
On the integrality gap of the Complete Metric

Steiner Tree Problem via a novel formulation

Ambrogio Maria Bernardelli∗

ambrogiomaria.bernardelli01@universitadipavia.it

Eleonora Vercesi†‡

eleonora.vercesi@usi.ch

Stefano Gualandi∗

stefano.gualandi@unipv.it

Monaldo Mastrolilli†

monaldo@idsia.ch

Luca Maria Gambardella†‡

luca.gambardella@usi.ch

May 22, 2024

Abstract

In this work, we compute the lower bound of the integrality gap of the
Metric Steiner Tree Problem (MSTP) on a graph for some small values of
number of nodes and terminals. After debating about some limitations of
the most used formulation for the Steiner Tree Problem, namely the Bidi-
rected Cut Formulation, we introduce a novel formulation, that we named
Complete Metric formulation, tailored for the metric case. We prove some
interesting properties of this formulation and characterize some types of
vertices. Finally, we define a linear program (LP) by adapting a method
already used in the context of the Travelling Salesman Problem. This LP
takes as input a vertex of the polytope of the CM relaxation and provides
an MSTP instance such that (a) the optimal solution is precisely that ver-
tex and (b) among all of the instances having that vertex as its optimal
solution, the selected instance is the one having the highest integrality
gap. We propose two heuristics for generating vertices to provide inputs
for our procedure. In conclusion, we raise several conjectures and open
questions.

Keywords: Steiner Tree · Integrality Gap · Combinatorial Optimization.

∗Department of Mathematics “Felice Casorati”, University of Pavia (Italy)
†Istituto Dalle Molle di studi sull’intelligenza artificiale (IDSIA USI-SUPSI) (Switzerland)
‡Faculty of Informatics, Università della Svizzera italiana, (Switzerland)

1

https://orcid.org/0000-0002-2328-7062
https://orcid.org/0000-0002-1621-2484
https://orcid.org/0000-0002-2111-3528
https://orcid.org/0000-0002-2948-9749
https://orcid.org/0009-0004-2555-1762

1 Introduction

Given an undirected, edge-weighted, connected graph G = (V,E) with n nodes
and cost cij on each edge {i, j} ∈ E, i, j ∈ V , and a subset of nodes T ⊂ V
of cardinality at least 2, the Steiner Tree Problem (STP) involves finding the
minimum-cost tree that spans T . The STP is generally modeled and solved via
integer linear programming, with many diverse publications released over the
years. For a survey, see [GM93]. Among them, the Directed cut formulation has
attracted much attention, as has an exceptional empirical performance [Lju21].
The core of the formulation consists in replacing each undirected edge {i, j}
with two arcs (i, j) and (j, i) and introducing a decision variable xij for each
arc. For a given root node r ∈ T , the formulation is presented below

min
X∈{0,1}2×|E|

∑
{i,j}∈E

ce(xij + xji) (1a)

s.t. xij + xji ≤ 1, e = {i, j} ∈ E, (1b)

x
(
δ−(W)

)
≥ 1, W ⊂ V \ {r}, W ∩ T ̸= ∅, (1c)

xij ∈ {0, 1}, (1d)

where δ−(W) := {(i, j) | i ̸∈ W, j ∈ W}. This model can be relaxed by
replacing constrain (1d) with

0 ≤ xij ≤ 1. (2)

We will abbreviate the ILP with DCUT and the relaxed version RDCUT. The
optimal value of the DCUT formulation on a graph G with a set of terminals T
will be denoted with DCUT(G,T), and similarly, we will use DCUT(G,T).

Note that, despite the exponential number of constraints (1c), it is well
known that RDCUT can be optimized in polynomial time, as the oracle separat-
ing such constraints works in polynomial time, thanks to the max-flow-min-cut
theorem [DF55]. To do so, we check for every t ∈ T \ {v} if the minimal (r, t)-
cut is less than one. If so, a violated cut inequality is found, otherwise, there is
none and we can prove optimality. This separation routine has been improved
through the years, e.g., by using faster algorithms for finding the minimum cut
in a directed graph, such as [HO94].

On another hand, The STP is NP-Hard, and the corresponding decision
problem is NP-Complete [Kar10]. The two well-known polynomial-time solv-
able cases are the shortest path (|T | = 2) and the minimum spanning tree
(|T | = n). The best-known polynomial-time algorithm for the STS guarantees
an approximation ratio of 1.39 [BGRS13]. Improving this bond is still an open
problem.

In this framework, it becomes of interest the study of the integrality gap,
which is the supremum among all the instances of the ratio between DCUT and
RDCUT, namely

α := sup
G=(V,E), T⊂V

DCUT(G,T)

RDCUT(G,T)
. (3)

2

The value α is unknown, and it has been proved to be between 36
31

∼= 1.161
[BGRS13] and 2. [GW95] The integrality gap is believed to be higher than
36
31 . Recall that, proving that α < 1.39 would lead to a better approximation
algorithm with respect to the state of art.

In this work, we restrict our attention on the pseudo-metric (pm) case, where
(i) cij ≥ 0, (ii) cij = cji, (iii) cij ≤ cik + cjk and (iv) if i = j, then cij = 0.
Note that if we add (v) if cij = 0, then i = j, we are in the metric case. We
decided to restrict our attention to the pm case, as we can do it without loss
of generality for the study of the integrality gap (see Section 2). Furthermore,
some polynomial time approximation algorithms build on the metric closure
(See, e.g.[KMB81]).

In this work, we analyze the integrality gap of the DCUT formulation for a
fixed value of n and t := |T |. In Section 2, we show how to adapt a method
already used for the study of the integrality gap in the context of the Travelling
Salesman Problem [BB08] to the DCUT formulation. This methodology relies
upon the vertices of the polytope of the RDCUT formulation. A close look at
these vertices allows us to detail some limits of the DCUT for the complete met-
ric case. In Section 3, we introduce the Complete Metric (CM) formulation and
prove some interesting properties of this formulation. We adapt the methodol-
ogy of [BB08] even to this case, showing the advantages of this formulation. In
Section 4 we attack the problem of having vertices as input of our procedure.
We observe that the exhaustive enumeration of vertices is intractable for n ≥ 6.
Hence, after demonstrating several properties of the vertices of the RCM poly-
tope, we present two heuristic procedures for generating them. In Section 5,
we present lower bounds for the CM formulation for n ≤ 10. Additionally, we
will compare the two heuristics we introduced, highlighting the strengths and
weaknesses of each. Finally, we will provide insight into the properties that in-
stances with high integrality gaps may have. Lastly, in the Appendix, we show
some properties of the polytope of RCM when |T | = 3.

The remaining part of this section is devoted to fixing notations and ab-
breviations, even though some notations will be fixed from time to time in the
paper.

Let F any integer linear programming formulation, then RF will denote the
linear relaxation, namely the same integer constraints with the variable allowed
to be continuous (real numbers). Through this manuscript, we will denote an
STP instance with cost c and set of terminal T as STP(c, T). We will also
denote with S the set of the so-called Steiner nodes, namely V \ T .

1.1 Related literature

The integrality gap for the DCUT formulation has been widely study. [KPT11]
proved that the lower bound is at least 8

7 showing that there exists one instance
with precisely this gap (Skutella’s graph). Later on, [BGRS13] improved this
bound by showing a recursive family of instances, depending on a parameter p,
having an integrality gap asymptotically tending to 36

31 .

3

2 Integrality gap for fixed n in the DCUT for-
mulation

We present the general framework of the strategy we use to compute the gap,
which is the same approach adopted in [BB08] and [EM08] adapted to the STP.

Let PDCUT(n, T) the polytope defined by Constraints (1b),(1c), (2). Con-
sider the complete graph Kn(c) = (V,E) having n nodes and T ⊂ V , and a cost
function c on edges. Consider the quantities

αc,T :=
DCUT(Kn(c), T)

RDCUT(Kn(c), T)
(4)

αn,t := sup
c pm, T⊂V, |T |=t

αc,T . (5)

The first one is the integrality gap of a given instance of pm STP, while the
second one is the maximum integrality gap, once fixed both the cardinality of
T and the number of nodes. Clearly,

α = sup
n,t

αn,t. (6)

As we have already mentioned, the case t = 2, n can be solved in polynomial
time. However, they may not have an integral formulation when coming to the
DCUT formulation. In practice, for t = n the polyhedron is integral [E+67],
while [GM93] shows the same result for t = 2. However, the exact value for
different values of t is still unknown. To compute it, we proceed as previously
done in [BB08, EM08]. As already observed in [BB08], for a particular STP
problem, if we divide all the costs cij , i, j ∈ V of an instance STP(c, T) for the
optimal value DCUT(Kn(c), T), we obtain another instance STP(c′, T), having
an optimal value DCUT(Kn(c′), T) = 1 but the same set of optimal solutions.
Hence, one can write

αn,t := sup
c pm, T⊂V, |T |=t,
DCUT(Kn(c),T)=1

1

RDCUT(Kn(c), T)
,

that in turn becomes

1

αn,t
:= inf

c pm, T⊂V, |T |=t,
DCUT(Kn(c),T)=1

RDCUT(Kn(c), T). (7)

Note that, for the integrality gap, the choice of the terminals is irrele-
vant and the only thing that matters is the number of terminal. To make
it clearer, consider an instance STP(c, T) where |T | = t. This can be re-mapped
to STP(c, {1, . . . , t}) trough a node-colored-edge-weighted graph isomorphism.
More formally,

Definition 1 (Graph isomorphisms). Let G = (V,E), H = (V ′, E′) two undi-
rected non-node-colored non-edge-weighted graphs, with |V | = |V ′| = n. The

4

two graphs are said to be isomorphic, and we will write it as G ∼= H, if there
exists a bijection σ : V → V ′ such that

{i, j} ∈ E ⇐⇒ {σ(i), σ(j)} ∈ E′ ∀{i, j} ∈ E. (8)

We will also say, with an abuse of notation, that σ : G → H is an isomorphism
between G and H. If the two graphs are edge-weighted graphs, with w : E → R
and w′ : E′ → R being the weight functions of G and H respectively, it must
also hold that

w({i, j}) = w′({σ(i), σ(j)}) ∀{i, j} ∈ E, (9)

for the graphs to be isomorphic. This definition naturally extends to the case
of directed graphs by simply taking into consideration arcs instead of edges. If
the two graphs are node-colored graphs, with c : V → C and c′ : V ′ → C ′ being
the color functions of G and H respectively, it must also hold that

c(i) = c(j) ⇐⇒ c′(σ(i)) = c′(σ(j)) ∀i, j ∈ V. (10)

Each instance of the STP naturally leads to and edge-weighted node-colored
graph, where the colors are three: one for the root node, one for the terminal
minus the root, and one for the potential Steiner nodes, while the edge-weight
function is represented by the cost c.

Equation (7) implicitly states that the integrality gap does not depend on
the set T , but solely on its cardinality. This observation can be more formally
expressed in the following Lemma, making use of the definitions above.

