
The p-center problem:

Using equivalent instances to obtain better results

Alfredo Marín

Departamento de Estadística e Investigación Operativa, Universidad de Murcia, Spain.

May 31, 2024

Abstract

Given a matrix (dij)n×m and p ∈ {2, . . . ,m − 1} the p-center problem looks for the set

of p columns that minimizes the maximum of the minimum value of the rows in the p given

columns. In location science, columns are interpreted as potential locations for facilities, rows

are interpreted as demanding points and (dij) are the distances between them.

Di�erent MILP formulations have been proposed so far. The usual way to check the goodness

of these formulations has been comparing sizes and lower bounds. We introduce the concept

of equivalent instances for the problem, that produce the same optimal solutions but not the

same optimal values, making the comparison between lower bounds questionable. Then we take

advantage of our results to design algorithms that, applied to the instances previously considered

in the literature, obtain better solutions in less time.

Keywords: p-center; discrete location; integer programming;

1 Description of the problem and previous work

We are given a matrix (dij) (called distance matrix) with set of rows N = {1, . . . , n} and set of

columns M = {1, . . . ,m}, where n,m ≥ 3, and a constant p ∈ {2, . . . ,m − 1}. For the sake of

readability we call N the set of sites and M the set of potential centers. The p-center problem (pCP)

consists in choosing a subset of potential centers P ⊂ M with |P | ≤ p in order to minimize

max
i∈N

min
j∈P

{dij}.

The elements of P will be called centers.

The p-center problem is a classical problem in location science, where the elements of M are

interpreted as potential locations for, e.g., emergency services, the elements of N are interpreted as

Description of the problem and previous work

demanding points and (dij) are the distances or travel times from centers to demanding points, or

vice versa. It is also possible to think in dij as the product of a travel time and some kind of demand

associated to the site i. When the entry dij is less than or equal to the optimal value of pCP, it is

considered that i can be allocated or assigned to a center located in j, with a cost dij. It was proven

in [Kariv and Hakimi, 1979] that pCP is NP-hard.

There is an obvious relation between pCP and the set covering problem. In the latter, the

minimum amount of columns of the distance matrix have to be chosen to achieve that all rows

contain a number less than or equal to a given threshold value R in some of the chosen columns. If

this minimum number of columns is less than or equal to p, the optimal value of pCP will be less

than or equal to R, see e.g. [Ilhan and P�nar, 2001]. Looking for the minimum value of R satisfying

this property is a commonly used approach to solve pCP.

In the �eld of location, additional constraints can be imposed on the solutions. A well studied one

is a limit in the demand allocated to each of the centers, see e.g. [Albareda-Sambola et al., 2010] and

[Espejo et al., 2015]. Other authors extend the study to consider, for instance, upgrading (reduction

of the costs under a budget limit) [Antón-Sánchez et al., 2023] or allocation to more than one center to

get robust solutions [Hinojosa et al., 2023], [Duran-Mateluna et al., 2023]. A review of pCP-related

problems can be consulted in [Cal�k et al., 2019].

Several method to exactly solve pCP have been devised through the years. Seminal articles

of special interest are [Ilhan and P�nar, 2001], [Elloumi et al., 2004], [Özsoy and P�nar, 2006] and

[Cal�k and Tansel, 2013]. Recently, more intricate methods that produce the best computational

results for large instances have been published. [Contardo et al., 2019] designed a row generation

algorithm that iteratively solved small subproblems by considering only a subset of sites that was

updated in each iteration. The algorithm is scalable and allowed to solve big instances. However,

instances with larger values of p could not be solved as e�ciently as those with smaller values.

[Gaar and Sinnl, 2022] considered a family of formulations for pCP based on the previous knowledge

of a lower bound on the optimal value of the problem. Each formulation generated a new bound

that in turn replaced that of the formulation and the iterative process produced a �nal lower bound

and heuristic solutions that, in some cases, were proved to be optimal. We give details in Section 2.

Another recent study with computational results of less interest is [Medrano, 2020].

pCP can be naturally formulated as a (mixed) integer programming problem, and most of the

solution methods use this possibility. We will present and analyze the main formulations of the

literature in Section 2. Then, in Section 3 a new solution algorithm based on the theoretical consid-

erations previously presented is developed. The method is designed to produce optimal solutions but

also looks for good feasible solutions on the way. Computational results, and in particular improved

solutions for large instances of the commonly used benchmarks are given in Section 4. After the

conclusions of Section 5, and for the sake of completeness, we have added an Appendix with detailed

numerical results.

2

Formulations

2 Formulations

In what follows, given a formulation (F) with minimization of the objective function, we denote

with v(F) its optimal value, with (F̄) its linear relaxation and with v(F̄) the lower bound on v(F)

obtained solving the linear relaxation.

The �rst MILP formulation for the p-center problem we present is the classical one, see for

example [Kariv and Hakimi, 1979]. It uses two families of binary variables given by

yj =

{
1 if j is chosen as a center

0 otherwise

for all j ∈ M and

xij =

{
1 if i is allocated to j

0 otherwise

for all i ∈ N , j ∈ M , plus an auxiliary continuous variable θ:

(C) min θ

s.t.
∑
j∈M

yj = p (1)

xij ≤ yj ∀i ∈ N, j ∈ M (2)∑
j∈M

xij = 1 ∀i ∈ N (3)

θ ≥
∑
j∈M

dijxij ∀i ∈ N (4)

yj ∈ {0, 1} ∀j ∈ M (5)

xij ∈ {0, 1} ∀i ∈ N, j ∈ M. (6)

Constraint (1) �xes the amount of centers, each constraint in (2) forces xij to take value 0 if j

has not been chosen as a center, constraints (3) force allocation of all elements in N and (4) plus the

minimization of the objective function make θ take the value of the minimum distance. Note that

(6) can be relaxed.

In order to introduce the most interesting formulations for the p-center problem, let D0 (resp.

Dg) be the smallest (resp. largest) value in the distance matrix, and let D0 < D1 < D2 < . . . < Dg

be the sorted di�erent values in that matrix. Let G := {1, . . . , g}.
For given values of the aforementioned variables yj, let

fi(k) :=
∑
j∈M :
dij≤Dk

yj.

For i ∈ N and k ∈ {1, . . . , g−1}, it holds fi(k) ≤ fi(k+1). The maximum of the minimum distances

corresponding with the centers given by the y-variables will be θ = Dk i� (i) fi(k) = 1 ∀i ∈ N and

3

Formulations

(ii) ∃i ∈ N : fi(k − 1) = 0. That is to say,

θ =
∑
k∈G

Dk(min{1,min
i∈G

fi(k)} −min{1,min
i∈G

fi(k − 1)}). (7)

Taking into account that, when yj ∈ {0, 1} ∀j ∈ M , all the addends in (7) are equal to 0 except one

of them that takes value 1, (7) is equivalent to

θ = max
k∈G

Dk(min{1,min
i∈G

fi(k)} −min{1,min
i∈G

fi(k − 1)}). (8)

Note that (8) is weaker than (7) in the sense that relaxing the binarity of the y-variables to yj ∈ [0, 1],

(8) will give a value lower than the one obtained using (7).

