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Abstract
Optimization over the set of matrices X that sat-
isfy X⊤BX = Ip, referred to as the generalized
Stiefel manifold, appears in many applications
involving sampled covariance matrices such as
the canonical correlation analysis (CCA), inde-
pendent component analysis (ICA), and the gener-
alized eigenvalue problem (GEVP). Solving these
problems is typically done by iterative methods
that require a fully formed B. We propose a cheap
stochastic iterative method that solves the opti-
mization problem while having access only to a
random estimates of B. Our method does not en-
force the constraint in every iteration; instead, it
produces iterations that converge to critical points
on the generalized Stiefel manifold defined in ex-
pectation. The method has lower per-iteration
cost, requires only matrix multiplications, and has
the same convergence rates as its Riemannian op-
timization counterparts that require the full matrix
B. Experiments demonstrate its effectiveness in
various machine learning applications involving
generalized orthogonality constraints, including
CCA, ICA, and the GEVP.

1. Introduction
Many problems in machine learning and engineering, includ-
ing canonical correlation analysis (CCA) (Hotelling, 1936),
independent component analysis (ICA) (Comon, 1994), lin-
ear discriminant analysis (McLachlan, 1992), and the gen-
eralized eigenvalue problem (GEVP) (Saad, 2011), can be
formulated as the following optimization problem:

min
X∈StB(p,n)

f(X) := E[fξ(X)], s. t. B = E[Bζ ],

StB(p, n) :=
{
X ∈ Rn×p | X⊤BX = Ip

} (1)
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where the objective function f is the expectation of L-
smooth functions fξ, B ∈ Rn×n is a positive-definite ma-
trix, and ξ, ζ are independent random variables. The indi-
vidual random matrices Bζ are only assumed to be positive
semidefinite. The feasible set StB(p, n) ⊂ Rn×p defines
a smooth manifold referred to as the generalized Stiefel
manifold.

In the deterministic case, when we have access to the ma-
trix B, the optimization problem can be solved by Rieman-
nian techniques (Absil et al., 2008; Boumal, 2023). Rieman-
nian methods produce a sequence of iterates belonging to
the set StB(p, n), often by repeatedly applying a retraction
that maps tangent vectors to points on the manifold. In
the case of StB(p, n), retractions require non-trivial linear
algebra operations such as eigenvalue or Cholesky decom-
position. On the other hand, optimization on StB(p, n) also
lends itself to infeasible optimization methods, such as the
augmented Lagrangian method. Such methods are typically
employed in deterministic setting when the feasible set does
not have a convenient projection, e.g., it lacks a closed-form
expression or it requires solving an expensive optimization
problem (Bertsekas, 1982). Infeasible approaches produce
iterates that do not belong to the feasible set but converge
to it by solving a sequence of unconstrained optimization
problems. However, solving the optimization subproblems
in each iteration might be computationally expensive and
the methods are sensitive to the choice of hyper-parameters,
both in theory and in practice.

In this paper, unlike in the aforementioned areas of study,
we consider the setting (1) where the feasible set itself is
stochastic, i.e., the matrix B is unknown and is an expecta-
tion of random estimates Bζ , for which neither Riemannian
methods nor infeasible optimization techniques are well-
suited. In particular, we are interested in the case where we
only have access to i.i.d. samples from ξ and ζ, and not to
the full function f and matrix B.

We design an iterative landing method requiring only ran-
dom estimates Bζ that provably converges to critical points
of (1) while performing only matrix multiplications. The
main principle of the method is depicted in the diagram
in Figure 1. It is inspired by a recent line of work that
first considered the orthogonal group StIn(n, n) (Ablin &
Peyré, 2022) and was later extended to the Stiefel manifold
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Figure 1. Illustration of the landing field and the random feasi-
ble set.

StIn(p, n) (Gao et al., 2022b; Ablin et al., 2023; Schecht-
man et al., 2023). Instead of performing retractions after
each iteration, the proposed algorithm performs an update
along the sum of two orthogonal vectors—one is an un-
biased estimator of a relative ascent direction (a concept
defined in Section 2) and the other is an unbiased estima-
tor of a direction towards StB(p, n). The algorithm does
not enforce the constraint in every iteration; instead it pro-
duces iterations that remain within an initially prescribed
ε-safe region, and finally “lands” on, i.e., converges to, the
manifold.

Specifically, the proposed stochastic landing iteration for
solving (1) is the simple, cheap, and stochastic update rule

Xk+1 = Xk − ηkΛξk,ζk,ζ′k(Xk)

with Λξ,ζ,ζ′(X) = Ψξ,ζ,ζ′(X) + ω∇Nζ,ζ′(X),
(2)

in Rn×p whose two components are

Ψξ,ζ,ζ′(X) = 2 skew
(
∇fξ(X)X⊤Bζ

)
Bζ′X,

∇Nζ,ζ′(X) = 2Bζ′X
(
X⊤BζX − Ip

)
,

where ω > 0, ∇Nζ,ζ′(X) is an unbiased stochastic es-
timator of the gradient of N (X) = 1

2∥X
⊤BX − Ip∥2F,

and skew(A) = (A − A⊤)/2. The above landing field
formula (2) applies in the general case when both the func-
tion f and the constraint matrix B are stochastic; the deter-
ministic case is recovered by substituting ∇fξ = ∇f and
Bζ = Bζ′ = B. Note that in many applications of inter-
est, Bζ =

∑r
i=1 xix

⊤
i /r is a subsampled covariance matrix

with batch-size r, that is of rank at most r when r ≤ n. Un-
like retractions, the landing method benefits in this setting
since the cost of multiplication by Bζ , which is the domi-
nant cost of (2), becomes O(npr) instead of O(n2p) where
r is the batch size. The landing method never requires to
form the matrix B, thus having space complexity defined
by only saving the iterates and the samples: O (n(p+ r))
instead of O(n2).

We prove that the landing iteration converges to e-critical
points, i.e., points X such that ∥gradf(X)∥ ≤ e (where
gradf denotes the Riemannian gradient defined in (10))

and ∥N (X)∥ ≤ e, with a fixed step-size in the deter-
ministic case (Theorem 2.8) and with a decaying step-
size in the stochastic case (Theorem 2.9), with a rate that
matches that of deterministic (Boumal et al., 2019) and
stochastic (Bonnabel, 2013) Riemannian gradient descent
on StB(p, n). The advantages of the landing field in (2)
are that i) its computation involves only parallelizable ma-
trix multiplications, which is cheaper than the computations
of the Riemannian gradient and retraction and ii) it han-
dles gracefully the stochastic constraint, while Riemannian
approaches need form the full estimate of B.

While the presented theory holds for a general smooth, pos-
sibly non-convex objective f , a particular problem that can
be either phrased as (1) or framed as an optimization over
the product manifold of two StB(p, n) is CCA, which is
a widely used technique for measuring similarity between
datasets (Raghu et al., 2017). CCA aims to find the top-
p most correlated principal components X,Y ∈ Rn×p,
for two zero-centered datasets D1 = (d11, . . . , d

N
1 ), D2 =

(d12, . . . , d
N
2 ) ∈ Rn×N of N i.i.d. samples from two differ-

ent distributions and is formulated as

min
X,Y ∈Rn×p

Ei

[
−Tr(X⊤di1(d

i
2)

⊤Y )
]

X⊤Ei[d
i
1(d

i
1)

⊤]X = Ip and Y ⊤Ei[d
i
2(d

i
2)

⊤]Y = Ip,
(3)

where the expectations are w.r.t. the uniform distribution
over {1, . . . , N}. Here, the constraint matrices Bζ corre-
spond to individual or mini-batch sample covariances, and
the constraints are that the two matrices X,Y ∈ Rn×p are
in the generalized Stiefel manifold. The proposed landing
method is able to solve (3) while only having a stochastic
estimate of the covariance matrices.

The rest of the introduction gives a brief overview of the
current optimization techniques for solving (1) and its forth-
coming generalization (4) when the feasible set is deter-
ministic, since we are not aware of existing techniques for
(1) with stochastic feasible set. Afterwards, the paper is
organized as follows:

• In Section 2 we give a form to a generalized landing
algorithm for solving a smooth optimization problem
minx∈M f(x) on a smooth manifold M defined below in
(4). Under suitable conditions, the algorithm converges
to critical points with the same sublinear rate, O(1/K),
as its Riemannian counterpart (Boumal et al., 2019), see
Theorem 2.8. Unlike in Schechtman et al. (2023), our
analysis is based on a smooth merit function allowing us
to obtain a convergence result for the stochastic variant
of the algorithm, when having an unbiased estimator for
the landing field, see Theorem 2.9.

• In Section 3 we build on the general theory developed in
the previous section and prove that the update rule for the
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generalized Stiefel manifold in (2) converges to critical
points of (1), both in the deterministic case with the rate
O(1/K), and in expectation with the rate O(1/

√
K) in

the case when both the gradient of the objective function
and the feasible set are stochastic estimates.

• In Section 4 we numerically demonstrate the efficiency of
the proposed method on a deterministic example of solv-
ing a generalized eigenvalue problem, stochastic CCA
and ICA.

Notation and terminology. We denote vectors by low-
ercase letters x, y, z, . . ., matrices with uppercase letters
X,Y, Z, . . ., and In denotes the n× n identity matrix. We
let βi denote the ith eigenvalue of B and κB = β1/βn the
condition number of B. Let Df(x)[v] = limt→0(f(x +
tv)− f(x))/t denote the derivative of f at x along v. We
let ∥ · ∥ denote the ℓ2-norm also termed Frobenius norm
for matrices, whereas ∥ · ∥2 denotes the operator norm in-
duced by ℓ2-norm. We denote the Frobenius inner product
as ⟨· , ·⟩, with respect to which we define the adjoint of a lin-
ear operator A[v] denoted by A∗[w]. We say that a function
f : Rn → R is Lf -smooth if it is continuously differen-
tiable and its gradient is Lipschitz continous with Lipschitz
constant Lf , i.e., ∥∇f(x) −∇f(y)∥2 ≤ Lf∥x − y∥2, for
all x, y ∈ Rn.

