
Detecting and Handling Reflection Symmetries in

Mixed-Integer (Nonlinear) Programming

Christopher Hojny1

1Eindhoven University of Technology, Combinatorial Optimization Group,
PO Box 513, 5600 MB Eindhoven, The Netherlands, email c.hojny@tue.nl

May 14, 2024

Abstract

Symmetries in mixed-integer (nonlinear) programs (MINLP), if not handled appropriately,
are known to negatively impact the performance of (spatial) branch-and-bound algorithms.
Usually one thus tries to remove symmetries from the problem formulation or is relying on a
solver that automatically detects and handles symmetries. While modelers of a problem can
handle various kinds of symmetries, automatic symmetry detection and handling is mostly
restricted to permutation symmetries. This article therefore develops techniques such that
also black-box solvers can automatically detect and handle a broader class of symmetries.

Inspired from geometric packing problems such as the kissing number problem, we focus
on reflection symmetries of MINLPs. We develop a generic and easily applicable framework
that allows to automatically detect reflection symmetries for MINLPs. To handle this broader
class of symmetries, we discuss generalizations of state-of-the-art methods for permutation
symmetries, and develop dedicated symmetry handling methods for special reflection symme-
try groups. Our symmetry detection framework has been implemented in the open-source
solver SCIP and we provide a comprehensive discussion of the implementation. The arti-
cle concludes with a detailed numerical evaluation of our symmetry handling methods when
solving MINLPs.

Keywords mixed-integer nonlinear programming • permutation symmetry • reflection
symmetry • automatic symmetry detection • automatic symmetry handling

1 Introduction

We consider mixed-integer nonlinear programs (MINLP) of the form

min c>x

gk(x) ≤ 0, k ∈ {1, . . . ,m},
`i ≤ xi ≤ ui, i ∈ {1, . . . , n},

xi ∈ Z, i ∈ I,

(MINLP)

where m and n are positive integers, c ∈ Rn, I ⊆ {1, . . . , n}, and we have, for every k ∈ {1, . . . ,m},
that gk : Rn → R as well as, for each i ∈ {1, . . . , n}, that `i ∈ R ∪ {−∞} and ui ∈ R ∪ {+∞}.
Note that a linear objective c>x is without loss of generality as a nonlinear objective f : Rn → R

can be replaced by a single auxiliary variable α and an additional constraint f(x)− α ≤ 0.
A major technique for solving MINLPs is spatial branch-and-bound [4]. In a nutshell, the idea

is to define a relaxation of (MINLP), which is easier to solve than the original problem. This
relaxation is then iteratively split into smaller subproblems until an optimal solution of (MINLP)
is found or the problem is proven to be infeasible. But if (MINLP) admits symmetries (which will
be defined properly below), also the list of subproblems will arguably contain symmetric problems.
Branch-and-bound can thus be accelerated by removing symmetric copies from the list. This
observation has led to various symmetry handling techniques [5,9,13,14,16,19,21,24,25,28–34,38,

1

(a) An initial solution. (b) Permutation of colors. (c) Reflection along a sym-
metry axis (dashed line).

Figure 1: Illustration of permutation and reflection symmetries. The different disks are indicated
by colors.

39, 45]. Most of these approaches consider only permutation symmetries, which roughly speaking
reorder entries of a solution vector and seem to be most relevant for linear problems. In many
MINLPs, however, richer classes of symmetries can arise.

This article’s aim is to extend the literature by tools for reflection symmetries. We believe that
this is an important class of symmetries arising in many MINLPs, as illustrated in Example 1.1
below. Such symmetries have, to the best of our knowledge, mainly been handled by reformulating
models for specific applications. Our goal is to devise algorithms such that a black-box solver
can automatically detect and handle reflection symmetries. We particularly aim for methods that
handle more symmetries than model reformulations.

Example 1.1. Let D be a positive integer and let be B = [−W2 ,
W
2]× [−H2 ,

H
2] be a rectangular

box of width W ≥ 0 and height H ≥ 0. Consider the problem of finding the largest value r such
that D non-overlapping disks of radius r can be packed in B. This problem can be modeled as an
MINLP, cf. [26, 47]:

max r

(xi − xj)2 + (yi − yj)2 ≥ 4r2, 1 ≤ i < j ≤ D,
−W2 + r ≤ xi ≤ W

2 − r, i ∈ {1, . . . , D},
−H2 + r ≤ yi ≤ H

2 − r, i ∈ {1, . . . , D},

where (xi, yi) models the center point of disk i ∈ {1, . . . , D}.
This problem admits two kinds of symmetries, see Figure 1 for an illustration. First, all disks

are equivalent, i.e., for any permutation π of {1, . . . , D}, replacing (xi, yi) by (xπ(i), yπ(i)) in a
solution of the MINLP leads to an equivalent solution. Second, every solution can be reflected
along the reflection symmetry axes of the box B. In formulae, this means one can replace (xi, yi)
by (−xi, yi) for all i ∈ {1, . . . , D} (and similarly for horizontal reflections) to obtain an equivalent
solution.

The first class of symmetries corresponds to permutation symmetries, for which detection mech-
anisms are described in [30,44]. Except for linear problems [9], however, to the best of our knowl-
edge no general mechanism for detecting reflection symmetries in MINLP has been described. As a
consequence, also the literature on methods for handling reflection symmetries in general purpose
MINLP solvers is limited. The goals of this article therefore are to

(G1) provide a framework for detecting both permutation and reflection symmetries in MINLP;

(G2) develop an easily extendable open-source tool for detecting permutation and reflection sym-
metries;

(G3) derive symmetry handling methods for reflection symmetries;

(G4) evaluate how frequently reflection symmetries arise in MINLP and by how much our methods
accelerate the solving process.

2

The main focus will be on achieving Goal (G2). In contrast to existing symmetry detection
frameworks, (G2) requires a flexible mechanism to encode symmetries of an MINLP that can
easily incorporate custom constraints whose logic is not known to an MINLP solver. We therefore
need to develop an abstract symmetry detection framework for achieving both (G1) and (G2).

To achieve our goals, we proceed as follows. A detailed description of the problem and un-
derlying mathematical concepts is provided in Section 2. To achieve (G1), we provide a detailed
description of existing symmetry detection schemes in Section 3. A common abstraction of these
schemes is provided in Section 4, and Sections 4.1 and 4.2 describe two instantiations of our abstract
framework to detect reflection symmetries in MINLP. Turning to Goal (G2), Section 5 describes
an implementation of our abstract framework in the open-source MINLP solver SCIP [10]. Our
implementation is included in SCIP since version 9.0, and thus, publicly available. Section 6 pro-
vides an overview of existing symmetry handling methods. We also describe how these methods
can be adapted for reflection symmetries, cf. (G3). We conclude the article in Section 7 with a
detailed analysis of numerical experiments to evaluate the impact of handling reflection symme-
tries in MINLP, cf. (G4). For a literature review of symmetry detection and handling, we refer the
reader to Section 3 and 6, respectively.

2 Problem Statement and Basic Definitions

The arguably most general symmetry of (MINLP) is a map σ : Rn → Rn such that, for all x ∈ Rn,
one has (S1) σ(x) is feasible for (MINLP) if and only if x is feasible, and (S2) c>σ(x) = c>x.
Towards the detection of symmetries, however, this definition might be too general as it is unclear
how a general detection mechanism could look like. One therefore usually restricts to subclasses
of symmetries, the most popular class being permutation symmetries.

Let n be a positive integer and define [n] := {1, . . . , n}. Any bijective map π : [n] → [n]
is called a permutation of [n]. The set of all permutations of [n] is denoted Sn and forms a
group w.r.t. composition, the symmetric group. A permutation π ∈ Sn naturally acts on Rn

as π(x) = (xπ−1(1), . . . , xπ−1(n)), i.e., π permutes the coordinates of a vector x ∈ Rn. Note that the
inverses are necessary to ensure that this indeed defines a group action on Rn. We say that π ∈ Sn
is a permutation symmetry of (MINLP) if it satisfies (S1) and (S2). The group consisting of all
permutation symmetries of (MINLP) is called its permutation symmetry group.

Despite being the most popular class of symmetries in the mixed-integer (nonlinear) program-
ming literature, computing all permutation symmetries is NP-hard already for binary linear pro-
grams [35]. For general MINLP, it is even undecidable if π defines a permutation symmetry,
cf. [30]. For integer programs, the reason is that symmetries are defined based on the feasible
region of (MINLP), which is not known explicitly, and for MINLP the difficulty arises that de-
termining feasibility of a set of linear equations is undecidable [49]. A possible remedy is thus to
restrict to permutation symmetries that keep a particular formulation of (MINLP) invariant. We
discuss this approach in more detail in Section 3 and turn to the definition of reflection symmetries
next.

The basis for our definition of reflection symmetries are signed permutations. We call a map
γ : {±1, . . . ,±n} → {±1, . . . ,±n} signed permutation if it is bijective and satisfies γ(−i) = −γ(i)
for every i ∈ {±1, . . . ,±n}. Signed permutations form a group under composition, the signed
symmetric group, denoted S±n . Analogously to permutations, we define a group action on Rn via

γ(x) =
(
sgn(γ−1(1))x|γ−1(1)|, . . . , sgn(γ−1(n))x|γ−1(n)|

)
,

where sgn: R → {0,±1} denotes the sign operator. That is, due to taking the absolute values in
the indices, γ reorders the entries of x like a permutation, but can also change the sign of some
entries. A signed permutation thus reorders the entries of a vector and reflects it along some of
the standard hyperplanes with normal vectors being the standard unit vectors.

Example 2.1 (Example 1.1 continued). Consider the situation of Example 1.1 with three disks
as illustrated in Figure 1. Collect all variables in a common vector z = (x1, x2, x3, y1, y2, y3, r),
where (x1, y1), (x2, y2), and (x3, y3) corresponds to the red, blue, and purple disk, respectively.
The permutation symmetry of Figure 1(b) corresponds to π = (1, 3, 2)(4, 6, 5), where the cycle

3

notation denotes that z1 is mapped to z3, z3 is mapped to z2, and z2 is mapped to z1 etc. Indeed,
π(z) = (zπ−1(1), . . . , zπ−1(7)) is given by

π(z) = (z3, z2, z1, z6, z5, z4, z7) = (x3, x2, x1, y3, y2, y1, r),

which corresponds to the exchange of colored disks. The reflection symmetry of Figure 1(c) cor-
responds to the signed permutation γ = (1,−1)(2,−2)(3,−3), where the cycle notation now also
takes signs into account. Then, symmetric solution γ(z) = (−x1,−x2,−x3, y1, y2, y3, r) indeed
reflects all x-coordinates.

While signed permutations capture reflections along standard hyperplanes, they do not allow
for reflections along general affine hyperplanes with standard normal vectors. For example, if
the box in Example 1.1 is not centered at the origin, but is given by [0,W] × [0, H], no signed
permutation can express the reflection (x, y) 7→ (W − x, y) along x = W

2 . To also capture such
symmetries, we introduce another action of γ ∈ S±n on Rn that is adapted to an MINLP.

We still propose to encode our more general reflection symmetries via signed permutations.
But instead of necessarily reflecting a variable xi at the origin, we reflect a variable at the center
of its domain `i ≤ xi ≤ ui as given by the bounds of (MINLP). Note, however, that the center is
not well-defined in case [`i, ui] defines a half-open interval. We therefore introduce the set

C := {i ∈ [n] : |`i| = ui =∞ or both `i and ui are finite}

containing the indices of variables whose domain has a well-defined center. For i ∈ C, the center
of variable xi is ξi = `i+ui

2 , where we define −∞ +∞ = 0. For i /∈ C, we define ξi = 0. With
this notion, the reflection of variable xi, i ∈ [n], is given by xi 7→ 2ξi − xi. If i ∈ C, variable xi
is reflected at its domain center; in particular, a variable can be reflection-symmetric to itself.
For i ∈ [n] \ C, a variable is reflected at the origin.

Definition 2.2. Consider (MINLP) with lower and upper bounds ` and u, respectively, used to
derive C and the corresponding center points. For γ ∈ S±n , the reflection ρ : Rn → Rn, for i ∈ [n],
is

ρ(x; γ)i = ξi + sgn(γ−1(i)) · (x|γ−1(i)| − ξ|γ−1(i)|).

That is, if sgn(γ−1(i)) < 0, then the pre-image of ρ(x; γ)i is reflected according to the map
x|γ−1(i)| 7→ 2ξ|γ−1(i)| − x|γ−1(i)| and afterwards centered around ξi via the translation ξi − ξ|γ−1(i)|.
Otherwise, if sgn(γ−1(i)) > 0, ρ(x; γ)i arises by an ordinary permutation and applying the same
translation as before.

Definition 2.3. A signed permutation γ ∈ S±n defines a reflection symmetry of (MINLP) if ρ(·; γ)
satisfies (S1) and (S2).

Our aim is to achieve Goals (G1)–(G4) for reflection symmetries of (MINLP).
We close this section by showing that reflections define an action on Rn, i.e., for γ1, γ2 ∈ S±n ,

their composition γ2 ◦ γ1 satisfies ρ(x; γ2 ◦ γ1) = ρ(ρ(x; γ1); γ2), and, if id denotes the identity,
then ρ(x; id) = x. Thus, our definition of reflections is independent from whether one first composes
signed permutations and applies a single reflection or whether one applies a series of reflections for
the corresponding signed permutations.

Lemma 2.4. Let Γ ≤ S±n and let ξi, i ∈ [n], be the reflection center for the i-th coordinate. Then,
ρ(·; γ), γ ∈ Γ, defines a group action on Rn.

Proof. Let x ∈ Rn. Then, ρ(x; id) = x follows immediately. It thus remains to show for γ1, γ2 ∈ S±n
that ρ(x; γ2 ◦ γ1) = ρ(ρ(x; γ1); γ2). To this end, observe that, for any i ∈ [n], we have

|γ−11 (|γ−12 (i)|)| = |(γ−11 ◦ γ−12)(i)| = |(γ2 ◦ γ1)
−1

(i)| (1)

as signed permutations γ satisfy γ(−j) = −γ(j) for all j ∈ [n]. The same relation also implies

sgn(γ−12 (i)) · sgn(γ−11 (|γ−12 (i)|)) = sgn(γ−11 ◦ γ−12 (i)) = sgn((γ2 ◦ γ1)
−1

(i)) (2)

since y = sgn(y) · |y| for every y ∈ R.

4

Let γ = γ2 ◦ γ1. Then,

ρ(x; γ1)|γ−1
2 (i)| = ξ|γ−1

2 (i)| + sgn(γ−11 (|γ−12 (i)|)) · (x|γ−1
1 (|γ−1

2 (i)|)| − ξ|γ−1
1 (|γ−1

2 (i)|)|)

(1)
= ξ|γ−1

2 (i)| + sgn(γ−11 (|γ−12 (i)|)) · (x|γ−1(i)|) − ξ|γ−1(i)|)),

and thus,

ρ(ρ(x; γ1); γ2)i = ξi + sgn(γ−12 (i)) · (ρ(x; γ1)|γ−1
2 (i))| − ξ|γ−1

2 (i))|)

= ξi + sgn(γ−12 (i)) · (ξ|γ−1
2 (i)| − ξ|γ−1

2 (i)|)

+ sgn(γ−12 (i)) · sgn(γ−11 (|γ−12 (i)|)) · (x|γ−1(i)|) − ξ|γ−1(i)|))

(2)
= ξi + sgn(γ−1(i)) · (x|γ−1(i)|) − ξ|γ−1(i)|))

= ρ(x; γ).

Thus, ρ(·; γ) defines a group action.

3 Existing Symmetry Detection Schemes

In preparation for our symmetry detection framework, this section reviews four schemes discussed
in the literature. These schemes have been developed to detect permutation symmetries of mixed-
integer linear programs (MILP), signed permutation symmetries of MILPs, reflection symmetries
in satisfiability problems (SAT), and permutation symmetries of MINLPs, respectively.

Permutation Symmetries of MILP. Since already deciding whether Sn is the permutation
symmetry group of an MILP is NP-complete [35], one usually only considers symmetries that keep
the formulation of an MILP invariant. Given an MILP

min{c>x : Ax ≤ b, xi ∈ Z for all i ∈ I, x ∈ Rn},

where A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and I ⊆ [n], a formulation symmetry is a permutation π ∈ Sn
for which there exists π′ ∈ Sm such that

• π(c) = c and π′(b) = b;

• for all (i, j) ∈ [m]× [n], one has Aπ′(i),π(j) = Ai,j ;

• π keeps I invariant.

