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Abstract
We consider the chance-constrained program (CCP) with random right-hand side under a

finite discrete distribution. It is known that the standard mixed integer linear programming
(MILP) reformulation of the CCP is generally difficult to solve by general-purpose solvers
as the branch-and-cut search trees are enormously large, partly due to the weak linear pro-
gramming relaxation. In this paper, we identify another reason for this phenomenon: the
intersection of the feasible regions of the subproblems in the search tree could be nonempty,
leading to a wasteful duplication of effort in exploring the uninteresting overlap in the search
tree. To address the newly identified challenge and enhance the capability of the MILP-
based approach in solving CCPs, we first show that the overlap in the search tree can be
completely removed by a family of valid nonlinear if-then constraints, and then propose two
practical approaches to tackle the highly nonlinear if-then constraints. In particular, we use
the concept of dominance relations between different scenarios of the random variables, and
propose a novel branching, called dominance-based branching, which is able to create a valid
partition of the problem with a much smaller overlap than the classic variable branching.
Moreover, we develop overlap-oriented node pruning and variable fixing techniques, applied
at each node of the search tree, to remove more overlaps in the search tree. Computa-
tional results demonstrate the effectiveness of the proposed dominance-based branching and
overlap-oriented node pruning and variable fixing techniques in reducing the search tree size
and improving the overall solution efficiency.

Keywords: Stochastic programming · Integer programming · Chance constraints · Branch-
and-cut algorithms · Overlap

1 Introduction

Consider the chance-constrained program (CCP) with random right-hand side:

min
{
c⊤x : P{Tx ≥ ξ} ≥ 1− ϵ, x ∈ X

}
, (CCP)
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where X ⊆ Rd is a polyhedron, T is an m × d matrix, c is a d-dimensional cost vector, ξ is an
m-dimensional random vector, and ϵ ∈ (0, 1) is a confidence parameter chosen by the decision
maker, typically near zero. (CCP) is a powerful paradigm to model risk-averse decision-making
problems, and has been seen in or served as a building block in many industrial applications in
areas such as appointment scheduling [26], energy [21, 50, 57], finance [18], healthcare [10], facility
location [11, 16, 52], supply chain logistic [12, 35, 41], and telecommunication [19]. We refer to
the surveys of Prékopa [48] and Küçükyavuz and Jiang [29] and the references therein for more
applications of (CCP).

(CCP) was introduced by Charnes and Cooper [14], Miller and Wagner [40], Prékopa [45], and
Prékopa [46], and has been extensively investigated in the literature [29, 48]. For (CCP) with
discrete random variables, Sen [53] derived a relaxation problem using disjunctive programming
techniques. Dentcheva et al. [19] used the so-called (1− ϵ)-efficient points [47] to develop various
reformulations for (CCP) with discrete random variables, and derived lower and upper bounds
for the optimal value of the problem. Using a partial enumeration of the (1 − ϵ)-efficient points,
Beraldi and Ruszczyński [12] proposed a specialized branch-and-bound algorithm for (CCP) that is
based on the relaxation in [19] and guaranteed to find an optimal solution. Lejeune [33] presented
a pattern-based solution method for obtaining a global solution of (CCP), which requires the
enumeration of the so-called (1−ϵ)-sufficient and -insufficient points [34] and solving an equivalent
mixed integer linear programming (MILP) reformulation. Cheon et al. [17] considered the case
with a finite discrete distribution of the random vector ξ, that is, ξ takes values ξ1, ξ2, . . . , ξn with
P{ξ = ξi} = pi ≥ 0 for i ∈ [n] := {1, 2, . . . , n} and

∑n
i=1 pi = 1. Cheon et al. [17] provided a

specialized branch-and-cut (B&C), called branch-reduce-cut, algorithm that finds a global solution
of (CCP) by successively partitioning the nonconvex feasible region and using bounding techniques.

The solution algorithms of interest in the paper are the MILP reformulation based approaches
in [1, 5, 28, 30, 38, 51, 56, 59], which can be easily adopted by practitioners. These approaches
also rely on the assumption that ξ has a finite discrete distribution ξ1, ξ2, . . . , ξn, and require to
solve an MILP reformulation of (CCP), detailed as follows. Without loss of generality, we assume
ξi ≥ 0 for all i ∈ [n] (by applying the transformation in [29, 38] if needed). By introducing for
each i ∈ [n], a binary variable zi, where zi = 0 guarantees v = Tx ≥ ξi, (CCP) can then be
reformulated as the following MILP formulation [51]:

min
{
c⊤x : (1)− (4)

}
, (MILP)

where

Tx = v, x ∈ X , (1)

v ≥ ξi(1− zi), ∀ i ∈ [n], (2)
n∑

i=1

pizi ≤ ϵ, (3)

v ∈ Rm
+ , z ∈ {0, 1}n. (4)

