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Abstract: The concept of counterfactual explanations (CE) has emerged as one of the important concepts to
understand the inner workings of complex AI systems. In this paper, we translate the idea of CEs to linear optimization
and propose, motivate, and analyze three different types of CEs: strong, weak, and relative. While deriving strong and
weak CEs appears to be computationally intractable, we show that calculating relative CEs can be done efficiently. By
detecting and exploiting the hidden convex structure of the optimization problem that arises in the latter case, we
show that obtaining relative CEs can be done in the same magnitude of time as solving the original linear optimization
problem. This is confirmed by an extensive numerical experiment study on the NETLIB library.
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1. Introduction. As artificial intelligence (AI) continues to influence our daily lives, the need for
interpretability and transparency increases. This need for comprehensive explanations has been accelerated
partly by the legislative initiatives such as the General Data Protection Regulation, the European Union AI
Act, and the US Blueprint for an AI Bill of Rights (EUR-Lex, 2016, 2021; OSTP, 2022). These regulations
emphasize the necessity of providing clear and understandable explanations for automated systems, echoing
society’s demand for trustworthy AI and aligning with the right for explanation principle.

These developments have attracted the attention of the researchers in machine learning who have started
to develop algorithms that pave the way for explainable AI (XAI) (Biran and Cotton, 2017). Among these
efforts, the concept of counterfactual explanations (CEs) has emerged as one of the key approaches in XAI
to understanding the inner workings of complex AI models (Wachter et al., 2018; Maragno et al., 2022).
CEs aim to identify the (smallest) change in personal data that would lead to a desired model outcome. A
canonical CE example is credit scoring, where a model predicts loan eligibility. If the model denies a loan for
an individual, then it should also offer an explanation. For instance a CE might state “if your annual salary
was 1500 EUR higher and your account balance was 900 EUR higher, you would have been granted a loan.”

While much attention is dedicated to the explanations of AI systems, only a few works tackle explainability
of decisions stemming from the solutions of optimization problems (Korikov et al., 2021; Korikov and Beck,
2021, 2023; Aigner et al., 2024; Goerigk and Hartisch, 2023). These solutions play a pivotal role in diverse
domains, ranging from logistics and finance to healthcare and engineering. Despite their widespread presence,
the lack of transparency in the optimal solutions turns these systems into black boxes. As a result, the
reasoning behind their support in decision-making remains concealed.

In this context, the significance of explanations in optimization becomes apparent as they offer advantages
at various levels of application. First, they can be used to support individuals attempting to understand
the reasoning behind optimization-driven decisions. Second, stakeholders, such as businesses and public
authorities, are impacted by optimization results and can use explanations to get clear justifications for
decisions that may have broad implications. Finally, the operations research analyst, who is responsible for
setting up complex models, can greatly benefit from substantial insights into the complex interactions of
variables.

To this end, we propose to apply and extend the concept of CEs to linear optimization. As defined in
Korikov et al. (2021), we obtain a CE by identifying the (smallest) change needed in the optimization model’s
parameters such that an optimal solution of the new problem fulfills a set of desired properties. Consider a
multi-party resource allocation problem as the counterpart of the credit scoring example above. This problem
aims at minimizing the cost under a set of budget constraints. The optimal solution results in allocating
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only 100 resources to one of the parties. Then, a CE could be “if the cost of the party decreases to 30 EUR
and its budget increases to 2300 EUR, then the allocated amount would have been higher than 110.” While
the latter definition provides a useful concept, it is only one example from a complete set of situations and
difficulties appearing in practical applications. First, this definition only considers the existence of an optimal
solution with the desired property. Hence, it ignores the fact that multiple optimal solutions may exist and
not all of them are desired. Second, the latter concept applied to constraint parameters leads to intractable
optimization problems which cannot be solved for realistic instance sizes.

In summary, we make the following contributions to the literature:

(i) We extend the concept of CEs studied in Korikov et al. (2021) by defining three different types of
CEs which cover more relevant situations occuring in practice.

(ii) We apply the three concepts to linear optimization problems where both the objective and constraint
parameters can be adjusted.

(iii) We derive formulations to calculate all three types of CEs and analyze the mathematical structure of
the proposed formulations, identify their challenges, and propose approaches to solve them.

(iv) We computationally test all three types of CEs on a diet problem based on real-world data. Fur-
thermore, we conduct an extensive computational study for the relative CEs on linear optimization
problems from the NETLIB library. To make sure that our results are reproducible, we provide a
dedicated repository to replicate our experiments∗.

1.1 Examples. In this section, we describe in detail several motivating examples where counterfactual
explanations are crucial. These examples are taken from real life applications, and many of them were executed
by the authors.

Diet problem. In Peters et al. (2021, 2022) a linear optimization model is developed to optimize the food
supply chain for the United Nations’ World Food Programme (WFP). This model has been and is used for
each project of the WFP, and has enabled WFP to feed millions of people. An important part of the model is
the diet problem: Which food commodities should be included in the food basket such that all nutritional
requirements are satisfied, while the costs are minimized? The food commodities can be purchased from many
different suppliers. Suppose that the optimal solution of the linear optimization model is such that a certain
potential supplier of a certain food commodity is not part of the solution. It is certainly not enough to tell
this supplier that the model outcome is such that nothing will be purchased. The supplier wants to know for
which reduction in the purchasing cost, her commodity is part of an optimal food basket. In case she is able
to change the nutritional contents of her food commodity, the question is: “What is the minimal change in
these nutritional contents such that her commodity is part of the food basket?” Providing such insights to the
suppliers is also beneficial for WFP, since suppliers might change the purchasing costs or nutritional contents.

A similar situation occurs in the mobile application Feed Calculator (Meijer and van Veluw, 2024), which
is now used by thousands of small farmers in Africa and Asia to optimize the ingredients for the cattle feed.
Each possible ingredient can be purchased at a certain local supplier. The core of this application is the diet
model, which is a small linear optimization problem. The local suppliers could use counterfactual explanation
for this linear optimization model to detect minimal changes to the costs or nutritional contents such that its
food commodity becomes attractive for being purchased by local farmers.

We use the diet problem in this work as a running example to explain the different concepts.

Facility location problem. One of the Sustainable Development Goals of the United Nations is good
geospatial accessibility to healthcare centers in low- and middle-income countries. Facility location approaches
∗https://github.com/JannisKu/CE4LOPT
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have been developed to optimize geospatial accessibility given a certain budget to build new centers (Krish-
nakumari et al., 2024). For local governments it is crucial to know, for example, why in the optimal solution
there is no center opened in their districts. Counterfactual questions as “What is the minimal change in the
budget, or in the costs for building a center in their district, or in the population density, that leads to an
optimal solution where a center is chosen in their district?”

Of course similar counterfactual explanations are needed in other classical facility problems. For example,
one of the authors optimized the physical distribution structure for Philips in Europe. Several distribution
centers were closed, and new ones were opened. Of course, the management of these centers that were going
to be closed has to be explained why a closure is necessary. Counterfactual explanations are the ideal tool for
that.

Network flow problem. Many supply chain problems can be modeled as (multi-commodity) network
problems. For example, in the linear optimization model for WFP’s food supply chain (Peters et al., 2021,
2022), the diet problem is integrated into a network model to model the multi-modal transportation from the
supplier to the beneficiaries. Suppose that a certain port is not used according to the optimal solution of the
linear optimization model. The authorities of this port would like to know what is the minimal reduction in
costs such that it is used in the optimal solution. Similar counterfactual explanations are needed for potential
transportation companies.

Flood safety problem. Optimization has been used to determine new safety standards for the dike heights
in the Netherlands (Brekelmans et al., 2012; Eijgenraam et al., 2017). For each of the 53 so-called dike-ring
areas, i.e., an area that is protected by dikes, finally one out of five different safety levels has been chosen. For
the management of a specific dike-ring area it is crucial to know what minimal change in the dike-ring area
characteristics (as for example the number of people or the economic value in that area) would have led to a
higher safety level.

Most of the above examples are at the tactical or even strategical level. Indeed, especially for strategical
decisions that affect multi-stakeholders, counterfactual explanations are needed. However, we emphasize that
such explanations are also often needed in more operational decisions, where it can affect the personal lives.
Here are two examples taken from the Franz Edelman Award finalists and winners.

Scheduling trains in the Netherlands. In December 2006, Netherlands Railways introduced a completely
new timetable by using sophisticated operations research techniques (Kroon et al., 2009). The first versions of
the schedule led to much social unrest for the employees. The schedules were considered as “boring,” since for
each employee it was more or less the same every day. After these aspects were included in the approach, and
the resulting schedule was better explained, the employees finally accepted the new schedule.

Boston public school transport. Bertsimas et al. (2020) describe that optimization methods were
developed for Boston Public Schools (BPS) to create a better way to construct bus routes. The goals were
improving efficiency, deepening the ability to model policy changes, and realigning school start times. Using
this methodology, BPS proposed a solution that would have saved an additional $12 million annually and also
shifted students to more developmentally appropriate school start times (e.g., by reducing the number of
high school students starting before 8:00 a.m. from 74% to 6% and the average number of elementary school
students dismissed after 4:00 p.m. from 33% to 15%). However, 85% of the schools’ start times would have
been changed, with a median change of one hour. This magnitude of change led to strong vocal opposition
from some school communities that would have been affected negatively. Therefore, BPS did not implement
the plan.

In the examples above, multiple stakeholders are involved, and these stakeholders need counterfactual
explanation not only for the sake of explanation, but also for actually changing the input parameters.
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Counterfactual explanations can thus also be used as a tool for negotiation among multiple stakeholders.

Counterfactual explanations could also be valuable in single stakeholder environments. Minimal changes in
input parameters such that a certain solution is optimal gives much insight in the decision problem. Feasibility
ensuing counterfactual explanations are specifically very valuable for answering questions like “What is the
minimal change in the input data such that the problem becomes feasible?”