1.1. Prior work related to optimization on the
generalized Stiefel manifold

Riemannian optimization. A widely used approach to
solving optimization problems constrained to manifolds as
in (4) are the techniques from Riemannian optimization.
These methods are based on the observation that smooth
sets can be locally approximated by a linear subspace, which
allows to extend classical Euclidean optimization methods,
such as gradient descent and the stochastic gradient descent,
to the Riemannian setting. For example, Riemannian gra-
dient descent iterates xk+1 = RetrM(xk,−ηkgradf(x

k)),
where ηk > 0 is the step-size at iteration k, gradf(xk) is
the Riemannian gradient that is computed as a projection of
∇f(xk) on the tangent space of M at xk, and Retr is the re-
traction operation, which maps the updated iterate along the
direction −ηkgradf(x

k) onto the manifold and is accurate
up to the first-order, i.e., RetrM(x, d) = x + d + o(∥d∥).
Retractions allow the implementation of Riemannian coun-
terparts to classical Euclidean methods on the generalized
Stiefel manifold, such as Riemannian (stochastic) gradi-
ent descent (Bonnabel, 2013; Zhang & Sra, 2016), trust-
region methods (Absil et al., 2007), and accelerated methods
(Ahn & Sra, 2020); for an overview, see Absil et al. (2008);
Boumal (2023).

There are several ways to compute a retraction to the gen-
eralized Stiefel manifold, which we summarize in Table 1

and we give a more detailed explanation in Appendix A.
Overall, we see that the landing field (2) is much cheaper
to compute than all these retractions in two cases: i) when
n ≃ p, then the bottleneck in the retractions becomes the
matrix factorizations, which, although they are of the same
complexity as matrix multiplications, are much more expen-
sive and hard to parallelize, ii) when n ≫ p, the dominant
cost of all retractions lies in matrix multiplications that re-
quire in practice O(n2p), whereas the use of the batches of
size r mentioned above allows computing the landing field
in O(npr). We demonstrate numerically the practical cost
of computing retractions in Figure 7b in the appendices.

Infeasible optimization methods. A popular approach
for solving constrained optimization is to employ the
squared ℓ2-penalty method by adding the ωN (X) regu-
larizer to the objective. However, unlike the landing method,
the iterates of the squared penalty method do not converge to
the feasible set for any fixed choice of ω and converge only
when ω goes to ∞ (Nocedal & Wright, 2006). In contrast,
the landing method provably converges to the feasible set
for any fixed ω > 0, which is enabled by the structure of
the landing field (2) as the sum of two orthogonal compo-
nents, the second one being the gradient of the infeasibility
measure N .

Augmented Lagrangian methods seek to solve a determin-
istic minimization problem with an augmented Lagrangian
function L(x, λ), such as the one introduced later in (6), by
updating the solution vector x and the vector of Lagrange
multipliers λ respectively (Bertsekas, 1982). This is typi-
cally done by solving a sequence of optimization problems
of L(·, λk) followed by a first-order update of the multipliers
λk+1 = λk − 2βh(xk) depending on the penalty parameter
β. The iterates are gradually pushed towards the feasible set
by increasing the penalty parameter β. However, each opti-
mization subproblem may be expensive, and the methods
are sensitive to the choice of the penalty parameter β.

Recently, a number of works explored the possibility of in-

Matrix factorizations Complexity

Polar matrix inverse square root O(n2p)
SVD-based SVD O(n2p)
Cholesky-QR Cholesky, matrix inverse O(n2p)
Λ(X) formula in (2) None min{O(n2p),O(npr)}

Table 1. Cost comparison of retractions and the landing formula
on the generalized Stiefel manifold. We assume naive flop count
for the matrix-matrix multiplication and no additional structure
on matrix Bζ apart from being rank-r in the stochastic setting.
The matrices are of size n × p with p ≤ n, and r is the rank
of the stochastic matrices Bζ . Matrix factorizations are hard to
parallelize. The retractions do not allow for reduced complexities
when Bζ is low-rank and are not suited for stochastic Bζ . For the
numerical timings, see Figure 7b in the appendices.
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feasible methods for optimization on Riemannian manifolds,
when the feasible set is deterministic, in order to eliminate
the cost of retractions, which can be limiting in some sit-
uations, e.g., when the evaluation of stochastic gradients
of the objective is cheap. The works of Gao et al. (2019a;
2022a) proposed a modified augmented Lagrangian method
which allows for fast computation and better bounds on
the penalty parameter β. Ablin & Peyré (2022) designed a
simple iterative method called landing, consisting of two
orthogonal components, to be used on the orthogonal group,
which was later expanded to the Stiefel manifold (Gao et al.,
2022b; Ablin et al., 2023). Schechtman et al. (2023) ex-
panded the landing approach to be used on a general smooth
constraint using a non-smooth merit function. More re-
cently, Goyens et al. (2024) analysed the classical Fletcher’s
augmented Lagrangian for solving smoothly constrained
problems through the Riemannian perspective and proposed
an algorithm that provably finds second-order critical points
of the minimization problem. As the differentiability of the
infeasible models relies on the second-order information
of the objective, Xiao et al. (2024) proposed a constraint-
dissolving model where the exact gradient and Hessian are
convenient to compute.

1.2. Existing methods for the GEVP and CCA

Deterministic methods. A lot of effort has been spent in
recent years on finding fast and memory-efficient solvers
for CCA and the GEVP. The top-p GEVP, that seeks to find
the eigenspace corresponding to the p largest eigenvalues
of the pair (A,B), can be formulated as (1); this can be
deduced from Absil et al. (2008, Proposition 2.2.1). As
for CCA, it can be framed as (1) (Ge et al., 2016; Bhatia
& Pacchiano, 2018) or as a minimization over a Cartesian
product of two generalized Stiefel manifolds as in (3). The
majority of the existing methods specialized for CCA and
the GEVP that compute the top-p vector solution aim to cir-
cumvent the need to compute B− 1

2 or B−1, e.g., by using
an approximate solver to compute the action of multiplying
with B−1. The classic Lanczos algorithm for computa-
tion of eigenvalues can be adapted to the GEVP by not-
ing that we can look for standard eigenvectors of B−1A,
see (Saad, 2011, Algorithm 9.1). Ma et al. (2015) propose
AppGradwhich performs a projected gradient descent with
ℓ2-regularization and proves its convergence when initial-
ized sufficiently close to the minimum. The work of Ge
et al. (2016) proposes GenELinK algorithm based on the
block power method, using inexact linear solvers, that has
provable convergence with a rate depending on 1/δ, where
δ = βp − βp+1 is the eigenvalue gap. Allen-Zhu & Li
(2017) improve upon this in terms of the eigenvalue gap and
proposes the doubly accelerated method LazyCCA, which
is based on the shift-and-invert strategy with iteration com-
plexity that depends on 1/

√
δ. Xu & Li (2020) present a

first-order Riemannian algorithm that computes gradients
using fast linear solvers to approximate the action of B−1

and performs polar retraction.

Stochastic methods. While the stochastic CCA problem
is of high practical interest, fewer works consider it. Al-
though several of the aforementioned deterministic solvers
can be implemented for streaming data using sampled in-
formation (Ma et al., 2015; Wang et al., 2016; Meng et al.,
2021), they do not analyse stochastic convergence. The
main challenge comes from designing an unbiased estima-
tor for the whitening part of the method that ensures the
constraint X⊤BX = I in expectation. Arora et al. (2017)
propose a stochastic approximation algorithm, MSG, that
keeps a running weighted average of covariance matrices
used for projection, requiring computing B−1/2 at each it-
eration. Additionally, the work of Gao et al. (2019b) proves
stochastic convergence of an algorithm based on the shift-
and-invert scheme and SVRG to solve linear subproblems,
but only for the top-1 setting.

Comparison with the landing. Constrained optimiza-
tion methods such as the augmented Lagrangian methods
and Riemannian optimization techniques can be applied
on stochastic problems when the gradient of the objective
function is random but not on problems when the feasible
set is random. The landing method has provable global
convergence guarantees with the same asymptotic rate as
its Riemannian counterpart, while also allowing for stochas-
ticity in the constraint. Our work is conceptually related to
the recently developed infeasible methods (Ablin & Peyré,
2022; Ablin et al., 2023; Schechtman et al., 2023), with
the key difference of constructing a smooth merit func-
tion for a general constraint h(x) = 0, which is necessary
for the convergence analysis of stochastic iterative updates
that can have error in the normal space of M. In Table 2
we show the overview of relevant GEVP/CCA methods by
comparing their per-iteration complexity, memory require-
ments, and the type of proved convergence. Despite the land-
ing iteration (2) being designed for a general non-convex
smooth problem (1) and not being tailored specifically to
the GEVP/CCA, we achieve theoretically interesting rate of
convergence. Additionally, we provide an improved space
complexity O (n(p+ r)) by not having to form the full
matrix B and only to save the iterates and the streaming
samples.