Constraints (2) are referred to as big-M constraints where the big-M coefficients are given by
ξik, k ∈ [m]. It is worthy noting that the assumption on the finite discrete distribution of ξ is
not restrictive, as for arbitrary distributions of ξ, we can use sample average approximation or
importance sampling technique to obtain an approximation problem that satisfies this assumption;
see [6, 8, 37, 42].
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It is well-known that due to the presence of the big-M constraints in (2), the linear pro-
gramming (LP) relaxation of formulation (MILP) is generally very weak, making it difficult to use
state-of-the-art MILP solvers to tackle formulation (MILP) directly. To bypass this difficulty, vari-
ous approaches have been developed in the literature [1, 5, 28, 30, 38, 56, 59]. Specifically, using the
lower bounds of variables v (also known as quantile information [20, 32]), Luedtke et al. [38] devel-
oped a strengthened version of formulation (MILP) that provides a tighter LP relaxation and has
less constraints. By investigating the single mixing set with a knapsack constraint, an important
substructure of (MILP) defined by constraints (2) for a fixed k ∈ [m] and (3), Luedtke et al. [38]
employed the mixing inequalities [7, 25] to strengthen the LP relaxation of formulation (MILP).
Küçükyavuz [28], Abdi and Fukasawa [1], and Zhao et al. [59] further investigated the polyhedral
structure of the single mixing set and proposed new families of inequalities to strengthen the LP
relaxation of formulation (MILP). Küçükyavuz [28], Zhao et al. [59], and Kılınç-Karzan et al.
[30] investigated the joint mixing set with a knapsack constraint, that considers all constraints in
(2) and (3), and developed various aggregated mixing inequalities. Computational evidences in
[1, 13, 28, 38, 59] have demonstrated the effectiveness of the mentioned inequalities in enhancing
the capability of employing MILP solvers in solving formulation (MILP). Luedtke et al. [38],
Vielma et al. [56], Küçükyavuz [28], and Ahmed et al. [5] developed various extended formulations
that provide tighter LP relaxations than the direct LP relaxation of formulation (MILP).

In another line of research, Ruszczyński [51] used the concept of dominance relations between
scenarios and developed a class of valid inequalities, called dominance inequalities. While it was
stated in [17] that the incorporation of dominance inequalities can improve the performance of
employing MILP solvers in solving formulation (MILP) (see [9, 27, 54, 55] for similar discussions
in other contexts), it was unknown until now how these inequalities improve the performance of
MILP solvers. As a byproduct of analysis, this paper closes this research gap by showing that
adding the dominance inequalities into formulation (MILP) cannot improve the LP relaxation
but can improve the performance of MILP solvers by saving the computational efforts spent in
exploring the uninteresting part of the search tree; see Section 3.2.

The goal of this paper is to explore new integer programming techniques to further improve
the computational performance of the MILP-based approach to solving (CCP).

1.1 Contributions and outline

Unlike existing approaches [1, 5, 28, 30, 38, 56, 59] that mainly focus on improving the LP re-
laxation of formulation (MILP), we go for a different direction by identifying another drawback
of solving formulation (MILP) using B&C solvers; that is, the intersection of the feasible regions
of the subproblems (after removing the common fixed variables) in the B&C search tree could be
nonempty, leading to a wasteful duplication of effort in exploring the uninteresting overlap in the
search tree. To overcome the drawback and enhance the capability of the MILP-based approach
in solving (CCP), we first show that the overlap can be completely removed by adding a family
of valid nonlinear if-then constraints into formulation (MILP), and then propose two practically
tractable approaches to tackle the highly nonlinear if-then constraints. More specifically,

• By using the concept of dominance relations between different scenarios of the random
variables [51], we propose a novel branching, called dominance-based branching, which is
able to create a valid partition of the current problem with a much smaller overlap than the
classic variable branching. We show that applying the proposed dominance-based branching
to formulation (MILP) is equivalent to applying the classic variable branching to formulation
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(MILP) with the dominance inequalities in [51] in terms of fixing the same variables and
sharing the same LP relaxation bound at two nodes with the same branching variables.
We also employ a preprocessing technique to derive more dominance relations between the
scenarios of the random variables, thereby leading to a much more effective dominance-based
branching.

• By considering the joint mixing set with a knapsack constraint and the newly proposed if-
then constraints, we develop node pruning and variable fixing, applied at each node of the
search tree, to remove more overlaps in the search tree. Although implementing the proposed
overlap-oriented node pruning and variable fixing techniques is proved to be strongly NP-
hard, we are able to develop an approximation algorithm that is competitive with the exact
algorithm in terms of reducing the tree size while still enjoying an efficient polynomial-time
worst-case complexity.

We embed the proposed dominance-based branching and overlap-oriented node pruning and
variable fixing techniques into the state-of-the-art open source MILP solver SCIP, and apply the
resultant approach to solve the chance-constrained versions of the resource planning (CCRP) prob-
lem [26, 36], multiperiod power planning (CCMPP) problem [21], and lot-sizing (CCLS) problem
[12]. Extensive computational results show that the two proposed approaches can significantly
reduce the B&C search tree size and substantially enhance the capability of SCIP in solving
CCPs.

This paper is organized as follows. Section 1.2 presents the notations and assumptions used
in this paper. Section 2 shows that applying the classic B&C algorithm to formulation (MILP)
leads to overlaps in the search tree, and presents a family of valid nonlinear if-then constraints to
remove the overlaps. Section 3 develops the dominance-based branching and analyzes its relation
to the direct use of the dominance inequalities in [51]. Section 4 derives overlap-oriented node
pruning and variable fixing techniques and provides the complexity and algorithmic design for
the implementation. Section 5 reports the computational results. Finally, Section 6 draws the
conclusion.

1.2 Notations and assumptions

For a nonnegative integer n, let [n] = {1, 2, . . . , n} where [n] = ∅ if n = 0. Let 0 denote the
all zeros vector with an appropriate dimension. For two vectors v1, v2 of dimension m, v1 ≥ v2

denotes that v1k ≥ v2k holds for all k ∈ [m]; and v1 ≱ v2 denotes that v1k < v2k holds for at least
one k ∈ [m]. For vectors ξ1, ξ2, . . . , ξn and a subset S ⊆ [n], we denote ξS = maxi∈S{ξi}, where
the max is taken component-wise and ξS = 0 if S = ∅. We follow [39, 43, 44] to characterize
the current node of the search tree by (B0,B1) or (N0,N1), where B0 and B1 are the index sets of
variables z that have been branched on 0 and 1, respectively; and N0 and N1 are the index sets of
variables z that have been fixed to 0 and 1, respectively, by variable branching or other methods
like reduced cost fixing or the coming overlap-oriented variable fixing.