Lemma 1. Let Kn(c) be a complete metric graph and let T ⊂ V , |T | = t,
such that DCUT(Kn(c), T) = 1. Let σ be an edge-weighted node-colored graph
isomorphism. Then

DCUT(σ(Kn(c)), σ(T)) = DCUT(Kn(c), T),

RDCUT(σ(Kn(c)), σ(T)) = RDCUT(Kn(c), T).

Proof. First of all notice that σ(Kn(c)) is a complete metric graph. Now, let x
be an optimal solution of DCUT(Kn(c), T) and let y be an optimal solution for
RDCUT(Kn(c), T). Construct x′ = σ̃(x) and y′ = σ̃(y), where σ̃ is the same iso-
morphism but seen as a isomorphism between directed graphs, using the arcs of
x and y. We have that x′ and y′ are feasible solution of DCUT(σ(Kn(c)), σ(T))
and RDCUT(σ(Kn(c)), σ(T)), respectively, and they share the same optimal
value of x and y. Thus,

DCUT(σ(Kn(c)), σ(T)) ≤ DCUT(Kn(c), T),

RDCUT(σ(Kn(c)), σ(T)) ≤ RDCUT(Kn(c), T).

We now just need the reverse inequality to prove equality. To prove so, simply
do the same reasoning by considering the isomorphism τ = σ−1 : σ(Kn(c)) →
Kn(c).

5

Note that (7) is an optimization problem having linear constraints but
quadratic objective function, that can be re-written as follows:

min
X∈{0,1}2×|E|,

C∈R|E|

∑
{i,j}∈E

ce(xij + xji) (11a)

s.t. xij + xji ≤ 1, e = {i, j} ∈ E, (11b)

x
(
δ−(W)

)
≥ 1, W ⊂ V \ {1}, W ∩ {1, . . . , t} ̸= ∅, (11c)

0 ≤ xij ≤ 1 ∀i, j ∈ V, i ̸= j (11d)

cij ≥ 0 ∀{i, j} ∈ E, (11e)

cij ≤ cik + cjk ∀{i, j}, {i, k}, {j, k} ∈ E. (11f)

Constraints (11b) – (11d) ensures the feasibility of x, while Constraints (11e) –
(11f) ensure the property of c being a pm. Our preliminary experiments show
that this is intractable even for small values of n, t (e.g., n ≤ 5). Hence, we
proceed as done in [BB08, BEM07, EM08] leveraging the vertex representation
of PDCUT(n, T,). As we have fixed the terminal set being T = {1, . . . , t}, we will
denote, from now onward with PDCUT(n, t) := PDCUT(n, {1, . . . , t}). Hence,
this can be represented as the convex combination of its finite set of vertices
{x1, . . . , xkn,t}. Note that the number of vertices kn,t depends on both n and
t. Recalling what has been done in [BB08, BEM07, EM08], and by observing
that, from standard results of linear programming, for each cost c, there exists
an optimal solution attained at a vertex, we can re-write (11a) – (11f) as a linear
program for each vertex x

Gap(x) := min
C∈R|E|

∑
{i,j}∈E

ce(xij + xji) (12a)

s.t. cij ≥ 0 ∀{i, j} ∈ E, (12b)

cij ≤ cik + cjk ∀{i, j}, {i, k}, {j, k} ∈ E, (12c)

the optimal solution of c is attained at x. (12d)

As done in [BB08, EM08], we observe that constraint (12d) can be encoded
thanks to the complementary slackness conditions. Such conditions ensure that
x belongs to the point minimizing the STP at cost c. Hence, we can rewrite the
problem Gap as follows

Gap(x) := min
X∈{0,1}2×|E|

∑
{i,j}∈E

ce(xij + xji) (13a)

s.t. cij ≤ cik + cjk ∀{i, j}, {i, k}, {j, k} ∈ E, (13b)

ye +
∑

(i,j)∈δ−(W)

zW + dij ≤ ce ∀e = {i, j}, (i, j) ∈ A, (13c)

ye = 0 ∀(i, j) s.t. xij + xji < 1, e = {i, j} ∈ E, (13d)

zW = 0 ∀W ⊂ V \ {r}, W ∩ T ̸= ∅ s.t.
∑

(i,j)∈δ−(W)

xij > 1, (13e)

6

n t

time for
vertices

generation
feas

problems gap

4 3 0.04 70/256 1.000
5 3 4563.57 3655/28345 1.000
5 4 2798.17 3645/24297 1.000

Table 1: Results obtained via Polymake for the DCUT formulation. Number of
nodes, number of terminals, time for generating the vertices, number of feasible
problems and maximum gap found.

dij = 0 ∀(i, j) ∈ A s.t xij = 1, (13f)

ye +
∑

(i,j)∈δ−(W)

zW + dij − ce = 0 ∀e = {i, j}, (i, j) ∈ A s.t xij > 0, (13g)

ye, dij , dji ≤ 0, ∀e = {i, j} ∈ E, (13h)

zW ≥ 0 ∀W ⊂ V \ {r}, W ∩ T ̸= ∅, (13i)

cij ≥ 0 ∀{i, j} ∈ E. (13j)

where we will denote with A the sets of all oriented edges.

2.1 Vertices enumeration with Polymake and limits of the
DCUT formulation

As already discussed in the previous section, we aim to solve one Gap problem
for each vertex. Hence we need an exhaustive list of vertices of the polytope
PDCUT(n, t) for each n ≥ 3, for each 3 ≤ t ≤ n−1. To do so, we use the software
Polymake [GJ00], which is designed for managing polytope and polyhedron.
We implement the Gap function in Python, using the commercial solver Gurobi
11.0.0 [Gur23] for the optimization part.

On each of the so obtained vertex, we compute the Gap problem to get
the maximum possible value attained at each vertex. Table 1 reports this in-
formation. From these results, we can draw several conclusions. First of all,
the software Polymake can only exhaustively generate vertices for n ≤ 5. For
all the cases we could analyze, the value of the gap is exactly 1. For larger
values of n, the enumeration becomes computationally infeasible. Furthermore,
by running the Gap problem on many vertices of the DCUT formulation we
observe that the problem turns out to be infeasible. By analyzing the minimum
infeasibility set, we observe that many vertices of the DCUT formulation are
actually not compatible with the triangle inequality of the cost vector c nor with
its non-negativity. We tackle both issues in this paper by (a) the design of a
novel formulation tailored for the metric case and (b) the design of an heuristic
procedure for the vertices enumeration.

7

3 A novel formulation for the complete metric
case

A stronger version of the DCUT formulation is proposed in the paper introduc-
ing the state-of-art solver for the (Graphic) STP, Scip-Jack [GKM+17]. More
specifically, the formulation is as follows:

min
X∈{0,1}2×|E|

∑
{i,j}∈E

ce(xij + xji) (14a)

s.t. x
(
δ−(W)

)
≥ 1 W ⊂ V \ {r}, W ∩ T ̸= ∅, (14b)

x
(
δ−(r)

)
= 0 (14c)

x
(
δ−(v)

)
= 1 v ∈ T \ {r}, (14d)

x
(
δ−(v)

)
≤ 1 v ∈ S, (14e)

x
(
δ−(v)

)
≤ x

(
δ+(v)

)
∀v ∈ S, (14f)

x
(
δ−(v)

)
≥ xa ∀a ∈ δ+(v), v ∈ S, (14g)

0 ≤ xa ≤ 1 ∀a ∈ A, (14h)

xa ∈ {0, 1}, ∀a ∈ A, (14i)

where δ+(W) := {(i, j) | i ∈ W, j ̸∈ W}. From now on, we will abbreviate
this formulation with SJ. Constraints (14c)-(14e) describe the inflow of every
node: the first equation ensures that no inflow is present in the root, the second
equation ensures that the inflow of terminal nodes is exactly equal to 1, since
every terminal must be reached, and the third equation ensures that the inflow
of non-terminal nodes is smaller or equal than 1, since a non-terminal node may
or may not be part of an optimal solution. Note that both terminal and non-
terminal nodes have an inflow of at most 1 so that at most one path exists from
the root to any node. Constraint (14f) ensures that non-terminal nodes cannot
be leaves of the solution. Constraint (14g) ensures that no flow generates from
non-terminal nodes. However, this formulation is not specific for the metric we
want to attack, as illustrated by the example below.

Example 1. Let G = (V,E) be a complete metric graph with V = {0, 1, 2, 3, 4}
and let T = {0, 1}. Define x as the following

xij =

{
1, if (i, j) ∈ {(0, 1), (2, 3), (3, 4), (4, 2)},
0, else.

(15)

We have that x is feasible for the SJ formulation with r = 0 but it is never
optimal for any metric cost, since by setting x2,3 = x3,4 = x4,2 = 0 we obtain
a feasible solution with a strictly smaller cost. Note that in particular x is not
connected.

To prevent this issue, we have come up with a stronger formulation, tailored
for the complete metric case. This formulation is presented below.

min
X∈{0,1}2×|E|

∑
{i,j}∈E

ce(xij + xji) (16a)

8

s.t. x
(
δ−(W)

)
≥ 1 W ⊂ V \ {r}, W ∩ T ̸= ∅, (16b)

x
(
δ−(r)

)
= 0 (16c)

x
(
δ−(v)

)
≤ 1 v ∈ V \r, (16d)

2x
(
δ−(v)

)
≤ x

(
δ+(v)

)
∀v ∈ S, (16e)

0 ≤ xa ≤ 1 ∀a ∈ A, (16f)

xa ∈ {0, 1}, ∀a ∈ A, (16g)

In particular, in our new formulation, the left-hand side of Constraint (14f) is
multiplied by 2. This ensures that a non-terminal node is visited only if its
outflow is at least 2. The idea is that, in a complete metric graph, if the inflow
and the outflow of a non-terminal node are both equal to 1, then there exist an
optimal solution with a smaller cost that avoids detouring in that node. The
existence of such a solution is guaranteed by the fact that the graph is metric
and complete. As this formulation is only applicable when the graph is metric
and complete, we will abbreviate it with CM (complete metric). Note that such
a solution may not exist in a non-complete graph, for example, when G = (V,E)
with V = {0, 1, 2}, E = {{0, 2}, {1, 2}} and T = {0, 1}. Note also that we avoid
adding the equivalent of Constraint (14g) because of the following lemma.

Lemma 2. When dealing with positive costs, Constraint (14g) is redundant
even for the simpler DCUT formulation.

Before proving this Lemma, let us state another formulation, equivalent to
the DCUT formulation, obtained by applying Benders decomposition or the
max-flow-min-cut theorem. This formulation is the so called Multi Commodity
Flow (MCF) formulation, presented below.

min
X∈{0,1}2×|E|

F∈{0,1}2×|E|×t

∑
{i,j}∈E

ce(xij + xji) (17a)

s.t. xij + xji ≤ 1, e = {i, j} ∈ E, (17b)

f t (δ−(v))− f t (δ+(v)) =


−1, if v = r

1, if v = t

0, otherwise,

v ∈ V, t ∈ T \ {r} (17c)

f t
ij ≤ xij (17d)

f t
ij , xij ∈ {0, 1}. (17e)

This formulation is not computationally practical because of its large number
of variables, but it has interesting properties that can be used in the proofs.