Notice that in all the examples mentioned above, even for the simplest diet problem, the factual explanations
do not work. The linear optimization model and the simplex or interior point methods are too difficult to
explain to a non-expert. However, “what-if scenario analysis” could provide partial explanation in some cases.
For example, enforcing in the facility location model that a certain center is opened, one could optimize for the
overall accessibility, and then calculate the accessibility decrease. The explanation is then: “If we open this
center, then there will be a reduction of x% in overall accessibility. Since in general obtaining explanations by
“what-if scenario analysis” is computationally much easier than by counterfactual explanations, we advocate
to use both ways.

We finally point out that the result of counterfactual explanation could also be that the minimal change is
extremely small, or even no change has to be performed. The last case could happen when there are multiple
optimal solutions and at least one of it already has the desired properties. For those cases, we argue that
factual explanations should be added, based on secondary criteria not included in the linear optimization
model.

1.2 Related Work. We first discuss the most related works for explainability in optimization.

Korikov et al. (2021) and Korikov and Beck (2023, 2021) study a definition of counterfactual explanations
for integer optimization problems. This definition coincides with our weak CE definition; see Section 2.
Korikov et al. (2021) introduce the concept and study it for the case where only the objective function
parameters of the problem may be adjusted. Furthermore, they restrict their approach to the case that the
desired solution property may only be defined on a single variable. Additionally, they assume that no such
desired solution is optimal for the present problem. We relax all these assumptions in our work. Korikov and
Beck (2021) connect the idea of CEs to inverse optimization and use inverse constraint programming to solve
the problem where again only the objective function parameters may be adjusted. Finally, Korikov and Beck
(2023) generalize the latter works to the case that the constraints for the desired outcome can be defined on
all variables. They develop a constraint generation algorithm which can solve the CEs problem for discrete
optimization problems if only the objective parameters may be adjusted.

Forel et al. (2023) assume that the parameters of the present optimization problem are derived by predictions
based on additional context parameters (e.g., the weather, day or temperature). They consider the smart-
predict-then-optimize method of Bertsimas and Kallus (2020), where random forests and nearest neighbor
predictions are used. They adapt the idea of CEs to calculate CEs in the context parameter space where
changes are only considered in the objective parameters of the problem.

A different concept for explaining optimization problems, which is not connected to counterfactual
explanations, was developed by Aigner et al. (2024). The authors present a data-driven explanation term,
based on historical solutions for the same problem class, which is added to the objective function of the
optimization problem to increase the explainability of the solution.

Finally, Goerigk and Hartisch (2023) propose an inherently interpretable model, which provides inter-
pretability of the derived solutions. The authors calculate a decision tree and a small set of solution such that
each future problem instance is mapped by the tree to one of the determined solutions. While this approach
can be generalized to constraint parameters, it is mainly studied for the objective function parameters.
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We next discuss how some of the known techniques in optimization are related to CEs in linear optimization.

Dantzig (1963) develops general linear programming, in which (some of) the parameters of the linear
optimization problem are variables too. This method is extensively extended to a much wider class of problems
(Gorissen et al., 2022). We will use these techniques to calculate CEs for linear optimization.

There is a strong relationship with inverse optimization, in which the optimal solution is given, and the aim
is to calculate unknown parameters in the objective or constraints. For a good survey on inverse optimization,
we refer the reader to the recent work of Chan et al. (2023). Calculating CEs for linear optimization appears to
be more difficult, since the precise optimal solution is not given, but only some constraints that the (optimal)
solution has to satisfy. There are several papers on partial inverse optimization, but in those papers only
objective parameters can change and finally a computationally intractable bilinear problem has to be solved;
see for instance (Wang, 2013).

Several papers (e.g., Amaral et al. (2008), Barratt et al. (2021), and Moosaei and Hladík (2021)) study the
question “What is the minimal change in the input data such that the problem becomes feasible?” This is a
simple version of the counterfactual explanation concept. Especially the computationally tractable methods
for relative counterfactuals developed in this paper could also be used to answer such feasibility questions.

Parametric optimization and sensitivity analysis are related concepts where changes in single parameters
(leading to changes in multiple coefficients in the former case) are studied. However, the goal of these concepts
is to analyze the region of changes which can be performed without changing the optimal solution (or optimal
basis). Moreover, sensitivity analysis can be seen as factual explanation: it analyzes the effect on the optimal
solution when we change the values of the problem parameters.

2. Definitions for Counterfactual Explanations. In this work, we propose to translate the concept of
CEs in machine learning to linear optimization. Consider an instance of a linear programming (LP) problem
of the form

min c⊤x

s.t. Ax ≥ b,

x ≥ 0,

(1)

where c ∈ Rn and A ∈ Rm×n and b ∈ Rm. This problem can be represented by its corresponding problem
parameters (c, A, b). An optimization algorithm for such an LP can be interpreted as a function which maps
every instance (c, A, b) ∈ H to an optimal solution x∗ of the corresponding LP. For a given factual instance
(ĉ, Â, b̂) ∈ H, a counterfactual explanation is a –preferably similar– instance (c, A, b) ∈ H for which the optimal
solution lies in a favored solution space, D(x̂). This space does not contain the optimal solution x̂ of the
factual instance. In other words, a CE is an update in the optimization parameters such that the optimal
solution of the LP with the updated parameters has a given list of desired properties. The main concept
described above is visualized in Figure 1.

Note that in general more than one solution can be optimal for an LP and hence the calculated optimal
solution may depend on the choice of the optimization algorithm. There can also be solutions, which are only
feasible for the LP, but they return smaller objective function values than a fixed target. These observations
give rise to extend the current framework for three different types of CEs, namely weak counterfactual
explanations, strong counterfactual explanations, and relative counterfactual explanations.

Assume the present problem is given as
min ĉ⊤x

s.t. Âx ≥ b̂,

x ≥ 0,

(PP)
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Figure 1: An overview over the concept of counterfactual explanations for linear optimization problems.

where ĉ ∈ Rn and Â ∈ Rm×n and b̂ ∈ Rm. The present problem can be interpreted as the optimization
problem which was solved by the decision maker to obtain an optimal decision x̂. Each variable can be
interpreted as being related to what we call a stakeholder. In the diet problem example, the decision maker
is the organization (including operations research analaysts) that has control over the data as well as the
optimization problem, and that is responsible for implementing the final decision. Each variable corresponds
to a product sold by a food supplier, which is a stakeholder.

Assume that a given subset of problem parameters is mutable and can be changed within a certain
feasible region. To this end, we define the mutable parameter space H ⊆ Rn × Rm×n × Rm which contains
the parameters of the present model, i.e., (ĉ, Â, b̂) ∈ H. The mutable parameter space can be defined by
intervals for each parameter in which the parameter changes or even by a polyhedral or ellipsoidal structure if
the allowed changes of parameters depend on each other. For example, if a stakeholder, influenced by the
optimization process, has access to change the parameters of the i-th column of A (denoted as Ai) and the
i-th cost parameter ci, the mutable parameter space is defined as

H =
{

(c, A, b) : cj = ĉj and Aj = Âj , ∀j ̸= i, b = b̂, ci ∈ [ci, c̄i], Ai ∈ [Ai, Āi]
}

,

where ci, c̄i, Ai, Āi are the corresponding upper and lower bounds on the mutable parameters. In the diet
problem the objective parameter ci corresponds to the price of a product and the column Ai corresponds to
the different nutrient values of the product. For every parameter the corresponding stakeholder can define her
mutable space depending on how much she is able to change the parameters.

Finally, we define the favored solution space D(x̂) which is the set of solutions x which are favored by a
stakeholder which is influenced by the decision x̂. For example, in the diet problem the favored solution space
could be the set of solutions, for which the stakeholder sells at least 5% more of her product i, i.e.,

D(x̂) = {x ∈ X : xi ≥ 1.05x̂i} .

Note that the set D(x̂) does not necessarily has to overlap with the feasible region of the present problem.
Furthermore, the favored solution space can be independent of x̂ and we denote it as D in this case.

2.1 Weak Counterfactual Explanations. The stakeholder which is influenced by the decision x̂ can
ask the following counterfactual question:

“What is the minimal change of the mutable parameters I have to make such that a solution
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from the favored solution space is optimal?”

This leads to the following more formal definition.

Definition 2.1 (Weak Counterfactual Explanation) A weak counterfactual explanation is a point
(c, A, b) ∈ H such that there exists an optimal solution x∗ of Problem (1) which lies in the favored solution
space D(x̂).

In other words, a weak counterfactual explanation is an update of the mutable parameters of the present
problem such that at least one optimal solution exists which belongs to the favored solution space. However,
since multiple solutions can be optimal, there is no guarantee that the optimal solution implemented by the
decision maker is contained in the favored solution space. Note that usually the stakeholder is interested
in the smallest changes of the mutable parameters such that the latter definition holds. More formally, the
stakeholder is looking for a weak CE (c, A, b) ∈ H which is closest to the point (ĉ, Â, b̂) in a distance metric
δ : H × H → R+.

In the following proposition we show a property of weak CEs which was already used in Korikov et al.
(2021) do define the concept of CEs.

Proposition 2.1 If (c, A, b) is a weak CE then

min c⊤x

s.t. Ax ≥ b

x ≥ 0
=

min c⊤x

s.t. Ax ≥ b

x ∈ D(x̂)
x ≥ 0,

i.e., the constraints in D(x̂) are redundant.

In fact the equation in the proposition is used in Korikov et al. (2021) to describe counterfactual explanations,
which shows that indeed the authors study weak counterfactual explanations.

2.2 Strong Counterfactual Explanations. It is important to note that in the definition of weak
CEs, we only require that there exists an optimal solution of the new optimization problem which fulfills
the requirements in D(x̂). However, depending on the optimization algorithm the decision maker uses, this
solution may not be implemented, since there might be alternative optimal solutions. To avoid this issue, we
define the strong version of counterfactual explanations. Here, the stakeholder which is influenced by the
decision x̂ asks the following counterfactual question:

“What is the minimal change of the mutable parameters I have to make, such that all optimal
solutions are contained in the favored solution space?”