For simplicity, we assume that variables x in (CCP) are all continuous variables. However,
our proposed approach can be applied to the general case, in which some of the variables x may
require to be integers, as long as the branching is allowed to be performed on variables zi, i ∈ [n],
at a node.
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2 Overlaps arising in solving formulation (MILP)

In this section, we first illustrate the weakness of applying the B&C algorithm with the classic
variable branching to solve formulation (MILP); that is, the intersection of the feasible regions of
the subproblems (after removing the common fixed variables) in the B&C search tree could be
nonempty, leading to a wasteful duplication of effort in exploring the uninteresting overlap in the
search tree. Then we strengthen formulation (MILP) by presenting a family of valid nonlinear
if-then constraints to remove the overlaps during the B&C process.

2.1 Overlaps in the search tree

We first apply the classic variable branching to formulation (MILP). Without loss of generality,
we suppose that variable zj, j ∈ [n], is branched on at the root node, and the two branches are

OL = min
{
c⊤x : (1)− (4), zj = 0

}
, (5)

OR = min
{
c⊤x : (1)− (4), zj = 1

}
. (6)

By removing the common fixed variable zj from problems (5) and (6), we obtain

OL = min

c⊤x : (x, v, z) ∈ C, v ≥ ξj,
∑

i∈[n]\{j}

pizi ≤ ϵ

 , (7)

OR = min

c⊤x : (x, v, z) ∈ C, v ≥ 0, pj +
∑

i∈[n]\{j}

pizi ≤ ϵ

 , (8)

where

C =
{
(x, v, z) ∈ X ×Rm

+ × {0, 1}n−1 : Tx = v, v ≥ ξi(1− zi), ∀ i ∈ [n]\{j}
}

represents the feasible set of formulation (MILP) with constraints v ≥ ξj(1−zj) and
∑n

i=1 pizi ≤ ϵ
dropped and variable zj removed. As ξj ≥ 0 and pj ≥ 0, the intersection of the feasible sets of the
two subproblems (7) and (8), called overlap, is

O =

(x, v, z) ∈ C : v ≥ ξj, pj +
∑

i∈[n]\{j}

pizi ≤ ϵ

 . (9)

The overlap O between the left and right branches is, however, generally nonempty. As the B&C
algorithm explores this overlap in both branches, and the restrictions of both branches to this
overlap provide the same objective value, there exists some redundancy in the search tree. In
particular, considerable efforts are likely to be spent in exploring many subsequent nodes of one
branch, whose feasible sets are subsets of the overlap O, but can be avoided as these nodes cannot
provide a better solution than that of the other branch. We use the following example to illustrate
this weakness.

Example 2.1. Consider

min
{
6x1 + x2 + 3x3 : P{x ≥ ξ} ≥ 1− ϵ, x ∈ R3

+

}
, (10)
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where ϵ = 4
7
and ξ is a random vector with 7 equi-probable scenarios:

ξ1 =

 2
1
12

 , ξ2 =

 3
1
10

 , ξ3 =

 4
2
7

 ,

ξ4 =

 5
2
6

 , ξ5 =

 6
2
6

 , ξ6 =

 7
1
4

 , ξ7 =

 12
1
2

 .

In formulation (MILP) of this example, we have x1 = v1, x2 = v2, and x3 = v3. As a result,
formulation (MILP) reduces to

min

{
6v1 + v2 + 3v3 : v ≥ ξi(1− zi), ∀ i ∈ [7],

1

7

7∑
i=1

zi ≤
4

7
, v ∈ R3

+, z ∈ {0, 1}7
}
. (11)

The optimal value of problem (11) is 59. We apply the B&C algorithm to solve problem (11).
We assume that a feasible solution of objective value 59 is found at the root node (e.g., by some
heuristic algorithm). For simplicity of illustration, we use the most infeasible branching rule [3]
to choose the variable to branch on. The B&C search tree is drawn in Figure 1. At each node, we
report the optimal value zLP of its LP relaxation.

The feasible regions of nodes 2 and 3 (after removing the common fixed variable z4) are

F2 =

{
(v, z) ∈ R3

+ × {0, 1}6 :
1

7
(z1 + z2 + z3 + z5 + z6 + z7) ≤

4

7
,

v ≥ ξ4 = (5, 2, 6)⊤, v ≥ ξi(1− zi), ∀ i ∈ {1, 2, 3, 5, 6, 7}
}
,

F3 =

{
(v, z) ∈ R3

+ × {0, 1}6 :
1

7
(z1 + z2 + z3 + z5 + z6 + z7) ≤

3

7
,

v ≥ 0, v ≥ ξi(1− zi), ∀ i ∈ {1, 2, 3, 5, 6, 7}
}
,

and the overlap is

O = F2 ∩ F3 =

{
(v, z) ∈ R3

+ × {0, 1}6 :
1

7
(z1 + z2 + z3 + z5 + z6 + z7) ≤

3

7
,

v ≥ ξ4 = (5, 2, 6)⊤, v ≥ ξi(1− zi), ∀ i ∈ {1, 2, 3, 5, 6, 7}
}
.

Consider node 6, a subsequent node of node 3, whose feasible region (after removing the fixed
variable z4) is

F6 =

{
(v, z) ∈ R3

+ × {0, 1}6 : z5 = 0,
1

7
(z1 + z2 + z3 + z5 + z6 + z7) ≤

3

7
,

v ≥ ξ5 = (6, 2, 6)⊤, v ≥ ξi(1− zi), ∀ i ∈ {1, 2, 3, 5, 6, 7}
}
.