Proof of Lemma 2. Let xij be an optimum vertex for the DCUT formulation
with a positive cost c. By Theorem 3.2 of [CT01], in particular, because of the
equivalence

min{c · x |x ∈ PMCF(n, t)|x} = min{c · x |x ∈ PDCUT(n, t)},

we have that there exists a configuration of varables f t
ij , t ∈ T terminals, i, j ∈

V , such that f t
ij ≤ xij for every t ∈ T, i, j ∈ V and

∑
i f

t
ij −

∑
i f

t
ji = 0 for

9

every t ∈ T, j ∈ S. Because xij is optimum for strictly positive costs, we have

that xij = maxt f
t
ij and so there exists tij ∈ T such that xij = f

tij
ij . Now let

k ∈ S. For every a ∈ δ+(k), that is, for every l ∈ V \ {k} we have that

xa = xkl by definition

= f tkl

kl by maximization

≤
∑
i

f tkl

ki by nonnegativity

=
∑
i

f tkl

ik by (17c)

≤
∑
i

xik by (17d)

= x(δ−(k)) by definition

which is equivalent to Constraint (14g).

Before diving into how we use this formulation for retrieving information
regarding the integrality gap of the DCUT formulation, we list some properties
of the CM formulation that we retain of interest by themselves.

3.1 Properties of the complete metric formulation

We first show that for a particular configuration of complete metric graphs,
namely, graphs with no triples of collinear points, the set of integer solutions of
the SJ formulation coincides with the set of integer solution of the CM formu-
lation.

Lemma 3. Let G be a complete metric graph with c defining the edge weights
and let x be an optimal solution of SJ with c as the cost vector. If

cij < cik + ckj ∀{i, j}, {i, k}, {j, k} ∈ E, (18)

then x is also an optimal solution for CM with the same cost vector. Moreover,
if y is an optimal solution of CM for G, then it is also an optimal solution of
SJ for G.

Proof. Suppose by contradiction that there exists an optimal solution of SJ
which is not an optimal solution for CM. Because of the constraints that describe
the two models, this solution x must verify∑

i ̸=j

xij ≤
∑
k ̸=j

xjk,

2 ·
∑
i ̸=j

xij >
∑
k ̸=j

xjk,

for a certain j ∈ V \T . It follows that there exist i, k ∈ V such that xij = xjk =
1. Since we are in a complete graph, setting these two variables to zero and

10

setting xik = 1 gives us a feasible solution, which is also of smaller cost because
of hypothesis (18), which is in contradiction with the optimality of x.

Let now y be an optimal solution of CM for G. Clearly, y is feasible for SJ.
Suppose by contradiction that there exists z feasible for SJ such that c ·z < c ·y.
For the first part of the proof we have that z is an optimal solution for CM and
this contradicts the optimality of y.

Observation 1. Note that, without hypothesis (18), we can say that given a
metric cost c and x an optimal solution of DCUT with c as the cost vector,
there exists x′ an optimal solution for DCUT with c as the cost vector such that
x′ is also an optimal solution for CM with the same cost vector. In particular,
x′ is chosen as one of the optimal solutions of DCUT that avoids detouring into
non-terminal nodes, where detouring into a node means entering with one edge
and exiting with one edge.

Observation 2. Note that Lemma 3 does not hold true replacing SJ with RSJ
and CM with RCM. Take for example as graph G the metric completion of the
instance se03 of the SteinLib [KMV01]. We have that

RSJ(G,T) = 11 < 12 = RCM(G,T) = SJ(G,T).

We then have that SJ(·) = CM(·) and RSJ(·) ≤ RCM(·), and so the integrality
gap of the CM formulation is a lower bound for the integrality gap of the SJ
formulation on complete metric graphs. Moreover, the bound is not always
tight. The same holds true for the DCUT formulation.

An interesting property of the CM formulation is connectedness. Constraints
(14b) enforce the fact that in a SJ solution, all the terminal nodes belong to the
same connected component, but this is not guaranteed for non-terminal nodes.
For the CM formulation instead, the following lemma holds true.

Lemma 4. The support graph of any feasible point of RCM is a connected
graph.

Proof. It suffices to prove that no connected components without terminals
exist since every terminal belongs to the same connected component because
of Constraint (16b). So let x be a feasible point for CM and let H ⊂ V be a
connected component of x containing no terminals. We have that, because of
Constraint (16e),∑

i,j∈H

xij =
∑
j∈H

∑
i∈H

xij ≥
∑
j∈H

2
∑
i∈H

xji = 2
∑
i,j∈H

xji = 2
∑
i,j∈H

xij . (19)

The only possibility is that
∑

i,j∈H xij = 0 and so no connected component
without terminals can be part of a feasible solution for CM.

Note that Lemma 4 does not hold for the SJ formulation, as it is shown in
Example 1.

Another interesting property of the CM formulation deals with constraint
reduction. In this case, we can prove theoretical results on the number of edges
in a CM solution and consequently on the number of Steiner nodes.

11

Lemma 5. Let x be a feasible solution for the CM formulation for a graph with
|V | = n nodes and |T | = t terminals. Then x verifies∑

i,j

xij ≤ min(n− 1, 2t− 3). (20)

Proof. Given x, let Gx denote the corresponding subgraph. We know that Gx

is acyclic because of Constraint (16d) and we also know that Gx is connected
because of Lemma 4, so Gx is a tree. Since the number of nodes of Gx is ≤ n,
we have that ∑

i,j

xij ≤ n− 1. (21)

Now we only need to prove that
∑

i,j xij ≤ 2t− 3. We have that∑
i,j

xij =
∑
j

∑
i ̸=j

xij =
∑
j∈T

∑
i ̸=j

xij +
∑

j∈V \T

∑
i ̸=j

xij =

=
∑
i ̸=r

xir +
∑

j∈T\{r}

∑
i ̸=j

xij +
∑

j∈V \T

∑
i ̸=j

xij ≤

≤ 0 + (t− 1) +
1

2

∑
j∈V \T

∑
k ̸=j

xjk,

where the last inequality holds because of Constraint (16c), Constraint (16d)
combined with Constraint (16b), and Constraint (16e), respectively. Note that
only the last one gives us the inequality since the others hold with equality. We
can now rewrite ∑

j∈V \T

∑
k ̸=j

xjk =
∑
i,j

xij −
∑
j∈T

∑
k ̸=j

xjk.

Combining this fact with the previous equation, we get that∑
i,j

xij ≤ t− 1 +
1

2

∑
i,j

xij −
1

2

∑
j∈T

∑
k ̸=j

xjk.

Rearranging the terms, we obtain

1

2

∑
i,j

xij ≤ t− 1 − 1

2

∑
j∈T

∑
k ̸=j

xjk

and hence, multiplying by 2∑
i,j

xij ≤ 2t− 2 −
∑
j∈T

∑
k ̸=j

xjk =

= 2t− 2 −
∑
k ̸=r

xrk −
∑

j∈T\{r}

∑
k ̸=j

xjk ≤ 2t− 2 − 1 − 0 = 2t− 3,

where the last inequality holds because
∑

k ̸=r xrk ≥ 1 by taking W = V \ {r}
in Constraint (16b), and because xjk ≥ 0, respectively.

12

Observation 3. Let t ≤ n
2 + 1 and so min(n − 1, 2t − 3) = 2t − 3. Then, if

we consider the CM, our solution is a tree with at most 2t− 3 edges, so it has
2t− 3 + 1 = 2t− 2 nodes, t of which are terminals, leaving us with t− 2 Steiner
vertices. Thus, it suffices to write Constraints (16b) only for

W = W1 ⊔W2, W1 ⊂ T \ r, |W1| ≥ 1, W2 ⊂ V \ T, |W2| ≤ t− 2, (22)

instead of writing it for any W = W1 ⊔W2, W2 ⊂ V \ T . For instance, in the
case (n, t) = (20, 5) we go from (24 − 1) × 215 = 491520 possible choices of W

to just (24 − 1) ×
∑3

i=0

(
15
i

)
= 8640, which is around 1.8% of the total.

After discussing the properties that make the CM formulation interesting
by itself, we now focus on commenting on the advantages it leads in deducing
information on the lower bounds of the DCUT.

First, we discuss why it is not restrictive to study the complete metric case.
In particular, we make use of the metric closure of a graph, defined below.

Definition 2 (Metric Closure of a Graph). Let G = (V,E) an edge-weighted
connected graph. We define the metric closure of G the complete metric graph
Ḡ = (V, Ē) such that the weight of the edge {ij} in Ḡ is equal to the value of
one of the shortest paths from i to j in the graph G.

We now link the integrality gap of the DCUT formulation of a graph to the
corresponding integrality gap of its metric closure.

Lemma 6. Let G = (V,E), T ⊂ V be a Steiner instance, and let Ḡ be the
Steiner instance corresponding to the metric closure of G. Then we have that

DCUT(G,T) = DCUT(Ḡ, T), RDCUT(G,T) = RDCUT(Ḡ, T). (23)

Proof. Let x be a feasible solution for G. Then it is also a feasible solution for
Ḡ, and because of the definition of metric closure, it is a feasible solution with a
smaller cost. We have then that DCUT(Ḡ, T) ≤ DCUT(G,T). Let now x̄ be a
feasible solution for Ḡ. Reasoning in a non-oriented way, if we take every edge
of x̄ and substitute it with the corresponding shortest path in G, we obtain a
subgraph of G that can be oriented as a feasible solution x of G, with a smaller
cost. The cost is (non-strictly) smaller because we may take the same edge in
different shortest paths. We then have that DCUT(Ḡ, T) ≥ DCUT(G,T) and
so DCUT(Ḡ, T) = DCUT(G,T).

For the same reasoning, we have that RDCUT(Ḡ, T) = RDCUT(G,T), with
the exception that, when substituting an edge of Ḡ with the corresponding
shortest path in G, since we are dealing with fractional solutions, if we have
to take the same edge multiple times because it appears in multiple shortest
paths, we have to take the minimum between 1 and the sum of all the values
with which that edge appears. This choice preserves feasibility and do not
produce a solution with a bigger cost.