2. Landing on General Stochastic Constraints
This section is devoted to analyzing the landing method in
the general case where the feasible set is given by the zero
set of a smooth function. We will later use these results in
Section 3 devoted to extending and analyzing the landing
method (2) on StB(p, n). The theory presented here im-
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Stochastic Matrix factorizations Convergence Per-iteration complexity Memory

AppGrad (Ma et al., 2015, Theorem 2.1) - SVD local linear O(n2p + p3) n2

CCALin (Ge et al., 2016, Theorem 7) - inexact linear solver global linear O(n2p + p3) n2

rgCCALin (Xu & Li, 2020, Theorem 6.1) - inexact linear solver global linear O(n2p + p3) n2

LazyCCA (Allen-Zhu & Li, 2017, Theorem 4.2) - inexact linear solver global linear O(n2p + p2n) n2

MSG (Arora et al., 2017, Theorem 2.3) ✓ inverse square root global sublinear O(n3) n2

Λ(X) formula in (2) ✓ None global sublinear O(npr) n(p + r)

Table 2. Summary of CCA and GEVP solvers for finding top-p vectors simultaneously. For CCA based on covariance matrices we assume
that the number of samples is much greater than the dimension, i.e., N ≫ n. “Stochastic” marks methods with convergence analysis in
expectation for the stochastic case. We assume that deterministic methods require forming the matrix B at the start with additional cost
O(Nn2) and store it in iterations to remove dependence of the complexity on N .

proves on that of Schechtman et al. (2023) in two important
directions. First, we introduce the notion of relative ascent
direction, which allows us to consider a richer class than
that of geometry-aware orthogonal directions (Schechtman
et al., 2023, Eq. 18). Second, we do not require any structure
on the noise term Ẽ defined later in (7), for the stochastic
case, while A2(iii) in Schechtman et al. (2023) requires the
noise to be in the tangent space. This enhancement is due to
the smoothness of our merit function L, while Schechtman
et al. (2023) consider a non-smooth merit function. Im-
portantly, for the case of StB(p, n) with the formula given
in (2), there is indeed noise in the normal space, rendering
Schechtman et al. (2023)’s theory inapplicable, while we
show in the next section that Theorem 2.9 applies in that
case.

Given a continuously differentiable function f : Rd → R,
we address the optimization problem

min
x∈Rd

f(x) s. t. x ∈ M =
{
x ∈ Rd : h(x) = 0

}
, (4)

where h : Rd → Rq is continuously differentiable, q ∈
N represents the number of constraints, and M defines a
smooth manifold set. We will consider algorithms that stay
within an initially prescribed ε-safe region

Mε =
{
x ∈ Rd : ∥h(x)∥ ≤ ε

}
,

which can be split into a collection of layered manifolds
(Goyens et al., 2024)

Mc =
{
x ∈ Rd : h(x) = c

}
,

with ∥c∥ ≤ ε.

The first assumption we make is that the gradient of f is
Lipschitz continuous. The second one requires that the
differential Dh(x) inside the ε-safe region has bounded
singular values.
Assumption 2.1 (Smoothness of the objective). The objec-
tive function f : Rd → R is Lf -smooth.
Assumption 2.2 (Smoothness of the constraint). The dif-
ferential of the constraint function has bounded singular
values for x in the ε-safe region, i.e.,

∀x ∈ Mε : C̄h ≤ σ (Dh(x)) ≤ Ch.

Additionally, the gradient ∇N (x) of the penalty term
N (x) = 1

2∥h(x)∥
2 is LN -smooth over Mε.

Assumption 2.1 is standard in optimization. Assumption 2.2
is necessary for the analysis of smooth constrained optimiza-
tion (Goyens et al., 2024) and holds, e.g., when Mε is a
compact set, and Dh(x) has full rank for all x ∈ Mε. This
ensures that every layered manifold Mc is an embedded
submanifold of Rd. The tangent space to Mc at x is the
null space of Dh(x), the normal space at x (in the sense of
the Frobenius inner product) is the range (i.e., image) of
Dh(x)∗, and a critical point is then a point x in M where
∇f(x) belongs to the normal space.

Next we define the notion of relative ascent direction, used
to guarantee that (2) produces a descent when the second
term of the landing field vanishes.

Definition 2.1 (Relative ascent direction). A relative ascent
direction Ψ(x) : Rd → Rd, with a parameter ρ > 0 that
may depend on ε, satisfies:

(i) ∀x ∈ Mε, ∀v ∈ range(Dh(x)∗) : ⟨Ψ(x), v⟩ = 0;

(ii) ∀x ∈ Mε, ⟨Ψ(x), ∇f(x)⟩ ≥ ρ∥Ψ(x)∥2;

(iii) ∀x ∈ M, ⟨Ψ(x), ∇f(x)⟩ = 0 if and only if x is a
critical point of f subject to M.

In short, the relative ascent direction must be in the tangent
space to every layered manifold Mh(x) while remaining
positively aligned with the Euclidean gradient ∇f(x). Note
that the above definition is not scale invariant to ρ, i.e., tak-
ing cΨ(x) for c > 0 will result in cρ, and this is in line with
the forthcoming convergence guarantees deriving an upper
bound on ∥Ψ(x)∥. While there may be many examples of
relative ascent directions, a particular example is given next.

Definition 2.2 (Riemannian gradient on the layered man-
ifold Mc). Let f : Mc → R be a smooth function on
Mc. The Riemannian gradient of f , denoted by gradf , is
uniquely defined by

∀x ∈ Mc, v ∈ TxMc, Df(x)[v] = ⟨v, gradf(x)⟩ ,

where TxMc denotes the tangent space of Mc at x.
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Proposition 2.3 (Riemannian gradient is a relative ascent di-
rection). The Riemannian gradient defined in Definition 2.2
is a relative ascent direction on Mε with ρ = 1.

The proof can be found in the appendices in subsection C.1.
Such extension of the Riemannian gradient to the collection
of layered manifolds was already considered by Gao et al.
(2022b) in the particular case of the Stiefel manifold and
by Schechtman et al. (2023).

2.1. Deterministic case

We now define the general form of the deterministic landing
iteration as

xk+1 = xk−ηkΛ(x
k)withΛ(x) = Ψ(x)+ω∇N (x), (5)

where Ψ(x) is a relative ascent direction described in Def-
inition 2.1, ∇N (x) = Dh(x)∗h(x) is the gradient of the
penalty N (x) = 1

2∥h(x)∥
2, ω > 0 is a parameter, and ∥ · ∥

is the ℓ2-norm. Condition (i) in Definition 2.1 guarantees
that ⟨∇N (x), Ψ(x)⟩ = 0, so that the two terms in Λ are
orthogonal.

Note that we can use any relative ascent direction as Ψ(x).
The Riemannian gradient in (10) is just one special case,
which has some shortcomings. Firstly, it requires a poten-
tially expensive projection Dh(x)∗ (Dh(x)∗)

†. Secondly, if
the constraint involves a random noise on h, formula (10)
does not give an unbiased formula in expectation. An im-
portant contribution of the present work is the derivation
of a computationally convenient relative ascent direction
in the specific case of the generalized Stiefel manifold in
Section 3.

We now turn to the analysis of the convergence of this
method. The main object allowing for the convergence
analysis is Fletcher’s augmented Lagrangian

L(x) = f(x)− ⟨h(x), λ(x)⟩+ β∥h(x)∥2, (6)

with the Lagrange multiplier λ(x) ∈ Rp defined as λ(x) =
(Dh(x)∗)†[∇f(x)] (Goyens et al., 2024). The next assump-
tion that the differential of λ(x) is bounded is met when
Mε is a compact set.
Assumption 2.3 (Multipliers of Fletcher’s augmented
Lagrangian). The norm of the differential of the multi-
pliers of Fletcher’s augmented Lagrangian is bounded:
supx∈Mε ∥Dλ(x)∥ ≤ Cλ.

Proposition 2.4 (Lipschitz constant of Fletcher’s augmented
Lagrangian). Fletcher’s augmented Lagrangian L in (6) is
LL-smooth on Mε, with LL = Lf+λ+2βLN , where Lf+λ

is the smoothness constant of f(x)− ⟨h(x), λ(x)⟩ and LN
is that of N (x).

Proof. By the smoothness of f(x)−⟨h(x), λ(x)⟩ and N (x)
combined with the triangle inequality for ∥ · ∥.

The following two lemmas show that there exists a positive
step-size η that guarantees that the next landing iteration
stays within Mε provided that the current iterate is inside
Mε.
Lemma 2.5 (A step-size safeguard). Let x ∈ Mε and
consider the iterative update x̃ = x− ηΛ(x), where η > 0
is a step-size and Λ(x) is the landing field in (5). If the
step-size satisfies η ≤ η(x) with

η(x) :=
1

LN ∥Λ(x)∥2
(
ω∥∇N (x)∥2+√

ω2∥∇N (x)∥4 + LN ∥Λ(x)∥2(ε2 − ∥h(x)∥2)
)

where LN is from Assumption 2.2, then the line segment
from the current to the next iterate remains in the safe region.

The proof can be found in the appendices in subsection C.2.
Next, we require that the norm of the relative ascent direc-
tion must remain bounded in the safe region.
Assumption 2.4 (Bounded relative ascent direction). We
require that supx∈Mε ∥Ψ(x)∥ ≤ CΨ.

This holds, for instance, if ∇f is bounded in Mε, using
Definition 2.1 (ii) and Cauchy-Schwarz inequality. Under
this assumption, we can lower bound the step-size safeguard
in Lemma 2.5 for all x ∈ Mε, implying that there is always
a positive step-size that keeps the next iterate in the safe
region.
Lemma 2.6 (A lower-bound on the step-size safeguard).
The step-size safeguard η(x) in Lemma 2.5 is lower bounded
away from zero by

η := min

{
ωC̄2

hα
2ε2

LN (C2
Ψ + ω2C2

hε
2)
,
(1− α)ε√

2LN
,

(1− α)ε√
2LN (C2

Ψ + ω2C2
hε

2)
,

1

ωLN

(
C̄h

Ch

)2
}

for any choice of 0 < α < 1 where Ch, C̄h, CΨ > 0 are
constants from Assumption 2.2 and 2.4.

The proof can be found in subsection C.3.
Lemma 2.7. Let L(x) be Fletcher’s augmented Lagrangian
in (6) with β ≥ ( ρ

4C2
h
+ ωCλ

2Ch
+

C2
λ

4ρC2
h
)/ω, where ρ is de-

fined in Definition 2.1. We have that ⟨∇L(x), Λ(x)⟩ ≥
ρ
2

(
∥Ψ(x)∥2 + ∥h(x)∥2

)
.