Clearly, F6 ⊆ O ⊆ F2, implying that the optimal value of node 6 cannot be better than that of
node 2. Thus, node 6 (and its descendant nodes 12, 13, 20, 21, 30, and 31) can be pruned.

This example demonstrates the weakness of applying the B&C algorithm with the classic vari-
able branching to solve formulation (MILP): a wasteful duplication of efforts is spent in exploring
the uninteresting overlap in the search tree.
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Figure 1: The B&C search tree of the problem in Example 2.1 with the classic variable
branching applied.

2.2 Removing the overlaps

To remove the overlap O in the search tree, let us first divide the right branch (8) into the following
two subproblems:

OR1 = min

c⊤x : (x, v, z) ∈ C, v ≥ ξj, pj +
∑

i∈[n]\{j}

pizi ≤ ϵ

 , (12)

and

OR2 = min

c⊤x : (x, v, z) ∈ C, v ≱ ξj, pj +
∑

i∈[n]\{j}

pizi ≤ ϵ

 . (13)

Here v ≱ ξj denotes that v < ξjk holds for at least one k ∈ [m]. Observe that the feasible region
of subproblem (12) is identical to the overlap O in (9) and thus a subset of the feasible region
of problem (7). This, together with the fact that the objective functions of problems (7) and
(12) are identical, implies OR1 ≥ OL. Consequently, instead of exploring problem (8) with a
potentially large feasible region, we can explore its restriction (13) in the search tree. Notice that
since constraints v = Tx ≥ ξj and v = Tx ≱ ξj appear in the left and (new) right branches (7)
and (13), respectively, no overlap exists between the feasible regions (and their projections onto
the x space) of the two branches.
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Remark 2.2. By dividing the left branch (7) into

OL1 = min

c⊤x : (x, v, z) ∈ C, v ≥ ξj,
∑

i∈[n]\{j}

pizi ≤ ϵ− pj

 , (14)

OL2 = min

c⊤x : (x, v, z) ∈ C, v ≥ ξj, ϵ− pj <
∑

i∈[n]\{j}

pizi ≤ ϵ

 , (15)

and noting that OL1 ≥ OR, we can also keep the right branch (8) but add the new left branch (15)
with a smaller feasible region than that of (7) into the search tree. Clearly, the feasible regions of
problems (15) and (8) also do not contain an overlap. However, different from those of branches
(7) and (13), the projections of the feasible regions of branches (15) and (8) onto the x space
may still contain overlaps. An illustrative example for this is provided in Appendix A. Thus, the
redundancy still exists in the search tree as an optimal solution x∗ of (CCP) may simultaneously
define feasible solutions of the two branches (15) and (8).

Remark 2.3. The overlap in the B&C search tree has also been identified by Qiu et al. [49] and
Chen et al. [15] in the context of solving the k-violation linear programming and covering location
problems. However, unlike those in [49] and [15] where the overlap can be removed by linear
constraints, we need to use the highly nonlinear constraints v ≱ ξj to remove the overlap arising
in solving the CCPs.

The overlap O in (9) can also be removed by refining formulation (MILP). To do this, let us
first present problem (CCP) as

min

{
c⊤x : Tx = v, x ∈ X ,

n∑
i=1

piχ(v ≱ ξi) ≤ ϵ

}
, (CCP’)

where χ is an indicator function:

χ(v ≱ ξi) =

{
1, if v ≱ ξi;

0, otherwise,
∀ i ∈ [n]. (16)

Let FCCP and FCCP’ denote the feasible regions of problems (CCP) and (CCP’), respectively.
Then we must have FCCP = Projx(FCCP’), and hence problems (CCP) and (CCP’) are equivalent.
Unlike formulation (CCP’) where (16) simultaneously ensures χ(v ≱ ξi) = 0 ⇒ v ≥ ξi and
χ(v ≱ ξi) = 1 ⇒ v ≱ ξi, formulation (MILP) with (2) and zi ∈ {0, 1} only guarantees zi = 0 ⇒
v ≥ ξi but cannot guarantee zi = 1 ⇒ v ≱ ξi. In other words, it is possible that formulation
(MILP) has a feasible solution (x∗, v∗, z∗) such that z∗i = 1 and v ≥ ξi (though setting z∗i = 0
yields another feasible solution of formulation (MILP) with the same objective value and hence
formulation (MILP) is a valid formulation for (CCP)).

However, only enforcing zi = 0 ⇒ v ≥ ξi in formulation (MILP) makes the overlaps in the
search tree. To see this, let us add the valid nonlinear if-then constraints

zi = 1⇒ v ≱ ξi, ∀ i ∈ [n] , (17)

into formulation (MILP) and obtain a mixed integer nonlinear programming (MINLP) formulation
for (CCP):

min
{
c⊤x : (1)− (4), (17)

}
. (MINLP)
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Let FMILP and FMINLP be the feasible sets of formulations (MILP) and (MINLP), respectively.
As Projx(FMILP) = Projx(FMINLP) = FCCP, formulations (MINLP) and (MILP) are equivalent.
Now, for formulation (MINLP), branching on variable zj will not lead to an overlap in the x space
as v = Tx ≥ ξj and v = Tx ≱ ξj are enforced in the left and right branches, respectively. As
constraints (2) and (17) are all enforced in problem (MINLP), a node a = (N a

0 ,N a
1 ) in the search

tree includes the linear constraints v ≥ ξi, i ∈ N a
0 , and the disjunctive constraints v ≱ ξi, i ∈ N a

1 .
Therefore, the result can be generalized to any two descendant nodes of the left and right branches
of a node, as detailed in the following theorem.