This leads to the following definition.

Definition 2.2 (Strong Counterfactual Explanation) A strong counterfactual explanation is a point
(c, A, b) ∈ H such that the set of optimal solutions X ∗ of problem (1) lies in the favored solution space D(x̂),
i.e., X ∗ ⊂ D(x̂).

The difference here to the weak version is that we require all optimal solutions of the new optimization
problem to fulfill the requirements in D(x̂). This is an important difference, since it would guarantee that a
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decision from the favored solution space will be implemented by the decision maker, independently of the
solution method used to determine the optimal decision.

Note that usually the stakeholder is interested in the smallest changes of the mutable parameters such that
the latter definition holds. More formally, the stakeholder is looking for a strong CE (c, A, b) ∈ H which is
closest to the point (ĉ, Â, b̂) in a distance metric δ : H × H → R+.

Proposition 2.2 From the definitions of weak and strong CEs it follows:

(i) Every strong CE is also a weak CE.

(ii) If the set of optimal solutions for a weak counterfactual explanation (c, A, b) is a singleton, then
(c, A, b) is a strong CE as well.

2.3 Relative Counterfactual Explanations. In the following we introduce a third definition for
counterfactual explanations. In this setup, the stakeholder is not necessarily interested in the parameter
changes which lead to an optimal solution contained in the favored solution space, but only in the parameter
changes which lead to a favored solution which has a similar objective value as the present problem. Here the
stakeholder which is influenced by the decision x̂ asks the following counterfactual question:

“What is the minimal change of the mutable parameters I have to make such that a solution
from the favored solution space changes the objective value at most by a fixed factor?”

In the following we assume that for the optimal value of the present problem (PP) it holds that ĉ⊤x̂ ≥ 0.

Definition 2.3 (Relative Counterfactual Explanation) For a given factor α ∈ [0, ∞) a relative
counterfactual explanation is a point (c, A, b) ∈ H such that there exists a feasible solution in{

x ∈ X : Ax ≥ b, c⊤x ≤ αĉ⊤x̂
}

∩ D(x̂).

In contrast to weak and strong CEs this definition does not require optimality of a solution x in the favored
solution space, but requires only feasibility instead. Note that in case the factor α is smaller than one, we are
aiming for an improvement of the optimal objective function value, while for α ≥ 1 a certain deterioration of
the objective function value is accepted.

Note that usually the stakeholder is interested in the smallest changes of the mutable parameters such that
the latter definition holds. More formally the stakeholder is looking for a relative CE (c, A, b) ∈ H which is
closest to the point (ĉ, Â, b̂) in a distance metric δ : H × H → R+.

Proposition 2.3 From the definitions of weak and relative CEs it follows:

(i) If α = 1 and the parameters of the present problem (ĉ, Â, b̂) is a relative CE, then (ĉ, Â, b̂) is a weak
CE as well.

(ii) For every weak CE there exists an α such that the same point is also a relative CE.

Note that in case (i) of the latter proposition, since x̂ /∈ D(x̂), this means that the problem has multiple
optimal soluions and at least one of it lies in D(x̂).

2.4 Practical Implications. In this section, we discuss the different ways of how the different counter-
factual explanation concepts presented in the previous subsections can be used in practice. One of the main
questions in each application is: “Who is providing the counterfactual explanation to whom?”
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Decision maker provides explanations to stakeholders. A frequently occuring situation in practice is
that a decision maker who has ownership on the data and the optimization problem is calculating the solution
x̂ which is afterwards implemented while the involved stakeholders (suppliers or workers) do not have access
to the optimization problem. This is the case in all the examples presented in Section 1.1. For example in the
diet problem, the decision maker is calculating an optimal solution of the corresponding linear optimization
problem to decide how much of each product is bought from which supplier. In this case, a supplier asks the
decision maker what would be the minimal change in prices she has to perform such that the decision made
by the decision maker would be to buy at least a certain amount of a product from her. If she asks for a
strong CE the decision maker will return the minimal change in prices she has to perform such that for any
optimal solution (independent of the solution algorithm) the required amount will be purchased from her. In
contrast, if she asks for a weak CE the decision maker can return the minimal changes in prices together with
the information how much of the product would be purchased from her after the change of the prices. In this
case it could be that the final decision is not meeting her requirements since not in every optimal solution
the requirements have to be fulfilled for a weak CE. Additionally, if the decision maker changes her solution
algorithm (or its settings) in the future it can be that the final decision will be different. In case of a relative
CE the supplier has to provide the factor α and the decision maker will return again the minimum change in
prices. However, here the decision maker has to decide if an increase/decrease of the costs by a factor of α is
desirable and if a corresponding solution can be implemented.

Analysis of the problem. Especially the concept of relative CEs can be used to perform an analysis of the
problem which is faced by a decision maker. In the facility location problem to optimize geospatial accessibility
to supplies in case of a disaster the decision maker maybe wants to analyze the effects of parameter changes
on the rising costs. For example, an increase of the population in a certain region can effect the costs. In case
of a what-if analysis, the decision maker can answer questions of the form: if the population in every region
increases by 2% what will be my optimal costs? However, by solving the relative CE problem, we can answer
questions now of the form: “What is the minimal increase of the population such that my costs will increase
by at most 3%?”

Feasibility analysis. The concept of CEs is also beneficial in the situation where the present problem is
infeasible and the decision maker wants to find the smallest changes in the parameter space which would
lead to a feasible problem. In this case the weak CE problem can be solved with D(x̂) = Rn. Consider for
example a network flow problem where the capacities are given and the different involved stakeholders define
the demand and supply for each node. It could be that for the given situation there is no feasible flow. The
decision maker can now ask the questions: “What is the minimum change in the capacity parameters that I
have to perform such that there exists a feasible flow?” In this situation, we could also apply relative CEs
without the constraint for the objective value. Furthermore, the concept of strong CEs is equivalent to weak
CEs in this example.

3. Calculating Counterfactual Explanations. In this section, we present optimization models which
can be used to calculate all three variants of counterfactual explanations presented in Section 2. In the
following we assume that the present problem is feasible.

3.1 Weak Counterfactual Explanations. The weak counterfactual explanation problem is defined as

(WCEP) : inf
x,c,A,b

δ
(

(c, A, b), (ĉ, Â, b̂)
)

(2a)

s.t. x ∈ arg min
z:Az≥b,z≥0

c⊤z, (2b)

x ∈ D(x̂), (2c)
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(c, A, b) ∈ H, (2d)

where δ : H × H → R+ is a given distance function in the parameter space. Note that in the objective function
(2a), we minimize the distance to the parameters of the present problem. Constraint (2b) imposes that each
feasible x is an optimal solution for the problem with chosen parameters (c, A, b). Constraint (2c) ensures
that the optimal solution x lies in the favored solution space and constraint (2d) implies that we only consider
parameter changes inside the mutable parameter space H. The WCEP can be interpreted as an optimistic
bilevel problem; see e.g. Dempe et al. (2015); Kleinert et al. (2021).

In the following theorem, we present a reformulation of the latter problem as a bilinear problem.

Theorem 3.1 Problem WCEP is equivalent to the following problem:

(WCEP’) : inf
x,y,c,A,b

δ
(

(c, A, b), (ĉ, Â, b̂)
)

(3a)

s.t. c⊤x ≤ b⊤y, (3b)
A⊤y ≤ c, (3c)
Ax ≥ b, (3d)
x ∈ D(x̂), (3e)
(c, A, b) ∈ H, (3f)
x, y ≥ 0. (3g)

Proof. We replace the optimality constraint (2b) by constraints (3b)–(3d) and (3g), where (3d) and (3g)
ensure primal feasibility for x, (3c) and (3g) ensure dual feasibility for y, and (3b) ensures that primal and
dual objective function values are equal. By the classical strong duality result, it follows that any feasible x

must be optimal for the minimization problem in (2b). □

We next show the following structural properties of the WCEP:

(i) The projection of the feasible region on the (c, A, b)-space can be open.
(ii) The projection of the feasible region on the (c, A, b)-space may be non-convex and disconnected, even

if H and D(x̂) are convex sets, and even if only the objective parameters in c are allowed to change
(see Example 3.2 and 3.3).

(iii) The projection of the feasible region on the x-space can be convex if the 0-cost vector is contained in
H and D(x̂) is convex.

(iv) The projection of the feasible region on the x-space (and (x, y)-space) can be non-convex (see Example
3.4).

We start with showing that the feasible region of the (c, A, b)-space can be open. Due to this observation we
cannot guarantee that an optimal solution of the WCEP exists, which is why we use the infimum instead of
the minimum operator.

Example 3.1 Consider the present problem

min x

s.t. âx = â

x ≥ 0

where â = 0. The unique optimal solution is x̂ = 0. Assume the favored solution space D(x̂) = {x ∈ R : x ≥ 1}
and H = [0, 1]. For every a > 0 the optimal solution of the problem is x = 1 which lies in D(x̂). Hence, the
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feasible region for parameter a in WCEP is (0, 1] which is open. In this case the WCEP does not have an
optimal solution.

The following example shows that the feasible region projected on the (c, A, b)-variables can be non-convex.

Example 3.2 The following example shows that the projection of the feasible region of WCEP on the variable
space (c, A, b) may be non-convex; see Figure 2 for an illustration. Consider the present problem

max x1

s.t. |x1| + |x2| ≤ 1,

which can be reformulated into a linear optimization problem. Note that we do not require here that x ≥ 0 as
we do in Theorem 3.1. However, this can be easily achieved by shifting the feasible region into the positive
orthant, e.g., by replacing xi by xi − 1 everywhere in the problem. The problem has the unique optimal solution
x̂ = (1, 0). Suppose now that the favored solution space is given by

D =
{

x ∈ R2 : −0.5 ≤ x1 ≤ 0.5
}

.