The proof can be found in the appendices in subsection C.4.
This critical lemma shows that L is a valid merit function for
the landing iterations and allows the study of convergence
of the method with ease.

The following statement combines Lemma 2.7 with the
bound on the step-size safeguard in Lemma 2.6 to prove
sublinear convergence to critical points of f subject to M.
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Theorem 2.8 (Convergence of the deterministic landing).
Under the above assumptions, the landing iteration in (5)
starting from x0 ∈ Mε satisfies

1

K

K∑
k=0

∥Ψ(xk)∥2 ≤ 4
L(x0)− L∗

ηρK
,

1

K

K∑
k=0

∥h(xk)∥2 ≤ 4
L(x0)− L∗

ηρω2K
.

for η ≤ min
{

ρ
2LL

, ρ
2LLC2

h
, η
}

and L∗ = minx∈Mε L(x),
where η comes from Lemma 2.6.

The proof is given in subsection C.5 and implies that the
iterates xk converge to critical points with the sublinear rate
O(1/K).

2.2. Stochastic case

Due to the smoothness of Fletcher’s augmented Lagrangian
in the Mε region, we can extend the convergence result to
the stochastic setting. The iteration is

xk+1 = xk − ηk

[
Λ(xk) + Ẽ(xk,Ξk)

]
, (7)

where the Ξk are i.i.d. random variables, Ẽ(xk,Ξk) is the
random error term at iteration xk, and Λ(xk) is the landing
field in (5). We require the landing update in (7) to be an
unbiased estimator with bounded variance.

Assumption 2.5 (An unbiased estimator of Λ(xk) with
bounded variance). There exists γ > 0 such that for all x ∈
Mε, we have EΞ[Ẽ(x,Ξ)] = 0 and EΞ[∥Ẽ(x,Ξ)∥2] ≤ γ2.

We obtain the following result with decaying step-sizes.

Theorem 2.9 (Convergence of the stochastic landing). Un-
der the above assumptions, the stochastic landing iteration
in (7) with a diminishing step-size ηk = η0 × (1 + k)−1/2,
and assuming the line segments between the iterates remain
within Mε with probability one, produces iterates for which

inf
k≤K

E
[
∥Ψ(xk)∥2

]
≤ 4

L(x0)− L∗

ρη0
√
K

+
2η0γ

2LL(1 + log(K + 1))

ρ
√
K

,

inf
k≤K

E
[
∥h(x)∥2

]
≤ 4

L(x0)− L∗

ω2ρη0
√
K

+
2η0γ

2LL(1 + log(K + 1))

ω2ρ
√
K

,

for η0 ≤ ρ
2LL

min
{
1, C−2

h

}
and L∗ = minx∈Mε L(x).

The theorem is proved in subsection C.6. Unlike in the de-
terministic case in Lemma 2.5, without further assumption

on the distribution of Ξk, it cannot be ensured that the line
segments connecting the successive iterates are within Mε

with probability one. Under that assumption, we recover
the same convergence rate as Riemannian SGD in the non-
convex setting for a deterministic feasible set (Bonnabel,
2013), but in our case, we require only an online estimate
of the random manifold feasible set.

3. Landing on the Generalized Stiefel Manifold
This section builds on the results of the previous Section 2
and proves that the simple landing update rule Xk+1 =
Xk − ηkΛ(X

k), defined in (2), converges to the critical
points of (1). The generalized Stiefel manifold StB(p, n) is
defined by the constraint function h(X) = X⊤BX − Ip,
and we have ∇N (X) = 2BX(XTBX − Ip). We now
derive the quantities required for Assumption 2.2. Recall
that βi denotes the ith eigenvalue of B and κB = β1/βn is
the condition number of B.
Proposition 3.1 (Smoothness constants for the generalized
Stiefel manifold). Smoothness constants in Assumption 2.2
for the generalized Stiefel manifold are

Ch = 2
√
(1 + ε)β1κB and C̄h = 2

√
(1− ε)βnκ

−1
B .

The proof is presented in subsection D.2.

We show two candidates for the relative ascent direction:
Proposition 3.2 (Relative ascent directions for the gener-
alized Stiefel manifold). The following two formulas are
relative ascent directions on the generalized Stiefel mani-
fold:

ΨB(X) = 2skew(∇f(X)X⊤B)BX

ΨR
B(X) = 2skew(B−1∇f(X)X⊤)BX

with ΨB(X) having ρB = 1/(β1κB(1 + ε)) and ΨR
B(X)

having ρRB = βn/(1 + ε).

The proof is given in subsection D.3. The formula for the
relative ascent ΨR

B(X) can be derived as a Riemannian gra-
dient for StB(p, n) in a metric derived from a canonical
metric on the standard Stiefel manifold via a specific isome-
try; see Appendix E.

3.1. Deterministic generalized Stiefel case

The fact that ΨB(X) above meets the conditions of Def-
inition 2.1 allows us to define the deterministic landing
iterations as Xk+1 = Xk − ηkΛ(Xk) with

Λ(X) = 2 skew(∇f(X)X⊤B)BX

+ 2ωBX(XTBX − Ip), (8)

and Theorem 2.8 applies to these iterations, showing that
they converge to critical points.

7
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3.2. Stochastic generalized Stiefel case

One of the main features of the formulation in (8) is that
it seamlessly extends to the stochastic case when both the
objective f and the constraint matrix B are expectations.
Indeed, using the stochastic estimate Λξ,ζ,ζ′ defined in (2),
we have Eξ,ζ,ζ′ [Λξ,ζ,ζ′(X)] = Λ(X). The stochastic land-
ing iterations are, therefore, of the same form as in (7).
To apply Theorem 2.9 we need to bound the variance of
Ẽ(X,Ξ) = Λξ,ζ,ζ′(X)−Λ(X) where the random variable
Ξ is the triplet (ξ, ζ, ζ ′) using standard U-statistics tech-
niques (Van der Vaart, 2000).

Proposition 3.3 (Variance estimation of the generalized
Stiefel landing iteration). Let σ2

B be the variance of Bζ and
σ2
G the variance of ∇fξ(X). We have that

EΞ[∥Ẽ(X,Ξ)∥2] ≤ σ2
GαG + σ2

B(αB + ω2γB) (9)

where the constants αG, αB , γB are given explicitly in sub-
section D.5, and depend only on ε, the distribution of Bζ ,
and the function f .

The proof is found in subsection D.5. Note that, as expected,
the variance in (9) is zero in the deterministic setting where
both variances σB and σG are zero. A consequence of
Proposition 3.3 is that Theorem 2.9 applies in the case of the
stochastic landing method on the generalized Stiefel mani-
fold, and more specifically, also for solving the stochastic
GEVP.

4. Numerical Experiments
Generalized eigenvalue problem. We compare the meth-
ods on the deterministic top-p GEVP that consists of solving
minX∈Rn×p − 1

2 Tr(X
⊤AX) for X ∈ StB(p, n). The two

matrices are randomly generated with a condition number
κA = κB = 100 and with the size n = 1000 and p = 500;
see further specifics in Appendix B.1

Figure 2 shows the timings of four methods with fixed step-
size: Riemannian steepest descent with QR-based Cholesky
retraction (Sato & Aihara, 2019), the PLAM method (Gao
et al., 2022a), and the two landing methods with either
ΨR

B(X) or ΨB(X) in Proposition 3.2. The landing method
with ΨB(X) converges the fastest in terms of time, due to
its cheap per-iteration computation, which is also demon-
strated in Figure 5 and Figure 7 in the appendices. It can
be also observed that the landing method with ΨB(X) is
more robust to the choice of parameters η and ω compared
to PLAM, which we show in Figure 8 and Figure 10 in
the appendices, and is in line with the equivalent observa-
tions previously made for the orthogonal manifold (Ablin
& Peyré, 2022, Figure 9). In Figure 9 in the appendices we

1The code is available at: https://github.com/
simonvary/landing-generalized-stiefel.
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Figure 2. Generalized eigenvalue problem (n = 1000, p = 500).
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Figure 3. Stochastic CCA on the split MNIST dataset for p = 5.
An epoch takes roughly 2.5 sec.

track numerically the value of the step-size safeguard η(X)
in Lemma 2.5.

Stochastic CCA and ICA. For stochastic CCA, we use
the benchmark problem used by Ma et al. (2015); Wang
et al. (2016), in which the MNIST dataset is split in half by
taking left and right halves of each image, and compute the
top-p canonical correlation components by solving (3). In
our experiments, we have N = 60 000, n = 392, p = 5,
and r = 512.

The stochastic ICA is performed by solving (Hyvarinen,
1999; Ablin et al., 2018)

min
X∈Rn×n

1

N

N∑
i=1

n∑
j=1

σ([AX]i,j), s. t. X ∈ St 1
N A⊤A(n, n)

where σ(x) = log(cosh(x)) is performed elementwise and
σ′(x) = tanh(x). We generate the data matrix A as A =
SW⊤, where S is a N × n matrix of random i.i.d. data
sampled from a Laplace distribution and W is a n × n
random orthogonal matrix. We take N = 100 000 and
n = 10. By solving the above optimization problem, the
goal of ICA is to recover the mixing matrix W , up to scaling
and permutations invariances; to monitor this we track the
Amari distance (Amari et al., 1995) between X and W−1.
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Figure 4. Stochastic ICA on the synthetic dataset for n = 10.

Figure 3 and Figure 4 show the timings for the Riemannian
gradient descent with rolling averaged covariance matrix
and the landing algorithm with ΨB(X) in its online and
averaged form for the CCA and the ICA experiment respec-
tively. The averaged methods keep track of the covariance
matrices during the first pass through the dataset, which
is around 3 sec. and 0.6 sec. respectively, after which they
have the exact fully sampled covariance matrices. The on-
line methods have always only the sampled estimate with
the batch size of r = 512. All methods use the fixed step-
size η = 0.1, and the landing methods have ω = 1. In
practice, the hyperparameters can be picked by grid-search
as is common for stochastic optimization methods.