Theorem 2.4. Let a = (N a
0 ,N a

1 ) and b = (N b
0 ,N b

1 ) be any two nodes in the search tree of
formulation (MINLP) and c be their first common ancestor. If c differs from a and b, then

Projx(FMINLP(N a
0 ,N a

1 )) ∩ Projx(FMINLP(N b
0 ,N b

1 )) = ∅, (18)

where FMINLP(N a
0 ,N a

1 ) and FMINLP(N b
0 ,N b

1 ) are the feasible regions of nodes a and b, respectively.

Proof. Without loss of generality, suppose that zj is branched on at node c, and nodes a and b
are in the left and right branches of node c, respectively. As v = Tx ≥ ξj and v = Tx ≱ ξj are
enforced in the left and right branches, respectively, (18) holds.

By Theorem 2.4, in the search tree of formulation (MINLP), no x ∈ Rd can simultaneously
define feasible solutions for any two descendant nodes of the left and right branches of a node.
This is intrinsically different from the search tree of formulation (MILP) in which a solution x may
define feasible solutions for two descendant nodes of the left and right branches of a node. Thus,
it can be expected that the search tree of applying the B&C algorithm to formulation (MINLP)
is smaller than that of applying the B&C algorithm to formulation (MILP).

In contrast to formulation (MILP) which is an MILP problem, formulation (MINLP) is, how-
ever, a relatively hard MINLP problem due to the nonlinear if-then constraints (17). Moreover, to
the best of our knowledge, the highly nonlinear if-then constraints (17) cannot be directly tackled
by state-of-the-art MINLP solvers. In the next two sections, we will propose a novel branching
and overlap-oriented node pruning and variable fixing techniques based on formulation (MILP)
that explicitly employ the if-then constraints (17) in removing the overlaps in the search tree.

3 Dominance-based branching

As shown in Section 2.2, while using (17) guarantees that no overlap exists between the left branch
(7) and right branch (13), it also leads to a hard MINLP subproblem (13). To resolve the difficulty,
in this section, we first leverage the concept of dominance between scenarios [51] and propose a
novel branching, called dominance-based branching, which achieves a better tradeoff between the
size of the overlap and the solution efficiency of the two branches. Then we discuss its relation to
the classic variable branching that is applied to problem (MILP) with the dominance inequalities in
[51]. Subsequently, we enhance the proposed branching by presenting a preprocessing technique to
derive more dominance pairs between different scenarios. Finally, we use an example to illustrate
the effectiveness of the proposed dominance-based branching for solving problem (MILP).

3.1 Description of the dominance-based branching

A scenario i is dominated by a scenario j if ξi ≤ ξj, denoted as i ⪯ j. Let

N−
j =

{
i ∈ [n] : ξi ≤ ξj

}
(19)

9



be the index set of scenarios that are dominated by scenario ξj (including scenario ξj). For a
feasible solution (x, v, z) of problem (MINLP) with zj = 0, we have v ≥ ξj. This, together with
ξi ≤ ξj, zi ∈ {0, 1}, and the if-then constraints zi = 1⇒ v ≱ ξi in (17) for i ∈ N−

j , implies zi = 0
for all i ∈ N−

j and

{(x, v, z) : (1)− (4), (17), zj = 0} (20)

⊆
{
(x, v, z) : (1)− (4), zi = 0, ∀ i ∈ N−

j

}
(21)

⊆ {(x, v, z) : (1)− (4), zj = 0} . (22)

Observe that (20) and (22) are the feasible sets of problems (MINLP) and (MILP) with zj = 0,
respectively. By (20)–(22) and the fact that exploring a left branch with its feasible set being (20)
or (22) in the search tree can all return a correct optimal solution for problem (CCP), we can
develop a new branching that explores a new linear left branch with its feasible set being (21):

OLD = min
{
c⊤x : (1)− (4), zi = 0, ∀ i ∈ N−

j

}
. (23)

Similarly, we can also derive a linear right branch with a potentially more compact feasible
set. In particular, let

N+
j =

{
i ∈ [n] : ξj ≤ ξi

}
(24)

be the index set of scenarios that dominate scenario ξj (including scenario ξj), and (x, v, z) be a
feasible solution of problem (MINLP) with zj = 1. From (17), v ≱ ξj holds, which, together with
ξj ≤ ξi for i ∈ N+

j , implies that v ≱ ξi must hold. From v ≥ ξi(1 − zi) and zi ∈ {0, 1}, zi = 1
must be satisfied for i ∈ N+

j . Using a similar argument as that of deriving the left branch (23),
we can derive a new equivalent right branch:

ORD = min
{
c⊤x : (1)− (4), zi = 1, ∀ i ∈ N+

j

}
. (25)

Note that branches (23) and (25) are of the form of (MILP), and so the above dominance-based
branching can be applied to any node of the search tree. In particular, for a node (B0,B1) in the
search tree, the index sets of variables, that can be fixed at zero and one, are

N0 =
⋃
j∈B0

N−
j and N1 =

⋃
j∈B1

N+
j , (26)

respectively.
Compared with the two branches (7) and (8) with the classic variable branching applied, the

new branches (23) and (25) with the proposed dominance-based branching applied are still MILP
problems but with more compact feasible regions. Thus, compared with the overlap O in (9), the
overlap between the feasible regions of branches (23) and (25) (after removing the common fixed
variable zj), i.e.,

O′ =

(x, v, z) ∈ C : v ≥ ξj, pj +
∑

i∈[n]\{j}

pizi ≤ ϵ,

zi = 0, ∀ i ∈ N−
j \{j}, zi = 1, ∀ i ∈ N+

j \{j}

 ,
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is much smaller, especially when N−
j and N+

j are large. Consequently, certain nodes that are
explored with the classic variable branching applied may not be explored with the proposed
dominance-based branching applied (i.e., the feasible sets of these nodes are subsets of O\O′). Due
to this advantage, it can be expected that the B&C search tree with the proposed dominance-based
branching applied will be potentially much smaller than that with the classic variable branching
applied.