Furthermore, we assume that only the two objective parameters c1, c2 can be changed to any value. Let int(S)
denote the interior of a set S. Then, the following statements hold:

• For any (c1, c2) ∈ int (C1) where C1 =
{

(c1, c2) = λ1
(1

1
)

+ λ2
( 1

−1
)
, λ1, λ2 ≥ 0

}
the unique optimal

solution of the present problem is x1 = (1, 0) /∈ D, and hence, C1 does not contain any feasible weak
CE.

• For any (c1, c2) ∈ int (C2) where C2 =
{

(c1, c2) = λ1
(−1

1
)

+ λ2
(−1

−1
)
, λ1, λ2 ≥ 0

}
the unique optimal

solution of the present problem is x2 = (−1, 0) /∈ D and hence C2 does not contain any feasible weak
CE.

• For any (c1, c2) ∈ C3 where C3 =
{

(c1, c2) = λ1
(1

1
)

+ λ2
(−1

1
)
, λ1, λ2 ≥ 0

}
the point x3 = (0, 1) ∈ D is

optimal, and hence, all points in C3 are weak CEs.

• For any (c1, c2) ∈ C4 where C4 =
{

(c1, c2) = λ1
( 1

−1
)

+ λ2
(−1

−1
)
, λ1, λ2 ≥ 0

}
the point x4 = (0, −1) ∈ D

is optimal, and hence, all points in C4 are weak CEs.

Note that int (C1) ∪ int (C2) ∪ C3 ∪ C4 = R2. Thus, the region of feasible weak counterfactuals is C3 ∪ C4, which
is non-convex.

Example 3.3 The following example shows that the projection on the feasible region of the variables c, A, b

may be disconnected. Consider the same setup as in Example 3.2 and additionally define the mutable parameter
space H = {(c1, c2) : 0.5 ≤ c1, c2 ≤ 1.5}. Then the feasible region of the weak CEs is given as (C3 ∪ C4) ∩ H
which is a disconnected set.

Proposition 3.1 If (0, Â, b̂) ∈ H, then the projection of the feasible region of Problem WCEP onto the
x-space is convex.

Proof. For the parameters (0, Â, b̂) all feasible points of the present problem are optimal. Hence, the
projection onto the x-space is the feasible set of the present problem intersected with D(x̂), which is convex.
□
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Figure 2: The feasible region of the present problem of Example 3.2 (in grey) and the feasible region of the
weak CEs for the objective parameters (in blue).

Figure 3: The feasible region of the problem of Example 3.4 (in grey).

Example 3.4 The following example shows that the projection of the feasible region of WCEP on the x-space
may be non-convex. Consider the linear optimization problem

max c1x1 + c2x2

s.t. x1 + x2 ≤ 2,

x1 − x2 ≤ 0,

x1, x2 ≥ 0,

where the feasible region is shown in Figure 3. We assume that only the cost parameters can change, where
(c1, c2) ∈ {1} × [−1, 1] and set D = R2

+. Note that the point z1 = (0, 2) is feasible and optimal for cost
vector c = (1, 1). On the other hand, the point z2 = (0, 0) is feasible and optimal for cost vector c′ = (1, −1).
However, for the point z̃ = 1

2 z1 + 1
2 z2 = (0, 1) there exists no cost vector in {1} × [−1, 1] for which it is optimal.

The reason is that for c2 > 0, the point (0, 2) always has a strictly better objective function value, while for
c2 < 0, the point (0, 0) always has a strictly better objective function value. For c2 = 0, the point (1, 1) has a
strictly better objective function value, since c1 = 1. Hence, the projection on the x-space is not convex.

The conclusion is that WCEP’ is in general a hard non-convex problem. If D(x̂), H, and δ
(

(c, A, b), (ĉ, Â, b̂)
)
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are representable by linear constraints, then WCEP’ is a bilinear optimization problem.

3.2 Strong Counterfactual Explanations. The strong counterfactual explanation problem is defined
as follows

(SCEP) : inf
x,c,A,b

δ
(

(c, A, b), (ĉ, Â, b̂)
)

(4a)

s.t. x ∈ D(x̂), ∀ x ∈ arg min
z:Az≥b,z≥0

c⊤z, (4b)

(c, A, b) ∈ H, (4c)

where δ : H × H → R+ is a given distance function in the parameter space. Note that constraint (4b) ensures
that all optimal solutions of the problem with selected parameters (c, A, b) are contained in the favored
solution space. The SCEP can be interpreted as a pessimistic bilevel problem; see Wiesemann et al. (2013).

Note that we are using the infimum instead of the minimum operator in Problem SCEP which is due to
the fact that the feasible region in the (c, A, b)-parameters can be open as the following example shows.

Example 3.5 Consider the present problem

min − x1

s.t. 0 ≤ x1, x2 ≤ 1

and assume that only the objective parameters are mutable. Consider the favored solution space D = {x :
0.5 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 0.5}. The only face of the feasible region which lies entirely in D is the extreme point
(1, 0). This extreme point is the unique optimal solution for all (c1, c2) ∈ (0, ∞) × (−∞, 0) which is an open
set. Hence, the feasible region for (c1, c2) of the SCEP for this example is open.

The possibility of an open feasible region for strong CEs is in contrast to the result proved later in Theorem
3.3 which shows that for relative CEs the feasible region is always closed.

In the following theorem we show how to reformulate SCEP into a bilinear problem.

Theorem 3.2 Assume the favorable solution space is given by

D(x̂) = {x ≥ 0 : Wx ≤ h}

for W ∈ Rq×n and h ∈ Rq. Then, SCEP has the same objective value as the following problem:

(SCEP’) : inf
c,A,b,Λ,Γ,τ

δ
(

(c, A, b), (ĉ, Â, b̂)
)

s.t. − Λb + Γc ≤ h,

cτ⊤ − A⊤Λ⊤ ≥ W ⊤,

− bτ⊤ + AΓ ≥ 0,

(c, A, b) ∈ H,

Λ ∈ Rq×m
+ , Γ ∈ Rq×n

+ , τ ∈ Rq
+.

Proof. First, we can reformulate SCEP as

inf
c,A,b

δ
(

(c, A, b), (ĉ, Â, b̂)
)

s.t. x ∈ D(x̂), ∀ x ∈ U ,
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(c, A, b) ∈ H,

where U = {x ≥ 0 | ∃y ≥ 0 : c⊤x ≤ b⊤y, Ax ≥ b, A⊤y ≤ c}. In the description of U , we use the same
optimality conditions as in the proof of Theorem 3.1. The latter problem is a robust optimization problem
with decision dependent uncertainty set. By using the classical constraint-wise dualization trick from robust
optimization, we can reformulate the problem as

inf
c,A,b

δ
(

(c, A, b), (ĉ, Â, b̂)
)

s.t. max
x∈U

w⊤
i x ≤ h i =, 1 . . . , p

(c, A, b) ∈ H,

where wi is the i-th row of matrix W . We can now dualize each of the maximization problems appearing
on the left-hand-side separately (introducing a copy of the dual variables for each one) which leads to the
formulation presented in the theorem. □

In the following we show that, as for weak CEs, the feasible region of the variables c, A, b may be non-convex
and disconnected.

Example 3.6 Consider again the same present problem in Example 3.2 together with the same favored
solution space. In addition, we assume that only the two objective parameters c1, c2 can be changed to
any value. Then, the set of objective parameters for which every optimal solution is contained in D(x̂) is
int (C3) ∪ int (C4), where C3 and C4 are defined as in Example 3.2. Note that in contrast to Example 3.3, here
for the strong CEs we have to choose the interior of the sets since, e.g., for direction

(1
1
)

the whole line between
points

(0
1
)

and
(1

0
)

is optimal, and hence, not every optimal solution is contained in D(x̂). Consequently,
(1

1
)

is not a strong CE. Like in Example 3.2 and Example 3.3, we can show that the feasible region for the strong
CEs is non-convex and disconnected.

3.3 Relative Counterfactual Explanations. In the following we consider relative counterfactual
explanations. We assume that for the optimal value of the present problem it holds that ĉ⊤x̂ ≥ 0. Calculating
relative counterfactual explanations is computationally easier than weak or strong CEs, since we do not have
to handle the optimality condition (2b) or (4b). In fact, the relative counterfactual explanation problem can
be formulated as

(RCEP) : min
x,c,A,b

δ
(

(c, A, b), (ĉ, Â, b̂)
)

(5a)

s.t. c⊤x ≤ αĉ⊤x̂, (5b)
Ax ≥ b, (5c)
x ∈ D(x̂), (5d)
(c, A, b) ∈ H (5e)
x ≥ 0. (5f)

This is again a bilinear problem. While later we will see that the projection on the x-space is convex, this
may be not the case for the projection on the (c, A, b)-space, as the following example illustrates.

Example 3.7 Consider the following simple example, with c = 1, A = (α, −α, 1, −1)T , b = (1, −1, β, −β)T ,
0 ≤ x1 ≤ 1, 0 ≤ α ≤ 2, and 0 ≤ β ≤ 1. Then the projection of the feasible region of the relative counterfactual
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problem (P) on the (α, β) space is:

{(α, β) | ∃x1 : x1 = β, αx1 = 1, 0 ≤ x1 ≤ 1, 0 ≤ α ≤ 2, 0 ≤ β ≤ 1} ={
(α, β) | β = 1

α
,

1
2 ≤ α ≤ 1

}
,

which is not convex.

For the rest of this section we make the following assumptions which we will need to show that the RCEP
(in contrast to Example 3.7) can be transformed into a convex problem. Furthermore, the assumptions ensure
that an optimal solution of the RCEP always exists. In the following we denote [n] = {1, 2, . . . , n} for any
positive integer n.