13

3.2 The gap problem for the CM formulation

With this in mind, one can proceed as done in Section 2.1 and define a Gap
problem even for the CM formulation. Given x vertex of PCM(n, t), we define
GapCM as the linear problem of finding the cost vector that maximizes the inte-
grality gap of a vertex x, among those for which x is optimal. As the structure
is a little bit involved, we first write the constraints of the dual formulation,
which comes from the simple application of the duality from problem (16b) –
(16g). Table 2 shows the relation between the dual variables and the constraints

Let

W (i, j) := {W | W ⊂ V \ {r}, W ∩ T ̸= ∅, (i, j) ∈ δ−(W)}

Then, using the theory of duality, we can write the following

yri + Vi +
∑

w∈W (r,i)

zw ≤ cri i ∈ T \ {r} (24a)

yrj + Vj + 2Uj +
∑

w∈W (r,j)

zw ≤ crj j ∈ S (24b)

yij + Vj +
∑

w∈W (i,j)

zw ≤ cij i, j ∈ T \ {r} (24c)

yij + Vj + 2Uj +
∑

w∈W (i,j)

zw ≤ cij i ∈ T \ {r}, j ∈ S (24d)

R + yir ≤ cir ∀i ∈ T \ {r} (24e)

R + yjr ≤ cjr ∀j ∈ S (24f)

yji + Vi − Uj +
∑

w∈W (j,i)

zw ≤ cji i ∈ T \ {r}, j ∈ S (24g)

yij + Vj + 2Uj − Ui +
∑

w∈W (i,j)

zw ≤ cij i, j ∈ S, (24h)

R free, z ≥ 0, V, U, y ≤ 0 (24i)

Note that we can merge some constraints, in particular, (24a) and (24c) are the
same constraint where i ∈ T and j ∈ T \{r}. The same holds for (24b) and (24d)
if i ∈ T and j ∈ S. Lastly, we can drop constraint (24e) and (24f) as variable
R is free, and it only appears in these constraints. Note that, referring to the
primal formulation, this would imply deleting the variables xir, i ∈ V \ {r}.
Hence, the dual polytope can be rewritten as

yij + Vj +
∑

w∈W (ij)

zw ≤ cij i ∈ T, j ∈ T \ {r} (25a)

yij + Vj + 2Uj +
∑

w∈W (i,j)

zw ≤ cij i ∈ T, j ∈ S (25b)

14

Primal constraints Dual variables Primal constraints Dual variables

(16b) zW (16c) R
(16d) Vj (16e) Uj

(16f) yij

Table 2: Association between dual variables and primal constraints

yji + Vi − Uj +
∑

w∈W (j,i)

zw ≤ cji i ∈ T \ {r}, j ∈ S (25c)

yij + Vj + 2Uj − Ui +
∑

w∈W (i,j)

zw ≤ cij i, j ∈ S, (25d)

z ≥ 0, V, U, y ≤ 0 (25e)

Given a vertex x ∈ PCM(n, t), we want to write the gap problem, as done in
(13a) – (13j). Hence, we introduce variable cij {i, j} ∈ E and write the slackness
compatibility condition as follows

yij + Vj +
∑

w∈W (ij)

zw − cij = 0 ∀i ∈ T, j ∈ T \ {r}, xij > 0 (26a)

yij + Vj + 2Uj +
∑

w∈W (i,j)

zw − cij = 0 ∀i ∈ T, j ∈ S, xij > 0 (26b)

yji + Vi − Uj +
∑

w∈W (j,i)

zw − cji = 0 ∀i ∈ T \ {r}, j ∈ S xij > 0 (26c)

yij + Vj + 2Uj − Ui +
∑

w∈W (i,j)

zw − cij = 0 ∀i, j ∈ S, xij > 0 (26d)

zW = 0 ∀W ⊂ V \ {r}, W ∩ T ̸= ∅ x
(
δ−(W)

)
> 1 (26e)

Vj = 0 ∀j ∈ V \ {r}, x
(
δ−(j)

)
< 1 (26f)

Uj = 0 ∀j ∈ S, 2x
(
δ−(v)

)
< x

(
δ+(v)

)
(26g)

yij = 0 ∀(i, j) ∈ A, xij < 1. (26h)

As done for the DCUT formulation, we implement this optimization model
in Python, using Gurobi 11.0.0 as an optimization solver and we list all the
vertices using Polymake. We compute the Gap problem on each so-obtained
vertex to get the maximum possible value attained at each vertex. Table 3
reports this information.

First of all, we can observe that the number of vertices generated is smaller,
and all of them are actually feasible. As expected, the integrality gap si 1 (Note
that it must be a lower bound w.r.t the one of the DCUT formulation, which was
1). Note also that, even in this case, Polymake is not able to generate vertices
for n ≥ 6. For this reason, we describe two heuristic procedures to generate a
large number of vertices.

15

n t

time for
vertices

generation
feas

problems gap

4 3 0.732 4/4 1/1
5 3 44.62 5/5 1/1
5 4 37.01 44/44 1/1

Table 3: Results obtained via Polymake for the CM formulation. Number of
nodes, number of terminals, time for generating the vertices, number of feasible
problems and maximum gap found.

4 Vertices enumeration

In this section, we present some theoretical results and algorithmic procedures
that we use to enumerate vertices of the polytope PCM(n, t). We first intro-
duce some results linking polytopes of different dimensions and then, relying
upon these and other structural results, we present two different algorithms for
vertices enumeration.

4.1 Avoiding redundancy

Let us call spanning vertex a vertex x of PCM(n, t) such that it visits all of the
nodes, that is x(δ−(i)) + x(δ+(i)) > 0 for all i ∈ V . Note also that Lemma
4 implies that every spanning vertex is also connected. In a STP, some of the
potential Steiner nodes may or may not be part of an optimal solution. This
clearly holds true for vertices of PCM(n, t), both integer and non-integer, i.e.,
not all of the vertices are spanning vertices. Because of this fact, we can ask
ourselves if a non-spanning vertex of PCM(n, t) can be seen as a spanning vertex
of a polytope of a smaller dimension, and vice versa, that is, if a spanning vertex
of PCM(n, t) can be seen as a vertex of a polytope of a bigger dimension. The
following results link vertices of PCM(n + 1, t) with vertices of PCM(n, t) and
vice versa. These results will be used in the enumeration of vertices to reduce
the dimension of our research space by avoiding redundancy.

Lemma 7. Let x ∈ R(n−1)×n. Define y ∈ Rn×(n+1) as

yij =

{
xij , 1 ≤ i, j < n + 1,

0, otherwise.
(27)

Then, x ∈ PCM(n, t) if and only if y ∈ PCM(n + 1, t).

Proof. Let x ∈ PCM(n, t). Note that y satisfies the domain constraints. Re-
garding Constraint (16b), we have to distinguish between two cases. Let W be
a set as described in (16b) for y. (a) If n + 1 ∈ W , going from x to y adds the
variables xi,n+1 which are all zero so since x satisfies the constraint y satisfies
it too. (b) If n + 1 /∈ W , going from x to y adds the variables xn+1,j which are

16

all zero so since x satisfies the constraint y satisfies it too. Constraints (16c)
- (16d) are clearly satisfied by y since x satisfies them and we are only adding
variables that take value zero. Regarding Constraint (16e), if j = n + 1, the
constraint holds trivially since all the variables are zero. If j ̸= n+1, going from
x to y adds the variables xi,n+1, xn+1,j which are all zero, so since x satisfies
the constraint, y also satisfies it.

Let y ∈ PCM(n + 1, t) of the form (27). Note that x satisfies the domain
constraints. Let W be a set as descried in (16b) for x. Let Ŵ := W ∪ {n + 1}.
Ŵ is a set for which y satisfies the correspondent constraint (16b). In the
Ŵ constraint, the only variables that appear are the one appearing in the W
constraint plus the variables xi,n+1 which are all zero. Since the Ŵ constraint
is satisfied by y, the W constraint is satisfied by x. Constraints (16c) - (16d)
are clearly satisfied by x since y satisfies them. Regarding Constraint (16e),
passing from y to x removes the variables xi,n+1, xn+1,j which are all zero, so
since y satisfies the constraint, x also satisfies it.

We stress that, according to the formulation of the previous lemma, the
Lemma holds if we label the added node as a potential Steiner node.

Lemma 8. Let x be a vertex of PCM(n, t). Then

yij =

{
xij , if i, j ̸= n + 1,

0, otherwise
(28)

is a vertex of PCM(n + 1, t).

Proof. The idea of the proof is to show by contradiction that if y is not a vertex,
that x cannot be as well. To do so, we will rely on projection. In detail, We
have that y ∈ PCM(n + 1, t) because of Lemma 7. Let PCM(n + 1, t)0 be the
subpolytope of PCM(n + 1, t) defined as

PCM(n+ 1, t)0 := {z ∈ PCM(n+ 1, t) : zi,n+1 = zn+1,j = 0, 1 ≤ i, j ≤ n}. (29)

Let

π : PCM(n + 1, t)0 ↠ PCM(n, t)

(zij)i,j 7→ (zij)i,j ̸=n+1

(30)

be the projection considering the first n nodes. Note that π(y) = x and that
π is an injective map. Note also that Im(π) ⊂ PCM(n, t) because of Lemma 7.
By contradiction, suppose that there exist a, b ∈ PCM(n + 1, t) such that a ̸= b,
y = 1

2a + 1
2b. We have that

yi,n+1 = yn+1,j = 0 =
1

2
(ai,n+1 + bi,n+1) =

1

2
(an+1,j + bn+1,j). (31)

Since a, b ∈ PCM(n + 1, t), we have that ai,n+1, bi,n+1, an+1,j , bn+1,j ≥ 0 and so
ai,n+1, bi,n+1, an+1,j , bn+1,j = 0. Thus, a, b ∈ PCM(n + 1, t)0 and we can define

c = π(a),

d = π(b),
(32)

17

and we have that c, d ∈ PCM(n, t), c ̸= d, x = 1
2c + 1

2d, a contradiction.

Lemma 9. Let y be a vertex of PCM(n, t) of the form

yij =

{
xij , if i ̸= k ̸= j,

0, else,
(33)

for a certain k ∈ V \ T . Then x is a vertex of PCM(n \ {k}, t) ∼= PCM(n− 1, t).

Proof. We have that x ∈ PCM(n \ {k}, t) because of Lemma 7. Let

i : PCM(n \ {k}, t) ↪→ PCM(n, t)

(zi,j)i ̸=k ̸=j 7→ ((zi,j)i ̸=k ̸=j , 0, . . . , 0)
(34)

be the trivial immersion and note that i(x) = y. Note also that Im(i) ⊂
PCM(n, t) because of Lemma 7. By contradiction, suppose there exist c, d ∈
PCM(n \ {k}, t) such that c ̸= d, x = 1

2c + 1
2d. If we define

a = i(c),

b = i(d),
(35)

we have that a, b ∈ PCM(n, t), a ̸= b, y = 1
2a+ 1

2b, and so we have a contradiction.

Note that, even in this case, we are working on potential Steiner nodes.

Observation 4. Note that π is an injective map and i(PCM(n, t)) ⊂ PCM(n +
1, t)0, thus we have that π is also a surjective map and so it is bijective. More-
over, π is linear and sends vertices in vertices. In particular

PCM(n + 1, t)0 ∼= PCM(n, t). (36)

Note that π is a surjective map because given an element x ∈ PCM(n, t), we
have that π(i(x)) = x, and we can map i(x) through π because i(PCM(n, t)) ⊂
PCM(n + 1, t)0. This implies that, in the aim of evaluating vertices of our
polytopes, it is sufficient to evaluate vertices of PCM(n, t) to get all of the vertices
of PCM(m, t), for every m = t, t + 1, . . . , n. Alternatively, we can evaluate only
the spanning vertices of PCM(n, t) for every n, t, since every non-spanning vertex
can be seen as a spanning vertex of a polytope of a smaller dimension, applying
the lemmas above iteratively. Note that we are only interested in non-isomorphic
vertices because isomorphic vertices have the same integrality gap, see Lemma 1.
Note also that the results presented above hold true for the DCUT formulation
as well as for the SJ formulations. The proof can be done in almost the same
way.