The online landing method outperforms the averaged Rie-
mannian gradient descent in the online setting in terms of
the objective value after only a few passes over the data,
e.g., at the 3 sec. mark and the 0.6 sec. mark respectively in
Figure 3 and Figure 4, which corresponds to the first epoch,
at which point each sample appeared just once. After the
first epoch, the rolling avg. methods get the advantage of the
exact fully sampled covariance matrix and, consequently,
have better distance N (X), but at the cost of requiring
O(n2) memory for the full covariance matrix. The online
method does not form B and requires only O(n(p + r))
memory. The behavior is also consistent when p = 10 as
shown in Figure 6 in the appendices.

5. Conclusion
We have extended the theory of the landing method from the
Stiefel manifold to the general case of a feasible set defined
by smooth equations h(x) = 0. We have improved the

existing analysis by using a smooth merit function, which
allows us to also consider situations where we have only
random estimates of the manifold. We have showed that
the random generalized Stiefel manifold, which is central
to problems such as stochastic CCA, ICA, and the GEVP,
falls into the category of random manifold feasible set and
derived specific bounds for it.
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A. Summary of Retractions on the Generalized Stiefel Manifold
For an update to a matrix X ∈ StB(p, n) following a direction in the tangent space Z ∈ TXStB(p, n) (see Appendix E
for an expression of TXStB(p, n)), there are several ways to compute a retraction. The following asymptotic flop counts
provide a simplified picture of computational cost: they do not reflect opportunities for parallelism and assume no structure
on matrix B.

• The Polar decomposition (Yger et al., 2012) uses

RetrStB (X,Z) = (X + Z)
(
Ip + Z⊤BZ

)−1/2
,

involving the multiplication of B by an n× p matrix and the computation of the inverse matrix square root of a p× p
matrix, which in naive implementation amounts to O(n2p) flops.

• Mishra & Sepulchre (2016) observed that the aforementioned polar decomposition can be expressed as UV ⊤ in terms
of an SVD-like decomposition of X+Z = UΣV ⊤, where U, V are orthogonal with respect to B-inner product, whose
main cost is the eigendecomposition of (X + Z)⊤B(X + Z).

• Recently, Sato & Aihara (2019) proposed the Cholesky-QR based retraction

RetrStB (X,Z) = (X + Z)R−1,

where R ∈ Rp×p comes from the Cholesky factorization of R⊤R = (X + Z)⊤B(X + Z). The flops required for the
computation, in naive implementation, amount to O(n2p), which comes from the matrix multiplications. The Cholesky
factorization of an p× p matrix and the inverse multiplication by a small triangular p× p matrix requires O(p3) to
form and O(np2) to multiply with.

B. Additional Experiments and Figures
For the experiment showed in Fig. 2, we generate the matrix A ∈ Rn×n to have equidistant eigenvalues λi(A) ∈ [1/κA, 1]
and B ∈ Rn×n has exponentially decaying eigenvalues λi(B) ∈ [1/κB , 1]. We pick the step-size η parameter to be
η = 0.01 for the Riemannian gradient descent, the landing with ΨR

B(X), and PLAM, and η = 200 for the landing with
ΨB(X) and we run a grid-search with step-sizes cη, where c ∈ [1/4, 1/2, 1, 2, 4, 8]. The normalizing parameter ω is chosen
to be ω = 105 for the landing with ΨR

B(X), ω = 0.1 for the landing with ΨB(X), and ω = 200 for PLAM.
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Figure 5. Deterministic computation of the generalized eigenvalue problem with n = 1000, p = 500, the condition number of the two
matrices κB = κA = 100. Each algorithm is given a time limit of 120 seconds.

C. Proofs for Section 2
C.1. Proof of Proposition 2.3

Proof. The Riemannian gradient can be computed as

gradf(x) = ∇f(x)−Dh(x)∗ (Dh(x)∗)
† ∇f(x), (10)

12
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Figure 6. Stochastic canonical correlation analysis on the split MNIST dataset for p = 10 canonical components.
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Figure 7. Comparison of per-iteration computational time for different problem sizes of the descent directions of algorithms in Fig. 2
and the cost of retractions compared to ∇N (X), both in the deterministic setting when n = p = r, for which the matrix multiplication
in ΨB(X) and ∇N (X) are at the disadvantage. Computation time of randomly generated B,X ∈ Rn×n averaged over 100 runs with
CUDA implementation using cupy.

where Dh(x)∗ (Dh(x)∗)
† is the orthogonal projection on the normal space of Mh(x). It follows from (10) and

Dh(x)Dh(x)∗ (Dh(x)∗)
†
= Dh(x) that Dh(x)[gradf(x)] = 0, which implies the first condition in Definition 2.1 holds,

i.e., ⟨gradf(x), v⟩ = 0 for all v ∈ range(Dh(x)∗). Since Dh(x)∗ (Dh(x)∗)
† ∇f(x) ∈ range(Dh(x)∗), we have

∥gradf(x)∥2 = ⟨gradf(x), gradf(x)⟩

=
〈
gradf(x), ∇f(x)−Dh(x)∗ (Dh(x)∗)

† ∇f(x)
〉

= ⟨gradf(x), ∇f(x)⟩ ,

which verifies the second condition with ρ = 1. It also satisfies the third condition since the critical points are the points of
M where gradf is zero.

C.2. Proof of Lemma 2.5

Proof. It is assumed that Λ(x) ̸= 0, otherwise the conclusion of Lemma 2.5 holds regardless of η(x). Let η̃ = inf{η > 0 :

N (x− ηΛ(x)) > ε2

2 }. If η̃ = ∞, then the conclusion of Lemma 2.5 trivially holds; hence we now consider that η̃ < ∞,
i.e., η̃ is the first η beyond which x− ηΛ(x) is no longer in the safe region Mε. Let x̃ = x− η̃Λ(x), and observe that the
line segment from x to x̃ is in Mε. Since N is LN -smooth in Mε (Assumption 2.2), it follows from a standard bound (see,

13
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Figure 8. Comparison of the sensitivity to the choice of the step-size η and ω of the landing with ΨB(X) and the PLAM method (Gao
et al., 2022a) in the generalized eigenvalue problem experiment presented in Fig. 2 with n = 1000, p = 500, and the condition number of
the two matrices κB = κA = 100. On the right we show log-log scale to better see the effect in earlier iterations. Both parameters are
picked as in the experiment for Fig. 2 and multiplied by a scalar from the set {0.25, 0.75, 1.25, 1.75} for all possible pair combinations.
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Figure 9. Numerical evaluation of the step-size safeguard η(X) in Lemmma 2.5 per time, which ensures that the iterates stay in StεB(p, n),
for the two landing methods tested in Fig. 2 with the LN bounded for the GEVP as in Lemma D.1.

e.g. Berger et al. (2020)) that

ε2

2
= N (x̃) ≤ N (x) + ⟨∇N (x), −η̃Λ(x)⟩+ η̃2LN

2
∥Λ(x)∥2

= N (x)− η̃ω∥∇N (x)∥2 + η̃2LN

2
∥Λ(x)∥2.

The function N̄ (η) := N (x)−η̃ω∥∇N (x)∥2+ η̃2LN
2 ∥Λ(x)∥2 appearing on the right-hand side is a strictly convex quadratic

function with N̄ (0) < ε2

2 . Since η̃ ≥ 0, it follows that η̃ ≥ η(x), where η(x) is the positive solution of N̄ (η) = ε2

2 , whose
formula is the one given in the statement of Lemma 2.5. Hence x− η(x)Λ(x) is in the line segment from x to x̃, which is
included in Mε.

14
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Figure 10. Robustness of the convergence towards the StB(p, n) for the landing with ΨB(X) in the experiment for Fig. 2 based on the
multiplicative perturbations of η and ω parameters with the values from {1/8, 1/4, 1/2, 2, 4}.

C.3. Proof of Lemma 2.6

Proof. In view of Assumption 2.2, ∥∇N (x)∥ ≥ C̄h∥h(x)∥ holds in Mε. We proceed to lower bound the numerator of the
step-size safeguard η(x) in Lemma 2.5 as follows

ω∥∇N (x)∥2+
√

ω2∥∇N (x)∥4 + LN ∥Λ(x)∥2(ε2 − ∥h(x)∥2)

≥ ωC̄2
h∥h(x)∥2 +

√
ω2C̄4

h∥h(x)∥4 + LN ∥Ψ(x)∥2 (ε2 − ∥h(x)∥2)

≥ ωC̄2
h∥h(x)∥2

(
1 +

1√
2

)
+

1√
2
∥Ψ(x)∥

√
LN (ε2 − ∥h(x)∥2)

≥
√

LN

2
∥Ψ(x)∥(ε− ∥h(x)∥) +

(
1 +

1√
2

)
ωC̄2

h∥h(x)∥2

where the first inequality comes from using bounds from Assumption 2.2, the second inequality comes from
√
a+ b ≥

(
√
a+

√
b)/

√
2 for a, b ≥ 0, and the final inequality from the fact that

√
a− b ≥

√
a−

√
b for a, b ≥ 0 and a ≥ b. As a

result we have that η(x) in Lemma 2.5 is lower-bounded by

η(x) ≥

√
LN
2 ∥Ψ(x)∥(ε− ∥h(x)∥) +

(
1 + 1√

2

)
ωC̄2

h∥h(x)∥2

LN (∥Ψ(x)∥2 + ω2C2
h∥h(x)∥2)

, (11)

using the fact that ∥Λ(x)∥2 = ∥Ψ(x)∥2 + ω2∥∇N (x)∥2 and ∥∇N (x)∥2 ≤ C2
h∥h(x)∥2.