Assumption 3.1 The mutable parameter space H is compact, convex and columnwise, i.e., we have H =
H1 × . . . Hn × Hn+1 where (c, A, b) ∈ H if and only if (cj , Aj) ∈ Hj for all j ∈ [n] and b ∈ Hn+1 and all sets
H1, . . . , Hn+1 are bounded and convex.

Assumption 3.2 The favored solution space D(x̂) is a compact and convex set.

Assumption 3.3 The distance measure δ is continuous and such that

δ
(

(c, A, b), (ĉ, Â, b̂)
)

=
n∑

j=1
δj

(
(cj , Aj), (ĉj , Âj)

)
+ δn+1 (b) ,

where δj : Rm+1 → R+, for each j ∈ [n], and δn+1 : Rm → R+.

First we show that under the latter assumptions the feasible region in the (c, A, b)-space is compact. The
proof is provided in the Appendix. This result is needed to guarantee the existence of an optimal solution of
the RCEP.

Theorem 3.3 Under Assumption 3.1 – 3.3 the projection of the feasible region of RCEP on the (c, A, b)-space
is compact.

Due to Assumption 3.3 the objective function of the RCEP is continuous and hence by the Weierstrass
theorem and Theorem 3.3 an optimal solution of the RCEP always exists, leading to the following corollary.

Corollary 3.1 Under Assumption 3.1 – 3.3 either an optimal solution for the RCEP exists or it is infeasible.

We will now discuss how to transform the RCEP into an equivalent convex problem.One special setting
which directly leads to a convex optimization problem is the following: Assume the only constraints in the set
D(x̂) are of the form xi = ρi, where ρi is a fixed value, i.e., the favored solution space requires fixing a subset
of variables to given values. If at the same time only the parameters in c and A corresponding to the same
columns as the fixed variables are allowed to change, then no bilinear products appear in the formulation
RCEP, and hence, the problem is a convex optimization problem if δ is convex.

To transform RCEP into a convex problem in the more general setting, we use the linear transformation
from Gorissen et al. (2022). We will first show that by using the variable transformation

wj = cjxj

uij = aijxj , ∀i ∈ [m],
(6)
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we can reformulate RCEP as a problem with convex feasible region. Then, we show that this variable
transformation leads to a convex problem for several relevant classes of distance measures, δ.

Theorem 3.4 The feasible region of RCEP after transformation (6) is convex and can be described as

P = {(x, w, U, b) : 1⊤w ≤ αĉ⊤x̂ (7a)
U1 ≥ b (7b)
x ∈ D(x̂), (7c)
(wj , Uj) ∈ xjHj , ∀j ∈ [n], (7d)
b ∈ Hn+1, (7e)
x ≥ 0}, (7f)

where xjHj := {h′ : h′ = xjh, h ∈ Hj} for every j ∈ [n].

Proof. The proof follows the same idea as in Gorissen et al. (2022). Clearly, constraints (7a)–(7c) and
(7f) are equivalent to (5b)–(5d) and (5f) after applying the transformation (6). Furthermore, if xj = 0, then
constraint (7d) enforces wj = 0 and Uj = 0. If xj > 0, then Constraint (7d) is equivalent to(

wj

xj
,

Uj

xj

)
∈ Hj ,

and hence, constraints (7d) and (7e) are equivalent to (5d) by Assumption 3.1. Note that xjHj is convex for
every fixed xj > 0. Since Hj is bounded, it holds xjHj = {0} if and only if xj = 0, which is again a convex
set. Together with Assumption 3.2 the set P is convex which proves the result. □

From the latter result, we can directly conclude with the following observation.

Corollary 3.2 The projection of the feasible region of Problem (5) onto the x-variables is convex.

The following example shows that if x is not restricted in sign (i.e., x ≥ 0 is not part of Problem (PP)),
then the transformation is invalid, and the projection onto the x-space is not convex.

Example 3.8 Consider the following simple example, with c = 1, A = (α, −α)T , b = (1, −1)T , −1 ≤ x1 ≤ 1,
−1 ≤ α ≤ 1. Then, the projection of the feasible region of the relative counterfactual problem (P) onto the x

space is given by
{x | ∃α : αx = 1, −1 ≤ x ≤ 1, −1 ≤ α ≤ 1} = {−1, 1},

which is not convex.

The following example shows that if the columnwise assumption (Assumption 3.1) does not hold, then the
transformation is invalid, and the projection onto the x-space is not convex.

Example 3.9 Consider the following simple example, with c = 0, A =
(

α −α

−α α

)
, b = (1, −1)T ,

0 ≤ x1, x2 ≤ 1, −1 ≤ α ≤ 1. Then, the projection of the feasible region of the relative counterfactual problem
(P) onto the x space is given by

{(x1, x2) | ∃α : α(x1 − x2) = 1, 0 ≤ x1, x2 ≤ 1, −1 ≤ α ≤ 1} = {(1, 0), (0, 1)},

which is not convex.
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Substituting the variable transformation (6) into the objective function of RCEP leads by Assumption 3.3
to the objective function

n∑
j=1

δj

(
(wj

xj
,

Uj

xj
), (ĉj , Âj)

)
+ δn+1 (b) . (8)

There are several relevant cases in which RCEP remains convex after applying the variable transformation (6):

(i) Suppose only the parameters in b and one column j ∈ [n] are allowed to change. Hence, in this case
the objective function becomes

δj((cj , Aj), (ĉj , Âj)) + δn+1(b, b̂),

in which δj and δn+1 are convex functions. Using an epigraph variable z, the objective is to minimize
z + δn+1(b, b̂), under the additional constraint

δj((cj , Aj), (ĉj , Âj)) ≤ z.

If we fix the value z, then we can add this constraint to the set of convex constraints that define Hj .
Hence, in this case, RCEP reduces to a convex optimization problem. We can solve RCEP by using
binary search over the possible values of z.

(ii) Suppose the objection function is given by

max
j∈[n]

δj((cj , Aj), (ĉj , Âj)) + δn+1(b, b̂).

Again, we use an epigraph variable z for this objective function. Hence, the objective changes into
minimizing z + δn+1(b, b̂), and one extra constraint

δj((cj , Aj), (ĉj , Âj)) ≤ z

is added to Hj for every j ∈ [n] . As in the previous case, this yields a convex optimization problem
for a fixed value of z, and problem RCEP can be solved by using binary search over the value of z.

(iii) Suppose the objective function is given by
n∑

j=1
xjδj((cj , Aj), (ĉj , Âj)) + δn+1(b, b̂). (9)

One motivation for this choice is that changes in the parameters of a certain column are counted less
in the penalty function when the corresponding xj is low. Another situation could be when only the
parameters in one column are mutable, and in D(x̂) the value of the corresponding xj is specified.
After substitution (6), this objective function becomes

n∑
j=1

xjδj

((
wj

xj
,

Uj

xj

)
, (ĉj , Âj)

)
+ δn+1(b, b̂),

which is jointly convex in (x, w, U, b). Moreover, if δj((cj , Aj), (ĉj , Âj)), j ∈ [n], are linearly repre-
sentable (e.g. the ℓ1- or ℓ∞-norm) then, RCEP is linearly representable.

(iv) Suppose the objective function is given by
n∑

j=1
δj((cjxj , Ajxj), (ĉj x̂j , Âj x̂j)) + δn+1(b, b̂).
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After substituting (6), this objective function becomes
n∑

j=1
δj((wj , Uj), (ĉj x̂j , Âj x̂j)) + δn+1(b, b̂),

which is jointly convex in (w, U, b).

3.4 Testing Feasibility. In the following, we provide efficient ways to test if a returned parameter
setting (c, A, b) is actually feasible for the three different types of problems:

• To verify that a solution (c, A, b) is a relative CE, one can solve

min
x

c⊤x

s.t. Ax ≥ b,

x ∈ D(x̂),
x ≥ 0.

Then, we can check if the optimal value is at most αĉ⊤x̂. If this is the case, then the solution (c, A, b)
is a relative CE.

• To verify that a solution (c, A, b) is a weak CE, the equality in Proposition (2.1) can be checked by
solving both the standard linear problem and the same problem with the additional constraints in
D(x̂). If both problems have the same optimal objective function value, then (c, A, b) is a weak CE.

• There is an efficient preliminary-test that can detect whether solution (c, A, b) is not a strong CE.
This can be done by simply solving

min
x

c⊤x

s.t. Ax ≥ b,

x ≥ 0,

and checking if the optimal solution fulfills all the requirements in D(x̂). If this is not the case, then
the solution cannot be a strong CE. To verify that the solution is a strong CE, we have to check
whether the following problem is feasible

min
x

c⊤x

s.t. x ∈ D(x̂), ∀x ∈ arg min
z:Az≥b,z≥0

c⊤z.

The robust constraint can again be reformulated into a finite set of constraints by following the steps
in the proof of Theorem 3.2.

4. Numerical Experiments. In this section, we present three experiments. First, we calculate all three
types of CEs (relative, weak and strong) for a low dimensional example of the diet problem and present
the corresponding solutions to give a better understanding of the concepts. Second, we run experiments for
relative and weak CEs for the complete version of the diet problem, which was studied in Maragno et al.
(2023), and present the corresponding solutions. The results indicate that calculating optimal weak or strong
CEs is not always possible during the time limit of one hour. On the other hand, optimal relative CEs can be
calculated in seconds. Based on the latter results, we propose to use the concept of relative CEs for large
dimensional instances. Hence, in the third experiment we calculate relative CEs for all NETLIB instances
(NETLIB, 2024). We compare the bilinear formulation (5) to the equivalent linear reformulation (7) with the
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objective function (9). The experiments show that the latter can be solved significantly faster.

All algorithms were implemented in Python 3 and executed on a cluster with CPU AMD Rome 7H12 (2x),
64 Cores/Socket, 2.6GHz and 16 x 16GiB 3200MHz DDR4 RAM. All optimization problems are solved by
Gurobi 10.0.2.