For detecting formulation symmetries, [44] observes that the formulation symmetry group of
an MILP is isomorphic to the color-preserving automorphism group of the following graph. This
graph contains a node for every variable as well as each constraint from Ax ≤ b. Every variable
node receives a color, which is determined based on the variable’s type (objective coefficient, an
(non-) integrality); every constraint node gets a color based on the constraint’s right-hand side.
Moreover, there is an edge between the node of variable xj and the node of the i-th constraint
if and only if Ai,j 6= 0. The edge is colored based on the coefficient Ai,j . An illustration of the
symmetry detection graph for the MILP

min x1 − x2 + 2x3 + 2x4

x3 + x4 ≤ 1

−x1 + x2 + 3x3 ≤ 4

−x1 + x2 + 3x4 ≤ 4

(3)

is given in Figure 2(a).
Automorphisms of such symmetry detection graphs can be found by graph automorphism tools

such as bliss [22], dejavu [1], or nauty [36]. We remark that these tools can only handle node
colors, but not edge colors. The graphs thus need to be manipulated by replacing an edge {u, v}
by an auxiliary node w, which receives the color of {u, v}, and the edges {u,w} and {v, w}. To
reduce the number of auxiliary nodes, grouping techniques can identify auxiliary nodes of several
edges with each other, see [40] and Section 5.3.

5

x1 x2 x3 x4

(a) Graph for permutation
symmetries.

v1 v2 v3 v4v̄1 v̄2 v̄3 v̄4

(b) Graph for signed permuta-
tion symmetries.

Figure 2: Illustration of symmetry detection graphs for Problem (3).

Signed Permutation Symmetries of MILP. For detecting formulation symmetries of an
MILP corresponding to signed permutations, [9] also suggests to find automorphisms of a colored
graph. For every variable xj , their graph contains two nodes vj and v̄j , where vj will represent
the original variable xj and v̄j the negation −xj . Moreover, the i-th constraint is represented by
a node wi, and every entry Ai,j of the constraint A gets two nodes ai,j and āi,j . Finally, there are
three groups of nodes representing the numerical coefficients of the MILP: one group consisting
of the right-hand side values {b1, . . . , bm}, another group consisting of the original and negated
objective coefficients {±c1, . . . ,±cn}, and the last group consisting of the original and negated
matrix entries {±Ai,j : (i, j) ∈ [m]× [n]}. The edge set is given by

{{vj , cj}, {v̄j ,−cj} : j ∈ [n]}
∪ {{wi, bi} : i ∈ [m]}
∪ {{ai,j , Ai,j}, {vj , ai,j}, {wi, ai,j} : (i, j) ∈ [m]× [n]}
∪ {{āi,j ,−Ai,j}, {v̄j , āi,j}, {wi, āi,j} : (i, j) ∈ [m]× [n]}
∪ {{vj , v̄j} : j ∈ [n]}

In contrast to [44], edges remain uncolored. Instead, there is a unique color for each of the variable,
constraint, and coefficients groups {vj , v̄j : j ∈ [n]}, {wi : i ∈ [n]}, and {ai,j , āi,j : (i, j) ∈ [m]×[n]},
respectively; nodes representing a numerical value, receive a color corresponding to their numerical
value.

The idea of this graph is to not only encode the original constraint system as in [44], but
also the negated constraint system. The last class of edges {vj , v̄j}, j ∈ [n], ensures the property
that γ(−j) = −γ(j) for a signed permutation γ.

Note that the graph can be represented more compactly: On the one hand, numerical value
nodes can be removed and instead nodes adjacent with them can receive their color. On the other
hand, nodes ai,j and āi,j can be removed, and instead one connects vj and wi by an edge colored
according to Ai,j (analogously for negated variable nodes v̄j). One can thus interpret nodes ai,j
and āi,j as the auxiliary nodes that arise when substituting colored edges in the graph of [44]. As
such, the grouping techniques described in [40] can also be used to reduce the number of needed
nodes ai,j and āi,j . Figure 2(b) illustrates the more compact graph, better revealing relations to
the graph by [44].

Reflection Symmetries for SAT Consider variables x1, . . . , xn ∈ {0, 1}. The reflection of xj is
given by x̄j = 1−xj , cf. Definition 2.2. Using MINLP notation, a SAT formula can be represented
by a set of m linear constraints ∑

j∈J+
i

xj +
∑
j∈J−i

x̄j ≥ 1,

where J+
i , J

−
i ⊆ [n] are disjoint for every i ∈ [m], and the objective being constant 0. That is,

SAT problems are pure feasibility problems.
A common way to detect reflection symmetries for SAT is described in [43]. As in [9], there

are nodes vj and v̄j to represent variable xj and its reflection x̄j for j ∈ [n], and there is a node wi

6

+

·2 × ·2 ·2 × ·2

x1 −2x1x2 x2 x3 −2x3x4 x4

(a) Expression tree.

v1 v2 v3 v4

(b) Symmetry detection graph.

Figure 3: Expression tree and symmetry detection graph for x21 − 2x1x2 + x22 + x23 − 2x3x4 + x24.

for every i ∈ [m]; the edge set is{
{wi, vj} : i ∈ [m], j ∈ J+

i

}
∪
{
{wi, v̄j} : i ∈ [m], j ∈ J−i

}
∪ {{vj , v̄j : j ∈ [n]}} .

The role of the last group of edges is again to make sure that if a symmetry maps vj onto vj′ or v̄j′ ,
then v̄j′ is mapped onto v̄j or vj , respectively.

In contrast to the previous graphs, no colors are needed since there is only one type of co-
efficients. Furthermore, this graph allows to detect reflection symmetries, because all variables
have the same domain. Despite the similarities to the previous graphs for MILP, the latter cannot
immediately be used for detecting reflection symmetries in MILP as variables might have different
domains. We resolve this issue in our symmetry detection scheme in Section 4.

Permutation Symmetries in MINLP As discussed above, one of the difficulties for detect-
ing symmetries of (MINLP) is that checking whether two nonlinear equations are equivalent is
undecidable. The symmetry detection scheme of [30] resolves this issue by restricting to nonlinear
constraints gk(x), k ∈ [m], that admit a representation via expression trees [11]. An expression
tree for gk is an arborescence Tk in which all arcs point away from the root node. Each leaf node
belongs to exactly one of two classes, it is either a variable or value node, and the non-leaf nodes
are operator nodes. Each variable node corresponds to a variable present in gk and each value node
holds a numerical value. Every operator node v corresponds to an d-ary mathematical operator,
where d is the number of children of v. The nonlinear function gk can then be recovered from Tk
by iteratively evaluating the nodes of Tk, where evaluating a node means to assign it a mathemat-
ical function. Leaf nodes evaluate to the corresponding variables or numerical values. Operator
nodes v are evaluated by applying the operator of v to the functions assigned to the children of v.
By evaluating the nodes in a bottom-up fashion, the last processed node is the root node, whose
assigned function is gk, see Figure 3(a) for an illustration.

Expression trees can also make use of non-commutative operators, e.g., the minus-operator.
In this case, arcs receive labels to indicate the order of the input. For the ease of exposition, we
assume all operators to be commutative, but all results can be easily refined for non-commutative
operators.

To detect permutation symmetries for MINLPs whose constraints are represented via expression
trees, [30] suggests to derive a symmetry detection graph from the expression trees, see Figure 3(b)
for an illustration. For each variable xj , j ∈ [n], construct a node vj , and, for each constraint gk,
k ∈ [m], of (MINLP), construct an undirected version of Tk. Remove the leaves corresponding to
variables xj and connect their parents to vj instead. That is, the entire graph contains only a single
node corresponding to xj . Then, the operators and numerical values are interpreted as distinct
colors. Finally, color the nodes vj , j ∈ [n], according to their type (same objective coefficient, and
lower and upper bounds).1 One can show that every color preserving automorphism of this graph
corresponds to a symmetry of (MINLP).

1Formally, [30] introduces a separate expression tree for the objective, but due to our assumption of a linear
objective, the graph we describe is a bit simpler.

7

4 A Framework for Symmetry Detection in MINLP

The core of our symmetry detection framework is an abstract notion of a symmetry detection
graph, generalizing the existing frameworks. This will be useful, on the one hand, since different
classes of constraints (e.g., linear, nonlinear) might allow for more compact representations to
detect symmetries. On the other hand, this notion is flexible towards achieving Goal (G2), the
development of an easily extendable open-source tool. After defining symmetry detection graphs,
Section 4.1 provides a basic instantiation of the abstract framework to detect reflection symmetries
in MINLPs. Section 4.2 then refines the previous concepts to detect more symmetries.

Before we define symmetry detection graphs, we introduce some notation. Consider a list of
variables xi, i ∈ [n], with lower bounds `i ∈ R ∪ {−∞} and upper bounds ui ∈ R ∪ {∞}, as
well as objective coefficient ci ∈ R. For i ∈ [n], let ξi be the reflection center of variable xi as
defined in Section 2, and denote by x−i the reflection of xi at ξi. That is, variable x−i has lower
bound `−i = 2ξi − ui, upper bound u−i = 2ξi − `i, and objective coefficient c−i = −ci. Moreover,
for a positive integer n, let [±n] := {±1, . . . ,±n}.

Definition 4.1. Let P be an instance of (MINLP). Let G be a node and edge colored connected
graph that contains pairwise distinct distinguished nodes vi, i ∈ [±n]. We call G a symmetry
detection graph (SDG) for P if each color-preserving automorphism π of G satisfies:

1. π keeps {vi : i ∈ [±n]} invariant;

2. if π(vi) = vj for some i, j ∈ [±n], then π(v−i) = v−j ;

3. the signed permutation γ ∈ S±n defines a reflection symmetry of P , where, for each i ∈ [±n],
γ(i) = j for the unique j with π(vi) = vj .

Note that SDGs are well-defined: Due to the first property, the second property is well-defined,
and γ in the third property is indeed a signed permutation due to the first and second property.

Definition 4.1 seems to be the right notion for detecting reflection symmetries as it provides
an abstract generalization of the symmetry detection frameworks of Section 3. But to use it, one
needs a concrete mechanism to build an SDG. While black-box solvers can use fixed sets of rules
for building SDGs, an easily extendable tool needs to be flexible to also support unknown custom
constraints, e.g., nonlinear constraints not admitting a (simple) representation via expression trees.
We therefore suggest to use an abstract mechanism to build an SDG from SDGs of single constraints
as formalized next. This mechanism is the core of our implementation, which we discuss in Section 5
in detail.

Let P be an instance of (MINLP) with m constraints g1, . . . , gm : Rn → R. For k ∈ [m], denote
by Pk the MINLP arising from P by removing all constraints except for gk. To build an SDG for P
from the SDGs G1, . . . , Gm of P1, . . . , Pm, our idea is to take the disjoint union of G1, . . . , Gm, and
to identify the distinguished nodes for variable xi, i ∈ [±n], with each other. To apply this idea,
we need to make sure that the colors of the different SDGs match. That is, equivalent objects can
only be mapped to equivalent objects.

To model equivalence of variables, we introduce variable types. For a variable xi, i ∈ [n],
of (MINLP) with lower bound `i, upper bound ui, objective coefficient ci, and a Boolean encoding
if i ∈ I, the type of xi is

t(xi) := (`i − ξi, ui − ξi, ci, i ∈ I).

That is, the type is defined by the lower and upper bounds relative to the reflection center, the
objective coefficient, and integrality status. Using relative lower and upper bounds instead of
absolute bounds will allow us to detect symmetries also of variables with different domain centers.
The type of x−i is defined based on the reflected variable, i.e., t(x−i) = (ξi − ui, ξ − `i,−ci, i ∈ I).
We then define the set of variable colors as V = {t(xi) : i ∈ [±n]}, i.e., each type is associated with
a unique color. An SDG is called variable color compatible if node vi associated with variable xi,
i ∈ [±n], is colored by color t(xi) and none of the non-distinguished nodes receives a color from V.

Besides mapping variables of the same type to each other, we need to ensure that the set
of constraints remains invariant after applying a reflection symmetry. This is achieved via the
concepts of anchors and constraint compatibility. An SDG G = (V,E) is called anchored if there is
a non-distinguished a ∈ V such that, for each v ∈ V \{a}, there is a path from a to v in G such that

8

neither of the interior nodes along the path is a distinguished variable node. We call a an anchor
of G. For the second concept, let k, k′ ∈ [m]. Let Gk = (Vk, Ek) and Gk′ = (Vk′ , Ek′) be SDGs
for Pk and Pk′ , respectively. We call Gk and Gk′ constraint compatible if they are non-isomorphic
or gk ≡ gk′ , where gk ≡ gk′ means that there is a permutation π ∈ Sn such that gk(x) = gk′(π(x)).

Theorem 4.2. Let P be an MINLP with m constraints. Let Gk = (Vk, Ek), k ∈ [m], be an
anchored SDG for Pk with distinguished nodes vki , i ∈ [±n]. Suppose G1, . . . , Gm are variable color
and constraint compatible. Let vi, i ∈ [±n], be pairwise distinct with color t(xi) and let

V ={vi : i ∈ [±n]} ∪
m⋃
k=1

Vk \ {vki : i ∈ [±n]},

E = {{vi, v−i} : i ∈ [n]} ∪
m⋃
k=1

{
{vi, v} : {vki , v} ∈ Ek and v 6= vk−i

}
∪

m⋃
k=1

{e ∈ Ek : e contains no distinguished node of Gk}.

Then, G = (V,E) is an SDG for P with distinguished nodes vi, i ∈ [±n].

Proof. Let π be a color-preserving automorphism of G. We need to show that π satisfies the
three properties of Definition 4.1. The first property holds since vi, i ∈ [±n], are the only nodes
receiving a variable color from V by variable color compatibility of G1, . . . , Gm. The second
property is satisfied, because the only edges between the distinguished nodes vi, i ∈ [±n], are the
edges {vi, v−i}. Consequently, if π(vi) = vj for some j ∈ [±n], also π(v−i) = v−j holds.

For verifying the last property, observe that each path in G corresponds to a path in π(G).
This in particular holds for the paths originating from the anchors of G1, . . . , Gm to the remaining
nodes of the respective graphs. Consequently, if π maps a non-distinguished node of Gk to a non-
distinguished node of Gk′ for k, k′ ∈ [m], it also maps the remaining non-distinguished nodes of Gk
to nodes of Gk′ . As a consequence, Gk and Gk′ are isomorphic, because we can identify vi, i ∈ [±n],
with both vki and vk

′

i . By constraint compatibility of G1, . . . , Gm we thus conclude gk ≡ gk′ .
Property three for G then follows from the same property for G1, . . . , Gm since we can mutually
identify the distinguished nodes of G1, . . . , Gm with the distinguished nodes of G.

Note that all frameworks of Section 3 are (slight variations of) an instantiation of Theorem 4.2.
When ignoring colors, the framework of [43] for SAT problems follows Theorem 4.2, and when
reflecting variables at the origin, the framework of [9] for signed permutations for MILPs can be
derived from Theorem 4.2. If one ignores reflections and has only distinguished nodes for non-
reflected variables, also the frameworks for MILP [44] and MINLP [30] follow from Theorem 4.2.

4.1 Basic Framework for Detecting Reflection Symmetries in MINLP

We now turn the focus to the detection of reflection symmetries of an instance P of (MINLP)
with m constraints that are represented by expression trees. Due to Theorem 4.2, it is sufficient
to find, for each k ∈ [m], an anchored SDG Gk for Pk such that G1, . . . , Gm are variable color and
constraint compatible. To this end, we combine the ideas of [9] and [30]. We will illustrate the
concepts introduced in this section using the example

min{0 : 4x1 − 4x2 + x3 − x4 ≤ 0, x1, x2 ∈ [−1, 1], x3 ∈ [1, 3], x4 ∈ [−2, 0]}. (4)

For deriving our SDG, it will be convenient to apply two modifications to an expression tree T .
First, we transform (MINLP) such that all reflection centers ξi, i ∈ [n], are at 0. This can be
achieved by replacing all variables xi by xi − ξi, as already indicated by the relative bounds of
variable type t(xi). To still represent the original MINLP, we apply two modifications: (i) set
the lower and upper bounds of xi to `i − ξi and ui − ξi, respectively, and (ii) replace in T every
sub expression tree representing an expression α · xi for some α ∈ R by an expression tree for the
expression α ·xi+α ·ξi. Second, observe that reflecting the expression α ·xi for some α ∈ R, results
in α · (2ξi − xi). That is, the sign of the coefficient of xi changes. To easily model this in an SDG,

9

+

× × × ×

4 x1−4 x2 1 x3−1 x4

(a) Expression tree.

+

× × + +

4 x1−4 x2 2
×

1
×

1 x3 −1x4

(b) Tree with shifted do-
mains.

+

x1 x2 + +

2 x3 1 x4

(c) Tree with labeled edges
(indicated by colors).

Figure 4: Illustration of the two preprocessing modifications of expression tree for (4).

a

+

x1 x−1 x2 x−2

+ +

2 1

x3 x−3 x4 x−4

(a) Symmetry detection graph.

a

+

+ +

2 1

(b) Trimmed SDG.