Observation 5. As we have seen, the trivial way to go from a vertex of PCM(n+
1, t) to a vertex of PCM(n, t) is removing zeros, and the trivial way to go from a
vertex of PCM(n, t) to a vertex of PCM(n + 1, t) is adding zeros. As one would

18

expect, the trivial way to go from a vertex of PCM(n + 1, t + 1) to a vertex of
PCM(n, t) and vice versa is the “dual” procedure of the previous one, i.e., adding
or removing one 1. Note that this can be done in different ways. More precisely,
the following procedures start with avertex of PCM(n, t) and return a vertex of
PCM(n + 1, t + 1):

(a) add an edge of weight 1 between a node v of indegree 1 and the new added
terminal, see for example Figure 1a → Figure 2a and Figure 1b → Figure
2b;

(b) same as (a), but substituting the outflow of v with outflow of the new
added terminal, see for example Figure 1a → Figure 2c;

(c) add an edge of weight 1 between the new added terminal and the root,
then swap the role of this two nodes, see for example Figure 1b → Figure
2d.

Reversing these procedures, when possible, allow us to go from a PCM(n+1, t+1)
to a vertex of PCM(n, t). The proofs are similar to the ones presented above.
For all of the procedures above, it is clear that the generated vertices are not
isomorphic to the ones we start from.

4.2 Two heuristics procedure for vertices enumeration

In the following, we state some more properties of the CM formulation that
permit the formulation of two different heuristic procedures, in particular, one
general search and one dedicated to a particular class of vertices. Note that we
are only interested in spanning vertices from now on (Observation 4).

4.2.1 The 1-2-costs heuristic

The first procedure is based on the following theorem, which states that, when
looking for integer solutions of the CM formulation, it is enough to study only
metric graphs with edge weights in the set {1, 2}.

Theorem 1. Let x be an integer point of PCM(n, t). Then x is an optimal
solution for the CM formulation with the metric cost cij = 2−(xij+xji) ∈ {1, 2}.

Proof. Consider x and the STP instance given by the vector c defined in the
statement. We want to prove that x is optimal. Let x′ be the integer optimal
solution for c and let s, s′ be the number of Steiner node of x and x′, respectively.
Let us write xe = xij + xji and the same for x′. We will divide the proof into
two cases. First, we will prove (i) that if s′ ≥ s, then necessarily s′ = s and
x = x′. Then, we will prove (ii) that if s′ < s we get a contradiction.

(i) Since the optimal solution is a tree with t terminals and s and s′ Steiner
node, respectively, we have that∑

xe = t + s− 1,
∑

x′
e = t + s′ − 1. (37)

19

Note that the definition of c implies that the cost is equal to 1 on the
edges in the support graph of the solution, and 2 otherwise. Because of
the definition of c, we have that∑

cexe = t + s− 1. (38)

Now let I0 = {e : xe = 0, x′
e = 1}, I1 = {e : xe = 1, x′

e = 0}, I = {e :
xe = x′

e}. We then have that∑
cex

′
e =

∑
I0

cex
′
e +

∑
I1

cex
′
e +

∑
I

cex
′
e =

= 2 × |I0| + |I| ≥ |I0| + |I|

= t + s′ − 1 ≥ t + s− 1 =
∑

cexe,

(39)

and they are equal if and only if s′ = s and I0 = ∅, and since these two
conditions imply I1 = ∅, we have that x = x′.

(ii) Let S(x) and S(x′) be the set of Steiner nodes of the solution x and x′,
respectively. Let S = {s1, . . . , sk} = S(x) \ S(x′) and let z be the number
of edges of the form sisj . Note that S ≠ ∅, otherwise we would have
s′ ≥ s. Now, x′ is a tree with s′ + t. Thanks to the hypothesis s′ < s, we
have s′ = s−k, and hence x′ is a tree with s+ t−k nodes, so s+ t−k−1
edges. On the other side, x has s+ t− 1 edges, all of them of cost 1, while
all of the other edges have cost 2. We now have to evaluate how many
edges of cost 2 x′ must have, given the fact that it does not contain any
node of the set S. We have that c contains exactly s + t− 1 edges of cost
1 and the number of those edges that contain a node of S is

(

k∑
i

deg(si)) − z. (40)

Since we said that x′ must contain s+t−k−1 edges, its cost is E1+2×E2,
where E1 is the number of edges of cost 1 and E2 is the number of edges
of cost 2, and we have that

E1 ≤ s + t− 1 − ((

k∑
i

deg(si)) − z),

E2 = s + t− k − 1 − E1,

(41)

and the minimum of E1 + 2 × E2 is attained when E1 is exactly equal to
the rhs. The difference between the cost of x′ and the cost of x, which is
exactly s + t− 1, is then at least

2×((

k∑
i

deg(si)) − k − z) − ((

k∑
i

deg(si)) − z) =

= (

k∑
i

deg(si)) − 2k − z ≥ 3k − 2k − z ≥ k − z ≥ 1,

(42)

20

and so x′ is not optimal and we have a contradiction. Note that deg(si) ≥ 3
because of Constraints (16d) and (16e), and k−z ≥ 1 because the support
graph associated to S as a subgraph of x is a forest since it is a subgraph
of a CM solution, which is a tree.

Observation 6. Note that the generalization of Theorem 1 does not hold in
general for the non-integer case, i.e., if x is a non-integer point of PCM(n, t),
then x is not necessarily an optimal solution for the CM formulation with the
metric cost

cij = 2 − 1(xij + xji > 0), (43)

see for example the vertex depicted in Figure 4a. In this case, with the cost
assignation (43), we have that the fractional vertex has a value of 11/2 (multiply
the number of edges by 1/2), while the optimal value of the CM formulation for
this instance is 5. Thus, the vertex shown in Figure 4a cannot be optimal for
this instance. It still holds that the vertex mentioned above is an optimum of a
metric graph where every edge weight is in the set {1, 2}, namely setting the cost
as in (43) but changing the cost of the two edges outflowing the root, setting
them to 2 instead of 1. Note that in this case, the subgraph linked to edges
with cost 1 is not connected, as the root represents a connected component.

The observation above together with Theorem 1 lead us to formulate an
heuristic search based on the generation of metric graphs with edge weights in
the set {1, 2} and then solve the STP on those instances. The detailed procedure,
called OTC(n, t) as in One-Two-Costs, is described in Algorithm 1.Note that for
computational reasons we restricted our search to the generation of connected
graphs only, and so to graphs with costs {1, 2} in which the subgraph regarding
the edges of cost 1 spans all the node and is connected. We are aware that
this is a strong restriction, making the procedure unable to find some vertices,
see Observation 6. Note also that we restrict our search to graphs G = (V,E)
with n ≤ |E| ≤ n · t − t2: the lower bound is given by the fact that we are
only interested in non-integer vertices, and the upper bound was derived after a
first set of computational experiments. In Section 5.1 we broadly discusses this
choice.

4.2.2 Pure half-integer vertices

We now focus on a particular set of vertices, namely, vertices x such that xij ∈
{0, 1/M}. For simplicity, we restrict our attention to the case M = 2, and we call
such vertices pure half-integer vertices. In particular, given a non-integer vertex
x of PCM(n, t), we say that x is half-integer (HI) if xij ∈ {0, 1/2, 1} ∀i, j ∈ V
and we say that x is pure half-integer (PHI) if xij ∈ {0, 1/2} ∀i, j ∈ V . In the
following, we state and prove some properties of PHI vertices.

Lemma 10. Let x be a pure half-integer solution of PCM(n, t), that is also a
vertex of PDCUT(n, t) and an optimum for a metric cost. Then we have that
xij > 0 =⇒ xji = 0.

21

Algorithm 1 1-2-costs vertices heuristic

1: procedure OTC(n, t)
2: G = {G = (V,E) | G connected, |V | = n, n ≤ |E| ≤ n · t− t2}
3: T = {T | T ⊂ {1, . . . , n}, |T | = t}
4: G = ∅
5: for G ∈ G do
6: for T ∈ T do
7: for r ∈ T do
8: GT,r = node-colored graph with G as its support graph, r

colored as root, i colored as terminal ∀i ∈ T \ {r}, j colored as steiner

∀i /∈ T
9: if H ≇ GT,r ∀H ∈ G then

10: add GT,r to G
11: end if
12: end for
13: end for
14: end for
15: V = ∅
16: for GT,r ∈ G do
17: obtain the STP instance (G,T, r) from GT,r with cij = 1 if {i, j} ∈

GT,r and cij = 2 otherwise
18: solve (16a) - (16e)
19: if a solution x is found then
20: if x is a non-integer vertex of PCM(n, t) then
21: add x to V
22: end if
23: end if
24: end for
25: end procedure

Proof. Since x is pure half-integer, we have that xij = 1/2. Suppose by con-
tradiction that xji ̸= 0, and so by the same reasoning xji = 1/2. Because of
Lemma 4, we have that the set {i, j} is not a connected component of x, namely,
is not an isolated 2-cycle, and neither of the two nodes can be the root, as the
root has inflow equal to 0 because of Constraint (16c). Thus, there must exist
a path from the root to the two nodes, and so there must exist an active arc
going from a third node to one of the two nodes we are considering. Without
loss of generality, let xki > 0, that implies xki = 1/2. Suppose xik = 0, else,
we can do the same reasoning for the nodes {i, j, k} and repeat it until we get
back to the root, which has no inflow. Now we have to distinguish between two
cases.

(a) No other inflow is present in j, i.e., xaj = 0 ∀a ̸= j . Note that this
implies that j is not a terminal since it has an inflow of 1/2. Then x is not
optimum. Consider x′ that is equal to x on all the arcs but the arc (j, i),

22

and set x′
ji = 0. Clearly, for any non negative c, cTx′ < cTx. Note that

x′ is feasible for the DCUT. Constraint (1b) is clearly satisfied. Constraint
(1c) could not be verified by x′ only for a set W for which i ∈ W, j /∈ W ,
because then it appears the only variables that differs from x. Let us take
one of this set, and define W̄ = W ∪ {j}. We can write∑

(a,b)∈δ−(W)

x′
ab =

∑
(a,b)∈δ−(W)
(a,b) ̸=(j,i)

x′
ab + x′

ji =

=
∑

(a,b)∈δ−(W̄)

x′
ab −

∑
a∈V \W

x′
aj + x′

ji =

=
∑

(a,b)∈δ−(W̄)

xab −
∑

a∈V \W

xaj + x′
ji =

=
∑

(a,b)∈δ−(W̄)

xab + 0 + x′
ji ≥ 1 + 0 = 1,

where the inequality holds because x is feasible and W is a valid set. So
we have that x′ is feasible even for the constraints regarding the sets W for
which i ∈ W, j /∈ W and so it is feasible for the DCUT. If x′ is feasible for the
CM, the proof is concluded. If x′ is not feasible for the CM formulation, it
is because of Constraint (16e) because x′ satisifed all of the other constraint
since x is feasible for CM. Regarding Constraint (16e), if x′ is not feasible
for the CM anymore, it is because the outdegree of j in x was exactly two,
namely xji = 1

2 and there exist d such that xjd = 1
2 . Hence, we can build

x′′ from x′ by removing arc x′
ij and x′

jd from x′ and by adding the arc x′′
id,

avoiding the detour in j. This solution is feasible for the CM and it holds

cTx′′ ≤ cTx′

for the non-negativity and the triangle inequality. Hence

cTx′′ < cTx,

from the relation between x and x′ already proved. Hence, we can conclude
that if the only inflow of the (Steiner) node j is xij , x is neither optimal for
the CM nor for the DCUT.

