Taking a subsequence, we can therefore suppose each gr is
nonzero.

By inequality (1.2) we have

f(x+
r ) ≤ f(xr)− εr|gr|,

21



so Lµr|xr−x̄| > εr|gr| and hence by property (7.4) we deduce gr → 0. By Lemma 5.5,
there exists a constant γ > 0 such that εr > γdM(xr) for all large r, so each
projection x′r = PM(xr) satisfies |xr − x′r| < 1

γ
εr, and the definition of tempered

growth now ensures that each corresponding Riemannian gradient g′r = ∇Mf(x′r) is
nonzero and, with gr, subtends an arbitrarily small angle: specifically, assuming the
quadratic growth condition (4.1), then for all sufficiently small β, we can guarantee∣∣∣ gr|gr| − g′r

|g′r|

∣∣∣ ≤ δ

3
.

Quadratic growth guarantees〈 x′r − x̄
|x′r − x̄|

,
g′r
|g′r|

〉
≥ 2δ

3
,

so 〈 x′r − x̄
|x′r − x̄|

,
gr
|gr|

〉
≥ δ

3
.

Now notice

(1− µr)2|xr − x̄|2 < |x+
r − x̄|2

=
∣∣∣xr − εr gr|gr| − x̄

∣∣∣2
= |xr − x̄|2 + ε2r − 2εr

〈
xr − x̄ ,

gr
|gr|

〉
≤ |xr − x̄|2 + ε2r + 2εr|xr − x′r| − 2εr

〈
x′r − x̄ ,

gr
|gr|

〉
≤ |xr − x̄|2 + ε2r +

2

γ
ε2r − 2εr|x′r − x̄|

〈 x′r − x̄
|x′r − x̄|

,
gr
|gr|

〉
≤ |xr − x̄|2 +

(
1 +

2

γ

)
ε2r −

2δ

3
εr|x′r − x̄|

≤ |xr − x̄|2 +
(

1 +
2

γ

)
ε2r −

2δ

3
εr(|xr − x̄| − |xr − x′r|)

≤ |xr − x̄|2 +
(

1 +
2

γ
+

2δ

3γ

)
ε2r −

2δ

3
εr|xr − x̄|.

Dividing both sides by |xr − x̄|2 and letting r →∞ shows

1 ≤ 1 +
(

1 +
2

γ
+

2δ

3γ

)
α2 − 2δ

3
α,

which is a contradiction for all sufficiently small positive β (and hence α). 2

The following algorithm realizes the near linear convergence property in Theo-
rem 7.3 by approximating the distance to the minimizer using the Goldstein mod-
ulus.
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Algorithm 7.5 (Minimization for Lipschitz f)
input: Lipschitz constant L, initial point x ∈ X, multiplier β > 0
for iteration = 1, 2, 3, . . . do
ε = 1

2
L

while |gε(x)| ≤ ε do
ε = 1

2
ε

end while
ε = βε
g = gε(x)
x = x− ε g|g|

end for

Theorem 7.6 With the assumptions of Theorem 7.3, for any sufficiently small mul-
tiplier β > 0, if the initial point x is sufficiently close to the minimizer x̄, then
Algorithm 7.5 converges nearly linearly to x̄ in the sense of Theorem 4.4.

Proof After each while loop, setting ε = βε ensures that the radius satisfies

1

2
Γf(x) ≤ ε

β
< Γf(x),

by Proposition 2.6. By Theorem 5.11, the Goldstein modulus grows linearly: for
some constant α > 0, we know

α|x− x̄| ≤ Γf(x) ≤ |x− x̄|

where the second inequality follows from the fact that x̄ is Clarke critical. We deduce
α

2
≤ ε

β|x− x̄|
< 1.

Providing that β is sufficiently small, the result now follows from Theorem 7.3. 2

8 A Goldstein-style heuristic

In practice, we cannot implement Algorithm 7.5 to minimize a Lipschitz function
f : X → R, because, given a point x ∈ X and a radius ε > 0, we cannot usually
compute the Goldstein subgradient gε(x). To explore the effectiveness of the under-
lying idea — adjusting the radius ε adaptively by estimating the Goldstein modulus
— we therefore resort to approximating the Goldstein subgradient g = gε(x), using
a simple, easily implementable heuristic.

Our approach is guided by the fundamental descent property that we noted at
the outset:

g = gε(x) 6= 0 ⇒ f
(
x− ε

|g|
g
)
≤ f(x)− ε|g|.