Let then de�ne binary variables wk := min{1,mini∈G fi(k)} ∀k ∈ G and take θ =
∑

k∈G Dk(wk −
wk−1) =

∑
k∈G(Dk − Dk−1)wk. Since coe�cients Dk − Dk−1 are always positive, minimizing this

sum (lowerly bounding wk by fi(k) for all i ∈ N) will produce a valid formulation for pCP. Radius

formulation (R), introduced in [Elloumi et al., 2004], equivalently used binary variables zk = 1−wk

and was designed as:

(R) min D0 +
∑
k∈G

(Dk −Dk−1)zk (9)

s.t. (1), (5)

zk ≥ 1−
∑
j∈M :
dij<Dk

yj ∀i ∈ N, k ∈ G (10)

zk ∈ {0, 1} ∀k ∈ G. (11)

A very simple yet e�cient simpli�cation of formulation (R), observed in [Ales and Elloumi, 2018],

takes into account that most of the constraints (10) are dominated by others after adding the much

smaller set of constraints (13). The reason is that {j ∈ M : dij < Dk} = {j ∈ M : dij < Dk+1}
when Dk is not one of the values in the i-th row of the distance matrix. Let then Gi be the subset

of G containing the indices k such that Dk is one of the values of row i. Replacing (10) by (12) and

adding (13), the modi�ed radius formulation (R') is given by

(R') min (9)

s.t. (1), (5), (11)

zk ≥ 1−
∑
j∈M :
dij≤Dk

yj ∀i ∈ N, k ∈ Gi (12)

zk ≥ zk+1 ∀k ∈ {1, . . . , g − 1}. (13)

A formulation similar to (R) was introduced in [Cal�k and Tansel, 2013]. It gives the same lower

bounds as (R) and will not be considered in this paper.

4

Formulations

On the other hand, using (8), the minimum of θ can be obtained by lowerly bounding it as

θ ≥ Dk(min{1,min
i∈G

fi(k)} −min{1,min
i∈G

fi(k − 1)}) ∀k ∈ G.

Rewriting

θ ≥ Dk min{1,min
i∈G

fi(k)} −min{Dk,min
i∈G

Dkfi(k − 1)} =

Dk min{1,min
i∈G

fi(k)}+max{−Dk,max
i∈G

(−Dk)
∑
j∈M :

dij≤Dk−1

yj},

we can equivalently write

θ ≥ Dk +max{−Dk,max
i∈G

(−Dk)
∑
j∈M :

dij≤Dk−1

yj} = max{0,max
i∈G

Dk −
∑
j∈M :

dij≤Dk−1

Dkyj},

i.e.,

θ ≥ Dk −
∑
j∈M :

dij≤Dk−1

Dkyj ∀i ∈ N, ∀k ∈ G.

It was observed in [Gaar and Sinnl, 2022] that these inequalities can be improved to

θ ≥ Dk −
∑
j∈M :

dij≤Dk−1

(Dk − dij)yj ∀i ∈ N ∀k ∈ Gi.

Moreover, [Gaar and Sinnl, 2022] introduced a new family of formulations, based on the previous

knowledge of a lower bound B on the optimal value of the problem:

(G(B)) min θ

s.t. (1), (5)

θ ≥ Dk −
∑
j∈M :

dij≤Dk−1

(Dk −max{B, dij})yj ∀i ∈ N, ∀k ∈ Gi : Dk ≥ B (14)

θ ≥ B.

Formulations (G(B)) avoid the use of variables zk obtaining directly the value of z from the values

of the y-variables. In (14), if {ℓ ∈ M : dij < Dk} = ∅ for some k ∈ G, the maximum allocation

cost z will take value at least equal to Dk. In the case {j ∈ M : dij < Dk} = {t}, θ will be lowerly

bounded by max{B, dit} < max{B,Dk} = B. Otherwise, if |{ℓ ∈ M : dij < Dk}| ≥ 2, this lower

bound will be even smaller.

5

Formulations

Another formulation was considered in [Ales and Elloumi, 2018]. It uses an auxiliary variable r,

and is given by

(A) min r

s.t. (1), (5)

r ≥ k(1−
∑
j∈M :
dij≤Dk

yj) ∀i ∈ N, k ∈ Gi ∪ {g}. (15)

Note that, for a given value of i and a given distance Dk in the i-th row of the matrix, constraint

(15) makes r be at least equal to the index k of the distance Dk when there is not a center under

the distance Dk from i. Therefore, the optimal value of (A) is not the optimal value of pCP, but the

place of the maximum distance in the sorted vector of distances (Dk), k ∈ G. That is to say, for all

B ≤ v(C) it holds v(C) = v(R) = v(R′) = v(G(B)) = Dv(A).

Even if the lower bound produced by the formulation is the main factor to be taken into account

when using it in a branch-and-bound or branch-and-cut algorithm, huge formulations make it im-

possible to obtain this bound when large instances are considered. Let us then compare all these

formulations from two points of view: size and quality of the lower bound.

Formulation (C) contains O(nm) variables and constraints, although onlym variables are properly

integer. Formulation (R) contains O(g) variables and O(ng) constraints. The size then depends on

the number of ties between the values in the matrix. In other words, g can take any value between

1 and nm. Again most of the integrity constraints on the variables can be relaxed. The derived

formulation (R') succeeds to reduce the number of constraints of (R) in one order of magnitude.

Finally, formulations (G(B)) reduce the total number of variables to m + 1 and contain O(nm)

constraints, depending on the value of the lower bound B.

Regarding the lower bound produced by the formulations, it was proved in [Elloumi et al., 2004]

that v(R̄) ≤ v(C̄) and the inequality can be strict. It was also proved in [Ales and Elloumi, 2018] that

v(R′) = v(R̄). In [Gaar and Sinnl, 2022] they proved that v(G(0)) ≤ v(C̄), but the bound v(G(B))

can increase when B increases. Let us consider the following example, used in [Elloumi et al., 2004]

to show that v(R̄) can be strictly better than v(C̄).