(b) The total inflow of j is 1, and so there exists l such that xlj = 1/2. Suppose
xjl = 0 and suppose also that both k and l have an inflow of 1. This will
ensure feasibilty of the two points we are bout to construct. Then x is not
a vertex of PDCUT(n, t), because by setting

yab =


0, if a = l, b = j, or a = j, b = i,

1, if a = i, b = j, or a = k, b = i,

xab, else,

(44)

23

zab =


1, if a = l, b = j, or a = j, b = i,

0, if a = i, b = j, or a = k, b = i,

xab, else,

(45)

we have y ̸= z, x = 1
2y+ 1

2z, and y, z ∈ PDCUT(n, t) by an argument similar
from the one above. Visually, we can represent the three points as the
following

x = k i j l

y = k i j l

z = k i j l

where we draw only the interesting arcs. Note that dashed arcs represent a
value of 1/2 while full arcs represent a value of 1. If xjl ̸= 0, i.e., xjl = 1/2,
then we can go backward until we find one node m such that there exists
p for which xpm = 1/2, xmp = 0, and such a p exists because we can go
back to the root with the same reasoning as above. Suppose that both k
and p have an inflow of 1. We now do the same reasoning with y and z
but considering the whole paths from p to i and from k to m instead of the
paths from l to i and from k to j.Visually, we can represent the three points
as the following

x = k i j l . . . m p

y = k i j l . . . m p

z = k i j l . . . m p

where we draw only the interesting arcs. Note that dashed arcs represent
a value of 1/2 while full arcs represent a value of 1. If k or p do not have
an inflow of 1, we can just go backward until we find a point that has this
property. If we do not find it, we go backward till the root. At this point
we can do the same reasoning with the paths as we did above.

We now focus on a particular type of PHI vertices, namely spanning vertices
such that every Steiner node has indegree exactly one. We conjecture that every
PHI spanning vertex has this property by the following reasoning. First of all,
because of Lemma 10, there are no loops of length 2, ando so every edge can
be oreinted in only one way. Suppose there exists a Steiner node k such that

24

indeg(k) > 1, and since the maximum inflow is 1 because of Constraint (16d)
and we are dealing with pure half integer solutions, we have that indeg(k) = 2.
Then, regarding the MCF formulation, there exist T1, T2 ⊂ T , T1, T2 ̸= ∅,
and i, j ∈ V such that f t1

ik = f t2
jk = 1/2, ∀t1 ∈ T1, t2 ∈ T2. We conjecture

that is always possible to construct y, z ∈ PDCUT(n, t) such that y ̸= z and
x = 1

2y + 1
2z, leading to a contradiction. In particular, y is derived by x by

setting f t1
ik = 1, f t2

ik = 0, ∀t1 ∈ T1, t2 ∈ T2, and all the other variables are
set accordingly to (17c), while z is derived by x by setting f t1

ik = 0, f t2
ik = 1,

∀t1 ∈ T1, t2 ∈ T2, and all the other variables are set accordingly to (17c).
We now derive some properties of these vertices that will be exploited in our

heuristic search.

Lemma 11. Let (xij)ij be a pure half integer solution of PCM(n, t), t ≥ 3, that
is also a vertex of PDCUT(n, t) and an optimum for a metric cost. Let x be a
spanning vertex such that every Steiner node has indegree 1. Then it holds that

• |{(i, j) ∈ A | xij > 0}| = n + t− 2;

• 3t− n− 4 ≥ 0.

Proof. For the first point, it suffices to count the incoming edges of each node.
We have one incoming edge for each Steiner node and exactly two incoming
edges for every terminal that is not the root, since every terminal has an inflow
exactly equal to one and our edges have weights 1/2. The total number of edges
is then n− t + 2(t− 1) = n + t− 2.

For the second point, because of Constraint (16b) we have that at least two
edges exit from the root and at least two edges enter in every other terminals.
Moreover, since in every Steiner node enters exactly one edge, at least two
edges must come out. We then have that 2(n + t − 2) ≥ 2t + 3(n − t) and so
3t− n− 4 ≥ 0.

The properties stated above represent the core of the heuristic we now
present. We generate all of the non-isomorphic connected undirected graphs
such that every node has a degree of at least 2 and with exactly n+ t− 2 edges
with the command geng of nauty [MP14]. For every generated graph, we gener-
ate all the non-isomorphic orientation of the edges, that can only be oriented in
one way because of Lemma 10, and such that every node has a maximum inde-
gree of 2 since we have Constraint (16d) and we are dealing with PHI solutions.
This generation of digraphs can be done with the command watercluster2 of
nauty. The obtained digraph can be mapped into a spanning PHI vertex of
PCM(n, t) for every feasible case. In particular, we have to check that: (i) There
exist exactly n− t nodes with in-degree 1 (Steiner nodes); (ii) There exists one
node with in-degree 0 (root); (iii) There exist exactly t − 1 nodes of in-degree
2 (terminals). We filter all the generated graphs for these properties and then
we check if the remaining ones are vertices of PCM(n, t). This procedure, called
PHI(n, t), is illustrated in Algorithm 2.

25

Algorithm 2 Pure half-integer vertices search

1: procedure PHI(n, t)
2: G = {G = (V,E) | G connected, deg(i) ≥ 2 ∀i ∈ V, |V | = n, |E| =

n + t− 2}
3: diG = ∅
4: for G = (V,E) ∈ G do
5: if |{i ∈ V | deg(i) = 2}| ≤ t then
6: add to diG every non-isomorphic orientation of G s.t.
7: · every edge can be oriented in only one way
8: · every node has a maximum indegree of 2
9: end if

10: end for
11: V = ∅
12: for diG = (V,A) ∈ diG do
13: if |{i ∈ V | indeg(i) = 0}| = 1 then
14: if |{i ∈ V | indeg(i) = 1}| = n− t then
15: if |{i ∈ V | indeg(i) = 2}| = t− 1 then
16: xij = 1/2 iff (i, j) ∈ A is a solution of PCM(n, t) with
17: · {r} = {i ∈ V | indeg(i) = 0}
18: · V \ T = {i ∈ V | indeg(i) = 1}
19: · T \ {r} = {i ∈ V | indeg(i) = 2}
20: if x is a feasible vertex of PCM(n, t) then
21: add x to V
22: end if
23: end if
24: end if
25: end if
26: end for
27: end procedure

Observation 7. Note how the PHI(n, t) can be generalized to vertex attaining
values in the set {0, 1/m} just by changing some values: the indegree of the
terminal nodes must now be m, as well as the outdegree of the root, while the
indegree of the Steiner nodes is again 1. This give us a total number of edges
of n+ (m− 1)× t−m. In addition, every node has degree at least min(3,m); if
m > 3 the number of nodes with degree 3 is at most n− t; there must exist one
node of indegree 0, n− t nodes of indegree 1, and t− 1 nodes of indegree m.

5 Computational results

In this section, we discuss the results we obtained with our heuristic procedure
in terms of the number of vertices.

26

Implementation details. All the tests have been executed in parallel on
8 CPUs 13th Gen Intel(R) Core(TM) i5-13600, and 16 GB of RAM. All the
functions have been implemented in Python. For the optimization problems,
we use the commercial solver Gurobi [Gur23].

5.1 A comparison between the two proposed heuristics

We now discuss the differences and similarities of the two heuristics. First of
all, notice how neither of the two are exhaustive procedures: there exists a
vertex that can be found by the one-two-cost (OTC) heuristic but not by the
PHI heuristic, for example Figure 2a, and there exists also a vertex that can
be found by the PHI heuristic but not by the OTC heuristic, see Observation
6. While the PHI heuristic is tailored for vertices with particular values, and so
with a particular structure, the OTC is general enough to find different types
of vertices; moreover, it remains an open question whether the heuristic can be
an exhaustive search by dropping the connectivity constraint.

On the other hand, the OTC heuristic is very costly, even with the additional
constraint of generating connected graphs only: for every generated graph, ev-
ery possible assignation of the root, terminal nodes, and potential Steiner nodes
needs to be computed, and for every assignation one must solve an LP. The so-
lution of the LP does not guarantee to find fractional vertices with an integrality
gap of 1, since it may return as an equivalent solution an integer vertex. In ad-
dition, this procedure does not guarantee to generate non-isomorphic solutions
and so we have to filter the set of vertices by node-colored edge-weighted graph
isomorphism. The procedure does not even guarantee to find spanning vertices
only. The PHI heuristic is able never to generate isomorphic graphs, and so
every vertex generated belongs to a unique class of isomorphism. In addition,
no LP needs to be solved, since given an orientation of the vertices, the role of
every node is uniquely determined. Lastly, note that in the heuristic OTC, we
have applied the extra hypothesis that the number of edges is bounded above
by n · t− t2 for efficiency purposes. Without this hypothesis, OTC is infeasible
for n ≥ 8. Table 4 results are obtained with this distinction. Note also that,
even with this restriction, OTC is impractical for n ≥ 9.

5.2 Lower bounds for the integrality gap for small values
of n

Table 4 and Table 5 present the lower bounds on the integrality gap we found
with the two heuristics, as well as the number of noninteger vertices. Note that
the vertices found by the OTC procedures presented in the table are filtered by
isomorphism. In this subsection, we discuss and comment the results we obtain.

n = 6, 7. For n = 6, for every value of t ≤ 3 ≤ n− 1, the best lower bound we
found is equal to 1. We conjecture that for n = 6, both the CM and the DCUT
formulation have a gap of 1. For n = 7, we found 4 vertices attaining the gap of
10/9 with the heuristic OTC, with three of them belonging to the same class of

27

(a) First vertex. (b) Second vertex.

(c) Third vertex. (d) Fourth vertex.

Figure 1: Fractional vertices of (7, 4) - all with integrality gap 10/9. Red circle:
root. Blue circles: Terminals. Green square: Steiner node

isomorphism. These vertices are pure half-integer, e.g., xa ∈ {0, 1
2}. Figure 1 we

present these vertices. We observe that, although the directed support graph is
the same, the oriented one changes and, in particular, it changes the node that
we label as “root”. Note that the heuristic PHI is only able to find two of them.
This is given by the fact that PHI is able to generate only one vertex for every
class of isomorphism of node-colored edge-weighted directed graphs, while the
OTC may find more than one representative for the same class of isomorphism.
Figure 1a, Figure 1c, and Figure 1d represent in fact three isomorphic graphs.

n = 8. The case n = 8 is more involving. While neither the PHI nor the
OTC are able to find fractional vertices for the cases t = 3, the PHI heuristic
does not find fractional vertices even for the case t = 4, the OTC finds again
the vertices of (7, 4) since it does not only find spanning vertices, as we already
discussed. Both heuristics only finds fractional vertices of integrality gap 1
for the case t = 6, while for the case t = 7 only the PHI heursitic is able to
find fractional vertices, again of integrality gap 1. The most interesting case is
t = 5. The maximum integrality gap is depicted in Figure 3a while different
values of integrality gap are depicted in Figure 4a and Figure 4b. Note that
the maximum integrality gap of this case for the PHI heuristic is 12/11, while
the maximum intgerality gap for the OTC heuristic is again 10/9: some of

28

(a) First vertex. (b) Second vertex.