We found stark numerical instabilities in our experiments when solving the bilinear formulations for weak,
and strong CEs. These instabilities are probably caused by the possibility that the feasible region of the
counterfactual problems can be open as shown in Sections 3.1 and 3.2. Changing the accuracy parameters of
Gurobi, or switching off the presolve procedure, could lead to significantly different solutions and sometimes it
could not be verified (by applying the tests in Section 3.4) that the solution is indeed a weak or strong CE.

4.1 The Diet Problem. In this section, we illustrate the different types of CEs in a practical setting.
To this end, we consider the following version of the diet problem, which was studied in Maragno et al. (2023).

We consider a set of suppliers S and a set of different types of food F , containing, e.g., wheat, sugar or
beans. Each food type contains a set of nutrients N . The purchasing price per 100 g of food type f at supplier
s is denoted as ps

f . We denote the vector of the prices for all food types of supplier s as ps ∈ R|F|
+ . For each

food type f , the amount of nutrient ν ∈ N per 100g is denoted as wν
f . For each nutrient, the required amount

in grams per day is given as reqν . The goal is to decide how much of each food to buy from which supplier,
such that the whole food basket satisfies all nutrient requirements and has minimal costs.

The diet problem is then defined as

min
∑
s∈S

(ps)⊤xs

s.t.
∑
s∈S

(wν)⊤xs ≥ reqν , ∀ν ∈ N ,∑
s∈S

xs
sugar = 0.2,∑

s∈S
xs

salt = 0.05,

xs ≥ 0 ∀s ∈ S,

(10)

where xs
product denotes the amount of the product (in 100g) which is purchased from supplier s. To reduce

numerical instability we set an upper bound of 100 for each variable, i.e., 0 ≤ xs
j ≤ 100 for all j ∈ F and

s ∈ S. We use the Syria dataset as used in Maragno et al. (2023). In the following subsections, we choose the
ℓ1-norm for the distance measure δj .

4.1.1 Reduced Problem. To explain the concepts of the different types of counterfactual explanations,
we consider a reduced version of the diet problem with only two suppliers, three products, and three nutrients.
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We round most parameters to the closest integer value:

min 800x1
beans + 1003x1

rice + 300x1
wheat + 1434x2

beans+ 1336x2
rice + 500x2

wheat

s.t.

2∑
s=1

335xs
beans + 360xs

rice + 330xs
wheat ≥ 2100, (Energy(kcal))

2∑
s=1

20xs
beans + 7xs

rice + 12xs
wheat ≥ 52.5, (Protein(g))

2∑
s=1

xs
beans + 1

2xs
rice + 2xs

wheat ≥ 35, (Fat(g))

0 ≤ xs ≤ 100, ∀s = 1, 2.

(11)

The optimal solution of the latter problem is to buy 1750 gram of wheat from Supplier 1, leading to the
optimal costs of 5250 (denoted as x1

wheat = 1750). Since Supplier 2 does not sell anything when this solution
is implemented by the decision maker, she could ask the following counterfactual question: “What is the
minimum change in my prices such that at least 100 grams of beans and 250 grams of rice would be purchased
from me?”

Formally the favored solution space is given as D =
{

x : x2
beans ≥ 1, x2

rice ≥ 2.5
}

. We allow every price of
Supplier 2 to be changed by up to ±100%, which defines the mutable parameter space. The factor α for
relative CEs is set to one. The optimal CEs for the latter question can be found in Table 1.

relative CE weak CE strong CE
CE pwheat : 500.0 → 29.1 pbeans : 1434.0 → 150.0

price : 1336.0 → 75.0
no feasible solution
found during TL

Opt. sol. x2
wheat = 1750.0g x1

wheat = 1750g -

Opt. sol. with D(x)
x2

beans = 100.0g
x2

rice = 250.0g
x2

wheat = 1637.5g
x2

beans = 100.0g
x2

rice = 6800g -

Table 1: Optimal counterfactual explanations regarding the prices for Problem (11) (Row 1); returned optimal
solution of Problem (11) after price changes have been applied (Row 2); returned optimal solution of Problem
(11) after price changes have been applied and with additional constraints in D (Row 3).

For the relative CE only the price of wheat is reduced significantly which leads to an optimal solution where
only wheat is bought from Supplier 2 instead of the desired amounts of beans and rice. This can happen since
a relative CE only asks for the minimal change in the prices such that the optimal solution, when adding the
constraints in D to the problem, has at most the costs of the original problem. However, if the decision maker
does not add these constraints to the problem then her optimal solution can violate the constraints in D and
even have a smaller objective value than the one determined when the constraints are added.

For the weak CEs, two price parameters have to be changed, namely the prices for beans and for rice.
However, when the problem is optimized with the updated prices the optimal solution does not fulfill the
requirements in D. This can happen since multiple optimal solutions exist and not the desired one is chosen
by the solution method. However, if we optimize the same problem with additional constraints in D, then the
optimal value does not change but the solution fulfills the constraints in D. For the strong CEs, no feasible
CE could be found during the time limit of 2 hours.

If Supplier 2 is not satisfied with the price changes which she has to undertake to achieve her desired
solution properties, she could consider changing the nutrient values of her products as well. A counterfactual
question in this case would be: “What is the minimum change in my prices and the nutrient values of my
products which I have to undertake, such that at least 100 grams of beans and 250 grams of rice would
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be purchased from me?” The optimal CEs for this counterfactual question can be found in Table 2 in the
Appendix.

relative CE weak CE strong CE

CE
pwheat : 500.0 → 62.4

Fat(g) in Beans : 1.0 → 2.0
Fat(g) in Rice : 0.5 → 1.0

Fat(g) in Wheat : 2.0 → 4.0

pbeans : 1434.0 → 1000.0
price : 1336.0 → 8.8

Protein(g) in Beans: 20.0 → 40.0
Protein(g) in Rice: 7.0 → 0.35

Fat(g) in Rice: 0.5 → 1.0

pbeans : 1434.0 → 0.0
price : 1336.0 → 327.3

Energy(kcal) in Beans : 335.0 → 0.0
Fat(g) in Rice : 0.5 → 0.0

Opt. sol. x2
wheat = 875g x2

beans = 100.0g
x2

rice = 3400.0g
x2

beans = 100.0g
x2

rice = 583.3g
Opt. sol.
with D

x2
beans = 100g

x2
rice = 250.0g

x2
rice = 762.5g

x2
beans = 100.0g

x2
rice = 3400.0g

x2
beans = 100.0g
x2

rice = 583.3g

Table 2: Optimal counterfactual explanations regarding the prices and nutrient values for Problem (11)
(Row 1); returned optimal solution of Problem (11) after price and nutrient changes have been applied (Row
2); returned optimal solution of Problem (11) after price and nutrient changes have been applied and with
additional constraints in D (Row 3).

The results show that for the relative CEs, only the price for wheat is reduced significantly while the
amount of fat for all products is doubled. Note that we only allow a change of 100% for each parameter, hence
more than doubling the nutrient value is not possible. For the weak CEs both, the prices of beans and rice
have to be reduced, while at the same time three nutrient values have to be changed. This time it can be seen
that the optimal solution after applying these changes fulfills the requirements in D, although we only solve
the weak CEs. For the strong CEs less parameters are changed compared to the weak CEs. However, the
ℓ1-norm of parameter changes is larger than the one for weak CEs which provably must be the case. It can be
seen that here optimizing the updated problem without the constraints in D leads to the desired requirements
in D which must be the case for strong CEs. Interestingly, finding a strong CE was possible during the time
limit, while for the setup, where only objective parameters can be changed, this was not possible; see Table 1.

4.1.2 Complete Problem. We now study the diet problem in its full dimension. An optimal solution
of the present problem (10) calculated by Gurobi is given in Table 3.

Supplier ID Prod. 1 (amount) Prod. 2 (amount) Prod. 3 (amount)
1 Wheat (263.3 g)
2 CSB (70 g)
3
4 Salt (5g) Oil (21.86 g)
5 Milk (69.5 g) Maize meal (122.6 g) Sugar (20g)

Table 3: Optimal solution of the diet problem.

In the following we calculate strong, weak and relative CEs for the latter problem, where first we
study counterfactuals only in the price parameters (i.e., objective parameters) and afterwards we consider
counterfactuals in both, price parameters and nutrient parameters (i.e., objective and constraint parameters).

We implemented formulation (5) to calculate the relative CEs, the formulation from Theorem 3.1 to
calculate weak CEs, and the formulation from Theorem 3.2 to calculate strong CEs. All formulations were
implemented in Gurobi with a time limit of one hour. All calculations for the relative CEs were finished
in milliseconds while the calculations for the weak CEs sometimes took up to one minute. For the strong
CEs, the numerical instabilities were very stark often leading to solutions which could not be verified to be
strong CEs. Furthermore, when increasing the accuracy parameters often no feasible strong CEs could be
found during the time limit. Hence, we do not present results for the strong CEs in this section. For the weak
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CEs we set the Gurobi parameters FeasibilityTol and OptimalityTol to 10−9 and switched off the presolve
procedure. All solutions in the following tables are the best known solutions found during the time limit.

Supplier relative CEs weak CEs
CE t (in s) CE t (in s)

1 pwheat : 300.0 → 112.4 0.2 pbeans : 800.0 → 255.4
pwheat : 300.0 → 227.6 60.3

2
pbeans : 1433.5 → 1407.8

pcsb : 799.0 → 792.5
pwheat : ∞ → 0.0

0.1
pbeans : 1433.5 → 233.6

pcsb : 799.0 → 839.0
pwheat : ∞ → 233.2

10.9

3 pwheat : 300.0 → 112.4 0.1 pbeans : 800.0 → 255.4
pwheat : 300.0 → 227.6 60.4

4 pwheat : ∞ → 13.5 0.1 pbeans : 1151.1 → 223.1
pwheat : ∞ → 221.2 4.8

5 pwheat : ∞ → 1.0 0.1

pbeans : 1383.2 → 295.5
pbulgur : 671.4 → 676.3
pmilk : 467.5 → 504.2

pmaize meal : 249.3 → 289.3
pwheat : ∞ → 266.2

17.1

Table 4: Best known counterfactual explanations regarding changes in prices after time limit of one hour.