Example 2.1. Consider the instance n = m = 3, p = 2, (dij) =

 0 2 1

2 0 2

1 2 0

 with optimal value

1. On the left hand side of Figure 1, N = M are represented with nodes of a graph and distances

are written next to the edges. On the right hand side, the optimal values of the y-variables (bold)

and x-variables in the linear relaxation of formulation (C) are represented with numbers associated

to arcs. The optimal value is v(C̄) = 0.2. In order to graphically represent how the optimal value

v(R̄) is calculated, consider all the constraints in family (10), apply y1 + y2 + y3 = 2 to eliminate

y2, and use y1 = y3 from the symmetry of the instance to eliminate y3. Then the objective function

6

Formulations

1

2 3

1
2

2
0.8

0.8

0.6

0.6

0.6

0.6

0.2

0.4

0.4

Figure 1: Example from [Elloumi et al., 2004]. Formulation (C)

Figure 2: Example from [Elloumi et al., 2004]. Formulation (R)

1

2 3

1

M

M

2M/(2M+1)

2M/(2M+1)

(M+1)/(2M+1)

(M+1)/(2M+1) M/(2M+1)

M/(2M+1)

1/(2M+1)

(M+1)/(2M+1)

(M+1)/(2M+1)

Figure 3: Equivalent instances of Example 2.2. Formulation (C)

7

Formulations

Figure 4: Equivalent instances of Example 2.2. Formulation (R)

8

Formulations

z := 0 + (1− 0)z1 + (2− 1)z2 can be bounded by

z ≥ 1− y1, z ≥ 2− 3y1, z ≥ −2 + 4y1.

In Figure 2 we represent the feasible region given by these three inequalities. The optimal solution

corresponds to the lowest vertex, with optimal value 0.4. Therefore, this example proved that v(R̄)

can be strictly greater than v(C̄).

In order to deepen this analysis, we introduce some new concepts. First of all, we note that the

exact value of each entry of the distance matrix is not relevant to determine the optimal solution of

the problem. What actually matters is the value's position once the distances have been sorted.

Proposition 2.1. For �xed values of n, m and p, two instances of pCP with distance matrices (d1ij)

and (d2ij) satisfying

� d1ij = d1i′j′ ⇐⇒ d2ij = d2i′j′

� d1ij < d1i′j′ ⇐⇒ d2ij < d2i′j′

∀i, i′ ∈ N , ∀j, j′ ∈ M have the same optimal solutions.

The result is evident, given the relation of pCP with the set covering problem. Given n, m and p

the conditions given in Prop. 2.1 determine an equivalence relation on the set of instances of pCP. We

then say that two instances in the same equivalence class are equivalent. Some observations follow.

Remark 2.1. Two equivalent instances can have di�erent optimal values.

Remark 2.2. The linear relaxations of two equivalent instances can give di�erent optimal values,

even if the optimal (integer) values of the instances are equal.

We can now extract the following consequence:

Remark 2.3. The duality gaps of two equivalent instances can be di�erent.

We then observe that it makes sense to compare the lower bounds on the optimal value of pCP

given not only by the linear relaxation of an instance but also by the linear relaxations of equivalent

instances. We try to shed light on this point revisiting the example above.

Example 2.2. Starting with the instance given in Example 2.1, in Figure 3 we replace d12 = d21 =

d23 = d32 by M > 1, so obtaining a family of equivalent instances. On the right hand side we present

the optimal solution of formulation (C̄). Note that making M tend to in�nity, the values of the

x-variables tend to  1/2 0 1/2

1 0 0

1/2 0 1/2


9

Formulations

1

2 3

1
2

3

0

0.75

0.25

0.25

0.75

0

0.75

0.25

0.25

0.75

Figure 5: Instance of Example 2.3. Formulation (C)

1

2 3

1 2

0

0.9

0.1

0.1

0.9

0

0.9

0.1

0.1

0.9

9

1

2 3

2

0.2

0.4

0.4

3

1.9999

0.4

0.4

0.2

0.2

0.2 0.4

0.4

0.4

0.4

Figure 6: Equivalent instances of Example 2.3. Formulation (C)

and the optimal value of the linear relaxation (C̄) tends to 0.5, greater than the value obtained in

Example 2.1 for the linear relaxation of formulation (R). But of course we can also solve (R̄) on the

new instances. In Figure 4 we represent again the projection of the feasible region on the plane (y1, z)

for three di�erent values of M . It can be seen that the lowest vertex of the feasible region converges to

a point with z = 0.5 as well. In all these cases the optimal value of the integer formulations remains

1.

Formulation (A) makes use of this equivalences in a certain sense, since replacing Dk by k is a way

to obtain an equivalent instance. Unfortunately, the bounds produced by this �equally separated�

distances produce the inverse e�ect, worsening the bounds one obtains. We still present another

example to show the appropriate way to deal with the distances.

Example 2.3. Again we use n = m = 3 but now p = 1. In Figure 5 we show the symmetric

distances (with dii = 0 ∀i) and the optimal solution of the linear relaxation (C̄). The optimal value

of the instance is 2, obtained choosing 1 as a center, and v(C̄) = 1.5. On the other hand, v(R̄) = 5/3.

If d13 = 2 remains the same, better bounds can be obtained from (Ĉ) increasing the other two values.

By increasing d23 from 3 to 9, for example, the optimal solution of the left hand side of Figure 6 is

obtained, with a value of 1.8 (in this case v(R̄) = 2). But it is also possible to increase d12 from 1 to

almost 2 (see the right hand side of the �gure) to improve the bound from 1.5 to (almost) 1.6. In all

these cases the optimal values of the integer formulations remain 2.

The best choice for the values of the distances requires the knowledge of the optimal value of

10

Resolution method based on equivalent instances

the problem. Making all the distances that are below v(C) grow up to almost v(C), and making

the distances over v(C) tend to in�nity, the formulations of the problem will not have duality gap.

This value is unknown, but the fact can be used in the resolution of the instances as we will see

afterwards.

3 Resolution method based on equivalent instances

Let us start with an instance of pCP and (i) a guaranteed lower bound LB, (ii) a guaranteed upper

bound UB and (iii) two intermediate values T1 and T2 such that LB < T1 < T2 < UB. Using binary

variables s1 and s2, we introduce the auxiliary formulation given by

(AUX) min T1 + (T2 − T1)s1 + Cs2 (16)

s.t. s1 ≥ 1−
∑
j∈M :
dij≤T1

yj ∀i ∈ N (17)

s2 ≥ 1−
∑
j∈M :
dij≤T2

yj ∀i ∈ N (18)

s1 ≥ s2 (19)∑
j∈M

yj = p (20)

yj ∈ {0, 1} ∀j ∈ M (21)

s1, s2 ∈ {0, 1} (22)

where C is a very large number and redundant constraints have been removed. This formulation

contains m+ 2 variables and at most 2n+ 2 linear constraints.

To solve this problem on an instance, let us start solving its linear relaxation. Based on the

observations made in the previous section we know that if, during the linear relaxation phase, the

lower bound managed by the solver strictly exceeds T1 (respectively T2), a better lower bound equal

to T1 (resp. T2) is available for the optimal value of pCP on the given instance. Then the resolution

of the linear relaxation can be stopped and LB updated. Otherwise, the branching phase is required.