(c) Third vertex. (d) Fourth vertex.

Figure 2: Fractional vertices of (8, 5) - all with integrality gap 10/9. Red circle:
root. Blue circles: Terminals. Green square: Steiner node

the vertices attaining this value are depicted in Figure 2. Note also how these
vertices can be obtained from vertices of (7, 4), see Observation 5.

n = 9. For n = 9, we can only run the PHI heuristics, as the OTC heuristic
goes out of memory. Note how no vertices for the case t = 3, 4 are found,
accordingly to the second point of Lemma 11, while for the cases t = 7, 8 only
vertices of integrality gap 1 are found. The maximum values of integrality gap
for the cases t = 5, 6 are 10/9 and 14/13, depicted in Figure 3b and Figure 3c,
rispectively. Different values of integrality gap are depicted in Figure 4. Notice
how all the non-trivial values of integrality gaps found for n ≤ 9 are of the form
2m

2m−1 .

n ≥ 10 For n ≥ 10, even the PHI heuristic is too intense. For t ∈ {8, 9}, we
weren’t able to conclude the experiments within 80 hours. For t ∈ {3, 4, 5, 6, 7},
we can make similar claims with respect to the previous values of n. We face a
new value of integrality gap in the case t = 6, that is, a value of 19/18. Note
that in this case, the value is of the form 2m+1

2m , in contrast to what we found
for the cases n ≤ 9. For n = 11, 12, we show that the cases t ≤ 5 did not lead
to any feasible PHI vertex. Test with bigger values of t were computationally
infeasible.

29

(a) (n, t) = (8, 5), gap
12/11.

(b) (n, t) = (9, 5), gap
10/9.

(c) (n, t) = (9, 6), gap
14/13.

Figure 3: PHI vertices of maximum gap for different values of (n, t).

PHI OTC

n t # vert. max gap
vert.
max. gap # vert. max gap

vert.
max. gap

6
3 0 - - 0 - -
4 1 1/1 1 0 - -
5 7 1/1 7 0 - -

7

3 0 - - 0 –
4 2 10/9 2 11 10/9 2
5 46 1/1 46 19 1/1 19
6 71 1/1 71 8 1/1 8

8

3 0 - - 0 - -
4 0 - - 19 10/9 2
5 89 12/11 15 195 10/9 14
6 1070 1/1 1070 239 1/1 239
7 758 1/1 758 0 - -

Table 4: Comparison between the PHI heuristic and the OTC heuristic. For
n ≤ 7 we do not limit the number of edges to n · t− t2. We report the number
of non-isomorphic vertices each heuristic can find e the maximum value of the
gap. We also report how many vertices attained the maximum gap.

5.3 Beyond pure half-integer vertices

For the previous section, it seems that the PHI heuristic is more suitable for
finding interesting vertices of the CM formulation. Interestingly, we observe that
it can be extended to find all the vertices of the type {0, 1/M}. An interesting
case is the one with M = 4, namely, vertices where the entries are only in
{0, 1/4}. Let’s call these vertices pure one-quarter (POQ). In this case, our
heuristic would work as follows for each pair (n, t)

1. Generate all the non-isomorphic graphs having (i) every node of degree at
least 3 and (ii) exactly n + 3t− 4.

30

n t # vert. max gap
vert.
max. gap n t # vert. max gap

vert.
max. gap

9

3 0 - -

10

3 0 - -
4 0 - - 4 0 - -
5 64 10/9 12 5 15 10/9 7
6 4389 14/13 200 6 7386 10/9 73
7 21121 1/1 21121 7 155120 16/15 2653
8 8987 1/1 8987 8 N.A N.A

9 N.A N.A

Table 5: Performances of the PHI heuristic for n ≥ 9. N.A means that the
time-limit has been hitted.

(a) (n, t) = (8, 5), gap
14/13.

(b) (n, t) = (8, 5), gap
18/17.

(c) (n, t) = (9, 6), gap
16/15.

(d) (n, t) = (9, 6), gap
20/19.

(e) (n, t) = (9, 6), gap
22/21.

(f) (n, t) = (9, 6), gap
24/23.

Figure 4: Fractional vertices of different gaps for different values of (n, t).

2. Filter this list by excluding all the graphs having more than n−t−1 nodes
with degree 3 (In our graph, there are n− t Steiner nodes that must have
a minimum degree of 3, and the terminals have a minimum degree of 4.)

3. For each of the so-oriented graphs, we use watercluster2 to get all the
possible orientations of edges, assuming that the maximum indegree must
be equal to 4

31

Figure 5: Skutella’s graph. Note that this graph is a POQ vertex of (n, t) =
(15, 8) of integrality gap 8/7.

4. We filter out the list thus obtained and keep only the directed graphs
having (i) exactly one node with in-degree 0 (The root); (ii) Exactly t− 1
nodes with in-degree 4; (iii) Exactly n− 1 nodes with in-degree 1.

These vertices are particularly relevant. In [KPT11], it is shown that the
integrality gap of the DCUT formulation is at least 8/7 by explicitly showing
an instance leading to such a gap. The instance has 15 nodes and 8 terminals.
The optimal vertex is of POQ type, and it’s due to a personal communication
between Skutella and the authors of [KPT11]. Figure 5 shows Skutella’s graph.
Note that, our heuristic would have been able to find such a graph. Note also
that solving the Gap function for the CM formulation leads to a gap equal to
8/7. Hence the maximum gap we can have on the Skutella’s vertex is exactly
8/7.

We run POQ algorithm for 6 ≤ 8, and for every 3 ≤ t ≤ n−1 and we observe
that no vertex with such properties.

5.4 Comparison between CM and SJ

In this section, we compare the two formulations from a computational perspec-
tive. More specifically, we compare the CM formulation with the SJ formula-
tion on the complete metric instance. Note that, in the standard benchmark
library, namely the SteinLib [KMV01] the number of instances that are both
complete and metric is relatively small. In all of such instances, since distances
have been calculated by rounding the Euclidean distance, the triangle inequal-
ity is not always satisfied, leading the CM to obtain only suboptimal solutions.
Hence, before attacking the instances with the two formulations, we replace the
complete graph with its metric closure, that is, the smallest metric space that
contains the graph’s vertex set and where the distance between any two ver-
tices is defined as the length of the shortest path between them in the graph.
Table 6 reports the mean runtime on 10 runs of Gurobi with different seeds, as

32

Instance
Family Name n t CM (s) SJ (s) Gap CM (%) Gap SJ (%)

MC

mc3.stp 97 45 18.56 4.94 0.00 0.00
mc2.stp 120 60 57.95 21.47 0.00 0.00
mc13.stp 150 80 TL TL 1.30 1.19
mc8.stp 400 188 TL TL 91.53 73.71
mc7.stp 400 170 TL TL 94.84 87.74
mc11.stp 400 213 TL TL 84.35 67.80

P4E

p455.stp 100 5 39.07 TL 0.00 4.52
p456.stp 100 5 61.96 TL 0.00 1.35
p459.stp 100 20 112.45 100.05 0.00 0.00
p457.stp 100 10 117.58 TL 0.00 14.32
p461.stp 100 50 TL 201.87 1.20 0.00
p458.stp 100 10 TL TL 3.90 16.92
p460.stp 100 20 TL TL 6.26 8.49
p463.stp 200 10 TL TL 51.51 48.19
p464.stp 200 20 TL TL 87.14 69.22
p465.stp 200 40 TL TL 85.97 53.40
p466.stp 200 100 TL TL 84.84 39.07

P4Z

p402.stp 100 5 2.30 1.67 0.00 0.00
p403.stp 100 5 15.64 17.93 0.00 0.00
p404.stp 100 10 21.15 5.70 0.00 0.00
p401.stp 100 5 21.57 14.79 0.00 0.00
p405.stp 100 10 23.87 9.83 0.00 0.00
p406.stp 100 10 30.03 8.71 0.00 0.00
p409.stp 100 50 35.97 23.26 0.00 0.00
p408.stp 100 20 62.98 35.07 0.00 0.00
p410.stp 100 50 135.79 59.63 0.00 0.00
p407.stp 100 20 TL 130.07 0.83 0.00

X
brasil58.stp 58 25 TL TL 0.58 1.58
world666.stp 666 174 TL TL 93.27 inf

Table 6: Comparison of the runtime of a naive implementation of the SJ and
CM linear programming

well as the gap. We set, for each instance, a time-limit of 5 minutes and TL
stands for time-limit reached. First of all, we observe that SJ performs slightly
better than the CM formulation we introduced, however, some interesting com-
ments can be made. For the family MC (instances randomly generated), and
P4E/P4Z [CGR92] (randomly generated instances with euclidean weights) SJ
performs better on the instances that can be solved to optimality and on the
ones that hit the time-limit, achieving a better gap. On X, where the instances
have been converted from TSPLIB [Rei91] problems, by selecting some nodes
as Terminals, our routine seem to work better, also providing a feasible optimal
solution on world666 when SJ is not able to do so.

We cannot claim at all that formulation CM outperforms formulation SJ.
However, the result obtained on X may encourage further investigation, for
example, in the design of an ad-hoc branching procedure.

33

6 Conclusion and future works

In this paper, we have studied the metric STP on graphs, focusing particularly
on computing lower bounds for the integrality gap for the DCUT formulation.
We introduced a novel approach tailored for the metric case to overcome the
outlined limitations of the DCUT formulation in the metric case.

We establish interesting properties of this new formulation and of the poly-
tope associated with its linear relaxation.

Central to our contribution is the extension of the Gap problem from the
symmetric and asymmetric TSP to STP.

To facilitate the usage of the Gap problem, we propose two heuristic ap-
proaches for generating suitable vertices as inputs. Unfortunately, our heuristics
are only able to generate vertices for n ≤ 10, still outperforming exact methods
that got stuck when n ≤ 5.

We compare the performances of the two heuristics and the impact they
have on providing insights into the exact value of the integrality gap. Although
we were not able to surpass the bound of 10

9 with n ≤ 10, we find different
structures of vertices leading to non-trivial gaps. By directly exploring vertices
similar to those yielding the highest gaps for n > 10, we observed that these
structures cannot be present for small values of n. Hence, we conjecture that
with n ≤ 10, the most ambitious gap is actually 10

9 .
We retain that our study raises several interesting research questions. First,

is it possible to design an ad-hoc branching procedure for the CM formulation?
Second, can we improve the OTC heuristic by reducing the number of com-
binations we have to analyze, without losing any of the outputs? Third, can
we prove any further characterization of the vertices that reduce the effort for
Polymake, similarly to what has been done in [BB08]? Lastly, can we enhance
the design and implementation of the POQ heuristic to explore whether new
lower bounds for the integrality gap are achievable for this type of vertices in
higher dimensions?