The following definition relaxes that property.
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Definition 8.1 Consider a locally Lipschitz function f : X → R, a point x ∈ X,
and a radius ε > 0 An approximate Goldstein subgradient of f at x is a subgradient
g ∈ ∂εf(x) satisfying the following property:

|g| ≥ ε ⇒ f
(
x− ε

|g|
g
)
< f(x)− ε|g|

2
.

We can compute approximate Goldstein subgradients almost surely using a sim-
ple but ingenious randomized procedure from [20]. Consider any vector g in the
Goldstein subdifferential ∂εf(x) that is not an approximate Goldstein subgradient.
Then, the shortest convex convex combination g′ of g and any subgradient of f at
a point uniformly distributed between x and x − ε

|g|g is likely to be substantially

shorter than g. Updating g = g′ and repeating eventually produces an approximate
Goldstein subgradient, as shown in [20]. We describe the procedure more formally
as follows.

Algorithm 8.2 (Approximate Goldstein subgradient for Lipschitz f)
input: center x ∈ X, radius ε > 0
output: approximate Goldstein subgradient g
choose g ∈ ∂f(x)
γ = |g|
while γ ≥ ε do
y = x− ε

γ
g {g is not small so check descent property}

if f(x)− f(y) > εγ
2

then
break {g is an approximate Goldstein subgradient}

end if
sample z ∈ [x, y] uniformly at random
choose h ∈ ∂f(z)
g = shortest vector in [g, h]
γ = |g|

end while
return g

Consider any point x ∈ X that is not Clarke critical. By Proposition 2.4, for all
small ε > 0, every element of the Goldstein subdifferential ∂εf(x) has norm at least
ε. In particular, the approximate Goldstein subgradient produced by Algorithm 8.2
has norm at least ε. Consequently, starting from any initial radius ε > 0, if we
mimic our conceptual Algorithm 7.5 by repeatedly shrinking the radius and running
Algorithm 8.2, then we eventually balance the sizes of the radius and a corresponding
approximate Goldstein subgradient. The final radius is our estimate of the Goldstein
modulus Γ(x). We describe the procedure below, including a tolerance ε̄ > 0 that
triggers termination if we encounter a small approximate Goldstein subgradient
corresponding to a small radius.
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Algorithm 8.3 (Goldstein modulus estimation for Lipschitz f)
input: center x ∈ X, initial radius ε > 0, tolerance ε̄ > 0
output: Goldstein modulus estimate ε > 0,

approximate Goldstein subgradient g satisfying |g| ≥ ε
repeat
ε = 1

2
ε

find approximate Goldstein subgradient g ∈ ∂εf(x) by Algorithm 8.2
if |g| < ε < ε̄ then

print “x is approximately stationary”
terminate

end if
until |g| ≥ ε
return radius ε, subgradient g

We now mimic the philosophy of Algorithm 7.5, replacing its Goldstein subgra-
dients by their approximate versions.

Algorithm 8.4 (Minimization for Lipschitz f)
input: Lipschitz constant L, initial point x ∈ X,

tolerance ε̄ > 0, multiplier β > 0, maximum iterations n
output: approximate stationary point x
for iteration = 1, 2, 3, . . . , n do
ε = L
run Algorithm 8.3 to set ε = Goldstein modulus estimate
ε = 2βε
run Algorithm 8.3 again:
• shrink radius ε further, if necessary
• find approximate Goldstein subgradient g ∈ ∂εf(x).

x = x− ε g|g|
end for
return x

We illustrate Algorithm 8.4 on a simple random example. We define a nonsmooth
nonconvex function f : R10 → R by

(8.5) f(x) = max
1≤i≤5

{gTi x+ xTHix} (x ∈ R10)

for vectors gi ∈ R10 and 10-by-10 symmetric matrices Hi (for i = 1, 2, 3, 4) with
entries uniformly distributed on the interval [−1, 1], and with

∑
i≤5 gi = 0 and∑

i≤5Hi equal to the identity matrix. This construction ensures that f is almost
surely a strong C2 max function at its global minimizer, xmin = 0. At any point
x ∈ R10, to calculate a subgradient h ∈ ∂f(x), we choose the index i attaining the
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Figure 1: Algorithm 8.4 minimizing a maximum of five nonconvex quadratics on
R10, using an approximate Goldstein subgradient oracle, illustrating near-linear
convergence of the iterates to the minimizer.

max in equation (8.5), and set h = gi + 2Hix. We can then run Algorithm 8.4 from
a random initial point, for various values of the multiplier β. We plot the progress
of both the distance to the minimizer, |x−xmin| (in Figure 1) and the objective gap,
f(x) − f(xmin) (in Figure 2), against the number of calls to Algorithm 8.2 — our
surrogate for the Goldstein subgradient oracle.