The more compact feasible region of the new right branch (25) may lead to infeasibility or
enable to provide a potentially much stronger LP relaxation bound than that provided by the old
one (8). An example for illustrating this will be provided in Section 3.4. This advantage opens
up more possibilities to apply the infeasibility or bound exceeding based node pruning and guides
the selection of branching variables (if strong branching or its variants [4] are applied), thereby
enabling to further reduce the tree size. Notice that for an optimal solution (x, v, z) of the LP
relaxation of branch (7), setting zi = 0 for all i ∈ N−

j yields a feasible solution of branch (23)
with the same objective value, and thus the new left branch (23) provides the same LP relaxation
bound as that provided by the old one (7).

It is worthwhile remarking that the proposed dominance-based branching can be implemented
along with various branching strategies such as strong branching and the most infeasible branching
[3] that choose a variable to branch on for the current LP relaxation. In Section 5, we will describe
how to implement the proposed dominance-based branching into a state-of-the-art open source
MILP solver while using its default fine-tuned branching strategy.

3.2 Relation to the result in [51]

As shown in the previous subsection, for a feasible solution (x, v, z) of problem (MINLP), if zj = 0,
then zi = 0 holds for i ∈ [n]\{j} with ξi ≤ ξj (or equivalently, if zi = 1, then zj = 1 holds for
j ∈ [n]\{i} with ξi ≤ ξj). Thus, the following dominance inequalities

zi ≤ zj, (i, j) ∈ A := {(i, j) ∈ [n]× [n] : ξi ≤ ξj, i ̸= j} (27)

are valid for problem (MINLP). This, together with the equivalence of problems (MINLP) and
(MILP), shows that inequalities (27) are also valid for problem (MILP). This result, first estab-
lished by Ruszczyński [51], is formally stated as follows.

Theorem 3.1 ([51]). The MILP problem

min
{
c⊤x : (1)− (4), (27)

}
(28)

is equivalent to problem (MILP) in terms of sharing at least one identical optimal solution.

Remark 3.2. If ξi ≤ ξs ≤ ξj for some distinct i, j, s ∈ [n], the dominance inequality zi ≤ zj
is implied by inequalities zi ≤ zs and zs ≤ zj. Thus, constraints (27) in problem (28) can be
simplified as zi ≤ zj for (i, j) ∈ A′ where

A′ :=
{
(i, j) ∈ A : no s ∈ [n]\{i, j} with ξi ≤ ξs ≤ ξj exists

}
.

We can further strengthen the result in Theorem 3.1 by showing that the LP relaxations of
problems (MILP) and (28) are equivalent. This indicates that the dominance inequalities cannot
improve the LP relaxation of problem (MILP).

Proposition 3.3. The LP relaxations of problems (MILP) and (28) are equivalent.

11



Proof. It suffices to show there exists an optimal solution (x∗, v∗, z∗) of the LP relaxation of
problem (MILP) such that z∗i ≤ z∗j holds for all (i, j) ∈ A. Let (x̄, v̄, z̄) be an optimal solution
of the LP relaxation of problem (MILP). If z̄i ≤ z̄j for all (i, j) ∈ A, the statement follows.
Otherwise, there exists (i0, j0) ∈ A such that z̄i0 > z̄j0 . In this case, we construct a new point
(x̂, v̂, ẑ) by setting

x̂ = x̄, v̂ = v̄, ẑi0 = z̄j0 , and ẑi = z̄i, for all i ∈ [n]\{i0}. (29)

Clearly, the objective values of the LP relaxation of problem (MILP) at points (x̄, v̄, z̄) and (x̂, v̂, ẑ),
respectively, are the same. In addition, (x̂, v̂, ẑ) is also a feasible solution of the LP relaxation of
problem (MILP) as

v̂ = v̄ ≥ ξj0(1− z̄j0) ≥ ξi0(1− z̄j0) = ξi0(1− ẑi0),

where the second inequality follows from ξi0 ≤ ξj0 and z̄j0 ≤ 1. Recursively applying the above
operation and using the fact that the value of each zi decreases at most n times, we will obtain
an optimal solution (x∗, v∗, z∗) of the LP relaxation of problem (MILP) such that z∗i ≤ z∗j holds
for all (i, j) ∈ A.

Next, we show that (i) applying the proposed dominance-based branching in Section 3.1 to
problem (MILP) is theoretically equivalent to (ii) applying the classic variable branching to prob-
lem (28) in the following two aspects. First, for two nodes in the two search trees constructed by
(i) and (ii) characterizing by the same branching variables B0 and B1, the index sets of variables
fixed at zero and one are all identical. Indeed, for case (i), as shown in Section 3.1, the index sets
of variables fixed at zero and one are the N0 and N1, respectively, defined in (26); and for case (ii),
the index sets of variables fixed at zero and one at node (B0,B1) (due to branching or fixing by
the dominance inequalities in (27)) are also N0 and N1, respectively. Second, the LP relaxations
of the two nodes are also equivalent, as detailed in the following corollary.

Corollary 3.4. Consider a node (B0,B1) in the search tree constructed by (i) or (ii) and let N0

and N1 be defined as in (26). The LP relaxation of problem (MILP) with zi = 0 for i ∈ N0 and
zi = 1 for i ∈ N1 is equivalent to the LP relaxation of problem (28) with zi = 0 for i ∈ N0 and
zi = 1 for i ∈ N1.