Figure 5: Illustration of an SDG and the corresponding trimmed SDG for (4).

we encode variable coefficients as edge colors. More concretely, suppose T has an operator node v
that corresponds to a multiplication operation and that has exactly two children. Whenever one
child v1 is a variable and the other child v2 is a numerical value, we remove v2 from T and assign
its value to the arc connecting v and v1, see Figure 4 for an illustration of both operations.

In the following, we assume that all expression trees incorporate the two previously described
modifications. To construct colors for SDGs, let N′ be the set of all numerical values used in the
expression trees of MINLP P , and define N = {±v : v ∈ N′}. Let O be the set of all operators
appearing in the expression trees, and let a be a symbol representing the anchor of a graph.
Moreover, recall that V denotes the set of all types of variables in P . Then, C = N ∪O ∪V ∪ {a}
contains all types of nodes needed to build an SDG. We refer to C as colors, i.e., we associate a
color to each node based on its type.

Our construction of an SDG closely follows [30]. We derive an undirected copy of the expression
tree of constraint k, denoted G′k = (V ′k, E

′
k). Each node in V ′k receives the color from C correspond-

ing to its type. If an arc has received a value due to preprocessing, we color the corresponding edge
in E′k by the corresponding color in C. Each uncolored edge incident with a variable node receives
the color of the numerical value 1. Finally, we add an anchor node a to G′k and replace nodes
corresponding to variables by a gadget. The anchor node a receives color a and is connected via
an edge with the root node of the expression tree. To represent variable xi, i ∈ [n], we introduce
two distinguished nodes vki and vk−i that are colored by t(xi) and t(x−i), respectively. Both nodes
are connected by an edge {vki , vk−i}. Furthermore, every edge {v, vi} ∈ E′k with color c ∈ N that
is incident to a node vi representing variable xi is replaced by two edges {v, vki } and {v, vk−i} with
color c and −c, respectively. We denote the resulting graph by Gk, see Figure 5(a) for an illustra-
tion. Note that all variable nodes are equally colored as all shifted variable domains are identical
in our example.

Proposition 4.3. Let P be an MINLP with m constraints represented by expression trees T1, . . . , Tm
all of whose operators are commutative. For k ∈ [m], let Gk = (Vk, Ek) be the colored graph derived
from Tk as described above. Then, for every k ∈ [m], Gk is an anchored SDG for Pk. Moreover,
G1, . . . , Gm are variable color and constraint compatible.

Proof. For every k ∈ [m], graph Gk is anchored since each variable node of Tk is a leaf and the an-
chor node of Gk is connected with the root of Tk. Moreover, G1, . . . , Gm are constraint compatible
since they are essentially copies of the corresponding expression trees. The graphs G1, . . . , Gm are
also variable color compatible, because variable nodes are colored according to their type. It thus
suffices to show that each graph Gk, k ∈ [m], is an SDG.

10

The first two properties of SDGs follow immediately from coloring the distinguished nodes
by the corresponding variables’ types and the only edges connecting the distinguished nodes be-
ing {vki , vk−i}, i ∈ [n]. Regarding the third property, observe that expression tree Tk is almost
identical to Gk. The main differences are (i) the anchor node in Gk has no counterpart in Tk;
(ii) there are possibly multiple copies of variable nodes in Tk, whereas these nodes are identified
in Gk via the distinguished nodes; (iii) Gk also contains nodes for x−1, . . . , x−n. We now argue
that these differences ensure that Gk is an SDG. To this end, let T̄k be the graph arising from Tk
by removing all variable nodes, see Figure 5(b). As for expression trees, we can associate with T̄k
an arithmetic expression in which the input of some operators is not fully specified. We refer to
such an expression as a pre-function.

Let π be an automorphism of Gk and let γ be the signed permutation associated with π as
defined in Definition 4.1. Let π̄ be the restriction of π onto T̄k. Then, π̄ is well-defined since
every node in T̄k has a unique counterpart in Gk (there are no variable nodes in T̄k). We can thus
interpret T̄k as an induced subgraph of Gk. Since the anchor of Gk is the only node colored by a
and the anchor is only connected with Tk’s root, π̄ is an automorphism of T̄k that keeps the root
invariant. The pre-functions associated with π(T̄k) and T̄k are hence the same. To conclude the
proof, we show that inserting x and γ(x) into the pre-functions for T̄k and π(T̄k), respectively,
yields the same function.

Let v be an operator node of Tk that has variable xi, i ∈ [n], as child, and let α be the numerical
value assigned to arc (v, xi). That is, α · xi is input of the operator associated with v. In Gk,
arc (v, xi) corresponds to the edge {v, vki } with color α. Due to the coloring of Gk and since π is
an automorphism of Gk, there exists j ∈ [±n] such that π(vki) = vkj . Because of the same reasons,

π(v) corresponds to an operator of the same type as v and {π(v), vkj } has color α. Thus, operator v
in Tk has input α · xi and operator π(v) in π(Tk) has input

α · xsgn(i)|i| = sgn(i)α · x|i| = α · γ(x)j ,

where the first equality holds due to assigning edges {v, vkj } and {v, vk−j} negated values/colors.
Consequently, since we assumed that all operators are commutative, assigning the pre-function
of T̄k input x and the pre-function of π(T̄k) input γ(x) yields the same function.

Remark 4.4. Proposition 4.3 can easily be generalized to expression trees involving non-commu-
tative operators. As mentioned in Section 3, the arcs leaving an operator node of such an expression
tree need to be labeled to indicate the order in which the input of an operator needs to be processed.
These labels then need to be incorporated into the edge colors of an SDG.

We close this section by evaluating the the capabilities of the SDG of Proposition 4.3 for
example (4). The reflection symmetries of (4) are the signed permutations γ1 = (1,−2)(2,−1),
γ2 = (3,−4)(4,−3), γ3 = γ2 ◦ γ1, and γ4 = id. The only signed permutations that can be derived
from automorphisms of the SDG in Figure 5(a), however, are γ1 and γ4. That is, even for linear
expressions, the SDG might not allow to detect all reflection symmetries. This undesired behavior
will be investigated in more detail in the next section, where we will modify the SDG to detect all
reflection symmetries of linear expressions. Moreover, the modifications will also allow to detect
the natural reflection symmetries of the disk packing problem from Example 1.1.

4.2 Enhancements of the Framework

Although SDGs are defined in terms of relative variable domains, the SDG of Proposition 4.3
for the exemplary MINLP (4) does not encode the reflection symmetry between x3 and x−4.
The reason is that our proposed modifications of expression trees explicitly encode the original
reflection centers in the expression trees. Variables with different reflection centers consequently
cannot be symmetric in the SDG, cf. Figure 5(a). In this section, we discuss small modifications
of the proposed SDGs, which allow to detect reflection symmetries of sum expressions, squared
differences, bilinear products, and even operators. This list of examples is, of course, not exhaustive
and only serves as an illustration of how the abstract concept of symmetry detection graphs can be
used to derive tailored SDGs incorporating symmetry information of particular types of constraints.

11

a

+

x1 x−1 x2 x−2 x3 x−3 x4 x−4

3

(a) Enhanced SDG for (4).

a

·2
+

x1 x−1x2 x−2

(b) SDG for (x1 − x2)2.

a

·2
+

1 1

x1 x−1x2 x−2

(c) Enhanced SDG
for (x1 − x2)2.

Figure 6: Illustration of a enhanced SDGs.

Sum Expressions. A simple way to resolve the issue for MINLP (4) is to not consider the
summands of a sum expression independently. To make this precise, let I ⊆ [n] and S =

∑
i∈I αi·xi,

where αi ∈ R for all i ∈ I. To center each variable at the origin, the last section proposed to modify
an expression tree by replacing each summand αi · xi by a sub expression tree for αi · xi + αi · ξi.
Alternatively, we can compute the expression S′ =

∑
i∈I αi · ξi +

∑
i∈I αi · xi first and create

the expression tree for S′, see Figure 6(a). Since both the modified expression tree T from the
previous section and the tree T ′ described here model the same function, automorphisms of the
SDG corresponding to T ′ also correspond to reflection symmetries of (MINLP). In particular,
because the SDG for S′ essentially corresponds to the SDGs from [9] for linear constraints, all
reflection symmetries of S are encoded in the SDG, see [9, Thm. 4].

Squared Differences. Consider Example 1.1 for two disks. Incorporating the previously dis-
cussed idea for sum expressions into SDGs allows to detect the symmetries (x1, x2) 7→ (−x2,−x1)
and (y1, y2) 7→ (−y2,−y1) even when the box is not centered at the origin. The reflection along
the horizontal and vertical symmetry axes of the box, however, cannot be detected via the SDG.
The reason is that the SDG does not encode that (x1 − x2)2 is the same as (−x1 − (−x2))2 since
the corresponding expression trees are different, see Figure 6(b) for an SDG of this expression.

To incorporate this information into an SDG, we replace the subgraph in the SDG corresponding
to the sub expression tree for (x1−x2)2 by a gadget. For this gadget, we introduce a binary squared
difference operator � modeling �(x1, x2) = (x1 − x2)2. The gadget then consists of an operator
node v of type �, two auxiliary value nodes a1 and a2 both receiving color 1, and the distinguished
nodes v1, v−1, v2, v−2 for x1, x−1, x2, x−2. The gadget’s edges all remain uncolored and are given
by {v, a1}, {v, a2}, {a1, v1}, {a1, v2}, {a2, v−1}, and {a2, v−2}, see Figure 6(c).

Since every SDG adds the edges {v1, v−1} and {v2, v−2}, note that any automorphism of the
gadget that exchanges v1 and v2 also needs to exchange v−1 and v−2. Hence, the automorphism
group of this gadget is generated (provided all variables have the same type) by the permuta-
tions π1 = (v1, v2)(v−1, v−2) and π2 = (a1, a2)(v1, v−1)(v2, v−2). The former corresponds to the
permutation symmetry of Example 1.1 that exchanges identical disks; the latter corresponds to
the reflection along the vertical symmetry axis of the box (as we only consider x-variables). That
is, all reflection symmetries of Example 1.1 can be detected via this gadget.

Note that the introduction of the new operator type indeed ensures that every automorphism
of the SDG corresponds to a reflection symmetry of the corresponding MINLP, since the squared
difference operator serves as an anchor of the gadget. In the following, we will generalize this
idea to other structures frequently arising in MINLP. We only need to ensure that each newly
introduced gadget is anchored and that there is a unique operator type identifying the gadget.
The former ensures that the entire SDG remains anchored if a gadget replaces a sub expression
tree, whereas the latter guarantees constraint compatibility among different SDGs.

Bilinear Products. Let i, j ∈ [n] be distinct and consider the bilinear product xi · xj . If the
reflection center of both xi and xj is at the origin and both variables have the same type, the
product admits two symmetries: either one exchanges xi and xj , or one simultaneously replaces xi
by x−i and xj by x−j . These symmetries are exactly the same symmetries as for the case of

12

squared differences. For this reason, the symmetries can be encoded using an analogous gadget;
the only difference is that the � operator node needs to be replaced by the product operator.

Even Functions. Let i ∈ [n] and let f : R → R be a univariate function such that f(xi) arises
as a subexpression in (MINLP). If f is an even function, then xi 7→ −xi is a potential symmetry
of (MINLP) as f(xi) = f(−xi). This property of even functions can easily be incorporated into
SDGs. Instead of connecting the operator node corresponding to f with the distinguished nodes vi
and v−i by two edges being colored by the numerical values 1 and −1, respectively, we assign both
edges color 1.

The idea for even functions can be generalized, of course, if the input of f is a more complicated
expression E. In this case, nodes vi and v−i must be replaced by the root nodes of graphs
representing expression trees for E and −E, respectively. Depending on the size of E, this could
increase the size of the SDGs significantly though, and thus also increases the time needed to detect
symmetries.

5 An Open-Source Implementation of the Abstract Frame-
work

In this section, we describe our implementation of the abstract symmetry detection framework
of the previous section within the open-source solver SCIP. Our framework is contained as a C-
implementation in the release of SCIP 9.0 [10] and replaces SCIP’s previous symmetry detection
mechanism. We start by explaining the design principles of our implementation (Section 5.1),
followed by an illustration of how to use our framework within SCIP (Section 5.2). The section is
concluded in Section 5.3 by providing further technical details and a discussion of how to detect
symmetries of SDGs. Appendix A provides an overview of the most important functions needed
to apply our framework.

5.1 Design Principles

One of the design principles of SCIP is that all major components of the solver are organized as
plug-ins. This allows users to easily extend SCIP by tailored techniques for specific applications,
e.g., cutting planes or heuristics. The main plug-in type is a so-called constraint handler. A con-
straint handler provides an abstract notion of a class of constraints (e.g., general linear constraints,
knapsack constraints, SOS1 constraints, or general nonlinear constraints), and defines general rules
to enforce that a solution adheres to the corresponding constraints. That is, if SCIP solves an
instance of (MINLP) and finds some intermediate solution x, every constraint gk, k ∈ [m], will
ask its corresponding constraint handler for rules to check whether the solution satisfies gk(x) ≤ 0
and, if not, how this can be resolved.

With the release of SCIP 5.0, a symmetry detection mechanism had been implemented. This
mechanism, however, was only able to detect symmetries if all constraints of a problem have
a constraint handler being part of the SCIP release. One of our motivations to introduce the
abstract notion of SDGs was to overcome this limitation and to allow symmetry detection also in the
presence of custom constraints. We realized symmetry detection via SDGs in SCIP by introducing
a new optional callback for constraint handlers. If a constraint handler implements this callback,
the callback needs to create an SDG from the constraint’s data adhering to Proposition 4.3. The
SDGs for individual constraints are then combined to a global SDG for the entire problem via
Theorem 4.2. Symmetry detection in SCIP will then check whether the constraint handlers of
all constraints present in the problem implement the new callback. If this is the case, symmetries
are computed based on the global SDG; otherwise, symmetry computation is disabled. In the
remainder of this section, we provide details of how SDGs can be encoded using our implementation,
and how variable color and constraint compatibility can be ensured.

Nodes and Edges of SDGs. In the construction of SDGs for nonlinear constraints represented
by expression trees, we used four different types of nodes: nodes representing numerical values,
mathematical operators, variables, and an anchor. Since we believe that the representation via

13

expression trees is rather generic, our implementation also makes use of four different types of
nodes that can hold different information:

value nodes store a floating-point number;

operator nodes store an integer value serving as an identifier of an operator;

variable nodes store the index of the corresponding (reflected) variable;

constraint nodes store a pointer to a constraint as well as two floating-point numbers (referred
to as left-hand side and right-hand side).

Due to the definition of SDGs, our implementation automatically adds variable nodes for all (re-
flected) variables to an SDG. The remaining types of nodes can be added to an SDG by dedicated
functions, see Appendix A. Each node of an SDG is identified by an integer index.

Edges {u, v} of SDGs are identified by the indices u and v, and can optionally hold a floating-
point value, cf. the assignment of numerical values to edges in Section 4.1. By calling a function,
edges can be added to an SDG. Our implementation also makes sure that every SDG contains the
edges connecting the distinguished nodes for a variable xi and its reflection x−i.

Note that neither for nodes nor for edges we allow to specify a color. The colors will be
determined separately.

Ensuring Compatibility. To ensure constructing correct SDGs for optimization problems, all
SDGs for individual constraints need to be anchored, and the collection of SDGs has to be variable
color and constraint compatible. We therefore devised the following principles for constructing an
SDG that should be used by symmetry detection callbacks of constraint handlers.

(P1) The callback must not add edges connecting two variable nodes.

(P2) Every SDG for an individual constraint should have exactly one constraint node that serves
as an anchor.

(P3) The SDGs constructed by a constraint handler for two constraints c, c′ are only isomorphic
if c ≡ c′, cf. Section 4.

Regarding (P1), the only edges between variable nodes that are required in Section 4 are the edges
connecting variable nodes for pairs of reflected variables, which are present in an SDG by default
in our implementation. Regarding (P2), although operator and value nodes could serve as anchors,
too, constraint nodes easily allow to ensure constraint compatibility, see below.

A key component of ensuring compatibility is that only equivalent types of nodes and edges
receive identical colors. We therefore did not allow to specify the color of a node or edge during
creation, but instead assign properties to nodes and edges. Once all SDGs have been created,
SCIP computes pairwise disjoint sets of colors for the edges and the four different types of nodes.
While the colors of edges as well as operator and value nodes can be easily derived from the unique
value assigned to the corresponding object, deriving the colors of variable and constraint nodes is
not immediate. For constraint nodes, we derive a color based on the corresponding left-hand side
and right-hand side values as well as the constraint handler of the associated constraint. Variable
nodes are assigned a color based on their types as explained in Section 4. The latter guarantees
variable color compatibility.