We emphasize that Algorithm 8.4 merely a heuristic. We have not explored if and
why the approximate Goldstein subgradients produced by Algorithm 8.2 can serve
as a useful substitute for the true Goldstein subgradient. Nonetheless, the behavior
of Algorithm 8.4, as illustrated in Figure 1, is strikingly suggestive of the near-linear
convergence that our theory predicts for the idealized method, Algorithm 7.5.

Our surrogate for the Goldstein subgradient oracle, Algorithm 8.2, is written
for simplicity rather than with any aim at efficiency with respect to the number of
subgradients computed. Nonetheless, for interest, Figure 3 plots the distance to the
minimizer as a function of subgradient calls.
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Figure 2: The example of Figure 1, illustrating convergence of the objective value.

Figure 3: The example of Figure 1, illustrating convergence with respect to subgra-
dient evaluations.
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[1] F. Atenas, C. Sagastizábal, P. J. S. Silva, and M. Solodov. A unified analysis of
descent sequences in weakly convex optimization, including convergence rates for
bundle methods. SIAM Journal on Optimization, 33:89–115, 2023.

[2] N. Boumal. An Introduction to Optimization on Smooth Manifolds. Cambridge Uni-
versity Press, Cambridge, 2023.

[3] F.H. Clarke. Optimization and Nonsmooth Analysis. Wiley Interscience, New York,
1983.

[4] D. Davis, D. Drusvyatskiy, Yin Tat Lee, S. Padmanabhan, and Guanghao Ye. A
gradient sampling method with complexity guarantees for lipschitz functions in high
and low dimensions. In NeurIPS Proceedings, 2022.

[5] D. Davis and Liwei Jiang. A nearly linearly convergent first-order method for non-
smooth functions with quadratic growth. Found. Comput. Math., to appear, 2024.
arXiv:2205.00064v3.

[6] D. Drusvyatskiy and A.S. Lewis. Optimality, identifiability, and sensitivity. Math.
Program., 147:467–498, 2014.

[7] D. Drusvyatskiy and A.S. Lewis. Error bounds, quadratic growth, and linear conver-
gence of proximal methods. Preprint arXiv:1602.06661, 2016.

[8] A.A. Goldstein. Optimization of Lipschitz continuous functions. Math. Programming,
13:14–22, 1977.

[9] E. Hazan and S. Kale. Beyond the regret minimization barrier: optimal algorithms for
stochastic strongly-convex optimization. J. Mach. Learn. Res., 15:2489–2512, 2014.

[10] A.D Ioffe. Variational Analysis of Regular Mappings. Springer US, 2017.

[11] M.I. Jordan, G. Kornowski, Tianyi Lin, O. Shamir, and M. Zampetakis. Deterministic
nonsmooth nonconvex optimization. In Proceedings of Machine Learning Research,
volume 195, pages 1–28, 2023.

[12] M.I. Jordan, Tianyi Lin, and M. Zampetakis. On the complexity of deterministic
nonsmooth and nonconvex optimization. arXiv:2209.12463, 2022.

[13] Siyu Kong and A.S. Lewis. The cost of nonconvexity in deterministic nonsmooth opti-
mization. Mathematics of Operations Research, doi.org/10.1287/moor.2022.0289,
2023.

[14] G. Kornowski and O. Shamir. On the complexity of finding small subgradients in
nonsmooth optimization. arXiv:2209.10346, 2022.

[15] A.S. Lewis and Tonghua Tian. Identifiability, the KL property in metric spaces, and
subgradient curves. Fourndations of Computational Mathematics, 2024. To appear.

28



[16] A.S. Lewis and S. Zhang. Partial smoothness, tilt stability, and generalized Hessians.
SIAM J. Optim., 23(1):74–94, 2013.

[17] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer, New York, second edition, 2006.

[18] S.M. Robinson. Linear convergence of epsilon-subgradient descent methods for a class
of convex functions. Math. Program., 86:41–50, 1999.

[19] Lai Tian and Anthony Man-Cho So. Computing Goldstein (ε, δ)-stationary points
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