Then it can be checked, at every node of the branching tree, whether the worst lower bound strictly

exceeds T1 (resp. T2), to stop the execution and update LB to the new value T1 or T2.

Regarding the upper bound UB, if the solver �nds a feasible solution of pCP with pCP-objective

value less than UB, the execution can be stopped in order to update UB to the new value.

The third and last possibility is to �nish optimally solving (AUX), so obtaining an integer optimal

solution with optimal value O. In such a case there are only three possibilities:

� O > T2, and then LB can be updated to T2;

11

Resolution method based on equivalent instances

� O = T2, and then UB can be updated to T2 and LB to T1;

� O = T1, and then UB can be updated to T1.

Solving (AUX) iteratively with new values of LB and UB and new intermediate values T1 and T2,

the interval where the optimal value of pCP is guaranteed to be will be reduced until obtaining the

optimal value of pCP and the optimal set of centers, given by the y-values of the last iteration.

Although a wide computational study will be done in Section 4, let us show the potential of the

method by means of an example.

Example 3.1. Consider instance pr2392 of the TSP libray, see [Reinelt, 2013]. The size of the

instance is n = m = 2392. For p = 30, the instance has been never solved. Previous studies have

given solutions of values 1765 in 1800 seconds of computation ([Gaar and Sinnl, 2022]) and 1471

in 86400 seconds ([Contardo et al., 2019]). The best lower bound for this problem, also obtained

in [Contardo et al., 2019], is 1379. These are the best results to date. Starting with LB=0 and

UB=2109 (the maximum value of the distance matrix divided by 8), a new solution of value 1435

was found in 37 seconds. A better solution of value 1402 required less than 1000 seconds.

Algorithm 1: Re�nement Algorithm R
Input: n, m, (dij), p, J ⊂ M (|J | = p)

K = ∅;1

repeat2

U = maxi∈N minj∈J dij;3

Improve=FALSE;4

foreach j ∈ J , k ̸∈ J ∪K such that djk ≤ U do ;5

if {i ∈ N : dij ≤ U} ⊆ {i ∈ N : dik ≤ U} then6

J = J ∪ {k} \ {j};7

K = K ∪ {j};8

Improve=TRUE;9

exit the loop;10

until Improve=FALSE ;11

return J , U12

Although this approach to solve pCP guarantees optimal solutions, we have carried out two

di�erent implementations, that we call Strategy 1 and Strategy 2, trying to accelerate the resolution

and to obtain good feasible solutions in shorter times. We need to de�ne the following modi�ed

12

Resolution method based on equivalent instances

auxiliary problem that makes use of a feasible solution given by a set of p centers J ⊂ M , |J | = p.

(AUXJ) min T1 + (T2 − T1)s1 + Cs2

s.t. (17), (18), (19), (20), (21), (22)∑
j∈J

yj ≥ ⌈p/2⌉. (23)

This problem forces the solutions to contain at least half of the centers of set J . We always take

J as the set of indices of the centers in the best available solution. We observed that this constraint,

in most of the cases, helps to obtain new better feasible solutions to pCP. Moreover, compared

to (AUX), (AUXJ) takes a short time. Replacing (AUX) by (AUXJ) transforms the approach in

heuristic, since the optimal solutions of pCP might not satisfy (23), but our solution strategies will

combine the exact approach that uses (AUX) with phases of heuristic search that use (AUXJ) on

di�erent sets J to reduce the upper bound.

Two other procedures devised to produce better feasible solutions have been incorporated. The

�rst one, named R, is sketched in Algorithm 1. Starting with a feasible solution given by a subset J

of M of cardinality p, the objective value of pCP, called U , is calculated. Then, if a candidate that

is not in J is better that a center in J , we replace the latter by the former. Here, better means that

all the points in a radius U around the center are also in a radius U around the candidate. In order

to avoid cycles, an element going out of J is marked (included in K) and never returned to J .

Algorithm 2: Heuristic Search Algorithm H
Input: n, m, (dij), p, UB, ȳ ∈ [0, 1]m :

∑
j∈M ȳj = p

Obtain J , the set of p indices corresponding with the p maximum values in ȳ (ties arbitrarily1

broken);

Set U = maxi∈N minj∈J dij;2

return J , U3

The second method to obtain solutions, very e�cient in practice, is named H and presented in

Algorithm 2. It is applied in the nodes of the branching tree of the solver. When the node is solved,

a linear optimal solution ȳ satisfying
∑

j∈M ȳj = p is available. Algorithm H selects the p maximum

values in ȳ and checks if the solutions is better than the best solution of pCP obtained so far. This

checking is done only every I nodes of the search. For this reason we include the parameter I in the

forthcoming core algorithms CA and CH.

In what follows we will look for the optimal solution and value of pCP inside an interval [A,B]

and, depending on the strategy we consider, A (respectively B) can be or not a lower (resp. upper)

bound on the optimal value of pCP. The best lower and upper bounds available will be denoted by

LB and UB. We never consider values of A less than LB, but the heuristic auxiliary problem (AUXJ)

can produce values of A greater than LB that are not guaranteed to be lower bounds on the optimal

13

Resolution method based on equivalent instances

Algorithm 3: Core Algorithm CA
Input: n, m, (dij), p, LB, UB, B, MTI, I

BetterBound=FALSE;1

T1 =
B−LB

3
, T2 = 2B−LB

3
;2

Send to the solver formulation (AUX) on instance (n,m, (dij), p) and time limit MTI;3

Let L be the current lower bound on v(AUX) managed by the solver;4

if L > T1 then5

Set LB= T1. BetterBound=TRUE. Stop the solver;6

if L > T2 then7

Set LB = T2. BetterBound=TRUE. Stop the solver;8

if The solver �nds an integer feasible solution J with value U < UB then9

Set UB = U . BetterBound=TRUE. Stop the solver;10

Call Algorithm R(n, m, (dij), p, J);11

if U < UB then12

UB= U13

if The number of nodes of the branching tree explored by the solver is a multiple of I then14

Obtain the optimal linear solution in the current node of the branching tree ȳ;15

Call Algorithm H(n, m, (dij), p, ȳ) to produce J̄ and Ū ;16

if Ū < UB then17

Set UB = Ū . Set J = J̄ . BetterBound=TRUE. Stop the solver;18

return LB, UB, J , BetterBound19

14

Resolution method based on equivalent instances

Algorithm 4: Core Heuristic Algorithm CH
Input: n, m, (dij), p, UB, A, MTI, I, J

BetterBound=FALSE;1

T1 =
UB−A

3
, T2 = 2UB−A

3
;2

Send to the solver formulation (AUXJ) on instance (n,m, (dij), p) and time limit MTI;3