It remains to discuss constraint compatibility. Let G be the constructed SDG for an entire
optimization problem, and let G′ and G′′ be the SDGs for two constraints of the problem. In
the proof of Theorem 4.2, we noted that anchors guarantee that, if an automorphism of G maps
a node of G′ onto a node of G′′, then every node of G′ needs to be mapped onto a node of G′′.
Since the color of an anchor node depends on the corresponding constraint handler by (P2), only
SDGs derived from the same constraint handler can be isomorphic. Principle (P3) then guarantees
constraint compatibility.

Remark 5.1. Although (P3) seems difficult to achieve at first glance, it is usually easy to im-
plement in practice. The reason is that constraint handlers need to implement abstract rules for
deriving an SDG from a constraint. One such mechanism has been described for SDGs derived
from expression trees in Section 4.1, and Section 5.2 will discuss another approach for particular
constraints without an immediate expression tree representation.

14

5.2 Callbacks and Their Usage

In this section, we provide a more detailed description of our callbacks and we illustrate how to
use them to detect symmetries.

Callbacks In SCIP 9.0, one can compute either reflection symmetries or classical permutation
symmetries. To allow constraints to inform SCIP about how to detect (reflection) symmetries,
their constraint handlers must implement the SCIP DECL CONSGETSIGNEDPERMSYMGRAPH callback
for reflection symmetries or the SCIP DECL CONSGETPERMSYMGRAPH callback for permutation sym-
metries. Since the functionality of both callbacks is essentially the same, we refer to both of them
just as “the callback” in the following. The only differences between the SDGs for permutation
symmetries and reflection symmetries is that an SDG for permutation symmetries does not contain
nodes for reflected variables and that the variable type is defined according to the original variable
bounds (i.e., not shifted).

The input of either callback are five pointers providing the following information:

scip data structure with information about the problem and solving process;

conshdlr constraint handler for which the callback has been implemented;

cons constraint for which an SDG shall be created;

graph SDG to which the information of cons shall be added;

success Boolean to store whether the SDG could be created successfully.

If the callback cannot create the SDG, it should set success to FALSE to inform SCIP that not
all constraints could provide symmetry information. Symmetry detection gets then disabled.

Constraints in SCIP usually provide further information that fully characterizes the constraint,
so-called consdata. Linear constraints, for example, store the variables and coefficients as well as
the left-hand side and right-hand side of the constraint in the consdata. The consdata can be
accessed from cons and usually is the only information that should be used to create the SDG.

The SDG to which nodes and edges shall be added is given by graph. Note that we decided
to not create a separate SDG for every constraint. Instead, graph corresponds to the SDG for the
entire problem. This does not cause any conflicts as long as the callback only adds edges between
nodes that have been created by the callback for the same constraint. Since no new variable nodes
can be created, there cannot be multiple nodes modeling the same variable.

Using the Callback We illustrate how the callbacks can be used for the stable set problem.
Let H = (V,E) be an undirected graph with node weights wv ∈ R, v ∈ V . A stable set in H is a
set S ⊆ V if {u, v} /∈ E for all u, v ∈ S. The task is to find a stable set S with maximum total
node weight. A classical integer programming formulation is

max

{∑
v∈V

wvxv : xu + xv ≤ 1 for all {u, v} ∈ E and x ∈ {0, 1}V
}
.

It is well-known that the linear programming (LP) relaxation of this formulation is rather weak
and that it can be enhanced by adding so-called clique inequalities

∑
v∈C xv ≤ 1, where C is a

clique in H. Among others, the following two possibilities exist to make use of clique inequalities
in SCIP. On the one hand, one could enumerate all clique inequalities explicitly and add them
as linear inequalities to the problem formulation. In this case, SCIP can automatically detect
symmetries. But since there might be exponentially many cliques, the LP relaxation could become
much harder to solve. On the other hand, one could implement an abstract constraint handler
that gets H as input and decides on the fly whether a solution satisfies all clique inequalities, and
adds an inequality in case it is violated by the solution. Without our callback, however, SCIP
cannot know how the presence of the stable set constraint handler impacts the symmetries of the
problem.

To implement our callback, we observe that every automorphism of H that exchanges nodes
of the same weight is also a symmetry of the stable set problem. The SDG for the stable set

15

1 static

2 SCIP_DECL_CONSGETPERMSYMGRAPH(consGetPermsymGraphStableSet)

3 {

4 SCIP_CONSDATA* consdata;

5 int* idx;

6 int vidx;

7 int nnodes;

8 int nodeop;

9 int v;

10

11 /* define node operator */

12 nodeop = 0;

13

14 consdata = SCIPconsGetData(cons);

15 nnodes = consdata->nnodes;

16

17 SCIP_CALL(SCIPallocBufferArray(scip, &idx, nnodes + 1));

18

19 /* create operator nodes and constraint node */

20 for(v = 0; v < nnodes; ++v)

21 {

22 SCIP_CALL(SCIPaddSymgraphOpnode(scip, graph, nodeop, &idx[v]));

23 }

24 SCIP_CALL(SCIPaddSymgraphConsnode(scip, graph, cons, 0.0, 0.0, &idx[nnodes]));

25

26 /* add edges of underlying graph */

27 for(v = 0; v < consdata->nedges; ++v)

28 {

29 SCIP_CALL(SCIPaddSymgraphEdge(scip, graph,

30 idx[consdata->first[v]], idx[consdata->second[v]], FALSE, 0.0));

31 }

32

33 /* connect nodes with constraint node */

34 for(v = 0; v < nnodes; ++v)

35 {

36 SCIP_CALL(SCIPaddSymgraphEdge(scip, graph,

37 idx[v], nodeidx[nnodes], FALSE, 0.0));

38 }

39

40 /* connect operator nodes with variable nodes, assign edges weight of node */

41 for(v = 0; v < nnodes; ++v)

42 {

43 vidx = SCIPgetSymgraphVarnodeidx(scip, graph, consdata->vars[v]);

44 SCIP_CALL(SCIPaddSymgraphEdge(scip, graph,

45 idx[v], vidx, TRUE, consdata->weights[v]));

46 }

47 *success = TRUE;

48

49 SCIPfreeBufferArray(scip, &idx);

50

51 return SCIP_OKAY;

52 }

1Figure 7: Illustration of usage of symmetry detection callback.

constraint handler thus essentially needs to add a copy of H to the global SDG. We illustrate this
in Figure 7 and provide a description next.

We assume that the consdata of the stable set constraint contains the following information:
nnodes provides the number of nodes in H and the nodes are labeled 0, . . . , nnodes − 1; nedges
provides the number of edges in H and edges are encoded via two arrays first and second that
contain the first and second nodes of all edges, respectively; weights is an array that assigns each
node its weight.

First, we encode an operator type in Line 12 of Figure 7, which represent nodes of the graph H.
Note that there might exist other constraint handlers that also define an operator with the same
index. This is not an issue though as (P2) will make sure that we cannot mix constraints of the
stable set constraint handler with constraints from other constraint handlers.

16

Second, we extract some information about H and create an array idx to store the indices of
the newly created nodes of the SDG (Line 17). Afterwards, we create for each node of H a copy
in the SDG by creating a corresponding operator node (Line 22). We also create an anchor of
the SDG (Line 24) by introducing a constraint node. Since the abstract stable set constraint has
neither a left-hand side nor a right-hand side, we store the dummy values 0 and only assign the
constraint pointer cons to the anchor node.

Third, the edges of H are copied to the SDG in Line 29. Since edges of H are unweighted, also
the corresponding edges of the SDG are unweighted (indicated by FALSE). Fourth, we connect the
anchor with the remaining nodes of the SDG. To preserve symmetries of H, the anchor is connected
with all copied nodes of H (Line 36). Finally, we add edges between the copies of nodes of H and
the corresponding variable nodes (Line 44). These edges receive the weights of the corresponding
nodes in H, and we set the success pointer to TRUE since the graph could be created.

5.3 Technical Details

In this section, we provide further technical details of our implementation. First, we briefly discuss
our data structures for SDGs. Second, we mention further details of the implementation to realize
the ideas of Section 4 in SCIP. Finally, we explain how automorphism of SDGs can be detected.

Encoding Symmetry Detection Graphs We experimented with different data structures
for encoding SDGs. Our first attempt was to use an object-oriented implementation containing
separate objects (or structs in C) for graphs, nodes, and edges. But it turned out that, even for
linear problems, the creation of SDGs was much slower than the previous implementation in SCIP
that was tailored towards constraints known by SCIP. The main reason for the slower performance
was an overhead in memory allocation for the separate objects. For the same reason, we discarded
the idea of creating separate SDGs for individual constraints. Instead, we only maintain a single
SDG that is extended by the callbacks, which turned out to be more efficient. The final data
structure for SDGs is a C struct using basic C data types such as int, double, or pointers to
encode information about nodes and edges.

In the following, assume an SDG has n nodes and m edges. Nodes of SDGs are identified by
an index in N = {0, . . . , n− 1} and several arrays store information about the nodes. Recall that
we distinguish four different types of nodes (operator, numerical value, variable, and constraint).
These types are encoded by an enum and several arrays hold the information corresponding to
the nodes of different types. For example, array vals holds the values assigned to value nodes,
and array lhs stores the left-hand side values assigned to the constraint nodes. To access the
information associated with node i ∈ N , we use two arrays. Array nodetypes stores the type of
the different nodes and array nodeinfopos stores the index of each node in its corresponding group.
That is, if j is the value stored at nodeinfopos[i], then node i ∈ N is the j-th node within the
group nodetypes[i]. If node i was a constraint node, we thus could access its associated left-hand
side at lhs[j]. Several functions are available to access node information or to create nodes, see
Appendix A. When creating a new node, we check whether the node still fits into the allocated
memory for the aforementioned arrays. If not, we enlarge the arrays by memory reallocation; the
new size of the arrays is determined by SCIP based on a growth factor to avoid frequent memory
reallocation.

Edges are identified by an index in {0, . . . ,m − 1}. Two arrays edgefirst and edgesecond

store the indices of the first and second nodes in the edges, respectively; array edgevals stores
the values associated with an edge. If an edge has no assigned value, we use the placeholder value
infinity in edgevals.

Moreover, an SDG struct contains int arrays for the colors associated with nodes and edges.
Initially, these arrays are empty and only created if computing colors is triggered by calling a
function, see the next section for details. In this case, an SDG will lock itself, which means that is
is no longer possible to add nodes and edges. This is a safety mechanism to ensure that the stored
colors always correspond to the SDG.

Implementation Details We discuss two implementation details concerning numerical inac-
curacies and aggregation of variables. The former is relevant for computing colors, whereas the

17

second has consequences for creating SDGs.
To derive colors for nodes, we sort nodes first by their type (operator, constraint etc.) and then

based on the information associated with them. For instance, numerical value nodes are sorted
based on their associated value, and variable nodes are sorted based on their variable’s type. Since
SCIP uses floating-point arithmetic when solving an optimization problem, it is reasonable to also
consider two nodes as identical if their associated information does not deviate more than a small
quantity ε (by default 10−9 in SCIP). We then partition the sorted list of nodes into blocks of
consecutive elements such that the first and last node per block do not deviate more than ε. Every
node within the same block is then assigned the same color, and nodes from different blocks receive
different colors. Colors for edges are computed analogously.

In Definition 4.1, we required SDGs to contain a distinguished node for every (reflected) variable
of (MINLP). In practice, however, SCIP removes variables from a problem, e.g., when they get
fixed or can be represented as a weighted sum of other variables (variable aggregation). To reduce
the number of variable nodes in SDGs, it thus makes sense to only represent variables in an
SDG that are neither fixed nor aggregated. Our implementation of SDGs therefore also only
supports unfixed and non-aggregated variables. When using the symmetry detection callbacks,
every occurrence of a fixed or aggregated variable needs to be replaced by the corresponding
constant or sum of variables, respectively.

Detecting Automorphisms To detect symmetries of SDGs, we use external software packages
for computing graph automorphisms. Our current implementation supports the packages bliss [22]
and nauty [36]. Since bliss and nauty only support graphs with uncolored edges, we post-process
SDGs: every edge {u, v} of color c is replaced by an auxiliary node w of color c as well as the
uncolored edges {u,w} and {v, w}. As noted in Section 3, the number of auxiliary nodes can be
reduced by identifying some of them with each other. For the SDGs G for permutation symmetries
of MILP, see Section 3, this can be achieved as follows, cf. [41].

Let v be a variable node of G and let Evc be the set of all edges of color c that are incident
with v. Instead of introducing an auxiliary node for all edges in Evc , it is sufficient to introduce one
auxiliary node w as well as the edges {v, w} and {u,w} for all {u, v} ∈ Evc . This way, the number
of auxiliary nodes changes from |Evc | to 1 and the number of edges changes from 2 · |Evc | to 1+ |Evc |.
This mechanism of reducing the number of auxiliary nodes is called grouping by constraints [40];
if the mechanism is applied to constraint nodes instead of variable nodes, it is called grouping by
variables.

We have implemented an analogous grouping mechanism for our abstract SDGs, where we
group edges being incident to either the same constraint or variable node. The former is used if
there are less constraint nodes than variable nodes.

6 Handling Reflection Symmetries

In this section, we describe methods for handling (reflection) symmetries in MINLP, which we
illustrate using the disk packing problem of Example 1.1. In the disk packing problem, we dis-
tinguish three types of symmetries: (i) permutation symmetries that exchange indices of disks;
(ii) reflection symmetries that reflect the x- or y-coordinates of all disks; (iii) and, if the width
and height of the box are identical, permutation symmetries that exchange both coordinates. To
visualize these symmetries, it is convenient to encode a solution of the disk packing problem by
a matrix M ∈ RD×2, where the i-th row (Mi1,Mi2) corresponds to the center point (xi, yi) of
the i-th disk. The first class of symmetries then corresponds to reordering the rows of M , the
second class to changing the signs of all entries of a column of M , and the last class to an exchange
of the two columns of M , see Figure 8.

The described actions of the symmetry group of an MINLP on a matrix of variables is rather
generic and, as we will see in Section 7, occurs in many applications. We therefore discuss, after
a short overview of symmetry handling techniques for permutation symmetries, methods for row-
exchanges, column-reflections, and their combination with column-exchanges in more detail. We
conclude by devising general techniques for handling reflection symmetries.

18

1 2 3

4 5 6

7 8 9

10 11 12

(a) Original matrix.

4 5 6

10 11 12

1 2 3

7 8 9

(b) Disk permutation.

1 -2 3

4 -5 6

7 -8 9

10 -11 12

(c) Reflection.

1 3 2

4 6 5

7 9 8

10 12 11

(d) Coordinate symmetry.

Figure 8: Illustration of matrix symmetries arising in Example 1.1.

6.1 General Symmetries

Consider an (MINLP) with variable vector x ∈ Rn and reflection symmetry group Γ ≤ S±n . A
standard way for handling Γ is to define an order of the variables, encoded by a permutation π ∈ Sn,
and to enforce that a solution x must be lexicographically maximal in its Γ-orbit. Formally, one is
looking for feasible solutions x of (MINLP) satisfying π(x) ≥lex π(γ(x)) for all γ ∈ Γ, where ≥lex

denotes the lexicographic comparison. In general, enforcing the lexicographic order constraints in
coNP-hard, cf. [3]. One therefore typically uses one of the following three alternatives.

First, one can handle the lexicographic order constraints for a small subset of symmetries.
For binary variables, a constraint π(x) ≥lex π(γ(x)) can be handled by adding linear inequalities
to (MINLP). To fully encode the lexicographic comparison by linear inequalities, however, one
needs exponentially many inequalities or inequalities with exponentially large coefficients [20]. An
exponentially large class with coefficients in {0,±1} is presented in [21], whereas [16] uses a single
inequality with exponentially large coefficients. To overcome these drawbacks, an alternative is to
propagate lexicographic constraints during branch-and-bound. That is, given the bounds on vari-
ables of a subproblem of branch-and-bound, one derives further reductions of variable bounds that
are satisfied by any lexicographic maximal solution. Such a propagation algorithm, lexicographic
reduction, is described in [13] and runs in linear time. In particular, the algorithm also works for
non-binary variables.

Second, one can derive strong symmetry handling methods for particular classes of symmetry
groups. Besides techniques for the row symmetries of the disk packing problem, which we discuss
in the next section, also efficient propagation algorithms for particular cyclic groups exist [14].

Third, there exist intermediate approaches that handle some but not necessarily all group
structure. For example, orbital fixing [39] fixes binary variables based on the branching decisions
and permutation symmetries of (MINLP). Recently, this method has been generalized to arbitrary
variable types [13], so-called orbital reduction. Moreover, [31, 45] discuss sparse linear inequalities
that are derived from the Schreier-Sims table of a permutation group and that handle symmetries
based on variable orbits.