We conclude this paper with some conjectures.
First, we conjecture that for t = 3, the integrality gap is 1. Second, we

conjecture that our OTC procedure, without the restriction on connectedness
and the bound on the number of edges, is exhaustive, hence, every vertex of
PCM(n, t) can be obtained as an optimal solution of a 1-2 cost. Third, we
conjecture that every spanning vertex x of PCM(n, t) with xij ∈ {0, 1/M} has
an indegree of 1 in every Steiner node, and so our PHI is exhaustive for every
pure half-integer spanning vertex.

References

[AdOO21] Emmanuel Arrighi and Mateus de Oliveira Oliveira. Three is enough
for steiner trees. In 19th International Symposium on Experimen-
tal Algorithms (SEA 2021). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2021.

34

[BB08] Genevieve Benoit and Sylvia Boyd. Finding the exact integrality gap
for small traveling salesman problems. Mathematics of Operations
Research, 33(4):921–931, 2008.

[BEM07] Sylvia Boyd and Paul Elliott-Magwood. Structure of the extreme
points of the subtour elimination polytope of the stsp. Combinato-
rial Optimization and Discrete Algorithms, 23:33–47, 2007.

[BGRS13] Jaros law Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura
Sanità. Steiner tree approximation via iterative randomized round-
ing. Journal of the ACM (JACM), 60(1):1–33, 2013.

[CGR92] S. Chopra, E.R. Gorres, and M.R. Rao. Solving the Steiner tree
problem on a graph using branch and cut. ORSA Journal on Com-
puting, 4:320–335, 1992.

[CT01] Sunil Chopra and Chih-Yang Tsai. Polyhedral approaches for the
steiner tree problem on graphs. In Steiner trees in industry, pages
175–201. Springer, 2001.

[DF55] George Bernard Dantzig and Delbert Ray Fulkerson. On the Max
Flow Min Cut Theorem of Networks. RAND Corporation, Santa
Monica, CA, 1955.

[E+67] Jack Edmonds et al. Optimum branchings. Journal of Research of
the national Bureau of Standards B, 71(4):233–240, 1967.

[EM08] Paul Elliott-Magwood. The integrality gap of the asymmetric travel-
ling salesman problem. PhD thesis, University of Ottawa (Canada),
2008.

[GJ00] Ewgenij Gawrilow and Michael Joswig. Polymake: a framework
for analyzing convex polytopes. In Polytopes—combinatorics and
computation, pages 43–73. Springer, 2000.

[GKM+17] Gerald Gamrath, Thorsten Koch, Stephen J Maher, Daniel Re-
hfeldt, and Yuji Shinano. Scip-jack—a solver for stp and variants
with parallelization extensions. Mathematical Programming Com-
putation, 9:231–296, 2017.

[GM93] Michel X Goemans and Young-Soo Myung. A catalog of steiner tree
formulations. Networks, 23(1):19–28, 1993.

[Gur23] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual,
2023.

[GW95] Michel X Goemans and David P Williamson. A general approxima-
tion technique for constrained forest problems. SIAM Journal on
Computing, 24(2):296–317, 1995.

35

[HO94] JX Hao and James B Orlin. A faster algorithm for finding the
minimum cut in a directed graph. Journal of Algorithms, 17(3):424–
446, 1994.

[Kar10] Richard M Karp. Reducibility among combinatorial problems.
Springer, 2010.

[KMB81] Lawrence Kou, George Markowsky, and Leonard Berman. A fast
algorithm for steiner trees. Acta informatica, 15:141–145, 1981.

[KMV01] Thorsten Koch, Alexander Martin, and Stefan Voß. Steinlib: An
updated library on steiner tree problems in graphs. In Xiu Zhen
Cheng and Ding-Zhu Du, editors, Steiner Trees in Industry, pages
285–325. Springer US, Boston, MA, 2001.

[KPT11] Jochen Könemann, David Pritchard, and Kunlun Tan. A partition-
based relaxation for Steiner trees. Mathematical Programming,
127(2):345–370, April 2011.

[Lju21] Ivana Ljubić. Solving steiner trees: Recent advances, challenges,
and perspectives. Networks, 77(2):177–204, 2021.

[MP14] Brendan D. McKay and Adolfo Piperno. Practical graph isomor-
phism, ii. Journal of Symbolic Computation, 60:94–112, 2014.

[Rei91] G. Reinelt. TSPLIB — a traveling salesman problem library. ORSA
Journal on Computing, 3:376 – 384, 1991.

A The case with three terminal nodes

As we already mentioned, while the cases t = 2 and t = n are trivial in terms of
integrality gap, we know that fractional vertices with an integrality gap greater
than 1 exist for all of the formulations we have presented, starting from the case
t = 4. In this section, we reason about the case of the STP with three terminals,
proving the characterization of integer solutions and conjecturing the form of
non-integer ones.

First of all, we define a class of graphs that will be useful for our goals, and
we prove some additional characteristics of this class.

Definition 3 (Tristar). A tristar is a tree with at least three nodes and at most
three leaves.

Lemma 12 (Tristar characterization). A tristar with n nodes has either

• three leaves, one node of degree 3 and the remaining nodes of degree 2, or

• two leaves, and the remaining nodes of degree 2.

36

Proof. Let G = (V,E) be a tristar with n nodes and t = |T | = |{w1, . . . , wt}|
leaves. In particular it is a tree, so the following equation holds true

2(n− 1) = 2|E| =
∑
v∈V

deg(v).

Breaking the summation over V into two disjoint subset we obtain

2(n− 1) =
∑
v∈V

deg(v) =
∑
v∈T

deg(v) +
∑

v∈V \T

deg(v) =

= t + 2|V \ T | +
∑

v∈V \T

(deg(v) − 2) =

= t + 2(n− t) +
∑

v∈V \T

(deg(v) − 2).

Rearranging the terms we obtain∑
v∈V \T

(deg(v) − 2) = t− 2.

Note that this also holds true for any tree. Since deg(v) ≥ 2 for every v ∈ V \T ,
a tristar with two leaves has two nodes of degree 1 (the two leaves) and n − 2
nodes of degree 2, while a tristar with 3 leaves has exactly one node of degree
3, three nodes of degree 1 (the three leaves), and the remaining n− 4 nodes of
degree 2.

In the following theorem, we prove that the support graph of an optimal
solution of the DCUT formulation for a metric (non-necessarily complete) con-
nected graph with three terminal nodes is tristar.

Theorem 2. The support graph of an optimal solution T of the DCUT of a
metric graph with three terminal nodes is a tristar that has a subset of the set
of terminal nodes as the set of leaves. In particular there exists a node c ∈ V
such that the optimal solution T ⊇ T = {u1, v1, w1} is the union of one of the
shortest-(u1, c)-path together with one of the shortest-(c, v1)-path and one of the
shortest-(c, w1)-path., oriented accordingly with the choice of the root.

Proof. Since the cost are positive, by optimality arguments we have that T is a
tree and since T ⊂ T , we have that |T | ≥ 3. By contradiction, assume that T
has more than 3 leaves. Then there exists a leaf v ∈ T such that v /∈ T . Since
the degree of v is 1, we can remove the only edge of T connected to v and v
itself to obtain a new tree T ′. We have that T ⊂ T ′ and since we removed an
edge with a positive cost, T was not an optimal solution of the DCUT, which
is a contradiction.

We proved that T is a tristar. If there exists a node of degree three, let us
denote it with c. If such a node does not exist, it means that T has only two
nodes of degree one and so one of the three terminal nodes has degree two: let

37

us denote it with c. Note that, given any tristar with the set of leaves being a
subset of the set of terminal nodes, substituting any path between node c and
one of the terminal nodes with one of the shortest paths between c and that
terminal node gives us a solution with a less or equal cost. Note also that when
c is one of the terminal nodes, the shortest path between that node and c is the
empty set.

Note that such characterization has been already observed in [AdOO21].
Note also that we are only using that the costs are positive, the triangle in-
equality needs not to hold. Furthermore, the graph needs not to be complete
either, it suffices that all the terminal nodes belong to the same connected com-
ponent, which is a necessary hypothesis for the existence of a solution.

We are now able to characterize the integer solutions of the STP with three
terminals for complete metric graphs.

Corollary 1. In a complete metric graph G = (V,E), an optimal solution for
the DCUT with T = {r, t1, t2} is either of the form

• x{r,ti} = x{ti,tj} = 1, with (i, j) a permutation of (1, 2), or

• x{r,c} = x{c,t1} = x{c,t2} = 1 for some c ∈ V \ T ,

where we are considering xkl = 0 if not specified otherwise.

Proof. Since we are in a metric graph, one of the shortest paths between two
nodes u and v is given by the edge {u, v}, which exists because the graph is
complete. Thus, a tristar of minimum cost has either 2 or 3 edges, oriented as
in the thesis.

After several numerical tests, we were not able to produce a fractional point
of PDCUT(n, 3) with an integrality gap greater than one, neither we were able
to find a non-integer optimal solution. This led us to formulate two different
conjectures.

Conjecture 1. Any vertex of PDCUT(n, 3) optimum for a metric cost is an
integer orientation of a tristar.

Conjecture 2. Given a metric graph, there exists an optimal solution which is
an integer orientation of a tristar.

Note in particular that Conjecture 1 implies Conjecture 2. Note also that
the conjectures cannot be proven using total unimodularity of the constraint
matrix because even if for the cases (n, t) = (2, 2), (3, 2), (3, 3) the constraint
matrix is totally unimodular, it is not true for (n, t) = (4, 3), (5, t) with t ≤ n.
The conjectures above are based not only on numerical tests but also on the fact
that any integer solution is the union of two or three disjoint shortest paths, and
the DCUT formulation for the shortest path, i.e. the case t = 2, is integral. Note
that there exist solutions of the DCUT with more than three terminal nodes
which are not disjoint union of shortest path from one node to he terminals.

38

For example, let G be the complete graph with six nodes V = {1, 2, 3, 4, 5, 6}
and let T = {1, 2, 3, 4}, r = 1. If c1,5 = c2,5 = c3,6 = c4,6 = 1, c5,6 = 1.1,
while all the other costs are equal to 2, the optimal solution x is given by
x1,5 = x5,2 = x6,3 = x6,4 = x5,6 = 1 while all the other variables are equal to 0
and it cannot be seen as union of shortest path, even non necessarily disjoint.

39

	Introduction
	Related literature

	Integrality gap for fixed n in the DCUT formulation
	Vertices enumeration with Polymake and limits of the DCUT formulation

	A novel formulation for the complete metric case
	Properties of the complete metric formulation
	The gap problem for the CM formulation

	Vertices enumeration
	Avoiding redundancy
	Two heuristics procedure for vertices enumeration
	The 1-2-costs heuristic
	Pure half-integer vertices

	Computational results
	A comparison between the two proposed heuristics
	Lower bounds for the integrality gap for small values of n
	Beyond pure half-integer vertices
	Comparison between CM and SJ

	Conclusion and future works
	The case with three terminal nodes