Proof. The result follows from Proposition 3.3 and the fact that a subproblem of (MILP) or (28)
with zi = 0 for i ∈ N0 and zi = 1 for i ∈ N1 still takes the form of (MILP) or (28), respectively.

Corollary 3.4 implies that the LP relaxations of the two nodes (B0,B1) in the two search trees share
at least one identical optimal solution (if they are feasible). Thus, if we choose the same variable
to branch on for the identical (fractional) LP relaxation solution using, e.g., strong branching
strategy [3], the search trees constructed by (i) and (ii) will also be identical.

The theoretical equivalence of (i) and (ii) shows that although the dominance inequalities in
(27) cannot strengthen the LP relaxation of problem (MILP), they can, as the proposed dominance
branching, enhance the B&C algorithm of MILP solvers by removing the uninteresting overlap in
the search tree. This theoretical equivalence also sheds useful insights on the proposed dominance-
based branching. More specifically, the dominance-based branching can be treated as an enhanced
version of classic variable branching to formulation (MILP) that additionally uses the dominance
relations in (27) for fixing variables. As such, the dominance-based branching relies only on the
dominance relations in (27) but does not rely on the underlying formulation, which allows for the
use of sophisticated MILP methodologies such as cutting planes and preprocessing techniques. In

12



particular, effective techniques for CCPs like mixing cuts [7, 25] and their variants [1, 28, 30, 38, 59]
and the preprocessing technique in [38] can all be applied along with the proposed dominance-
based branching.

Although applying the dominance-based branching to problem (MILP) is theoretically equiv-
alent to applying the classic variable branching to problem (28), the former, however, can avoid
solving a possibly large LP relaxation of problem (28) (due to the addition of the dominance
inequalities in (27)). Therefore, it can be expected that applying the dominance-based branch-
ing to problem (MILP) is more computationally efficient. In Section 5, we will further present
computational results to illustrate this.

3.3 Preprocessing

The dominance-based branching depends critically on the existence of the dominance pairs i ⪯ j.
In general, the more the dominance pairs, the smaller the overlap O′, and thus the more effective
the dominance-based branching. However, the condition ξi ≤ ξj is quite restrictive, and in some
applications, the number of dominance pairs is extremely small, leading to the ineffectiveness of
the dominance-based branching. To overcome this weakness, below we apply the preprocessing
technique in [31, 38] to problem (MILP) so that we can derive more dominance pairs i ⪯ j from
the equivalent transformed problem.

To proceed, for k ∈ [m], let {πk(1), πk(2), . . . , πk(n)} be a permutation of [n] such that ξ
πk(1)
k ≥

ξ
πk(2)
k ≥ · · · ≥ ξ

πk(n)
k . Define τk := min{s :

∑s
i=1 pπk(i) > ϵ}. From the knapsack constraint (3),

zπk(t) = 1, t = 1, 2, . . . , τk, cannot simultaneously hold for a feasible solution (x, v, z) of formulation

(MILP). Using this observation and the fact that vk ≥ ξ
πk(t)
k (1 − zπk(t)) and zπk(t) ∈ {0, 1} for

t = 1, 2, . . . , τk, a lower bound ξ0k := ξ
πk(τk)
k for variable vk can be derived.

Lemma 3.5 ([19, 31, 32, 38]). vk ≥ ξ0k, k ∈ [m], are valid for formulation (MILP).

Let
ξ̄ik := max

{
ξik, ξ

0
k

}
, ∀ i ∈ [n], k ∈ [m], (30)

and
v ≥ ξ̄i(1− zi), ∀ i ∈ [n]. (2’)

From Lemma 3.5 and z ∈ {0, 1}n, (2) and (2’) are equivalent. Thus, applying this preprocessing
technique, we can obtain the following new equivalent MILP formulation for problem (CCP):

min
{
c⊤x : (1), (2’), (3), (4)

}
. (31)

In the new MILP formulation (31), if ξ̄i ≤ ξ̄j, scenario i is dominated by scenario j. Observe
that from (30), ξ̄i ≤ ξ̄j is more likely to be appeared than ξi ≤ ξj, and thus more dominance
relations

zi ≤ zj, ∀ (i, j) ∈ Ā :=
{
(i, j) ∈ [n]× [n] : ξ̄i ≤ ξ̄j, i ̸= j

}
(32)

can be derived. Now, applying the dominance-based branching with the dominance relations in
Ā, we will obtain two more compact branches than (23) and (25):

min
{
c⊤x : (1)− (4), zi = 0, ∀ i ∈ N̄−

j

}
, (33)

min
{
c⊤x : (1)− (4), zi = 1, ∀ i ∈ N̄+

j

}
, (34)
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where N̄−
j :=

{
i ∈ [n] : ξ̄i ≤ ξ̄j

}
and N̄+

j :=
{
i ∈ [n] : ξ̄j ≤ ξ̄i

}
. Moreover, with the decreasing

of ϵ, ξ0k will become larger and more the dominance pairs i ⪯ j are likely to appear, implying that
branches (33) and (34) will also become much more compact.

Remark 3.6. Adding

zi ≤ zj, ∀ (i, j) ∈ Ā′ :=
{
(i, j) ∈ Ā : no s ∈ [n]\{i, j} with ξ̄i ≤ ξ̄s ≤ ξ̄j exists

}
, (35)

the simplified version of (32) (see Remark 3.2), into formulation (31) yields another equivalent
MILP formulation. This formulation is stronger than (28) in terms of providing a more compact
feasible region.

3.4 An illustrative example

We now apply the dominance-based branching to problem (11) in Example 2.1 to demonstrate its
effectiveness over the classic variable branching.