Recall that, by Definition 2.2, symmetric variables can have different variable domains due
to translations. For handling row and column symmetries, we assume in the following that all
symmetric variables have the same domain.

6.2 Row Symmetries

A popular approach for handling row symmetries of a matrix M ∈ Rp×q is to lexicographically sort
its rows, i.e., if Mi·, i ∈ [p], denotes the i-th row of M , one enforces M1· ≥lex M2· ≥lex . . . ≥lex Mp·.
By interpreting M as a vector x ∈ Rpq such that entry (i, j) of M is entry (i−1)q+ j of x, this can
be achieved via the lexicographic ordering constraints of the previous section using π = id. But
since the group of all row permutations has size p!, it is impractical to add all ordering constraints.
Instead, it is folklore that sorting the rows can already be achieved by the ordering constraints for
the p − 1 permutations that exchange consecutive rows, cf. [21]. Methods such as lexicographic
reduction can then be used to enforce the ordering constraints.

Since these methods ignore the interplay of different row permutations, they might not detect
all reductions that can be derived from a matrix with sorted rows. An alternative is orbitopal
reduction [13]. This propagation algorithm is called within a branch-and-bound algorithm and
receives bounds on all variables in M w.r.t. the current subproblem. The algorithm then identifies

19

Figure 9: Row symmetries combined with reflection symmetries of columns. Rows within the red
blocks can be exchanged arbitrarily, whereas blue cells can be restricted to the upper half of the
domain.

the tightest bounds for all variables in M to which every sorted feasible solution of the subproblem
adheres to. Originally, this algorithm has been derived for matrices of binary variables [5], but
the variant of [13] is applicable for general integer and continuous variables, too. Moreover, [24]
describe a variant of this algorithm if all variables in M are binary and at most one (resp. exactly
one) variable per column is allowed to attain value 1. A facet description of the convex hull of
all such binary matrices M is also known [25]; the facet-defining inequalities can then be added
to (MINLP) to handle row symmetries.

Above, we discussed a fixed assignment of the entries of M ∈ Rp×q to a vector x ∈ Rpq. This
requirement can be relaxed such that different assignments can be used at different nodes of the
branch-and-bound tree. For example, [5] discusses a mechanism to change the order of the columns
of M before translating M into a vector x. A variant in which also the order of the rows can be
exchanged is discussed in [13]. We refer to both variants as column-dynamic and column-row-
dynamic orbitopal fixing, respectively. The variant without any reordering is referred to as static
orbitopal fixing.

6.3 Column Reflections

Let M ∈ RD×2 be the variable matrix for the disk packing problem for D disks. Then, M admits
row symmetries and reflection symmetries of individual columns. Let n1 = dD2 e and n2 = dn1

2 e.
To handle reflection symmetries in the regime of disk packing, [26] enforces Mi,1 ≥ 0 for all i ∈ [n1]
and Mi,2 ≥ 0 for all i ∈ [n2]. Geometrically, this means that there are at least as many disks in
the right half of the box than in the left half; moreover, within the right half, there are not less
disks in the upper half than in the lower half.

Formally, we can derive these reductions as follows. After possibly applying a reflection of the
first column, one can guarantee that the first column has at least as many non-negative entries
as non-positive entries. Due to row symmetries, the first n1 entries can thus be enforced to be
non-negative. This argument can be repeated for the first n1 rows of the second column, because
enforcing the non-negativity structure on the first column does not allow to exchange one of the
first n1 rows of M with one of the last D − n1 rows.

The latter argument also shows that one can sort the first n1 rows of M and the last D − n1
rows lexicographically. To partially enforce this, [26] suggests to add the inequalities Mi,1 ≥Mi+1,1

for i ∈ [D − 1] \ {n1}. A similar sorting idea has been applied for the kissing number problem
in [29].

The idea of [26] can be generalized to matrices with more than two columns. We provide the
following result without a proof, see Figure 9 for an illustration.

Proposition 6.1. Let M ∈ Rp×q be a variable matrix admitting row symmetries and reflection
symmetries for individual columns. Suppose that, for all j ∈ [q], all variables in column j of M
have the same domain center ξj ∈ R. Let n0 = p and, for j ∈ [q], let nj = dnj−1

2 e. Then, a valid
symmetry handling approach is given by

• adding, for each j ∈ [q] and i ∈ [nj], the inequality Mi,j ≥ ξj, and

• enforcing, for each j ∈ [q] ∪ {0}, that Mnj+1,· ≥lex . . . ≥lex Mnj−1,·.

20

The lexicographic sorting can be enforced, e.g., via static orbitopal reduction. A dynamic
variant of orbitopal reduction is not immediately applicable due to the additional lower bound
constraints derived from the reflection symmetries.

6.4 Row and Column Symmetries

In contrast to row symmetries only, it is coNP-complete to decide whether a matrix M ∈ {0, 1}p×q
is lexicographically maximal w.r.t. row and column symmetries [8]. There is consequently no
efficient mechanism to simultaneously handle row and column symmetries unless P = coNP. A
possible remedy to handle at least some symmetries is to enforce that both the rows and columns
of a solution matrix M ∈ Rp×q of (MINLP) are sorted lexicographically [15].

Sorting the rows can be achieved by static orbitopal reduction as described before. More-
over, sorting of the columns can be achieved by applying static orbitopal reduction to the trans-
posed variable matrix. This is indeed compatible as one checks via the lexicographic ordering
constraints: Recall that we associated with M ∈ Rp×q the vector x ∈ Rpq such that Mi,j cor-
responds to x(i−1)p+j . As mentioned above, the rows of M are sorted lexicographically if and
only if x ≥lex γ(x) for all row permutations γ. However, one can show that also the vector x′

that identifies Mi,j with x′(j−1)q+i has the same properties. That is, since x′ corresponds to the
first mechanism for the transpose of M , orbitopal reduction for both M and its transpose can be
combined.

Due to the interaction of row and column symmetries, we stress that a dynamic variant of
orbitopal reduction is not immediately applicable. Moreover, if also reflection symmetries act on
individual columns, handling row symmetries can be replaced by the mechanism in Proposition 6.1.

6.5 Further Techniques for Handling Reflection Symmetries

We describe two further techniques for handling reflection symmetries that also apply if no row or
column symmetries are present in the problem. The first one is a simple inequality that handles
some, but by far not all symmetries. Consider an instance of (MINLP) that contains the signed
permutation γ? that reflects all variables simultaneously, i.e., γ?(i) = −i for all i ∈ [n]. Instead
of lexicographically comparing a solution x of (MINLP) with γ?(x), one can enforce that the
aggregated weight of x is larger than the weight of γ?(x), i.e.,

n∑
i=1

xi ≥
n∑
i=1

γ?(x)i =

n∑
i=1

(2ξi − xi) ⇔
n∑
i=1

xi ≥
n∑
i=1

ξi. (5)

This inequality can, e.g., be used for the max-cut problem [27], where the aim is to partition the
node set of an undirected graph G = (V,E) into two sets such that the weight of edges between
both sets is maximized. If a binary variable xv, v ∈ V , indicates whether v is contained in the first
set (xv = 1) or not (xv = 0), all variables are symmetric w.r.t. the described reflection symmetry.
Inequality (5) then models that at least as many nodes are in the first set of the partition than in
the second set.

Note that (5) cannot necessarily be combined with lexicographic order based techniques. For
example, vector e1 = (1, 0, . . . , 0) satisfies e1 ≥lex γ

?(e1), but violates (5). We therefore also discuss
a second approach: a generalization of lexicographic reduction to reflection symmetries.

The lexicographic reduction algorithm of [13] receives a permutation symmetry π of (MINLP)
as well as upper and lower bounds for all variables as input. The algorithm then finds, for each
variable, the tightest lower and upper bounds such that any solution x satisfying the initial bounds
and x ≥lex π(x) adheres to the new bounds. Their algorithm can be immediately generalized to
reflection symmetries γ ∈ S±n . Since the arguments for correctness are the same as in [13], we only
provide the high-level ideas but no formal proof.

The core of lexicographic reduction is the following observation: Suppose there is i ∈ [n] such
that xj = γ(x)j for all j ∈ [i − 1]. Then, x ≥lex γ(x) can only hold if xi ≥ γ(x)i. In this case,
the lower bound of variable xi can possibly be strengthened to the lower bound of γ(x)i and, vice
versa, the upper bound of γ(x)i can possibly be strengthened to the upper bound of xi.

To exploit this observation for γ ∈ S±n , lexicographic reduction iterates over the entries xi,
i ∈ [n], of a solution x and checks whether xj = γ(x)j holds for all j ∈ [i − 1] by comparing the

21

upper and lower bounds of the variables. If this is the case, three cases are distinguished. First, the
variable bounds imply xi < γ(x)i. Then, the algorithm reports infeasibility because the variable
bounds imply x �lex γ(x). Second, the bounds imply xi > γ(x)i. Then the algorithm stops since
every solution adhering to the bounds satisfies x >lex γ(x). Third, the upper and lower bounds on
the variables can possibly be improved due to the observation and the algorithm continues with
the next iteration and strengthened bounds.

If the algorithm terminates and did not report infeasibility, lexicographic reduction has possibly
improved some variable bounds. As discussed in [13], these bounds are as tight as possible for all
variables except for the lower bound on xi and the upper bound on γ(x)i of the last iteration i.
In a post-processing step, lexicographic reduction can determine whether these bounds can be
improved further, see [13] for details. The running time of lexicographic reduction is O(n).

7 Numerical Experience

In this section, we evaluate our symmetry detection framework when solving MILPs and MINLPs.
Specifically, we aim to answer the following questions:

(Q1) Does the framework of Sections 4 and 5 reliably detect reflection symmetries?

(Q2) What is the most effective way to enforce the lexicographic order constraints in Proposi-
tion 6.1?

(Q3) How frequently arise reflection symmetries in benchmarking instances?

(Q4) Is there a computational benefit for benchmarking instances when handling reflection sym-
metries instead of permutation symmetries?

To answer (Q1), we apply our framework to specific applications in which we know that reflection
symmetries arise and we evaluate whether these symmetries can be detected (Section 7.2). Many
of these instances contain row and column symmetries, which will allow us to answer (Q2). In
Section 7.3, we turn the focus to instances from three benchmarking test sets, which allows us to
answer (Q3) and (Q4). Before answering the questions, we provide an overview of how symmetries
are detected and handled in Section 7.1.

7.1 Computational Setup

As mentioned in Section 5, we included a C-implementation of our detection framework into the
solver SCIP. Our implementation is publicly available in SCIP; detailed instructions on how to
reproduce our results are available at [18]. For most of SCIP’s default constraint handlers, we
have implemented the two callbacks for detecting permutation and reflection symmetries. SCIP
allows to compute symmetries of the original problem or of the problem after presolving. In our
experiments, we considered symmetries of the presolved problem, which is also SCIP’s default
setting. SCIP then builds the corresponding SDG, computes its automorphism group, and returns
a set Γ′ of signed permutations (so-called generators) that generates a group Γ of symmetries of
the MINLP. That is, we do not have explicit access to all symmetries in Γ, but we can write
every γ ∈ Γ as a finite composition of elements from Γ′.

SCIP offers a variety of state-of-the-art methods for handling symmetries. To decide which
method is used, SCIP analyzes the symmetry group Γ ≤ S±n and checks whether it is the direct
product of smaller groups, i.e., Γ =

⊗t
s=1 Γs for some signed permutation groups Γs, s ∈ [t]. Each

factor Γs can then be handled independently from the others, and SCIP calls different heuristics
for each factor to decide how the symmetries are handled. The heuristics aim to detect structured
symmetry groups in the following order:

1. row and column symmetries;

2. row symmetries;

3. unclassified symmetry groups.

We briefly describe how we detect and handle these symmetries. For the ease of notation, we
assume that Γ has a single factor.

22

Row and Column Symmetries. The group of row symmetries is generated by permutations
that exchange pairs of consecutive rows of a matrix, cf. Section 6.2. If x, y ∈ Rq denote such rows,
the corresponding row permutation is (x1, y1)(x2, y2) . . . (xq, yq), i.e., it is a composition of cycles
of length 2. Analogously, the group of column symmetries is generated by exchanges of consecutive
columns. We refer to the number of 2-cycles as the composition’s length.

When detecting row and column symmetries, however, the underlying matrix is unknown. Our
heuristic therefore collects all generators of Γ corresponding to permutation symmetries. If there is
a permutation that is not a composition of 2-cycles, the heuristic stops: no row/column symmetries
are detected. Otherwise, the permutations are partitioned based on the length of their composition.
If this partition consists of two sets, the heuristic tries to construct a matrix M ∈ Rp×q such that
the permutations of the first and second set correspond to row and column symmetries of the
matrix, respectively.

If row and column symmetries are detected, one can handle symmetries by enforcing that the
rows and columns of the matrix are sorted lexicographically, cf. Section 6. Moreover, the heuristic
also checks whether there is a permutation that corresponds to the reflection of a single column
(or row). Since all columns (or rows) are symmetric, this means that the group Γ also contains
the remaining column (or row) reflections. In this case, we can strengthen the symmetry handling
approach by restricting the variable domain of some variables according to Proposition 6.1.

To enforce sorted rows and columns in M in the absence of reflections, we explicitly add the
inequalities Mi,1 ≥Mi+1,1 for all i ∈ [p−1] and M1,j ≥M1,j+1 for all j ∈ [q−1], respectively, to the
MINLP. Moreover, we use static orbitopal reduction to sort the rows and columns. Note that the
inequalities are in principle also enforced by orbitopal reduction. Preliminary experiments showed,
however, that the dual bounds can improve when adding the inequalities explicitly. This is in one
line with an observation by [12] that symmetry handling inequalities can strengthen relaxations
for MINLPs. In the presence of reflection symmetries for columns, we also add inequalities and use
orbitopal reduction to sort the rows, but we restrict both techniques to the blocks of symmetric
rows as indicated by Proposition 6.1. Additionally, we restrict some variable domains to their upper
half as described in Proposition 6.1. If there are row reflections instead of column reflections, we
proceed analogously.

Row Symmetries. To detect row symmetries, we use an analogous mechanism as for row and
column symmetries. The only difference is that the heuristic can only be successful if all permu-
tations have the same number of 2-cycles.

In the presence of column reflections, row symmetries are handled analogously to the case of row
and column symmetries. If no column reflections are detected, we only handle row symmetries if
the number of generators in Γ′ being permutation symmetries is greater than 80 %. Our reasoning
is that if the percentage of permutation symmetries is too low, we potentially miss many symmetry
reductions being implied by proper reflection symmetries. In this case, we proceed with general
techniques as explained in the next paragraph.

If row symmetries for a matrix M ∈ Rp×q are handled, we use dynamic orbitopal fixing besides
the following exceptions:

• If there is only one column, we add the inequalities M1,1 ≥ · · · ≥ Mp,1 to fully handle the
symmetries.

• If there are exactly two rows, we use lexicographic reduction to handle the symmetries of the
corresponding permutation exchanging the two rows.

• Suppose there are at least three rows, and there are at least three columns containing only
binary variables such that other problem constraints enforce that the column sums are exactly
or at most 1. Then, we use orbitopal fixing for packing and partitioning orbitopes [24] for
the submatrix containing the cardinality restricted columns.

These are also the default settings in SCIP to handle row symmetries. The motivation for the first,
second, and third point is to add strong symmetry handling inequalities, more flexible symmetry
handling techniques, or techniques exploiting additional problem structure, respectively. The hope
is that these techniques are more powerful than dynamic orbitopal reduction.

23

General Symmetries. We test two different approaches to handle reflection symmetries. The
first approach uses orbital reduction and lexicographic reduction; the second approach just adds (5)
if it is applicable and no other symmetry handling method is used.

To apply the first approach, let Π′ be the generators in Γ′ that are permutation symmetries.
The group generated by Π′ is then handled by orbital reduction as implemented in SCIP. More-
over, for each generator γ ∈ Γ′, we enforce a lexicographic order constraint π(x) ≥lex γ(π(x)) by
lexicographic reduction, cf. Section 6.5. The reordering π can differ at each node of the branch-
and-bound tree and is defined based on the branching history of the respective node. This allows
to apply lexicographic reduction and orbital reduction simultaneously [13].

Hardware and Software Specifications. All of the following experiments have been conducted
on a Linux cluster with Intel Xeon E5-1620 v4 3.5 GHz quad core processors and 32 GB memory.
The code was executed using a single thread and the time limit for all computations was 2 h per
instance. A memory limit of 27 GB has been used per instance.

We use a developers version of the branch-and-bound framework SCIP 10.0 (githash a93d088d).
All LP relaxations are solved with Soplex 8.0 (githash 89ab43a) and nonlinear problems are solved
with Ipopt 3.12 [48]. To detect symmetries of SDGs, we use the software sassy 1.1 [2] to preprocess
SDGs; symmetries of the preprocessed SDGs are computed using bliss 0.77 [23].