Let L be the current lower bound on v(AUXJ) managed by the solver;4

if L > T1 then5

Set A = T1. BetterBound:=TRUE. Stop the solver;6

if L > T2 then7

Set A = T2. BetterBound:=TRUE. Stop the solver;8

if The solver �nds an integer feasible solution J1 with value U1 < UB then9

Set UB = U1. BetterBound:=TRUE. J = J1. Stop the solver;10

Call Algorithm R(n, m, (dij), p, J);11

if U < UB then12

UB= U13

if The number of nodes of the branching tree explored by the solver is a multiple of I then14

Obtain the optimal linear solution in the current node of the branching tree ȳ;15

Call Algorithm H(n, m, (dij), p, ȳ) to produce J2 and U2;16

if U2 < UB then17

Set UB = U2. Set J = J2. BetterBound:=TRUE. Stop the solver;18

return UB, A, J , BetterBound19

15

Resolution method based on equivalent instances

value of pCP. For this reason, sometimes LB will be replaced by the value of A but some other times

it will not. Similarly, B will never be �xed to values greater than the optimal value of pCP but,

in order to accelerate the search, on occasion B will not be guaranteed to be greater than or equal

to UB. If a feasible solution of pCP is found with value less than UB (regardless of whether it is

less than B or not) then UB will be updated to this value. Putting all these elements together,

Algorithm 3 (from now on CA) combines the reduction of an interval (with guaranteed lower bound

LB and any upper end B below UB) with the heuristic search procedures R and H. CA stops when a

better bound (lower or upper) is found. A time limit of MTI seconds is passed to the solver. When

the time limit is reached, the resolution of (AUX) is stopped without having reduced the interval

[LB,B]. Depending on the value of the parameter BetterBound, CA will be called again (TRUE)

or not (FALSE). On the other hand, Algorithm 4 (from now on CH) starts with the best feasible

solution available, given by set J , and combines the heuristics with the reduction of an interval (with

guaranteed upper bound UB and any lower end A not below LB) that contains the optimal value

of (AUXJ). It also stops when a better bound is found or MTI seconds have elapsed without any

reduction of the current interval [A,UB].

After some preliminary testing, the recursive resolution of CA+CH was implemented in two

di�erent ways, Strategy 1 and Strategy 2 (Algorithms 5 and 6, respectively). We distinguish di�erent

time limits. With MTI (maximum time per iteration) we denote the limit time passed to the solver:

After branching MTI seconds, the solver will stop. This is the meaning of then condition RunTime

> MTI in the algorithms. On the other hand, with TotalRunTime > SMTI we give a stop condition

that is reached when the time elapsed in all the iteratins of a loop reaches SMTI.

With Strategy 1 we started with lower bound 0 and upper bound large enough, reducing the

interval by the iterative application of Algorithm CA with a time limit for all the iterations of SMTI

seconds (lines 2-6). Afterwards, the time limit for each iteration was �xed to MTI and the total

running time was not limited. If the �nal interval [LB,UB] if the �rst phase contained a multiple of

10000, we continued with B equal to the smallest multiple of 10000 greater than LB. Otherwise, we

did the same with the multiples of 1000, 100, 10 and 1. Then we iteratively solved Algorithm CA

using the best lower bound available in that moment. The value of B was increased by 10000 (resp.

1000, 100, 10, 1) unless a better upper bound UB was found. Once either the application of CA did

not produce better bounds the procedure called CH with increasing values of A, reseting A to LB

and B to UB every time a better solution was found.

At every iteration the lower and upper bounds will be better. Then there will be yj-variables

that can be �xed to zero in both (AUX) and (AUXJ). This is the case of j ∈ M when, for all values

r ∈[LB,UB], there exists j′ that covers at least the same set of points as j using a radius r. Then it

is always better replacing j by j′ in the set of centers and yj can be removed from the formulations

(row ****** in Strategy 1). Note that the values of r to be checked are those values in the column

j of the distances matrix that fall in [LB,UB].

16

Resolution method based on equivalent instances

Algorithm 5: Strategy 1
Input: n, m, (dij), p, MTI, SMTI, I

A = 0, UB=maxi∈N maxj∈M dij/8, LB=0;1

repeat2

Fix all possible variables yj = 0;3

B = UB;4

Run CA(n, m, (dij), p, LB, UB, B, SMTI, I)5

until TotalRunTime > SMTI ;6

r = argmaxk=1,2... 10
k⌈LB/10k⌉: 10k⌈LB/10k⌉ < UB;7

B = 10r(⌈LB/10r⌉ − 1);8

repeat9

B = B + 10r;10

repeat11

Fix all possible variables yj = 0;12

Run CA(n, m, (dij), p, LB, UB, B, SMTI, I)13

until RunTime > MTI or UB<B ;14

until UB< B ;15

repeat16

repeat17

B=UB;18

Fix all possible variables yj = 0;19

Run CA(n, m, (dij), p, LB, UB, B, SMTI, I)20

until RunTime > MTI or UB<B ;21

until BetterBound = FALSE ;22

repeat23

A = LB;24

Run CH(n, m, (dij), p, UB, A, MTI, I, J);25

until BetterBound=FALSE ;26

return J , UB, LB27

17

Computational study

Algorithm 6: Strategy 2
Input: n, m, (dij), p, MTI, I, MaxTime, SMaxTime

A = 0, UB= maxi∈N maxj∈M dij/8, LB=0;1

repeat2

repeat3

B = UB;4

Run CA(n, m, (dij), p, LB, UB, B, MTI, I)5

until LB=UB or BetterBound=FALSE or RunTime > MaxTime ;6

repeat7

A = LB;8

Run CH(n, m, (dij), p, UB, A, MTI, I, J)9

until LB=UB or BetterBound=FALSE or RunTime > MaxTime ;10

until BetterBound = FALSE or RunTime > MaxTime ;11

return J , UB, LB12

With Strategy 2, we solved alternatively CA and CH. When using CA we only stopped iterating

if no better bounds were found. When using CH, we immediately stopped when a better upper

bound was found, and passed it to CA. A time limit MTI was used in each iteration but the overall

procedure only stopped when, after calling CA+CH or CH+CA there was no improvement.

4 Computational study

The current best computational results for large instances of pCP have been obtained in two articles:

[Contardo et al., 2019] and [Gaar and Sinnl, 2022]. The processor used in [Contardo et al., 2019]

was an Intel Xeon E5462 2.8GHz and 16GB of RAM. The processor used in [Gaar and Sinnl, 2022]

was an Intel Xeon E5-2670v2 2.5GHz with 32 GB of RAM. Our processor was an Intel Xeon CPU

E5-2623v3 3.0GHz with 15.5 GB of RAM. According to the web pages consulted, the performance

of our processor is similar to the one of [Contardo et al., 2019] and slightly better than the one used

in [Gaar and Sinnl, 2022]. The solver we used was FICO Xpress Mosel 64-bit v6.4.1, FICO Xpress

v9.2.2 on Ubuntu linux 20.04.6 LTS.