The right-hand side of (11) takes the form

η :=
aP (ε−H) + bH2

cP 2 + dH2
,

where a =
√

LN
2 , b =

(
1 + 1√

2

)
ωC̄2

h, c = LN , and d = LNω2C2
h are constants and P = ∥Ψ(x)∥, H = ∥h(x)∥ are

variables in bounded intervals: 0 ≤ P ≤ CΨ and 0 ≤ H ≤ ε.

Pick α ∈ (0, 1). There are two cases, either H ≥ αε or H < αε.
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When H ≥ αε, we have

η ≥ bα2ε2

cC2
Ψ + dε2

. (12)

For the second case, when H < αε:

η ≥ aP (1− α)ε+ bH2

cP 2 + dH2
. (13)

We can again distinguish two cases to further lower bound (13). When P ≥ 1, we have

(13) ≥ a(1− α)ε

cC2
Ψ + dε2

.

When P ≤ 1, we get

(13) ≥ aP 2(1− α)ε+ bH2

cP 2 + dH2

=
a(1−α)ε

c cP 2 + b
ddH

2

cP 2 + dH2

≥ min{a(1− α)ε

c
,
b

d
}cP

2(1− α)ε+ dH2

cP 2 + dH2

= min{a(1− α)ε

c
,
b

d
}.

Putting all the cases together, we are left with the minimum of four terms

η ≥ min

{
bα2ε2

cC2
Ψ + dε2

,
a(1− α)ε

cC2
Ψ + dε2

,
a(1− α)ε

c
,
b

d

}
≥ min

{
ωC̄2

hα
2ε2

LN (C2
Ψ + ω2C2

hε
2)
,

(1− α)ε√
2LN (C2

Ψ + ω2C2
hε

2)
,
(1− α)ε√

2LN
,

1

ωLN

(
C̄h

Ch

)2
}
,

where in the second line we also further lower bounded the first and the last terms in the minimum by using that 1 ≤(
1 + 1√

2

)
.

C.4. Proof of Lemma 2.7

Proof. The inner product has two parts

⟨∇L(x), Λ(x)⟩ = DL(x)[Λ(x)]
= DL(x)[Ψ(x)] + ωDL(x)[∇N (x)]. (14)

We expand the first term of the right hand side of (14) as

DL(x)[Ψ(x)] = ⟨∇f(x), Ψ(x)⟩ −
〈
(Dh(x)∗)†∇f(x), Dh(x)Ψ(x)

〉
− ⟨Dλ(x)[Ψ(x)], h(x)⟩+ 2β ⟨∇N (x), Ψ(x)⟩

= ⟨∇f(x), Ψ(x)⟩ − ⟨Dλ(x)[Ψ(x)], h(x)⟩ (15)

where we use that ∇∥h(x)∥2 = 2∇N (x) and that the second and the third term are zero due to the orthogonality of Ψ(x)
with the range of Dh(x)∗. We expand the second term of the right hand side of in (14) as

DL(x)[∇N (x)] = ⟨∇f(x), ∇N (x)⟩ −
〈
(Dh(x)∗)†∇f(x), Dh(x)∇N (x)

〉
− ⟨Dλ(x)[∇N (x)], h(x)⟩+ 2β∥∇N (x)∥2

=
〈
(In −Dh(x)∗(Dh(x)∗)†)∇f(x), ∇N (x)

〉
− ⟨Dλ(x)[∇N (x)], h(x)⟩+ 2β∥∇N (x)∥2

= −⟨Dλ(x)[∇N (x)], h(x)⟩+ 2β∥∇N (x)∥2, (16)
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where in the second equality we move the adjoint Dh(x)∗ in the second inner product to the left side and join it with the
first inner product. The third equality comes from the fact that the projection of ∇f(x) on the null space of Dh(x) and
∇N (x) = Dh(x)∗h(x) are orthogonal.

Joining the two components (15) and (16) together we get

⟨∇L(x), Λ(x)⟩ = ⟨∇f(x), Ψ(x)⟩ − ⟨Dλ(x)[Λ(x)], h(x)⟩+ 2βω∥∇N (x)∥2

≥ ρ∥Ψ(x)∥2 − Cλ (∥Ψ(x)∥+ ω∥∇N (x)∥) ∥h(x)∥+ 2βω∥∇N (x)∥2

≥ ρ∥Ψ(x)∥2 + ω(2βCh − Cλ)Ch∥h(x)∥2 − Cλ∥Ψ(x)∥∥h(x)∥

≥ ρ∥Ψ(x)∥2 + ω(2βCh − Cλ)Ch∥h(x)∥2 −
Cλ

2

(
α∥Ψ(x)∥2 + α−1∥h(x)∥2

)
≥
(
ρ− Cλ

2
α

)
∥Ψ(x)∥2 +

(
2ωβC2

h − ωChCλ − α−1Cλ

2

)
∥h(x)∥2

≥ ρ

2

(
∥Ψ(x)∥2 + ∥h(x)∥2

)
where the first inequality comes from ⟨∇f(x), Ψ(x)⟩ ≥ ρ∥Ψ(x)∥2 in Definition 2.1 combined with the bound
supx∈Mε ∥Dλ(x)∥ ≤ Cλ and the triangle inequality, the second inequality comes from bounding ∥∇N (x)∥ ≤ Ch∥h(x)∥
using Assumption 2.2 and rearranging terms, the third inequality comes from using the AG-inequality

√
ab ≤ (a+ b)/2

with a = α∥h(x)∥2 and b = α−1∥Ψ(x)∥2 for an arbitrary α > 0, in the fourth inequality we only rearrange terms, and
finally, in the fifth inequality we choose α = ρ/Cλ and use that β ≥ ( ρ

4C2
h
+ ωCλ

2Ch
+

C2
λ

4ρC2
h
)/ω.

C.5. Proof of Theorem 2.8

Proof. Due to x0 ∈ Mε and the step-size η being smaller than the bound on the step-size safeguard in Lemma 2.6, we have
that the segment [xk, xk+1] is included in Mε for all k. By LL-smoothness of Fletcher’s augmented Lagrangian in Mε, we
can expand

L(xk+1) ≤ L(xk)− η
〈
Λ(xk), ∇L(xk)

〉
+

LLη
2

2
∥Λ(xk)∥2 (17)

≤ L(xk)− ηρ

2

(
∥Ψ(xk)∥2 + ω2∥h(xk)∥2

)
+

LLη
2

2
∥Λ(xk)∥2 (18)

≤ L(xk)− η

2

(
(ρ− LLη) ∥Ψ(xk)∥2 + ω2

(
ρ− ηLLC

2
h

)
∥h(xk)∥2

)
, (19)

where in the second inequality we used the results of Lemma 2.7, and in the third inequality we use the bound on
∥∇N (x)∥ ≤ Ch∥h(x)∥ by Assumption 2.2. By the step-size η < min

{
ρ

2LL
, ρ
2LLC2

h

}
we have

ηρ

4
∥Ψ(xk)∥2 + ηρω2

4
∥h(x)∥2 ≤ L(xk)− L(xk+1). (20)

Telescopically summing the first K + 1 terms gives

ηρ

4

K∑
k=0

∥Ψ(xk)∥2 + ηρω2

4

K∑
k=0

∥h(x)∥2 ≤ L(x0)− L(xK+1) ≤ L(x0)− L∗,

which implies that the inequalities hold individually also

ηρ

4

K∑
k=0

∥Ψ(xk)∥2 ≤ L(x0)− L∗ and
ηρω2

4

K∑
k=0

∥h(x)∥2 ≤ L(x0)− L∗.
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C.6. Proof of Theorem 2.9

Proof. Let xk+1 = xk − ηkΛ̃(x
k), where we denote by Λ̃(xk) = Λ(xk) + Ẽ(xk,Ξk) the unbiased estimator of the landing

update, and we assume that the line segment between the iterates remain within Mε. By LL-smoothness of Fletcher’s
augmented Lagrangian inside Mε, we have

EΞk

[
L(xk+1)

]
≤ EΞk

[
L(xk)− ηk

〈
Λ̃(xk), ∇L(xk)

〉
+

LLη
2
k

2
∥Λ̃(xk)∥2

]
≤ L(xk)− ηk

〈
Λ(xk), ∇L(xk)

〉
+

LLη
2
k

2

(
∥Λ(xk)∥2 + γ2

)
≤ L(xk)− ηkρ

2

(
∥Ψ(xk)∥2 + ω2∥h(x)∥2

)
+

LLη
2
k

2

(
∥Λ(xk)∥2 + γ2

)
≤ L(xk) +

LLη
2
k

2
γ2 − ηk

2

(
(ρ− LLηk) ∥Ψ(xk)∥2 + ω2

(
ρ− ηkLLC

2
h

)
∥h(xk)∥2

)
,

where the first inequality comes from taking an expectation of a bound akin the first bound of subsection C.5, in the second
inequality we take the expectation inside the inner product using the fact that Ẽ(xk,Ξk) is zero-centered and has bounded
variance, the third inequality comes as a consequence of Lemma 2.7. The last inequality comes as a consequence of
Λ(xk) having two orthogonal components and rearranging terms in the same way as in (19). Note that by EΞk we denote
expectation only with respect to the last random realization Ξk.