To compare different settings in our experiments, we use, among others, mean numbers. All mean
numbers for quantities t1, . . . , tn are reported in shifted geometric mean

∏n
i=1(ti+s)

1
n −s to reduce

the impact of outliers. For mean running times, a shift of s = 1 is used; otherwise, we use a shift
of s = 0, i.e., the classical geometric mean.

7.2 Results for Structured Instances

To answer Question (Q1), we consider four different classes of instances with different types of
nonlinearities that all admit reflection symmetries. Moreover, three of them admit row and col-
umn symmetries. The four considered problems, which we discuss next, are a geometric packing
problem, the kissing number problem, an energy minimization problem, and the max-cut problem.

Geometric Packing Problem. Let d and n be positive integer numbers. We aim to find the
largest real number r such that n non-overlapping d-dimensional `1-balls of radius r can be packed
into [−1, 1]d. This problem can be modeled as

max r

d∑
i=1

|xsi − xti| ≥ 2r, s, t ∈ [n], s < t,

−1 + r ≤ xsi ≤ 1− r, s ∈ [n], i ∈ [d],

where r models the radius of the balls and xsi , (i, s) ∈ [d] × [n], is the i-th coordinate of the s-th
ball’s center. Interpreting xsi as the entries of an n × d matrix, this formulation admits row and
column symmetries as well as reflection symmetries of individual columns. Although this model
can easily be linearized, we do not do so to check whether symmetry detection works for constraints
involving absolute values.

Kissing Number Problem. Let d and n be positive integers and let S be the unit sphere in Rd

w.r.t. the `2-norm that is centered at the origin. The kissing number problem asks whether n unit
spheres can be placed in Rn such that each of the n spheres touches S and neither pair of the n
spheres intersects. An optimization variant of this problem is looking for the maximum distance

24

of the center points of the n spheres [29]:

maxα

d∑
i=1

(xsi)
2 = 4, s ∈ [n],

8− 2

d∑
i=1

xsix
t
i ≥ 4α, s, t ∈ [n], s < t,

−2 ≤ xsi ≤ 2, s ∈ [n], i ∈ [d],

0 ≤ α ≤ 1,

where the interpretation of xsi is the same as for the geometric packing problem. The second

constraint indeed measures the distance between two center points as ‖xs−xt‖22 = 8−2
∑d
i=1 x

s
ix
t
i.

As before, this problem admits row and column symmetries with column reflections.

Energy Minimization Problem. In the energy minimization problem, we consider n particles
that need to be distributed on a d-dimensional unit sphere [42]. If xsi models the i-th coordinate
of the s-th particle, the energy 1∑d

i=1(x
s
i−xt

i)
2 is needed to keep particles s, t ∈ [n] at their distance.

The goal is to distribute the particles such that their total energy is minimized, i.e., to solve

min

n∑
s=1

n∑
t=s+1

1∑d
i=1(xsi − xti)2

d∑
i=1

(xsi)
2 = 1, s ∈ [n],

−1 ≤ xsi ≤ 1, s ∈ [n], i ∈ [d].

Also this problem admits row and column symmetries with column reflections.

Max-Cut. Given an undirected graph G = (V,E), the maximum cut problem asks for a partition
of the nodes V into two sets such that the number of edges between the two sets is maximized.
This problem can be modeled as

max
∑
e∈E

ye

xu + xv + y{u,v} ≤ 2, u, v ∈ V,
−xu − xv + y{u,v} ≤ 0, u, v ∈ V,

xv ∈ {0, 1}, v ∈ V,
ye ∈ {0, 1}, e ∈ E,

where xv indicates to which of the two sets node v ∈ V belongs to and ye encodes whether
edge e ∈ E has its endpoints in different sets of the partition. This problem admits the reflection
that simultaneously maps xv 7→ 1− xv for all v ∈ V . Moreover, every automorphism π of G gives
rise to a permutation symmetry that relabels the indices of x and y according to π.

Test Sets. We consider four test sets corresponding to the aforementioned problems. We refer
to the test sets as “packing”, “kissing”, “energy”, and “maxcut”. The packing, kissing, and energy
test set contain all instances with n objects in dimension d, where (n, d) ∈ {3, . . . , 14} × {2, 3}.
The maxcut test set contains an instance for each graph from the Color02 symposium2.

2Obtained from https://mat.tepper.cmu.edu/COLOR02/. We removed the graph games120 because the different
settings hit the memory limit while solving the instance.

25

https://mat.tepper.cmu.edu/COLOR02/

Table 1: Statistics on how many instances allow for a particular symmetry handling method.

instances generators row + column row/column

test set total sym. sig. unsig. sig. unsig. sig. unsig. simple

structured instances:
packing 24 24 24 24 23 0 0 0 0
kissing 24 24 24 24 23 0 0 0 0
energy 24 24 24 24 23 0 0 0 0
maxcut 119 119 119 94 0 0 0 0 25

benchmarking instances:
miplib2017 1055 504 60 485 0 1 0 362 2
minlplib 486 111 6 109 4 0 0 100 2
sat2002 819 292 282 125 0 0 9 78 54

Discussion Question (Q1). To answer (Q1), we have computed symmetries for all instances
after presolving. Table 1 summarizes our results, where column “total” contains the total number
of instances per test set and “sym.” the number of instances for which symmetries are detected.
Column group “generators” lists the number of generators being signed (“sig.”) and unsigned
(“unsig.”) permutations. Column groups “row + column” and “row/column” provide the number
of instances containing row and column symmetries, and row or column symmetries, respectively.
We distinguish whether the rows/columns can be reflected within the columns (“sig.” and “un-
sig.”). Finally, column “simple” reports on how many instances allow to handle symmetries via
Inequality (5).

As Table 1 shows, we detect both permutation symmetries and signed permutation symmetries
for all instances in the packing, kissing, and energy test set. Except for one instance per test
set, row and column symmetries combined with column reflections are detected for all instances.
The only exception are instances with specification (n, d) = (3, 3), since both row and column
symmetries have the same number of 2-cycles in this case. Our heuristic for detecting row and
column symmetries thus cannot distinguish whether a permutation corresponds to a row or column
permutation. Moreover, for each maxcut instance, we detect signed permutation symmetries. In
particular, for 25 instances whose graphs are asymmetric, we also detect the applicability of In-
equality (5). We conclude that our symmetry detection framework indeed reliably detects reflection
symmetries.

Discussion Question (Q2). To answer (Q2), we have conducted experiments on the pack-
ing, kissing, and energy test set. We compare different ad-hoc approaches, which add symmetry
handling inequalities directly to the problem formulation, with the more sophisticated techniques
for row and column symmetries as described in Section 7.1. We refer to the latter setting as
the “automatic” setting that is applied by SCIP. The remaining settings are inspired by the in-
equalities in [26] for the disk packing problem, also compare Proposition 6.1. Assuming that the
corresponding variable matrix is M ∈ Rp×q, these settings are:

sym0: no symmetry handling inequalities are added;

sym1: add the inequalities M1,1 ≥M1,2 ≥ · · · ≥M1,q;

sym2: as sym1, additionally add M1,1, . . . ,M1,q ≥ 0;

sym3: as sym2, additionally add inequalities M1,1 ≥M2,1 ≥ · · · ≥Mp,1;

sym4: using the notation of Proposition 6.1, add Mi,j ≥ 0 for j ∈ [q] and i ∈ [nj];

sym5: as sym4, also add Mnj+1,1 ≥Mnj+2 ≥ · · · ≥Mnj−1,1 for j ∈ [q] ∪ {0};

sym6: combination of sym1 and sym5.

26

Table 2: Comparison of running times and primal-dual integrals for packing test set.

dimension 2 dimension 3

setting # solved time primal-dual # solved time primal-dual

sym0 4 605.02 14591.6 3 1928.92 43786.1
sym1 4 561.59 12891.3 3 1633.94 34028.4
sym2 6 457.49 8910.5 4 1308.92 21674.9
sym3 8 89.90 1238.4 5 639.00 10042.2
sym4 6 205.96 2150.2 5 815.80 8748.7
sym5 9 64.74 476.3 5 655.24 6845.1
sym6 9 58.60 584.9 5 508.59 5680.2
automatic 9 51.86 475.9 5 516.43 5266.5

Table 3: Comparison of running times and primal-dual integrals for kissing test set.

dimension 2 dimension 3

setting # solved time primal-dual # solved time primal-dual

sym0 4 381.16 7814.8 10 3.60 24.5
sym1 4 400.52 10813.1 10 3.87 26.8
sym2 5 342.43 9631.0 10 3.76 32.6
sym3 12 22.00 361.3 10 3.53 17.8
sym4 7 150.71 1885.1 10 3.69 36.0
sym5 11 32.96 546.5 10 4.79 44.5
sym6 11 24.88 330.7 10 3.80 21.9
automatic 12 10.57 170.0 10 3.77 21.6

Setting sym0 thus serves as a baseline to compare the different symmetry handling methods with
an approach that does not handle symmetries. Moreover, note that settings sym1–sym3 and
sym4–sym6 form two groups of settings, in which a higher number indicates to use more symmetry
handling inequalities.

Tables 2–4 summarize our results, where columns “# solved”, “time”, and “primal-dual” pro-
vide the number of solved instances, the mean running time, and the mean primal-dual integral
per test set, respectively. The primal-dual integral is a proxy for the speed of convergence of a
branch-and-bound algorithm (roughly speaking, it measures the area between the primal and dual
bounds plotted against time), see [6] for details. We included this measure, because we observed
a very slow convergence of the dual bounds for some settings. Since optimal solutions are found
usually rather quickly for these instances, a long running time but small integral indicates that
almost optimal dual bounds are found early, but closing the gap completely is challenging. We
rate an instance as solved when the primal-dual gap is below 0.1 %.

The results show that symmetry handling is an important aspect for solving the three classes
of problems more effectively. As expected, throughout all test sets (except for 3-dimensional
kissing number problems, which are very easy), we observe that adding more symmetry handling
inequalities to the problem formulation results in better running times. Methods sym3 and sym6
are thus the most effective settings within their groups. There is, however, no clear trend whether
sym3 or sym6 is more effective. For example, for the kissing number problem and 2-dimensional
energy problems, sym3 is faster, whereas sym6 dominates sym3 for the packing problem and 3-
dimensional energy problems. In contrast, the automatic symmetry handling setting consistently
dominates the other settings on 2-dimensional problems, and on the 3-dimensional packing problem
it is almost the fastest approach. Compared to the best competitor, the automatic symmetry
handling setting is 10.1 % (2-dimensional packing), 52.0 % (2-dimensional kissing), and 2.4 % (2-
dimensional energy) faster. On 3-dimensional energy problems, however, the automatic setting is
slower than sym3 and sym6.

Investigating running times on a per-instance basis, see Appendix B for detailed numbers,

27

Table 4: Comparison of running times and primal-dual integrals for energy test set.

dimension 2 dimension 3

setting # solved time primal-dual # solved time primal-dual

sym0 3 1955.90 25054.0 0 7200.00 96744.4
sym1 3 1686.17 21190.0 1 6444.70 77109.6
sym2 3 1337.50 16811.4 1 5294.92 51906.2
sym3 6 346.94 2470.0 2 4398.29 33854.0
sym4 5 695.68 5615.2 1 5608.33 45764.8
sym5 7 402.21 2499.0 1 5607.37 40648.6
sym6 6 372.11 2384.9 2 3933.79 26150.2
automatic 6 338.69 1721.1 2 5275.07 32872.1

reveals that the automatic setting achieves the best results for the four aforementioned test sets
for instances with a medium number of objects. For 2-dimensional packing problems with 9 and 10
balls it works substantially better than the competitors, whereas it works best for the 3-dimensional
packing problem with 6 balls, the 2-dimensional kissing number problem with at least 9 spheres,
and 9 points in the 2-dimensional energy problem. For instances with less objects, the automatic
setting performs slightly worse than its competitors. Taking these observations into account might
provide an explanation why the automatic setting performs worse than sym3 and sym6 on 3-
dimensional energy instances: These instances are very challenging and the automatic setting as
well as sym3 and sym6 only solve the instances with 3 and 4 points within the time limit of two
hours. Extrapolating the results from the easier test sets thus could indicate that the automatic
setting becomes more effective on instances with more points. To verify this hypothesis, we wanted
to run the experiments with a higher time limit. However, all settings hit the memory limit before
solving the more difficult instances. We thus could neither refute nor verify the hypothesis.

Besides the comparison of running times, note that, for the four easier test sets, the automatic
setting has consistently a much smaller primal-dual integral than the best competitor. Thus,
even if the running times are comparable for 3-dimensional packing and 2-dimensional energy
problems, the corresponding primal-dual integral values are respectively 7.2 % and 27.8 % smaller
for the automatic setting. The automatic setting hence tends to converge faster than the remaining
methods.

In summary, the automatic setting is a competitive method that performs better than its com-
petitors sym3 and sym6. While sym3 and sym6 can easily be incorporated into an optimization
model by adding inequalities to a problem formulation, the automatic setting requires to imple-
ment the more sophisticated technique orbitopal reduction. The latter might be a technical burden
preventing inexperienced practitioners to make use of this technique. Due to our symmetry detec-
tion framework for reflection symmetries combined with the heuristics for finding row and column
symmetries, however, a solver can automatically detect that the sophisticated symmetry handling
techniques are applicable. Users can thus benefit from powerful symmetry handling techniques
that are built in a solver, and are not relying on handling reflection symmetries on their own.

Discussion of Results for Max-Cut. Table 5 summarizes our experiments for, i.a., the maxcut
test set. For each test set, it mentions in parentheses the total number of instances of the test set
as well as the number of instances that are solved by at least one setting. To compare different
symmetry handling approaches, we use the mechanism described in Section 7.1 and possibly disable
some techniques. The first four columns of Table 5 indicate which methods of this mechanism are
used. A cross in column “sym.”, “row+col”, “refl.”, and “simpl.” respectively indicates that
symmetry handling is active, row and column symmetries are detected, reflection symmetries
are computed (if not, only permutation symmetries are computed), and Inequality (5) is applied
when possible. To realize setting (×,×,×,×), we disable lexicographic reduction to prevent that
reflection symmetries are handled both by lexicographic reduction and (5). The remaining settings
make use of lexicographic reduction if symmetry handling is enabled. Column groups “time”
and “gap” report on the mean running times and average gap for all instances and the solvable

28

Table 5: Comparison of running times and gaps for symmetric instances.

setting time gap

sym. row+col refl. simp. # solved all solved all solved

maxcut (118/41):
40 1220.19 42.61 35.37 0.05

× 40 1059.66 28.07 34.95 0.05
× × 40 1058.43 27.97 34.94 0.05
× × × 41 1008.31 24.20 34.87 0.00
× × × × 40 1070.91 28.96 35.33 0.08

miplib2017 (59/17):
15 2753.85 255.53 4416.48 588.24

× 14 2881.57 299.22 4588.75 590.82
× × 14 2883.01 299.74 4588.75 590.82
× × × 17 2883.41 299.89 4414.99 0.00
× × × × 16 2782.88 265.03 4414.41 1.95

minlplib (6/1):
1 1640.40 0.01 3380.72 0.00

× 1 1643.10 0.02 3379.81 0.00
× × 1 1640.40 0.01 3375.20 0.00
× × × 1 1643.10 0.02 3370.42 0.00
× × × × 1 1643.10 0.02 3370.42 0.00

sat2002 (282/172):
150 371.53 55.05 4680.85 1279.07

× 152 328.78 44.90 4609.93 1162.79
× × 153 330.29 45.24 4574.47 1104.65
× × × 169 270.32 32.33 4007.09 174.42
× × × × 153 354.20 50.84 4574.47 1104.65

instances. In contrast to the previous experiments, we rate an instance as solved if its gap is zero
(up to numerical tolerances).

Comparing the running times of the different settings, we see that handling reflection symme-
tries using (×,×,×,) is most effective. It solves one instances more than the remaining settings
and reduces the running time in comparison to not detecting and handling reflection symmetries
by 4.7 % on all instances and 13.5 % on the solvable instances. The setting (×,×,×,×), which
disables lexicographic reduction and instead applies (5) when it is applicable, still improves on the
setting in which no symmetries are handled. But in comparison to the other symmetry handling
approaches, it is the least performant. Since the motivation of this setting was to compare the effect
of (5) with lexicographic reduction, we also separately considered the 25 instances for which (5)
is applicable to see whether it has a positive effect there. None of these instances could be solved
within the time limit though.