These two other papers used the same set of instances, those from the TSP library available in

[Reinelt, 2013]. Each instance is given by n = m points in the plane and rounded distances between

them. Among the instances, we selected the unsolved ones with n between 3038 and 18512. In nearly

all the cases the best lower and upper bounds previously known were obtained (after 86400 seconds

of running time) in [Contardo et al., 2019]. Note that the time limit in [Gaar and Sinnl, 2022] was

�xed in 1800 seconds. The instances are named with a pre�x (e.g., �pcb�) followed by the value of n

(e.g., �pcb3038�). Small values of p produced easier instances. For this reason we have checked our

18

Computational study

algorithms taking relatively large values of p (concretely p = 20, 25 and 30). The total number of

instances was 27.

The results obtained using Strategy 1 are shown in Table 1. The time limits were �xed to

MTI=2400 and SMTI=1000. Columns under GS 2022 show the best lower (LB) and upper (UB)

bounds obtained in [Gaar and Sinnl, 2022]. Columns under CIK 2019 show the best lower (LB) and

upper (UB) bounds obtained in [Contardo et al., 2019]. Columns under I = 1 and I = 100 show

our results for these two values of the parameter I in Algorithm 5. UB is the objective value of

the best solution found using this algorithm, % gap shows the percentage of the gap between the

previously available best bounds that our algorithm closed. The rounded time in seconds is given

under Time. In all the cases, with I = 1 and I = 100, our Strategy 1 found better solutions in

much less time. Upper bounds are marked in bold when the solution is the best one compared with

other solutions obtained using Strategy 1 and Strategy 2. That is to say, bold number correspond to

the best solutions currently known for the instances. Strategy 1 succeeded in 13 cases when I = 1

and 6 cases when I = 100, including 2 ties. The times shown in the table correspond with the

total execution time of the algorithm, not with the time required to obtain the best solutions, that

was typically 2400 seconds less. As said in the previous section, Strategy 1 did not make use of the

bounds previously known. On the other hand, the lower bounds given in [Contardo et al., 2019] were

rarely improved. Using I = 1, Strategy 1 run 89 hours in total, and closed in average 64% of the

gap between the best lower and upper bounds previously known (calculated using the lower bound

of [Contardo et al., 2019]. Using I = 100, that invests less time in the heuristic search of better

solutions and more time in exploring the branching tree, 62% of the gap was closed in average in 92

hours.

The results obtained using Strategy 2 are shown in Table 2. Columns under MTI=1200 and

MTI=3600 show our results for these two values of the parameter MTI in Algorithm 6. With

MTI=3600, in all the cases Strategy 2 found better solutions than the best solutions previously

known in much less time. Again, upper bounds are marked in bold when the solution is the best

one compared with other solutions obtained using Strategy 1 and Strategy 2. In 11 of the instances

Strategy 2 with MTI=3600 provided the best solution. There is still room for Strategy 2 with

MTI=1200. Even if the maximum time for each run of CA and CH was one third of the time when

MTI=3600, there were two cases in which the only method that found the best solution was Strategy

2 with MTI=1200. In general, the computational times of MTI=1200 were very small compared

to MTI=3600 (approximately one third, as expected), and slightly smaller than the runtimes of

Strategy 1. The total times were 60 hours (for MTI=1200) and 201 hours (for MTI=3600). The

average closed gap was 47% and 67%,respectively. Under t1 we show the time needed to �nd the

�rst solution better than the best one previously known. The objective value of such a solution is

given under UB1.

For the sake of checkability, we give in the Appendix the best solution obtained for each instance.

19

Computational study

GS 2022 CIK 2019 I = 1 I = 100

p Instance LB UB LB UB UB % gap Time UB % gap Time

20 rl11849 2080 2629 2119 2273 2264 6 22000 2150 80 18400

20 usa13509 43592 56610 44740 46719 44768 99 14600 44952 89 22000

20 d15112 2539 3359 2581 2717 2648 51 17000 2668 36 14800

20 d18512 902 1218 912 969 966 5 9600 966 5 9600

25 pcb3038 425 545 433 470 438 86 4900 438 86 3900

25 rl5915 1786 2201 1823 1916 1825 98 9900 1837 85 11600

25 tz6117 1121 1426 1152 1258 1154 98 5900 1155 97 10700

25 ei8246 421 532 429 461 433 88 8400 434 84 4100

25 �10639 1075 1400 1103 1173 1124 70 11500 1135 54 10300

25 rl11849 1823 2506 1838 2099 1894 79 10800 1905 74 12500

25 usa13509 37471 46954 38150 40578 38324 93 12100 38315 93 13600

25 brd14051 693 843 703 737 712 74 19100 714 68 13600

25 d15112 2201 2877 2233 2447 2349 46 10400 2338 51 15600

25 d18512 792 1029 795 881 853 33 17600 859 26 12300

30 pr2392 1351 1765 1379 1471 1387 91 3700 1387 91 8100

30 pcb3038 382 508 386 412 395 65 9200 393 73 7900

30 rl5915 1618 2210 1624 1853 1695 69 8900 1676 77 11700

30 rl5934 1631 2116 1658 1812 1665 95 8100 1689 80 12700

30 tz6117 1001 1304 1025 1142 1027 98 12200 1029 97 9700

30 ei8246 384 508 386 412 402 38 9000 399 50 10800

30 �10639 967 1251 974 1017 985 74 13800 996 49 14800

30 rl11849 1649 2255 1641 1855 1767 41 9700 1765 42 16400

30 usa13509 34137 45591 34771 37036 35867 52 16900 35655 61 13400

30 brd14051 618 812 620 668 644 50 13400 646 46 12200

30 mo14185 719 936 732 767 753 40 11800 760 20 12400

30 d15112 1994 2662 2009 2254 2126 52 14100 2160 38 14500

30 d18512 712 963 712 786 759 36 17200 774 16 15000

Table 1: Computational results obtained using Strategy 1

20

Computational study

GS 2022 CIK 2019 MTI=1200 MTI=3600

p Instance LB UB LB UB UB% gap Time t1 UB1 UB% gap Time t1 UB1

20 rl11849 2080 2629 2119 2273 2159 74 12500 800 2201 2155 77 49600 810 2201

20 usa13509 43592 56610 44740 46719 45833 45 7900 3700 45833 44768 99 20100 3400 45833