By the step-size being smaller than ηk ≤ η0 < min
{

ρ
2LL

, ρ
2LLC2

h

}
we have that

ηkρ

4
∥Ψ(xk)∥2 + ηkρω

2

4
∥h(xk)∥2 ≤ L(xk)− EΞk

[
L(xk+1)

]
+

LLη
2
k

2
γ2. (21)

Taking the expectation of (21) with respect to the whole past random realizations Ξ0, . . . ,Ξk, denoted for short simply as E,
yields

E
[
ηkρ

4
∥Ψ(xk)∥2 + ηkρω

2

4
∥h(xk)∥2

]
≤ E[L(xk)]− E

[
EΞk

[
L(xk+1)

]]
+

LLη
2
k

2
γ2. (22)

Since xk+1 = xk − ηkΛ̃(x
k), we have that E [EΞk [·]] = E[·], and we can telescopically sum the first K + 1 terms of (21)

for k = 0, 1, . . . ,K:

ρ

4

(
K∑

k=0

ηkE
[
∥Ψ(xk)∥2

]
+ ω2

K∑
k=0

ηkE
[
∥h(xk)∥2

])
≤ L(x0)− E

[
L(xK+1)

]
+

LLη
2
0γ

2

2

K∑
k=0

(1 + k)−1 (23)

≤ L(x0)− L∗ +
LLη

2
0γ

2

2
(1 + log(K + 1))

which implies that the inequalities hold also individually

inf
k≤K

E
[
∥Ψ(xk)∥2

]
≤ 4

L(x0)− L∗

ρη0
√
K

+ 2
η0LLγ

2

ρ

(
1 + log(K + 1)√

K

)
,

inf
k≤K

E
[
∥h(xk)∥2

]
≤ 4

L(x0)− L∗

ρω2η0
√
K

+ 2
η0LLγ

2

ρω2

(
1 + log(K + 1)√

K

)
,

where we used that infk≤K E∥Ψ(xk)∥2 ≤
∑K

k=0 ηkE∥Ψ(xk)∥2
(∑K

k=0 ηk

)−1

and the fact that
∑

k≤K ηk ≥ η0
√
K.

D. Proofs for Section 3
D.1. Specific forms of Dh(x), λ(X) for StB(p, n)

We begin by showing the specific form of the formulations derived in the previous section for the case of the generalized
Stiefel manifold. Let h : Rn×p → sym(p) : X 7→ X⊤BX − Ip, where letting sym(p) be the codomain is essential for
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Assumption 2.2 to hold. Differentiating the generalized Stiefel constraint yields Dh(X)[V ] = X⊤BV + V ⊤BX and the
adjoint Dh(X)∗ : sym(p) → Rn×p is derived as

⟨Dh(X)∗[V ], W ⟩ = ⟨V, Dh(X)[W ]⟩ =
〈
V, WTBX +XTBW

〉
= ⟨2BXV, W ⟩ , (24)

as such we have that Dh(X)∗[V ] = 2BXV . Consequently

Dh(X)Dh(X)∗[V ] = 2V X⊤B2X + 2X⊤B2XV, (25)

and the Lagrange multiplier λ(X) is defined in the case of the generalized Stiefel manifold as the solution to the following
Lyapunov equation

2λ(X)X⊤B2X + 2X⊤B2Xλ(X) = X⊤B∇f(X) +∇f(X)⊤BX. (26)

Importantly, due to λ(X) being the unique solution to the linear equation, which is ensured by BX having a full rank since
X is in the ε-safe region, and by the the linear operator being smooth in X , since ∇f(X) is smooth, we have that λ(X)
is invertible and smooth with respect to X . Thus, as a smooth function defined over a compact set StεB(p, n), its operator
norm is bounded: supX∈StεB(p,n) ∥Dλ(X)∥F ≤ Cλ as required by Assumption 2.3.

D.2. Proof of Proposition 3.1

Proof. For ∥X⊤BX − Ip∥F ≤ ε, let X = UΣV ⊤ be a truncated singular value decomposition of X , and QDQ⊤ be an
eigendecomposition of B. We then have

ε2 ≥ ∥X⊤BX − Ip∥2F = ∥ΣU⊤QD(U⊤Q)⊤Σ− Ip∥2F (27)

where βi, σi are the positive eigenvalues of B and the singular values of X respectively in decreasing order.

Denote P = Q⊤U ∈ Rn×p that forms an orthogonal frame P⊤P = Ip. The bound in (27) implies

ε2 ≥
p∑

i=1

(
σ2
i

(
P⊤DP

)
ii
− 1
)2

, (28)

where
(
P⊤DP

)
ii

marks the ith diagonal entry of the matrix P⊤DP . Consequently, we have that

1− ε ≤ σ2
i

(
P⊤DP

)
ii
≤ 1 + ε (29)

for all i = 1, . . . , p. We can bound

βn = inf
∥x∥2=1

x⊤Dx ≤
(
P⊤DP

)
ii
≤ sup

∥x∥2=1

x⊤Dx = β1, (30)

since P⊤P = Ip. The inequality in (29) combined with (30) implies that√
(1− ε)/β1 ≤ σi ≤

√
(1 + ε)/βn. (31)

By the lower and the upper bounds on singular values of a matrix product, the above bound gives that the singular values of

Dh(X)∗ = 2BX are in the interval [2
√
(1− ε)βnκ

−1
B , 2

√
(1 + ε)β1κB ] which in turn gives the constants Ch, C̄h.

D.3. Proof of Proposition 3.2

Proof. First consider ΨB(X). For ease of notation we denote G = ∇f(X) ∈ Rn×p. The first property Definition 2.1 (i)
comes from 〈

skew(GX⊤B)BX, BXS
〉
= 0, (32)

which holds for a symmetric matrix S, since a skew-symmetric matrix is orthogonal in the Frobenius inner product to a
symmetric matrix,

The second property (ii) is a consequence of the following

⟨ΨB(X), G⟩ =
〈
skew(GXTB)BX, G

〉
= ∥skew(GXTB)∥2F ≥ 1

(1 + ε)β1κB
∥ΨB(X)∥2F, (33)

19



Optimization without Retraction on the Random Generalized Stiefel Manifold

where we use the bounds on ∥BX∥2 ≤
√
(1 + ε)β1κB derived in the proof of Proposition 3.1.

To show the third property (iii), we first consider a critical point X ∈ StB(p, n), for which it must hold that G is in the
image of Dh(X)∗, i.e.,

G = BXS, (34)

for some S ∈ sym(p) and that X⊤BX = Ip by feasibility. We have that at the critical point defined in (34), the relative
ascent direction is

ΨB(X) = skew(GX⊤B)BX = skew(BXSX⊤B)BX = 0, (35)

where the second equality is the consequence of (34) and the third equality comes from the fact that BXSX⊤B is symmetric.

To show the other side of the implication, that ΨB(X) = 0 combined with feasibility imply that X is a critical point, we
consider

0 = ΨB(X) = skew(GX⊤B)BX = GX⊤B2X −BXG⊤BX (36)

which, since X⊤B2X ∈ Rp×p is invertible, is equivalent to

G = BXG⊤BX
(
X⊤B2X

)−1
. (37)

It remains to show that the factor G⊤BX
(
X⊤B2X

)−1
in (37) is symmetric in order to get (34). To this end, multiply (36)

on the left by (X⊤B2X)−1X⊤B and on the right by (X⊤B2X)−1 and rearrange the terms.

For the other choice of relative gradient ΨR
B(X) = skew(B−1GX⊤)BX , letting M = B−1GX⊤, we find

⟨ΨR
B(X), G⟩ = ⟨skew(M), BMB⟩ (38)

= ⟨skew(M), skew(BMB)⟩ (39)
= ⟨skew(M), Bskew(M)B⟩ (40)

≥ ∥skew(M)∥2Fβ2
n (41)

and similarly as in (33), it holds ∥ΨR
B(X)∥2 ≤ ∥skew(M)∥2F(1 + ε)β1κB which in turn leads to ⟨ΨR

B(X), G⟩ ≥
βn

1+ε∥Ψ
R
B(X)∥2

D.4. Lipschitz constants for the GEVP

Lemma D.1 (Lipschitz constants for the generalized eigenvalue problem). Let f = − 1
2 Tr(X

⊤AX) and N (X) =
1
2∥X

⊤BX − Ip∥2F as in the optimization problem corresponding to the generalized eigenvalue problem. We have that, for
X ∈ StεB(p, n), a Lipschitz constant for ∇N is LN = 2β1 (ε+ 2(1 + ε)κB) and the Lipschitz constant for ∇f is Lf = α1

where α1 is the largest eigenvalue of A.

Proof. Take X,Y ∈ StB(p, n), we have that ∇N (X) = 2BX(X⊤BX − Ip), thus

∇N (X)−∇N (Y ) = 2B
(
X(X⊤BX − Ip)− Y (Y ⊤BY − Ip)

)
(42)

= 2B
(
(X − Y )(X⊤BX − Ip) + Y

(
(X⊤BX − Y ⊤BY )

))
(43)

= 2B
(
(X − Y )(X⊤BX − Ip) + Y

(
(X − Y )⊤BX + Y ⊤B(X − Y )

))
. (44)

Taking the Frobenius norm and by the triangle inequality we get

∥∇N (X)−∇N (Y )∥ ≤ 2
(
∥B(X − Y )(X⊤BX − Ip)∥+ ∥BY (X − Y )⊤BX∥+ ∥BY Y ⊤B(X − Y )∥

)
(45)

≤ 2
(
∥X − Y ∥

∥∥B(X⊤BX − Ip)
∥∥
2
+ ∥X − Y ∥ ∥BY BX∥2 + ∥X − Y ∥

∥∥BY Y ⊤B
∥∥
2

)
(46)

≤ 2∥X − Y ∥
(
∥B∥2∥X⊤BX − Ip∥+ ∥B∥22∥X∥2∥Y ∥2 + ∥B∥22∥Y ∥22

)
(47)

≤ 2β1 (ε+ 2(1 + ε)κB) ∥X − Y ∥, (48)

where for the second inequality we used that ∥AB∥ ≤ ∥A∥2∥B∥, the third inequality comes from submultiplicativity
of the induced ℓ2-norm for matrices, and the fourth inequality comes from X,Y ∈ StεB(p, n) for which we have that
∥X∥2 ≤

√
(1 + ε)/βn, as in (31), and the same for Y .