Prices. We assume now that each supplier s has control over its own prices ps which can be changed by
at most ±100%. Each supplier asks the following counterfactual question: “What is the minimum change in
my prices which I have to undertake, such that at least 100 grams of beans and 250 grams of wheat would be
purchased from me?”

The solutions for this question are shown in Table 4. The results show that the required price changes for
the relative CEs are smaller than the ones for the weak CEs. However, some suppliers do not provide wheat,
hence the change of price for wheat is infinite. In the Syria data, the value for ∞ is set to 1, 000, 000. While
the relative CEs could be solved in milliseconds the solution times for weak CEs could take up to one minute.

Nutrient Values. We now assume that each supplier can additionally change the amount of nutrients of
each of her products by at most ±100%. Note that the nutrient values of the other suppliers are not changed.
Then, the question is “What is the minimum change in the prices and nutrient values of all my products
which I have to undertake, such that at least 100 grams of beans and 250 grams of wheat would be purchased
from me?”

The best known solutions after the time limit are presented in Table 9. The results show that the number
of changed parameters and the magnitude of changes is much smaller for relative CEs. For weak CEs the
number of nutrient parameters to change is large. This can also be due to the restriction that each parameter
can be changed by at most ±100%. Indeed, it can be seen that many nutrient parameters were set to the
maximum feasible value. All computations for the relative CEs could be performed in milliseconds, while all
computations for the weak CEs hit the time limit.

4.2 NETLIB Instances. In this section, we perform experiments for relative CEs on the NETLIB
instances (NETLIB, 2024). To this end we calculate CEs by formulation (5) (where δj is the ℓ1-norm) and by
the convex reformulation (7) with objective (9), where again δj is the ℓ1-norm. Using the resulting objective
function, we finally obtain a linear optimization even if we have an arbitrary number of columns which may
contain mutable parameters. This significantly speeds up the solution time.

We next describe the setup for the experiments. For every NETLIB instance, we calculate the optimal
solution x̂. We generate the favored solution space D(x̂) as follows: for every instance, we select three random
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columns j. If there is no conflict with the variable bounds of the NETLIB instance the favored constraint
xj ≥ 1.05x̂j is added (otherwise xj ≤ 0.95x̂j). If x̂j = 0 the favored constraint xj ≥ 0.05 is added if there is
no conflict with the original variable bounds (otherwise xj ≤ −0.05). To generate the mutable parameter
space H we do the following. We draw one, five, and 10 random columns, where we only consider columns
for which the original lower bound on the variable in the present problem is non-negative. In each of the
selected columns, all parameters are defined as mutable when rounding to zero digits changes the value. For a
small set of instances, all problem parameters are integer, hence the latter procedure does not provide any
mutable parameters. For this set of instances, all parameters are considered as mutable whose absolute value
is larger than 10 and is not a multiple of 10. If we draw five columns we combine these with the column
from the iteration where we only draw one column. When we draw 10 columns we combine these with the
columns from the iterations where we draw one column and five columns. By this procedure we ensure that
the optimal value for a larger number of columns is at least as good as for a smaller number, since all columns
from the previous iterations are contained. Every mutable parameter is allowed to change by ±100%.

The optimality factor is set to α = 1, i.e., we are looking for the smallest change in the problem parameters
such that a solution with the desired properties in D(x̂) exists, and which has the objective function value
at least as good as the present problem. For every NETLIB instance and for every number of columns
in {1, 5, 10}, we generate 20 CE instances as described above. We divide the NETLIB instances into nine
categories where we classify the dimension n of the problem (i.e., the number of variables) as small if n is at
most the 35% quantile, as medium if n is between the 35% and the 70% quantile, and as large if n is above
the 70% quantile of the list of dimensions of all NETLIB instances. We classify the number of constraints m

of each problem by the same procedure. The detailed information for the categorization is shown in Table 5.

Type Category Intervals
# Variables small 0 ≤ n ≤ 534
# Variables medium 534 ≤ n ≤ 2167
# Variables large 2167 ≤ n ≤ 22275

# Constraints small 0 ≤ m ≤ 351
# Constraints medium 351 ≤ m ≤ 906
# Constraints large 906 ≤ m ≤ 16675

Table 5: Categorization of NETLIB instances.

Table 6 contains information on the instance setup. Note that the two columns denoted by “# mutable
objective param.” and “# mutable constraint param.” correspond to the average number of bilinear terms
which appear in formulation (5). This value can be different for each NETLIB instance due to the procedure
how we select mutable parameters as described above.

Table 7 contains information about the solution quality of both problems. In the solutions of the linear
problem (7), the number of changed parameters (both objective and constraint parameters) is smaller than
for problem formulation (5), i.e., the linear problem leads to sparser changes in the problem parameters. This
is probably due to the convexity of the linear problem, since minimizing the ℓ1-norm over convex sets leads to
sparse solutions.

Table 8 shows results on the runtime of the methods. The results show that for all instance sizes the linear
problems can be solved faster than the bilinear formulation. The improvement in solution time increases
for larger instance sizes. The same holds for detecting infeasibility. Furthermore, the bilinear formulation
could not be solved to optimality in all cases within the time limit, while the linear problems never hit the
time limit. We also show the time to solve the present problem (PP) and the time to set up the problem
formulation for the present problem. The latter metric is motivated by our observation that setting up the
constraint matrix (although using the sparse-matrix datatype provided by Numpy) takes a significant amount
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n m
# mut.
columns # inst. feasible

(in %)
# mutable
objective
param.

# mutable
constraint

param.

small
small

1 28 38.00 0.38 4.85
5 28 54.00 1.67 20.93
10 28 59.00 4.09 54.67

medium
1 7 36.00 0.86 6.09
5 7 61.00 4.01 32.48
10 7 64.00 10.78 81.00

medium

small
1 4 84.00 0.75 5.88
5 4 100.00 2.59 22.58
10 4 100.00 6.75 54.12

medium
1 22 35.00 0.47 20.00
5 22 51.00 2.41 26.66
10 22 58.00 6.35 42.81

large
1 8 31.00 0.56 3.51
5 8 55.00 2.07 11.92
10 8 63.00 5.66 27.24

large

small
1 2 25.00 1.00 0.00
5 2 48.00 1.89 0.42
10 2 50.00 4.05 1.15

medium
1 6 43.00 0.63 2.49
5 6 49.00 3.34 10.46
10 6 53.00 8.62 26.16

large
1 21 45.00 0.60 5.49
5 21 58.00 2.50 22.75
10 21 65.00 6.40 54.14

Table 6: Instance informations for the considered classes of NETLIB instances. We show from left to right
the following values: the size of the dimension; the size of the number of constraints; the number of random
columns for mutable parameter selection; the number of NETLIB instances which fall into the category; the
number of instances for which a feasible relative CE exists in %; the average number of objective parameters
which are selected to be mutable; the average number of constraint parameters which are selected to be
mutable.

of the runtime for both, the present problem and the counterfactual problems. The results show that the
runtime of the present problem is of the same order or sometimes even larger order compared to the runtime
of solving the linear relative CE problem. The larger runtime comes from the fact that not all of the relative
CE problems are feasible.

5. Outlook. In this work, we argue that counterfactual explanations constitute a useful tool to provide
explainability for linear optimization problems. We present three different types of counterfactual explanations
which cover many relevant situations in practical applications. In contrast to weak CEs, the concept of strong
CEs considers the case that more than one optimal solution exists and enforces that all of them fulfill the
desired conditions. On the other hand relative CEs provide changes in the problem paramaters for which a
desired solution would not lead to a large increase in objective value. Our theoretical analysis shows that
the relative CE problem can be reformulated as a convex problem for many special cases. Using this hidden
convexity leads to computationally tractable solution methods as our experiments confirm.

Since the development of counterfactual explanations in optimization is still at the very beginning, there
are many open research questions which should be studied in future works. The concepts we developed in
this work could be extended to non-linear optimization problems, or to problems involving integer decisions.
While for the latter class of problems several works already exist, these do not cover the case of mutable
constraint parameters.

While we developed the concept of strong CEs to tackle the issue of possible multiple optimal solutions,
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our experiments show that the changes in problem parameters which have to be performed for a strong CE
are significant or in many situations strong CEs even do not exist. This is undesirable in a practical setting.
The reason for developing this concept stems from the fact that we do not consider which solution algorithm
is used by the decision maker to derive an optimal solution. A future direction could be to calculate CEs for
specific types of optimization algorithms, e.g., the simplex method or the branch-and-bound method. While
this is a challenging task, this would provide a less conservative way to calculate CEs in the strong fashion.