7.3 Results for Benchmarking Instances

Besides the structured instances discussed in the previous section, we also conducted experiments
on general benchmarking instances. The test sets that we considered are all instances from MI-
PLIB2017 [17] and MINLPLIB [37], as well as the submitted instances of the SAT 2002 Competi-
tion [46]. To evaluate the impact of handling reflection symmetries, we removed all instances from
these test sets for which no reflection symmetries could be detected. We refer to the corresponding
test sets as miplib2017, minlplib, and sat2002, respectively.

In contrast to the structured instances, we cannot evaluate whether our framework reliably
detects reflection symmetries for benchmarking instances. Our expectation was that reflection
symmetries are rare for linear problems (miplib2017) and arise frequently for nonlinear problems

29

(minlplib) and SAT problems. Indeed, as Table 1 shows, for 282 of the 819 instances from sat2002,
we could detect reflection symmetries, whereas we could find only 60 instances from miplib2017
admitting reflection symmetries. Among the 486 instances from minlplib, however, our framework
could only detect 6 instances admitting reflection symmetries. This came as surprise to us, since
MINLPLIB also contains instances corresponding to geometric packing problems (instances whose
names start with “kall ”). Inspecting these instances revealed two explanations for not detecting
the reflection symmetries. On the one hand, these instances already contain symmetry handling
inequalities. On the other hand, in contrast to Example 1.1, the box in which the objects need
to be placed is not fixed. Instead, one is looking for a box of minimal dimensions that can fit all
objects. This is modeled asymmetrically by fixing the lower coordinate value and introducing a
variable to model the upper coordinate value of each dimension. That is, although the real world
problem admits reflection symmetries, the corresponding MINLP model is asymmetric.

In the following, we will therefore focus on the miplib2017 and sat2002 instances containing
reflection symmetries, since the minlplib test set is too small to draw reliable conclusions. The
running times are summarized in Table 5. Note that the table reports only on 59 instances although
Table 1 shows that there are 60 instances with reflection symmetries. To ensure a fair comparison
of the different methods, however, we removed the instance “tokyometro” since all but one setting
reached the memory limit.

Discussion of MIPLIB2017 For miplib2017, we observe that the (×,×,×,) setting performs
best w.r.t. the number of solved instances. It can solve 17 instances, while just handling permuta-
tion symmetries can only solve 14 instances, and handling no symmetries at all solves 15 instances.
Regarding the running time, however, (×,×,×,) and the settings only handling permutation
symmetries perform equally and are on all instances 4.7 % (on the solvable instances 17.1 %) slower
than not handling symmetries. It thus seems that handling reflection symmetries can help solving
more instances, on average, however, it slows down the solving process. As such, it is not a surprise
that the mean running time of (×,×,×,×) is better than the one of (×,×,×,).

To understand why not handling symmetries performs better than handling symmetries, we
compared the results for the 17 solvable instances for the setting in which no symmetries are
handled and (×,×,×,). The following three observations could be made: (i) some instances are
rather easy such that an improvement in running time is negligible; (ii) for the two instances that
cannot be solved when not handling symmetries, also (×,×,×,) needed about 5900 s and 6400 s,
respectively. That is, also when handling symmetries, the instances remain hard. (iii) The dual
bound after presolving is (almost) optimal, i.e., it is sufficient to find an optimal solution. While
the power of symmetry handling lies in pruning symmetric subproblems, which allows to more
quickly improve the dual bound, it seems to hinder SCIP in finding feasible or optimal solutions.
We conclude that, although handling symmetries on benchmarking instances has a positive effect
in general [40], the characteristics of instances from MIPLIB2017 that admit reflection symmetries
make symmetry handling less suited to enhance branch-and-bound for these instances.

The second question that arises is why the setting (×,×,×,) has the same mean running
time as (×,×, ,) although it solves three more instances. Inspecting the symmetries that are
found by the two different settings, we observed that the number of generators varies a lot between
only detecting permutation symmetries and also reflection symmetries. For example, although the
detected symmetry group for the instance neos-3004026-krka is larger when detecting reflection
symmetries (≈ 1091.5 group elements in comparison to ≈ 1090.9 for permutation symmetries), the
number of generators we get from bliss is 35 for reflection symmetries and 64 for permutation
symmetries. When handling symmetries via lexicographic reduction, we thus lose a lot of potential
reductions when computing reflection symmetries. Moreover, for the instance neos-780889, we
obtain the same number of generators corresponding to permutation symmetries; when handling
reflection symmetries, however, we detect less column/row symmetries. That is, we miss the
potential of specialized algorithms for column/row symmetries.

For the three additionally solved instances when handling reflection symmetries, we either find
more generators (instance icir07 tension) or we detect more row/column symmetries (instances
lectsched-1 and tanglegram4). The explanation for the same mean running time thus indeed
seems to be the variability in the generators returned by bliss.

30

Table 6: Comparison of running times and number of detected row/column symmetries for solvable
sat2002 instances containing permutation symmetries.

setting

sym. row+col refl. simp. # solved time # row/column symmetries

all instances (76):
72 63.10 1.00

× 74 39.67 14.87
× × 74 39.80 14.87
× × × 74 50.57 7.01
× × × × 74 53.28 7.01

feasible instances (27):
27 24.06 1.00

× 25 27.90 4.59
× × 25 27.93 4.59
× × × 27 26.88 0.44
× × × × 27 26.93 0.44

infeasible instances (49):
45 106.55 1.00

× 49 48.09 20.53
× × 49 48.31 20.53
× × × 47 71.38 10.63
× × × × 47 77.27 10.63

Discussion of SAT2002 On the sat2002 test set, the most effective setting is (×,×,×,). It
solves 169 instances, and thus almost all solvable instances, within the time limit and improves upon
only handling permutation symmetries by 17.8 %. Taking Table 1 into account, this behavior is not
surprising as at most 125 of the 292 reflection symmetric sat2002 instances contain permutation
symmetries. That is, if reflection symmetries are not handled, a lot of instances become asymmetric.

To allow for a fair comparison between the different symmetry handling settings, we therefore
also considered the subset of all solvable sat2002 instances that contain proper permutation sym-
metries. This results in 76 instances and the corresponding results are summarized in Table 6. On
these instances, we observe that handling reflection symmetries on top of permutation symmetries
decreases the performance by 27.5 %, and this effect is even more pronounced on the infeasible
instances, for which the running time increases by 48.4 %. A possible explanation for this unex-
pected behavior is again the variance in the generators of the symmetry groups reported by bliss.
While the mean number of row/column symmetries that are detected per instance are about 20.5
when only detecting permutation symmetries, the number of row/column symmetries drops to 10.6
when detecting reflection symmetries. That is, when detecting reflection symmetries, the potential
of handling row/column symmetries by dedicated techniques cannot be exploited.

7.4 Conclusion and Outlook

In the introduction, we have formulated four main goals (G1)–(G4), which also could be achieved
in this article: Our abstract framework of symmetry detection graphs turned out to be a flex-
ible mechanism for detecting reflection symmetries in MINLP and beyond, cf. Goal (G1). Our
open-source implementation could be used to detect reflection symmetries in many applications,
cf. Goal (G2), and the numerical experiments showed that handling reflection symmetries can be
crucial to accelerate branch-and-bound for specific applications, cf. Goal (G4). Although we de-
vised methods for handling reflection symmetries, cf. Goal (G3), we noted that the performance
improvement due to handling symmetries heavily depends on the structure of the detected sym-
metry groups. Handling reflection symmetries thus might slow down the solving process if this
prevents our heuristics to detect row/column symmetries.

This latter observation opens directions for future research. As we noted in our experiments,

31

the generators of symmetry groups returned by symmetry detection tools such as bliss heavily
depend on the structure of the symmetry detection graphs. Thus, based on the returned generators,
our heuristics can fail to detect row and column symmetries. To circumvent this issue, it might be
promising to develop alternative approaches for detecting row and column symmetries that depend
less on the structure of generators. Ideally, one would use an exact mechanism to detect row/column
symmetries, but detecting such symmetries is as hard as the graph isomorphism problem [7]. A
possible future direction could thus be to exploit the specific structure of the symmetry detection
graphs to solve the graph isomorphism problem.

Moreover, for MIPLIB2017, we noted that some problems benefit from not handling symme-
tries, because symmetry handling can hinder heuristics to find feasible solutions. A naive strategy
for feasibility problems is thus to completely disable symmetry handling. For infeasible instances,
however, this arguably slows down the solving process, since a larger search space needs to be ex-
plored until infeasibility is detected. Instead, it could be interesting to investigate means to benefit
from handling symmetries in branch-and-bound, while removing the symmetry-based restrictions
in heuristics.

Acknowledgements The author thanks Marc E. Pfetsch for very valuable discussions on the choice
of the data structure for encoding symmetry detection graphs in SCIP as well as a thorough code
review. This publication is part of the project “Local Symmetries for Global Success” with project
number OCENW.M.21.299 which is financed by the Dutch Research Council (NWO).

References

[1] Anders, M., Schweitzer, P.: Parallel computation of combinatorial symmetries. In: 29th
Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portu-
gal (Virtual Conference), LIPIcs, vol. 204, pp. 6:1–6:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2021). DOI 10.4230/LIPIcs.ESA.2021.6. URL https://doi.org/10.4230/

LIPIcs.ESA.2021.6

[2] Anders, M., Schweitzer, P., Stieß, J.: Engineering a preprocessor for symmetry detection.
CoRR abs/2302.06351 (2023). DOI 10.48550/arXiv.2302.06351. URL https://doi.org/

10.48550/arXiv.2302.06351

[3] Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the fifteenth annual
ACM symposium on Theory of computing - STOC '83. ACM Press (1983). DOI 10.1145/
800061.808746

[4] Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer
nonlinear optimization. Acta Numerica 22, 1–131 (2013). DOI 10.1017/S0962492913000032

[5] Bendotti, P., Fouilhoux, P., Rottner, C.: Orbitopal fixing for the full (sub-)orbitope and
application to the unit commitment problem. Mathematical Programming 186, 337–372
(2021). DOI 10.1007/s10107-019-01457-1

[6] Berthold, T.: Measuring the impact of primal heuristics. Operations Research Letters
41(6), 611–614 (2013). DOI https://doi.org/10.1016/j.orl.2013.08.007. URL https://www.

sciencedirect.com/science/article/pii/S0167637713001181

[7] Berthold, T., Pfetsch, M.E.: Detecting orbitopal symmetries. In: B. Fleischmann, K.H.
Borgwardt, R. Klein, A. Tuma (eds.) Operations Research Proceedings 2008, pp. 433–438.
Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

[8] Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints. In:
Proceedings of the 19th National Conference on AI (2004)

[9] Bödi, R., Herr, K., Joswig, M.: Algorithms for highly symmetric linear and integer programs.
Mathematical Programming 137(1), 65–90 (2013). DOI 10.1007/s10107-011-0487-6. URL
http://dx.doi.org/10.1007/s10107-011-0487-6

32

https://doi.org/10.4230/LIPIcs.ESA.2021.6
https://doi.org/10.4230/LIPIcs.ESA.2021.6
https://doi.org/10.48550/arXiv.2302.06351
https://doi.org/10.48550/arXiv.2302.06351
https://www.sciencedirect.com/science/article/pii/S0167637713001181
https://www.sciencedirect.com/science/article/pii/S0167637713001181
http://dx.doi.org/10.1007/s10107-011-0487-6

[10] Bolusani, S., Besançon, M., Bestuzheva, K., Chmiela, A., Diońısio, J., Donkiewicz, T., van
Doornmalen, J., Eifler, L., Ghannam, M., Gleixner, A., Graczyk, C., Halbig, K., Hedtke, I.,
Hoen, A., Hojny, C., van der Hulst, R., Kamp, D., Koch, T., Kofler, K., Lentz, J., Manns,
J., Mexi, G., Mühmer, E., Pfetsch, M.E., Schlösser, F., Serrano, F., Shinano, Y., Turner, M.,
Vigerske, S., Weninger, D., Xu, L.: The SCIP Optimization Suite 9.0 (2024)

[11] Cohen, J.S.: Computer algebra and symbolic computation: mathematical methods. AK
Peters, Natick, Massachusetts (2003)

[12] Costa, A., Hansen, P., Liberti, L.: On the impact of symmetry-breaking constraints on
spatial branch-and-bound for circle packing in a square. Discrete Applied Mathemat-
ics 161(1), 96–106 (2013). DOI https://doi.org/10.1016/j.dam.2012.07.020. URL https:

//www.sciencedirect.com/science/article/pii/S0166218X12002855

[13] van Doornmalen, J., Hojny, C.: A unified framework for symmetry handling (2023). DOI
10.48550/arXiv.2211.01295

[14] van Doornmalen, J., Hojny, C.: Efficient propagation techniques for handling cyclic sym-
metries in binary programs. INFORMS Journal on Computing 0(0), null (2024). DOI
10.1287/ijoc.2022.0060

[15] Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking
row and column symmetries in matrix models. In: P. Van Hentenryck (ed.) Principles and
Practice of Constraint Programming - CP 2002, pp. 462–477. Springer Berlin Heidelberg,
Berlin, Heidelberg (2002)

[16] Friedman, E.J.: Fundamental domains for integer programs with symmetries. In: A. Dress,
Y. Xu, B. Zhu (eds.) Combinatorial Optimization and Applications, Lecture Notes in Com-
puter Science, vol. 4616, pp. 146–153. Springer Berlin Heidelberg (2007). DOI 10.1007/
978-3-540-73556-4 17

[17] Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T.,
Christophel, P.M., Jarck, K., Koch, T., Linderoth, J., Lübbecke, M., Mittelmann, H.D.,
Ozyurt, D., Ralphs, T.K., Salvagnin, D., Shinano, Y.: MIPLIB 2017: Data-Driven Compi-
lation of the 6th Mixed-Integer Programming Library. Mathematical Programming Compu-
tation pp. 443–490 (2021). DOI 10.1007/s12532-020-00194-3. URL https://doi.org/10.

1007/s12532-020-00194-3

[18] Hojny, C.: Supplementary material for the article “Detecting and handling reflection sym-
metries in mixed-integer (nonlinear) programming”. https://doi.org/10.5281/zenodo.

11189482

[19] Hojny, C.: Packing, partitioning, and covering symresacks. Discrete Applied Mathematics
283, 689–717 (2020). DOI 10.1016/j.dam.2020.03.002

[20] Hojny, C.: Polynomial size IP formulations of knapsack may require exponentially large
coefficients. Operations Research Letters 48(5), 612–618 (2020). DOI https://doi.org/
10.1016/j.orl.2020.07.013. URL http://www.sciencedirect.com/science/article/pii/

S0167637720301103

[21] Hojny, C., Pfetsch, M.E.: Polytopes associated with symmetry handling. Mathematical Pro-
gramming 175, 197–240 (2019). DOI 10.1007/s10107-018-1239-7

[22] Junttila, T., Kaski, P.: Conflict propagation and component recursion for canonical label-
ing. In: A. Marchetti-Spaccamela, M. Segal (eds.) Theory and Practice of Algorithms in
(Computer) Systems – First International ICST Conference, TAPAS 2011, Rome, Italy, April
18–20, 2011. Proceedings, Lecture Notes in Computer Science, vol. 6595, pp. 151–162. Springer
(2011). DOI 10.1007/978-3-642-19754-3\ 16

33

https://www.sciencedirect.com/science/article/pii/S0166218X12002855
https://www.sciencedirect.com/science/article/pii/S0166218X12002855
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.5281/zenodo.11189482
https://doi.org/10.5281/zenodo.11189482
http://www.sciencedirect.com/science/article/pii/S0167637720301103
http://www.sciencedirect.com/science/article/pii/S0167637720301103

[23] Junttila, T., Kaski, P.: Conflict propagation and component recursion for canonical label-
ing. In: A. Marchetti-Spaccamela, M. Segal (eds.) Theory and Practice of Algorithms in
(Computer) Systems – First International ICST Conference, TAPAS 2011, Rome, Italy, April
18–20, 2011. Proceedings, Lecture Notes in Computer Science, vol. 6595, pp. 151–162. Springer
(2011). DOI 10.1007/978-3-642-19754-3\ 16

[24] Kaibel, V., Peinhardt, M., Pfetsch, M.E.: Orbitopal fixing. Discrete Optimization 8(4), 595–
610 (2011). DOI http://dx.doi.org/10.1016/j.disopt.2011.07.001

[25] Kaibel, V., Pfetsch, M.E.: Packing and partitioning orbitopes. Mathematical Programming
114(1), 1–36 (2008). DOI 10.1007/s10107-006-0081-5

[26] Khajavirad, A.: Packing circles in a square: a theoretical comparison of various convexification
techniques (2017). URL https://optimization-online.org/?p=14462

[27] Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 6 edn. Springer,
Heidelberg (2018)

[28] Liberti, L.: Automatic generation of symmetry-breaking constraints. In: Combinatorial
optimization and applications, Lecture Notes in Computer Science, vol. 5165, pp. 328–338.
Springer, Berlin (2008). DOI 10.1007/978-3-540-85097-7 31