When f = 1
2 Tr(X

⊤AX), we have that ∥∇f(X)−∇f(Y )∥ ≤ ∥A∥2∥X − Y ∥.
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D.5. Proof of Proposition 3.3

Proof. We start by deriving the bound on the variance of the normalizing component ∇N (X). Consider U and V to be two
independent random matrices taking i.i.d. values from the distribution of Bζ with variance σ2

B . We have that

Var
[
UX(X⊤V X − Ip)

]
= EU,V

[
∥UX(X⊤V X − Ip)−BX(X⊤BX − Ip)∥2

]
. (49)

Introducing the random marginal BX(X⊤V X − Ip), we further decompose

Var
[
UX(X⊤V X − Ip)

]
= EU,V

[
∥UX(X⊤V X − Ip)−BX(X⊤V X − Ip)∥2

]
(50)

+ EV

[
∥BX(X⊤V X − Ip)−BX(X⊤BX − Ip)∥2

]
. (51)

The first term in the above is upper bounded as

EU,V

[
∥UX(X⊤V X − Ip)−BX(X⊤V X − Ip)∥2

]
≤ EU,V

[
∥U −B∥2∥X(X⊤V X − Ip)∥22

]
(52)

= σ2
BEV [∥X(X⊤V X − Ip)∥22] (53)

≤ σ2
B

1 + ε

βn
EV [∥X⊤V X − Ip∥22] (54)

≤ σ2
B

1 + ε

βn

(
σ2
B

1 + ε

βn
+ ε2

)
, (55)

where we used ∥X∥2 ≤ 1+ε
βn

, and we control EV [∥X⊤V X − Ip∥22] ≤ EV [∥X⊤V X − Ip∥2] = EV [∥X⊤(V −B)X∥2] +
∥XBX⊤ − Ip∥2 ≤ σ2

B
1+ε
βn

+ ε2. The second term is controlled by

EV

[
∥BX(X⊤V X − Ip)−BX(X⊤BX − Ip)∥2

]
= EV

[
∥BXX⊤(V −B)X∥2

]
(56)

≤ σ2
B∥B∥22∥X∥62 (57)

≤ σ2
Bβ

2
1

(1 + ε)3

β3
n

, (58)

where we used ∥X∥22 ≤ 1+ε
βn

and ∥B∥2 = β1. Taking things together we obtain

Var
[
UX(X⊤V X − Ip)

]
≤ σ2

B

(
1 + ε

βn

(
σ2
B

1 + ε

βn
+ ε2

)
+ β2

1

(1 + ε)3

β3
n

)
. (59)

Similarly, the variance of the first term in the landing is controlled by introducing yet another random variable G that takes
values from ∇fξ(X). We use the U-statistics variance decomposition twice to get

Var[skew
(
GX⊤U

)
V X] = EG,U,V [∥skew((G−∇f(X))X⊤U)V X∥2]

+ EU,V [∥skew(∇f(X)X⊤(U −B))V X∥2]
+ EV [∥skew(∇f(X)X⊤B)(V −B)X∥2].

The first term is upper bounded by doing

EG,U,V [∥skew((G−∇f(X))X⊤U)V X∥2] ≤ EG,U,V [∥G−∇f(X)∥2∥X⊤U∥22∥V X∥22] (60)

≤ σ2
GEU [∥U∥22]2∥X∥42 (61)

≤ σ2
Gp

2
B

(1 + ε)2

β2
n

, (62)

where we used pB = EU [∥U∥22] = EBζ
[∥Bζ∥22]. The second term gives

EU,V [∥skew(∇f(X)X⊤(U −B))V X∥2] ≤ EU,V [∥∇f(X)X⊤∥22∥U −B∥2∥V X∥22] (63)

≤ σ2
B∥∇f(X)X⊤∥22EU [∥U∥2]∥X∥22 (64)

≤ σ2
B∆pB

1 + ε

βn
, (65)
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where ∆ upper-bounds ∥∇f(X)X⊤∥22. The third term gives

EV [∥skew(∇f(X)X⊤B)(V −B)X∥2] ≤ EV [∥∇f(X)X⊤∥22∥B∥22∥V −B∥2∥X∥22] (66)

≤ σ2
B∥∇f(X)X⊤∥22∥B∥22∥X∥22 (67)

≤ σ2
B∆β2

1

1 + ε

βn
, (68)

which leads to the bound

Var[skew
(
GX⊤U

)
V X] ≤ σ2

Gp
2
B

(1 + ε)2

β2
n

+ σ2
B

1 + ε

βn
∆
(
pB + β2

1

)
.

Finally, we join these two bounds using the generic inequality Var[a+ b] ≤ 2(Var[a] + Var[b]), which gives

EΞ[∥Ẽ(X,Ξ)∥2] = Var[2skew
(
GX⊤U

)
V X + 2ωV X(X⊤UX − Ip)] (69)

≤ 8(Var[skew
(
GX⊤U

)
V X] + ω2Var[V X(X⊤UX − Ip)]) (70)

≤ 8

(
σ2
Gp

2
B

(1 + ε)2

β2
n

+ σ2
B

1 + ε

βn
∆
(
pB + β2

1

)
+ ω2σ2

B

(
1 + ε

βn
(σ2

B

1 + ε

βn
+ ε2) + β2

1

(1 + ε)3

β3
n

))
(71)

= 8σ2
Gp

2
B

(1 + ε)2

β2
n

+ 8σ2
B

1 + ε

βn

(
∆
(
pB + β2

1

)
+ ω2

(
σ2
B

1 + ε

βn
+ ε2 + β2

1

(1 + ε)2

β2
n

))
(72)

= σ2
GαG + σ2

B(αB + ω2γB), (73)

with

αG = 8p2B
(1 + ε)2

β2
n

(74)

αB = 8
1 + ε

βn
∆
(
pB + β2

1

)
(75)

γB = 8
1 + ε

βn

(
1 + ε

βn
σ2
B + ε2 + β2

1

(1 + ε)3

β3
n

)
. (76)

E. Riemannian Interpretation of ΨR
B(X) in Proposition 3.2

Similar to the work of Gao et al. (2022b), we provide a geometric interpretation of the relative ascent direction ΨR
B(X) as a

Riemannian gradient in a metric induced by an isometry

ΦB,M : St(p, n) → StB,M (p, n) : Y 7→ B− 1
2YM

1
2

between the standard Stiefel manifold St(p, n) and the doubly generalized Stiefel manifold

StB,M (p, n) := {X : X⊤BX = M},

for B,M ≻ 0, which is a layered manifold (Goyens et al., 2024) of h(X) := X⊤BX .

The map ΦB,M extends to a diffeomorphism of the set of the full rank Rn×p matrices onto itself and maps the standard
Stiefel manifold St(p, n) to the generalized Stiefel manifold StB,M (p, n). The tangent space at X ∈ StB,M (p, n) is the
null space of Dh(X):

TXStB,M (p, n) = {ξ ∈ Rn×p : ξTBX +XTBξ = 0}
= {X(XTBX)−1Ω+B−1X⊥K : ΩT +Ω = 0,Ω ∈ Rp×p,K ∈ R(n−p)×p}
= {WBX : WT +W = 0,W ∈ Rn×n}
= {ΦB,M (ζ) : ζ ∈ TΦ−1

B,M (X)St(p, n)},
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where X⊥ ∈ Rn×(n−p) is any matrix such that span(X⊥) is the orthogonal complement of span(X).

Consider the canonical metric on the standard Stiefel manifold St(p, n):

g
St(p,n)
Y (Z1, Z2) =

〈
Z1, (I −

1

2
Y Y T )Z2

〉
.

It turns out that the Riemannian gradient of f̃ : St(p, n) → R is

gradf̃(Y ) = 2 skew
(
∇f̃(Y )Y ⊤

)
Y.

Using the map ΦB,M , we define the metric gStB,M (p,n) which makes ΦB,M an isometry. This metric is given by

g
StB,M (p,n)
X (ξ, ζ) = g

St(p,n)

Φ−1
B,M (X)

(Φ−1
B,M (ξ),Φ−1

B,M (ζ))

=

〈
ξ, (B − 1

2
BX(XTBX)−1XTB)ζ(XTBX)−1

〉
.

This metric extends to arguments ξ and ζ in TXRn×p ≃ Rn×p using the same formula. With respect to this metric, the
normal space of StB,M (p, n) is

NXStB,M (p, n) = {X(XTBX)−1S : ST = S, S ∈ Rp×p}.

The form of the derived tangent and normal spaces allow us to derive their projection operators PX and P⊥
X respectively as

P⊥
X (Y ) = X(XTBX)−1sym(XTBY ),

PX(Y ) = Y −X(XTBX)−1sym(XTBY ).

Since ΦB,M is a linear isometric, and letting Φ∗
B,M denote the adjoint of ΦB,M with respect to the Frobenius inner product,

the Riemannian gradient w.r.t. gStB,M (p,n) can be computed directly by

gradB,Mf(X) = ΦB,M

(
grad(f ◦ ΦB,M )(Φ−1

B,M (X))
)

= ΦB,M

(
2 skew

(
∇(f ◦ ΦB,M )(Φ−1

B,M (X))
)
(Φ−1

B,M (X))⊤
)

= ΦB,M

(
2 skew

(
Φ∗

B,M∇f(X)(Φ−1
B,M (X))⊤

)
(Φ−1

B,M (X))⊤
)

= 2B− 1
2 skew

(
B− 1

2∇f(X)M
1
2 (B

1
2XM− 1

2 )⊤
)
B

1
2XM− 1

2M
1
2

= 2 skew(B−1∇f(X)X⊤)BX,

where the second and fourth equalities follow from the Riemannian gradient on the Stiefel manifold and the definition of
ΦB,M , respectively. Alternatively, one can check that the obtained expression indeed satisfies the characteristic properties of
the gradient, as was done in the proof of Gao et al. (2022b, Proposition 4).

Note that the formula for ΨR
B(X) involves computing an inverse of B and thus does not allow a simple unbiased estimator

to be used in the stochastic case, as opposed to ΨB(X).
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