(5) with obj.∑n
j=1 δj((c, A), (ĉ, Â))

(7) with obj.∑n
j=1 xjδj((c, A), (ĉ, Â))

n m
# mut.

col. ∥c − ĉ∥0 ∥A − Â∥0 ∥c − ĉ∥0 ∥A − Â∥0

small
small

1 0.25 2.24 0.18 1.14
5 0.46 4.39 0.20 1.20
10 0.42 6.08 0.17 1.34

medium
1 0.63 2.30 0.55 1.04
5 0.84 4.56 0.45 2.03
10 0.76 5.31 0.34 2.88

medium

small
1 0.49 2.13 0.38 1.66
5 0.50 4.08 0.09 2.17
10 1.06 10.92 0.00 1.99

medium
1 0.33 2.59 0.31 0.92
5 0.42 3.23 0.31 0.98
10 0.58 4.31 0.32 0.96

large
1 0.49 1.37 0.47 0.75
5 0.63 2.02 0.48 1.02
10 0.80 3.60 0.53 1.16

large

small
1 1.00 0.00 1.00 0.00
5 1.26 0.00 1.26 0.00
10 1.45 0.05 1.20 0.05

medium
1 0.44 1.05 0.42 0.93
5 0.55 2.09 0.48 0.97
10 0.75 6.15 0.71 1.25

large
1 0.42 1.73 0.41 1.64
5 0.56 1.57 0.47 1.39
10 0.89 1.78 0.69 1.64

Table 7: Solution quality information for the considered classes of NETLIB instances. From left to right we
show the following information: the size of the dimension; the size of the number of constraints; the number
of random columns for mutable parameter selection; the number of objective parameters which are changed
compared to the present problem; the number of constraint parameters which are changed compared to the
present problem.
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(5) with obj.
∑n

j=1 δj((c, A), (ĉ, Â)) (7) with obj.
∑n

j=1 xjδj((c, A), (ĉ, Â)) PP

n m
# mut.

col.
Hit TL
(in %)

t
(in sec.)

t infeas.
(in sec.)

Hit TL
(in %)

t
(in sec.)

t infeas.
(in sec.)

t
(in sec.)

t setup
(in sec.)

small
small

1 0.00 0.19 0.13 0.00 0.14 0.13
0.13 0.125 1.00 29.19 0.13 0.00 0.15 0.13

10 2.00 43.97 0.14 0.00 0.17 0.15

medium
1 0.00 0.42 0.31 0.00 0.31 0.30

0.32 0.305 1.00 16.09 0.31 0.00 0.33 0.31
10 3.00 53.40 0.32 0.00 0.36 0.33

medium

small
1 0.00 0.79 0.78 0.00 0.53 0.77

0.53 0.495 0.00 1.49 nan 0.00 0.54 nan
10 4.00 109.16 nan 0.00 0.58 nan

medium
1 0.00 0.99 0.45 0.00 0.50 0.44

0.50 0.455 0.00 11.28 0.44 0.00 0.49 0.44
10 1.00 32.76 0.45 0.00 0.51 0.45

large
1 0.00 1.64 1.03 0.00 1.04 1.03

1.14 1.065 1.00 21.10 1.00 0.00 1.05 1.01
10 2.00 51.35 1.01 0.00 1.08 1.04

large

small
1 0.00 11.91 8.40 0.00 11.10 8.27

8.22 7.985 0.00 11.43 8.48 0.00 10.50 8.28
10 0.00 12.17 7.27 0.00 11.08 7.19

medium
1 0.00 2.17 1.40 0.00 0.90 1.36

1.34 1.245 0.00 3.48 1.39 0.00 0.92 1.35
10 0.00 15.65 1.42 0.00 0.95 1.38

large
1 1.00 94.58 28.78 0.00 4.90 5.36

17.35 3.185 3.00 117.39 24.37 0.00 4.42 5.40
10 6.00 202.81 27.19 0.00 4.95 4.90

Table 8: Solution time information for the considered classes of NETLIB instances. We show from left to right
the following values: the size of the dimension; the size of the number of constraints; the number of random
columns for mutable parameter selection; the amount of instances for which the solution method hit the time
limit of 1800 seconds; the solution time t in seconds (averaged over all instances which are not infeasible); the
time t which was needed to detect infeasibility (averaged over all instances which are infeasible); the time t
in seconds to solve the present problem (PP); the time t to set up the problem formulation for the present
problem.
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Appendix

Proof of Theorem 3.3

Proof. To prove the result we show that every convergent sequence of feasible points in the (c, A, b)-space
has a limit which is also feasible. W.l.o.g. we may assume that the objective parameters c are not mutable,
since we can always shift them into the constraints by using an epigraph reformulation. Furthermore, w.l.o.g
we may assume that the righ-hand-side parameters b are not mutable since we can introduce a new variable
xn+1 and rewrite the constraint system as

Assume we have an infinite converging sequence {At}t∈N of constraint matrices for which RCEP is feasible.
We denote the limit of the sequence as Ā. This limit lies in H since it is closed. Then for every t there exists
a point xt ∈ D(x̂) for which Atxt ≥ b. Since D(x̂) is compact, there exists a converging subsequence {xt}t∈I

with limit x̃ ∈ D(x̂). It holds

Āx̃ = lim
t→∞,t∈I

At lim
t→∞,t∈I

xt = lim
t→∞,t∈I

Atxt ≥ b

where the latter inequality holds since Atxt ≥ b for all t and the set {v : v ≥ b} is closed. By the same
argumentation x̃ fulfills all other constraints of RCEP and hence Ā is feasible for RCEP which proves the
closedness of the feasible region. Since H is bounded by assumption this proves compactness. □

Experimental Results Diet Problem Table 9 shows the optimal relative and weak CEs for the reduced
version of the diet problem studied in 4.1.1.
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Supplier relative CEs weak CEs
CE t (in s) CE t (in s)

1
pwheat : 300.0 → 126.2

Fat(g) in Beans: 1.2 → 2.4
Fat(g) in Wheat: 1.5 → 3.0

0.6

pwheat : 300.0 → 151.8
pbeans : 800.0 → 647.6

Energy(kcal) in Wheat : 330.0 → 411.7
Fat(g) in Beans : 1.2 → 2.4
Fat(g) in Wheat : 1.5 → 3.0

Iron(mg) in Beans : 8.2 → 8.8
Iron(mg) in Wheat : 4.0 → 0.0

ThiamineB1(mg) in Wheat : 0.3 → 0.0
RiboflavinB2(mg) in Beans : 0.22 → 0.4
RiboflavinB2(mg) in Wheat : 0.07 → 0.0

RiboflavinB2(mg) in WSB : 0.6 → 0.7
Folate(ug) in Beans : 180.0 → 139.5

Folate(ug) in Wheat : 51.0 → 0.0

3600.0

2 pwheat : ∞ → 0.0
VitaminA(ug) in CSB: 500.0 → 521.0 0.4

pbeans : 1433.5 → 828.3
pcsb : 799.0 → 774.5
pwheat : ∞ → 22.5

Fat(g) in Beans : 1.2 → 2.4
Fat(g) in CSB : 6.0 → 12.0
Fat(g) in Wheat : 1.5 → 2.2

Calcium(mg) in Wheat : 36.0 → 47.4
Iron(mg) in Beans : 8.2 → 9.0
Iron(mg) in CSB : 18.5 → 13.0
Iron(mg) in Wheat : 4.0 → 0.0

RiboflavinB2(mg) in Beans : 0.22 → 0.4
RiboflavinB2(mg) in CSB : 0.5 → 1.0

RiboflavinB2(mg) in Wheat : 0.07 → 0.0
NicacinB3(mg) in Beans : 2.1 → 2.06

NicacinB3(mg) in CSB : 6.8 → 7.0
NicacinB3(mg) in Wheat : 5.0 → 0.3
Folate(ug) in Beans : 180.0 → 159.8

Folate(ug) in Wheat : 51.0 → 0.0

3600.0

3
pwheat : 300.0 → 126.2

Fat(g) in Beans: 1.2 → 2.4
Fat(g) in Wheat: 1.5 → 3.0

0.8

pbeans : 800.0 → 694.9
pwheat : 300.0 → 101.3

pwheat flour : 500.4 → 499.2
Energy(kcal) in Wheat : 330.0 → 332.7

Fat(g) in Beans : 1.2 → 2.4
Fat(g) in Wheat : 1.5 → 3.0

Calcium(mg) in Wheat : 36.0 → 34.2
Iron(mg) in Wheat : 4.0 → 0.2

ThiamineB1(mg) in Wheat : 0.3 → 0.1
RiboflavinB2(mg) in Beans : 0.22 → 0.4
RiboflavinB2(mg) in Wheat : 0.07 → 0.0

Folate(ug) in Beans : 180.0 → 140.2
Folate(ug) in Wheat : 51.0 → 0.0

3600.0

4 pwheat : ∞ → 26.3
Fat(g) in Wheat: 1.5 → 3.0 0.5

pwheat : ∞ → 87.6
pbeans : 1151.1 → 734.4

Energy(kcal) in Wheat : 330.0 → 338.9
Fat(g) in Beans : 1.2 → 2.4
Fat(g) in Oil : 100.0 → 74.7
Fat(g) in Wheat : 1.5 → 3.0

Iron(mg) in Beans : 8.2 → 8.8
Iron(mg) in Wheat : 4.0 → 0.0

RiboflavinB2(mg) in Beans : 0.22 → 0.4
RiboflavinB2(mg) in Wheat : 0.07 → 0.0

Folate(ug) in Beans : 180.0 → 140.2
value Folate(ug) in Wheat : 51.0 → 0.0

3600.0

5 pwheat : ∞ → 0.0 0.4

pwheat : ∞ → 85.1
pbeans : 1383.2 → 743.7

Energy(kcal) in Wheat : 330.0 → 311.3
Fat(g) in Beans : 1.2 → 2.4
Fat(g) in CSB : 6.0 → 12.0
Fat(g) in Milk : 1.0 → 2.0

Fat(g) in Wheat : 1.5 → 3.0
Calcium(mg) in Wheat : 36.0 → 31.6

Iron(mg) in Beans : 8.2 → 8.8
Iron(mg) in Wheat : 4.0 → 0.0

VitaminA(ug) in Milk : 280.0 → 281.4
RiboflavinB2(mg) in Beans : 0.22 → 0.4

RiboflavinB2(mg) in CSB : 0.5 → 0.7
RiboflavinB2(mg) in Milk : 1.2 → 0.9

RiboflavinB2(mg) in Wheat : 0.07 → 0.0
Folate(ug) in Beans : 180.0 → 140.2

Folate(ug) in Wheat : 51.0 → 0.0

3600.0

Table 9: Best known counterfactual explanations regarding changes in prices and nutrients after a time limit
of one hour.