[29] Liberti, L.: Symmetry in mathematical programming. In: J. Lee, S. Leyffer (eds.) Mixed
Integer Nonlinear Programming, IMA Series, vol. 154, pp. 263–283. Springer New York (2011).
DOI 10.1007/978-1-4614-1927-3 9

[30] Liberti, L.: Reformulations in mathematical programming: automatic symmetry detec-
tion and exploitation. Mathematical Programming 131(1-2), 273–304 (2012). DOI
10.1007/s10107-010-0351-0. URL http://dx.doi.org/10.1007/s10107-010-0351-0

[31] Liberti, L., Ostrowski, J.: Stabilizer-based symmetry breaking constraints for mathematical
programs. Journal of Global Optimization 60, 183–194 (2014)

[32] Linderoth, J., Núñez Ares, J., Ostrowski, J., Rossi, F., Smriglio, S.: Orbital conflict: Cutting
planes for symmetric integer programs. INFORMS Journal on Optimization 3(2), 139–153
(2021). DOI 10.1287/ijoo.2019.0044

[33] Margot, F.: Pruning by isomorphism in branch-and-cut. Mathematical Programming 94(1),
71–90 (2002). DOI 10.1007/s10107-002-0358-2

[34] Margot, F.: Exploiting orbits in symmetric ILP. Mathematical Programming 98(1–3), 3–21
(2003). DOI 10.1007/s10107-003-0394-6

[35] Margot, F.: Symmetry in integer linear programming. In: M. Jünger, T.M. Liebling, D. Nad-
def, G.L. Nemhauser, W.R. Pulleyblank, G. Reinelt, G. Rinaldi, L.A. Wolsey (eds.) 50 Years
of Integer Programming, pp. 647–686. Springer (2010)

[36] McKay, B.D., Piperno, A.: Practical graph isomorphism, II. Journal of Symbolic Computation
60, 94–112 (2014). DOI https://doi.org/10.1016/j.jsc.2013.09.003

[37] Minlplib: A library of mixed-integer and continuous nonlinear programming instances. http:
//minlplib.org/index.html

[38] Ostrowski, J.: Symmetry in integer programming. PhD dissertation, Lehigh University (2009)

[39] Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Mathematical Pro-
gramming 126(1), 147–178 (2011). DOI 10.1007/s10107-009-0273-x

[40] Pfetsch, M.E., Rehn, T.: A computational comparison of symmetry handling methods for
mixed integer programs. Mathematical Programming Computation 11(1), 37–93 (2019). DOI
10.1007/s12532-018-0140-y

34

https://optimization-online.org/?p=14462
http://dx.doi.org/10.1007/s10107-010-0351-0
http://minlplib.org/index.html
http://minlplib.org/index.html

[41] Puget, J.F.: Automatic Detection of Variable and Value Symmetries, pp. 475–489. Springer
Berlin Heidelberg, Berlin, Heidelberg (2005). DOI 10.1007/11564751 36. URL http://dx.

doi.org/10.1007/11564751_36

[42] Saff, E., Kuijlaars, A.: Distributing many points on a sphere. The Mathematical Intelligencer
19, 5–11 (1997)

[43] Sakallah, K.A.: Handbook of Satisfiability, Editors: Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, chap. Symmetry and Satisfiability. IOS Press (2021)

[44] Salvagnin, D.: A dominance procedure for integer programming. Master’s thesis, University
of Padova, Padova, Italy (2005)

[45] Salvagnin, D.: Symmetry breaking inequalities from the Schreier-Sims table. In: W.J.
van Hoeve (ed.) Integration of Constraint Programming, Artificial Intelligence, and Op-
erations Research, pp. 521–529. Springer International Publishing (2018). DOI 10.1007/
978-3-319-93031-2 37

[46] Sat 2002 competition: problem instances. https://www.cs.ubc.ca/~hoos/SATLIB/

Benchmarks/SAT/New/Competition-02/sat-2002-beta.tgz

[47] Szabó, P.G., Markót, M.C., Csendes, T.: Global Optimization in Geometry — Circle Packing
into the Square, pp. 233–265. Springer US, Boston, MA (2005). DOI 10.1007/0-387-25570-2 9

[48] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algo-
rithm for large-scale nonlinear programming. Mathematical Programming 106, 25–57 (2006).
DOI https://doi.org/10.1007/s10107-004-0559-y

[49] Zhu, W.: Unsolvability of some optimization problems. Applied Mathematics and Computa-
tion 174(2), 921–926 (2006). DOI https://doi.org/10.1016/j.amc.2005.05.025

A Overview of Important Functions to Apply Our Symme-
try Detection Framework

This appendix provides an overview of the most important functions needed to extend an SDG
within a SCIP symmetry detection callback. Since our implementation of SDGs allows for four
different types of nodes, we have different functions for adding these nodes:

SCIPaddSymgraphOpnode() adds an operator node to an SDG;

SCIPaddSymgraphValnode()
adds a numerical value node to an
SDG;

SCIPaddSymgraphConsnode() adds a constraint node to an SDG.

Recall that we do not allow to add variable nodes to an SDG, because SCIP ensures that every
SDG contains all necessary variable nodes. Instead, the indices of variable nodes can be accessed
via the functions

SCIPgetSymgraphVarnodeidx()
returns the index of the node
corresponding to a given variable;

SCIPgetSymgraphNegatedVarnodeidx()
returns the index of the node
corresponding to a negated/reflected
variable.

To add edges to a graph, the function

SCIPaddSymgraphEdge()
adds an edge between two existing
nodes of an SDG

can be used.
To simplify the usage of SDGs, we also provide two functions that add gadgets for certain

variable structures to an SDG:

35

http://dx.doi.org/10.1007/11564751_36
http://dx.doi.org/10.1007/11564751_36
https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/New/Competition-02/sat-2002-beta.tgz
https://www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/New/Competition-02/sat-2002-beta.tgz

SCIPextendPermsymDetectionGraphLinear()
adds a gadget for a linear
expression a>x+ b to an SDG;

SCIPaddSymgraphVarAggregation()
adds a gadget for aggregated
variables to an SDG.

The second function has been introduced, since we require that no aggregated or fixed variables
are present in an SDG.

36

B Detailed Numerical Results

In this appendix, we provide detailed numerical results for the tested problem classes. Tables 7–12
report on the running times and primal-dual integrals for each instance of the 2- and 3-dimensional
packing, kissing number, and energy problems that we discussed in Section 7.2. The number of
items corresponds to the number of balls, spheres, and points in these respective problems, whereas
the settings refer to the settings sym0–sym6 and the automatic setting as described in Section 7.2.

Table 7: Running times and primal-dual integrals for packing test set and dimension 2.
setting

items sym0 sym1 sym2 sym3 sym4 sym5 sym6 auto.

running time in seconds:
3 0.12 0.12 0.11 0.05 0.09 0.07 0.09 0.09
4 2.84 1.94 0.67 0.30 0.44 0.38 0.29 0.28
5 0.79 0.59 0.38 0.17 0.30 0.31 0.22 0.21
6 43.09 25.56 7.41 0.61 0.50 0.40 0.70 0.68
7 7200.00 7200.00 6606.63 22.81 201.83 16.16 11.01 16.23
8 7200.00 7200.00 4352.59 10.14 70.32 22.82 6.68 12.14
9 7200.00 7200.00 7200.00 644.78 7200.00 249.99 365.62 103.95
10 7200.00 7200.00 7200.00 267.77 7200.00 173.67 153.78 61.42
11 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
12 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
13 7200.00 7200.00 7200.00 7200.00 7200.00 358.37 351.27 301.84
14 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00

primal-dual integral:
3 5 5 6 2 3 2 3 4
4 35 28 16 11 9 9 8 8
5 29 23 19 10 14 14 12 11
6 802 527 151 22 12 9 26 24
7 120 899 109 585 31 757 210 941 109 133 123
8 145 839 118 007 52 138 285 1489 227 90 120
9 234 515 269 194 152 641 6449 67 037 1741 2826 667
10 266 727 224 203 229 408 5454 73 878 2567 1027 754
11 355 432 344 742 334 154 154 772 102 571 66 800 74 434 50 360
12 361 376 353 135 351 864 199 890 128 913 20 578 77 572 68 018
13 368 337 354 376 353 221 190 939 98 344 7071 8769 6855
14 408 953 408 172 405 794 277 031 200 833 46 888 128 374 105 141

37

Table 8: Running times and primal-dual integrals for packing test set and dimension 3.
setting

items sym0 sym1 sym2 sym3 sym4 sym5 sym6 auto.

running time in seconds:
3 2.09 0.93 0.35 0.29 0.22 0.25 0.27 0.41
4 1.49 0.85 0.29 0.29 0.31 0.31 0.29 0.28
5 7200.00 7200.00 5921.24 380.15 626.00 414.19 67.69 73.69
6 6663.82 1961.23 341.28 10.73 34.86 13.46 8.40 5.87
7 7200.00 7200.00 7200.00 631.20 2443.29 645.28 287.70 395.11
8 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
9 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
10 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
11 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
12 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
13 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
14 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00

primal-dual integral:
3 17 11 9 6 5 6 7 9
4 19 12 5 11 10 10 9 8
5 52 376 22 897 5366 437 566 421 86 88
6 48 670 15 778 2794 210 474 128 126 94
7 154 538 164 221 110 088 6448 10 830 3605 2901 2755
8 259 241 231 341 176 139 133 512 126 275 120 202 106 350 106 084
9 281 270 271 892 224 430 154 967 92 668 66 342 79 984 69 743
10 319 452 304 708 285 611 206 888 154 403 158 242 138 025 127 942
11 342 112 334 613 314 555 251 442 144 333 128 962 117 638 115 709
12 361 785 345 513 334 208 267 405 171 725 163 406 166 023 145 259
13 362 833 355 450 341 441 277 927 143 289 173 997 127 984 115 555
14 373 245 388 226 343 286 299 399 227 500 207 009 208 462 153 976

Table 9: Running times and primal-dual integrals for kissing test set and dimension 2.
setting

items sym0 sym1 sym2 sym3 sym4 sym5 sym6 auto.

running time in seconds:
3 0.02 0.03 0.08 0.01 0.06 0.02 0.04 0.04
4 0.07 0.18 0.16 0.14 0.10 0.15 0.16 0.17
5 0.06 0.35 0.28 0.17 0.39 0.29 0.17 0.17
6 0.16 0.48 0.47 0.23 0.31 0.61 0.61 0.26
7 7200.00 7200.00 1136.23 2.36 22.42 3.62 1.75 2.72
8 7200.00 7200.00 7200.00 5.89 340.06 18.33 6.34 6.11
9 7200.00 7200.00 7200.00 11.85 451.55 9.87 7.22 4.50
10 7200.00 7200.00 7200.00 51.76 7200.00 86.73 54.52 17.89
11 7200.00 7200.00 7200.00 175.53 7200.00 355.42 126.20 29.58
12 7200.00 7200.00 7200.00 448.92 7200.00 1408.36 1578.97 380.60
13 7200.00 7200.00 7200.00 1928.51 7200.00 3137.21 2976.38 116.21
14 7200.00 7200.00 7200.00 5501.44 7200.00 7200.00 7200.00 849.15

primal-dual integral:
3 2 3 7 1 6 2 2 3
4 5 14 16 8 9 11 9 10
5 6 30 24 9 31 29 14 14
6 9 42 45 20 25 47 33 17
7 38 404 21 079 5254 99 209 159 54 74
8 245 267 213 439 101 851 264 1873 651 149 201
9 313 339 306 493 286 624 342 1978 193 159 205
10 392 407 414 595 404 572 1598 94 434 1503 1095 406
11 491 427 491 463 484 365 4463 104 650 5516 1994 682
12 527 099 527 103 524 806 9572 239 255 13 014 18 173 5704
13 555 106 555 107 555 094 45 741 152 492 34 012 29 414 1369
14 577 444 578 765 577 441 130 808 177 820 328 974 121 905 10 812

38

Table 10: Running times and primal-dual integrals for kissing test set and dimension 3.
setting

items sym0 sym1 sym2 sym3 sym4 sym5 sym6 auto.

running time in seconds:
3 0.02 0.02 0.03 0.02 0.05 0.02 0.01 0.02
4 0.02 0.03 0.04 0.03 0.05 0.03 0.02 0.02
5 0.04 0.04 0.04 0.01 0.07 0.02 0.02 0.02
6 0.04 0.03 0.03 0.03 0.07 0.02 0.03 0.02
7 0.05 0.05 0.06 0.04 0.08 0.04 0.03 0.04
8 0.04 0.04 0.07 0.03 0.06 0.03 0.05 0.08
9 0.07 0.08 0.07 0.04 0.08 1.37 0.07 0.03
10 0.09 0.09 0.08 0.05 0.13 0.07 0.73 0.05
11 0.10 0.13 0.54 0.07 0.09 1.97 0.12 0.92
12 0.10 1.09 0.14 0.06 0.15 2.08 0.20 0.07
13 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
14 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00

primal-dual integral:
3 2 2 3 2 5 2 1 2
4 2 3 4 3 5 3 2 2
5 4 4 4 1 7 2 2 2
6 4 3 3 3 7 2 3 2
7 5 4 6 4 8 4 3 4
8 4 4 7 3 6 3 5 8
9 7 8 7 4 8 137 7 3
10 9 9 8 5 13 7 18 5
11 10 13 54 7 9 197 9 33
12 10 22 14 6 15 193 11 7
13 61 672 61 411 61 412 61 568 61 612 61 583 62 150 62 493
14 92 105 92 101 92 102 93 511 92 106 92 116 93 969 92 138

Table 11: Running times and primal-dual integrals for energy test set and dimension 2.
setting

items sym0 sym1 sym2 sym3 sym4 sym5 sym6 auto.

running time in seconds:
3 2.17 0.96 0.37 0.14 0.31 0.30 0.20 0.14
4 28.92 14.75 4.69 0.90 3.64 1.87 1.36 1.35
5 637.64 330.00 80.48 3.96 6.50 3.74 2.06 2.00
6 7200.00 7200.00 7200.00 20.58 169.95 36.29 19.36 19.48
7 7200.00 7200.00 7200.00 131.63 1669.89 171.30 95.21 80.70
8 7200.00 7200.00 7200.00 733.38 7200.00 2358.56 7200.00 7200.00
9 7200.00 7200.00 7200.00 7200.00 7200.00 3555.87 3074.32 1258.01
10 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
11 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
12 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
13 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
14 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00

primal-dual integral:
3 6 4 3 3 2 3 5 3
4 59 30 22 5 14 12 11 11
5 1048 733 175 38 25 21 17 13
6 27 577 16 940 15 275 105 339 95 67 60
7 103 265 91 918 71 028 558 3115 460 300 221
8 165 382 159 741 138 685 3004 61 183 5533 8552 4083
9 209 730 204 553 183 465 13 291 78 012 9411 7622 3704
10 248 606 244 166 225 948 56 374 138 046 64 303 60 746 38 110
11 268 921 265 619 246 456 101 186 161 925 98 961 98 287 76 904
12 284 270 286 673 276 693 153 360 201 235 146 922 145 253 126 222
13 303 207 301 486 290 631 178 830 210 680 163 230 162 411 123 375
14 313 677 311 820 308 313 214 843 243 370 206 209 200 767 165 437

39

Table 12: Running times and primal-dual integrals for energy test set and dimension 3.
setting

items sym0 sym1 sym2 sym3 sym4 sym5 sym6 auto.

running time in seconds:
3 7200.00 1904.11 179.29 73.14 358.43 357.69 24.35 772.85
4 7200.00 7200.00 7200.00 1889.64 7200.00 7200.00 1448.27 1602.78
5 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
6 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
7 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
8 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
9 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
10 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
11 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
12 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
13 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00
14 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00 7200.00

primal-dual integral:
3 1528 447 44 23 80 80 11 186
4 14 737 6781 2051 491 2658 1855 385 408
5 77 151 59 093 36 746 12 087 16 408 12 026 5531 5184
6 121 289 104 487 84 450 41 473 61 835 46 654 31 565 31 476
7 157 158 143 920 126 967 86 664 100 511 88 191 72 522 71 813
8 178 762 168 522 156 057 120 629 133 847 120 473 109 227 108 159
9 195 888 186 304 172 755 146 157 134 636 128 682 116 954 115 462
10 208 562 199 569 187 568 164 420 158 820 151 279 141 834 140 935
11 219 253 213 879 201 490 185 224 174 839 168 161 159 821 159 343
12 225 733 223 219 210 340 192 819 188 728 182 468 175 968 174 244
13 233 884 229 828 221 233 205 331 197 518 190 162 185 491 184 832
14 240 182 238 349 227 048 216 176 209 512 202 497 198 844 198 483

40