20 d15112 2539 3359 2581 2717 3128 - 1600 - - 2669 35 33200 9500 2710

20 d18512 902 1218 912 969 1133 - 1800 - - 942 47 44600 2300 963

25 pcb3038 425 545 433 470 440 81 4700 400 453 438 86 8700 380 453

25 rl5915 1786 2201 1823 1916 1845 76 5900 1100 1877 1842 80 18300 1100 1877

25 tz6117 1121 1426 1152 1258 1158 94 6500 80 1208 1157 95 22300 80 1204

25 ei8246 421 532 429 461 441 63 7200 1700 455 433 88 30500 1700 455

25 �10639 1075 1400 1103 1173 1134 56 4700 2000 1145 1117 80 16700 2000 1145

25 rl11849 1823 2506 1838 2099 1877 85 17600 2100 2068 1926 66 17900 3200 1949

25 usa13509 37471 46954 38150 40578 39243 55 12800 7400 39534 38347 92 35500 11100 39996

25 brd14051 693 843 703 737 714 68 16100 4300 731 716 62 27200 2600 731

25 d15112 2201 2877 2233 2447 2441 3 6800 5500 2441 2325 57 34100 10200 2381

25 d18512 792 1029 795 881 1133 - 1700 - - 853 33 33000 6400 870

30 pr2392 1351 1765 1379 1471 1389 89 4900 37 1435 1389 89 10900 36 1435

30 pcb3038 382 508 386 412 405 27 7000 210 410 395 65 34000 230 410

30 rl5915 1618 2210 1624 1853 1672 79 9900 230 1778 1672 79 17800 230 1778

30 rl5934 1631 2116 1658 1812 1665 95 8300 260 1798 1665 95 17600 260 1798

30 tz6117 1001 1304 1025 1142 1027 98 7800 190 1117 1028 97 17800 190 1117

30 ei8246 384 508 386 412 397 58 8700 2301 409 396 62 24600 4700 409

30 �10639 967 1251 974 1017 1023 - 13500 - - 995 51 29400 12000 1011

30 rl11849 1649 2255 1641 1855 1773 38 8800 3100 1822 1754 47 18600 3300 1838

30 usa13509 34137 45591 34771 37036 36609 19 12500 7000 36796 35671 60 27800 4100 36918

30 brd14051 618 812 620 668 656 25 35600 13600 656 656 25 35600 13600 656

30 mo14185 719 936 732 767 753 40 14500 11600 753 745 63 16400 6900 750

30 d15112 1994 2662 2009 2254 2199 22 7400 1200 2199 2136 48 43000 1200 2199

30 d18512 712 963 712 786 1113 - 1400 - - 765 28 37100 18900 777

Table 2: Computational results obtained using Strategy 2

21

Concluding remarks REFERENCES

During the preliminary phase of the study we found two solutions that are better than the ones

presented in Tables 1 and 2. The objective value of these solutions is marked in bold in the Appendix.

In particular, the upper bound obtained for instance tz6117 coincides with the lower bound obtained

in [Contardo et al., 2019]. This would guarantee the optimality of this solution.

The number of variables �xed to zero in Strategy 1 was typically very small. In many occasions

it was simply zero, and it never exceeded some dozens.

5 Concluding remarks

Better results for all the unsolved instances of the p-center problem recently considered in the liter-

ature have been obtained by means of a method based on the concept of equivalent instances. Four

di�erent strategies were tested and all of them produced the best known solution for some of the

instances. Three of the methods always overtook the best solutions previously known in much less

computational times.

The method may still be improved with better implementations. Since the instances have a

geometrical component, grouping rows/columns of the distance matrix can help to reduce the size

of the instance in a previous phase. Also good preprocessings would help to the resolution of large

and huge instances. The main idea of our methods could be generalized to be used with di�erent

decompositions of the interval that contains the optimal value, that was divided in three equal parts

in our search.

Acknowledgements

The author acknowledges that this article is part of the project TED2021-130875B-I00, �nancied

by MCIN/AEI/10.13039/501100011033 and the European Union NextGenerationEU/PRTR and

has been also partially supported by research projects PID2022-137818OB-I00 (Ministerio de Cien-

cia e Innovación, Spain), RED2022-134149-T funded by MCIN/AEI/10.13039/501100011033 and

"Data Science and Resources Optimization in Comprehensive Waste Management (DataOpt-Waste)"

TED2021-130875B-I00.

References

[Albareda-Sambola et al., 2010] Albareda-Sambola, M., Díaz, J., and Fernández, E. (2010). La-

grangean duals and exact solution to the capacitated p-center problem. European Journal of

Operational Research, 201(1):71�81.

22

REFERENCES REFERENCES

[Ales and Elloumi, 2018] Ales, Z. and Elloumi, S. (2018). Combinatorial Optimization: 5th Inter-

national Symposium, ISCO, chapter Compact MIP formulations for the p-center problem, pages

14�25. Springer International Publishing.

[Antón-Sánchez et al., 2023] Antón-Sánchez, L., Landete, M., and Saldanha-da-Gama, F. (2023).

The discrete p-center problem with upgrading. Omega, 119:102894.

[Cal�k et al., 2019] Cal�k, H., Labbé, M., and Yaman, H. (2019). Location Science, chapter p-center

problems, pages 51�65. Springer.

[Cal�k and Tansel, 2013] Cal�k, H. and Tansel, B. (2013). Double bound method for solving the

p-center location problem. Computers & Operations Research, 40(12):2991�2999.

[Contardo et al., 2019] Contardo, C., Iori, M., and Kramer, R. (2019). A scalable algorithm for the

vertex p-center problem. Computers & Operations Research, 103:211�220.

[Duran-Mateluna et al., 2023] Duran-Mateluna, C., Ales, Z., Elloumi, S., and Jorquera-Bravo, N.

(2023). Robust MILP formulations for the two-stage weighted vertex p-center problem. Computers

& Operations Research, 159:106334.

[Elloumi et al., 2004] Elloumi, S., Labbé, M., and Pochet, Y. (2004). A new formulation and reso-

lution method for the p-center problem. INFORMS Journal on Computing, 16(1):84�94.

[Espejo et al., 2015] Espejo, I., Marín, A., and Rodríguez-Chía, A. (2015). Capacitated p-center

problem with failure foresight. European Journal of Operational Research, 247(1):229�244.

[Gaar and Sinnl, 2022] Gaar, E. and Sinnl, M. (2022). A scaleable projection-based branch-and-cut

algorithm for the p-center problem. European Journal of Operational Research, 303(1):78�98.

[Hinojosa et al., 2023] Hinojosa, Y., Marín, A., and Puerto, J. (2023). Dynamically second-preferred

p-center problem. European Journal of Operational Research, 307(1):33�47.

[Ilhan and P�nar, 2001] Ilhan, T. and P�nar, M. (2001). An e�cient exact algorithm for the vertex

p-center problem. Technical report, Bilkent University, www.ie.bilkent.edu.tr/∼mustafap/pubs.

[Kariv and Hakimi, 1979] Kariv, O. and Hakimi, S. (1979). An algorithmic approach to network

location problems. SIAM Journal on Applied Mathematics, 37:513�538.

[Medrano, 2020] Medrano, F. (2020). The complete vertex p-center problem. EURO Journal of

Computational Optimization, 8(3-4):327�343.

[Özsoy and P�nar, 2006] Özsoy, F. and P�nar, M. (2006). An exact algorithm for the capacitated

vertex p-center problem. Computers & Operations Research, 33(5):1420�1436.

23

REFERENCES REFERENCES

[Reinelt, 2013] Reinelt, G. (2013). Reinelt. http://comopt.ifi.uni-heidelberg.de/software/

TSPLIB95/tsp/.

24

REFERENCES REFERENCES

Appendix. Best solutions found

Instance Value 20 centers

rl11849 2150 172 209 729 1557 2109 2469 2562 2587 2969 4109

5806 6423 6948 6987 7352 7920 8416 8779 9553 10053

usa13509 44768 395 583 1749 1832 2546 2555 3645 4817 6045 6725

6857 7150 7346 11310 12254 12783 12808 12859 13025 13108

d15112 2648 584 835 1226 1493 1809 1824 1986 2840 3502 5510

5611 7198 8540 10737 12043 12295 12648 14610 14623 14737

d18512 942 1360 1379 4401 4435 5838 6257 7151 7754 8531 10959

11749 11882 13578 13750 15061 15163 15931 16789 17720 17791

Instance Value 25 centers

pcb3038 438 45 131 284 338 426 490 799 941 965 1040

1307 1435 1448 1624 1706 1719 1996 2022 2070 2296

2516 2526 2713 2798 2812

rl5915 1825 620 1331 1400 1638 1834 2933 2981 3190 3477 3622

3738 4016 4063 4156 4262 4457 4859 4919 5246 5340

5363 5670 5722 5797 5462

tz6117 1152 348 433 618 646 1126 1309 1465 1502 2198 2703

2827 3238 3796 3879 4005 4115 4630 4679 4802 4990

5262 5347 5559 5729 6024

ei8246 433 201 707 882 1027 1285 2101 2306 2901 2991 3091

3485 4499 4658 5195 5283 5492 5781 6166 6244 6373

6604 6805 7567 7869 8087

�10639 1117 138 340 2321 2779 3361 4796 5062 5958 5977 6778

7274 8118 8317 9122 9460 9488 9669 10228 10315 10366

10539 10551 10566 10619 10630

rl11849 1877 545 553 2417 3365 3787 3811 4196 4275 5034 5202

5523 6053 6630 8020 8280 8367 8422 8833 9077 9708

9936 10886 11432 11607 11835

usa13509 38315 309 546 1621 1653 1750 1809 3006 3385 3534 4947

6090 6265 6868 6990 7974 9206 9680 12014 12024 12703

12930 13015 13027 13030 13289

brd14051 712 289 1325 1884 3497 3569 3611 5046 5349 5958 6349

6808 7160 7579 9365 9872 10164 10631 11109 11296 11552

12470 13016 13373 13880 13921

d15112 2325 329 998 1486 1691 2381 4507 5625 5684 6355 7325

8804 9026 9303 10258 10922 11262 11606 12001 12857 13006

13624 13681 13903 14055 14685

d18512 836 1157 1570 1939 2624 4734 5621 6324 6583 7136 7709

10258 10515 11143 12746 13216 13940 14240 14646 15020 15853

16017 16762 17037 17551 17930

25

REFERENCES REFERENCES

Instance Value 30 centers

pr2392 1387 4 31 61 128 145 247 308 335 482 513

651 733 783 882 964 991 1062 1160 1401 1501

1533 1605 1633 1742 1848 1870 1937 2085 2174 2286

pcb3038 393 156 182 212 257 305 443 778 816 852 882

911 933 1184 1261 1416 1551 1636 1693 1790 1852

1896 2135 2217 2229 2305 2374 2520 2853 2867 2994

rl5915 1672 108 116 175 199 258 317 660 1856 2155 2188

2205 2244 2896 3170 3198 3307 3351 3462 3603 3947

3967 4004 4257 4370 4385 4467 4659 5079 5156 5344

rl5934 1665 2 165 899 1094 1529 1624 1750 2241 2337 2479

2538 2544 2609 2981 3172 3304 3329 3458 3597 3695

3718 3731 3735 3923 4275 5087 5216 5217 5294 5519

tz6117 1027 291 399 578 831 1070 1222 1318 1558 1574 2070

2235 2755 2981 3224 3429 3869 3905 4083 4140 4327

4549 4623 4933 5041 5160 5256 5531 5585 5796 5867

ei8246 396 114 436 671 802 1305 2094 2155 2233 2391 2500

2871 3091 3923 4132 4230 4554 5274 5278 5341 5810

5816 5889 6394 6581 6852 6853 7488 7842 7847 8109

�10639 985 245 951 2042 2147 2283 3221 4513 4918 5434 5905

6180 6573 6690 7569 8202 8720 8726 9071 9609 9895

10071 10173 10389 10390 10509 10525 10571 10597 10613 10619

rl11849 1754 425 442 1219 1968 2013 2367 2900 3187 4088 4283

4342 4701 4770 5101 5632 5695 5800 6465 7119 8056

8077 8456 8797 8943 9048 9224 9550 10533 11796 11814

usa13509 35655 216 447 914 1459 1875 2555 2670 3119 3176 3220

3963 4532 5206 6219 7023 7812 8219 8330 8449 10662

11389 12166 12185 12653 12797 12825 12875 12999 13005 13490

brd14051 644 274 714 1798 2397 2695 3487 4804 4821 5187 5513

5748 6374 6406 7000 8036 8997 9136 9682 9842 10181

10357 11062 11323 12122 12542 12601 13262 13491 13866 13921

mo14185 745 6 10 26 797 997 1710 2242 3404 4177 4244

5024 5765 6295 7250 7685 7712 8099 8104 8668 9034

9459 9477 9501 9519 10367 11555 11876 12378 175 13279

d15112 2126 436 1434 1523 1626 1915 2483 2653 3739 3916 4428

4507 5437 5860 6359 6413 6923 7743 8123 8491 8592

9110 9592 10402 10504 11316 12066 12589 12925 13810 13982

d18512 759 795 1373 1515 2787 3660 5197 5457 6263 6413 6550

6571 7629 9758 10169 10188 10867 11580 12056 12962 13259

13781 14478 15584 15710 16239 16517 17556 17684 17804 18294

26