We first note that for problem (11), the lower bounds ξ0 for variables v stated in Lemma 3.5

reads

 4
1
6

. Applying the preprocessing technique in Section 3.3, we will obtain an equivalent

problem of (11) where ξi is replaced by ξ̄i:

ξ̄1 =

 4
1
12

 , ξ̄2 =

 4
1
10

 , ξ̄3 =

 4
2
7

 ,

ξ̄4 =

 5
2
6

 , ξ̄5 =

 6
2
6

 , ξ̄6 =

 7
1
6

 , ξ̄7 =

 12
1
6

 .

With the preprocessing technique, we can detect 3 dominance pairs: 2 ⪯ 1, 6 ⪯ 7, and 4 ⪯ 5. In
contrast, only a single dominance pair 4 ⪯ 5 can be detected without the preprocessing technique.

Figure 2 displays the search tree constructed by using the dominance-based branching to solve
problem (11) with the most infeasible branching rule applied. Let us consider the branching of
variable z4 at the root node. Since 4 ⪯ 5, we obtain N+

4 = {4, 5}. The right branch 3 of node 1 is
associated with N0 = ∅ and N1 = {4, 5}. Thus, node 6 and its descendant nodes 12, 13, 20, 21,
30, and 31 in the previous search tree in Figure 1 do not need to be explored with the proposed
dominance-based branching applied.

Using the classic variable branching, the LP relaxation of the right branch 27 of node 17 in
Figure 1 is still feasible with an optimal value of 56, while using the proposed dominance-based
branching, the LP relaxation of the right branch 27 of node 17 in Figure 2 is infeasible, thereby
avoiding further branching at node 27. Similarly, using the proposed dominance-based branching,
the LP relaxation of the right branch 19 of node 11 in Figure 2 has an optimal value of 65, which
is larger than the optimal value of problem (11) (i.e., 59), thereby also avoiding further branching
at node 19.

This example shows the effectiveness of the proposed dominance-based branching over the
classic variable branching in reducing the search tree size. Overall, using the proposed dominance-
based branching with the preprocessing technique, only 19 nodes need to be explored, which is 14
less than that of the search tree in Figure 1 where the classic variable branching is applied.
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Figure 2: The B&C search tree of the problem in Example 2.1 with the proposed dominance-
based branching applied.

4 Overlap-oriented node pruning and variable fixing

The dominance-based branching creates two subproblems (33) and (34) (with more fixed variables)
using the dominance relations in (32). Such relations are derived from constraints (2)–(4) and the
if-then constraints (17) at the root node of the search tree (that removes the overlaps). It is
possible, however, that at other nodes in the search tree, with the additional fixings of variables to
0 and 1, more reductions, i.e., node pruning and variable fixing, can be derived by exploiting the
overlap information. To further enhance the dominance-based branching, in this section, we shall
perform overlap-oriented node pruning and variable fixing at each node (N0,N1) by considering
the set

C(N0,N1) := {(v, z) : (2)− (4), (17), zi = 0, ∀ i ∈ N0, zi = 1, ∀ i ∈ N1} . (36)

Here N0 and N1 are the index sets of variables z fixed to 0 and 1, respectively, at the current node.
This set is a variant of the joint mixing set with a knapsack constraint [28, 59] that additionally
includes the if-then constraints (17) and the variable fixings at the current node. Specifically, we
can

(R1) prune node (N0,N1) when C(N0,N1) = ∅ is detected; or

(R2) fix variables in R0 and R1 to 0 and 1 at node (N0,N1) when C(N0,N1) ̸= ∅, where R0 and
R1 are disjoint subsets of Nf := [n]\(N0 ∪N1) satisfying

C(N0,N1) = C(N0 ∪R0,N1 ∪R1). (37)

Note that the dominance relations in (32) can be derived from C(∅,∅), and thus the reductions by
(R1) and (R2) include the reductions by the dominance relations in (32) (in the dominance-based
branching). In the following, we shall present exact and approximation approaches to detect when
C(N0,N1) = ∅ holds, or find the largest subsets R0 and R1 of Nf satisfying (37).
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4.1 The exact approach

We first consider the overlap-oriented node pruning in (R1), i.e., identify the condition under
which C(N0,N1) = ∅ holds. Let (v, z) ∈ C(N0,N1). For i ∈ N0, from (2) and zi = 0, we obtain
v ≥ ξi, and thus v ≥ ξN0 := maxi∈N0{ξi} (where the max is taken component-wise and ξN0 = 0
if N0 = ∅); and for j ∈ N1, from the if-then constraint zj = 1 ⇒ v ≱ ξj in (17) and zj = 1, we

obtain v ≱ ξj, or equivalently,
∨

k∈[m]

(
vk < ξjk

)
= 1. Therefore,

1 =
∧
j∈N1

∨
k∈[m]

(
vk < ξjk

)
=

∧
j∈N1

∨
k∈[m], ξjk>ξ

N0
k

(
vk < ξjk

)
, (38)

where the second equality follows from v ≥ ξN0 . Letting Mj =
{
k ∈ [m] : ξjk > ξN0

k

}
and L =∏

j∈N1
Mj, then (38) can be rewritten as ∨

ℓ∈L

dℓ(v) = 1, (39)

where

dℓ(v) =
∧
j∈N1

(
vℓj < ξjℓj

)
. (40)

Notice that Mj, L, and dℓ(v) indeed depend on N0 or N1 (or both of them) but we omit this
dependence for notation convenience. The following theorem provides a necessary and sufficient
condition for C(N0,N1) ̸= ∅.

Theorem 4.1. C(N0,N1) ̸= ∅ holds if and only if there exists some ℓ ∈ L such that∑
i∈Nℓ∪N1

pi ≤ ϵ, where Nℓ =
{
i ∈ Nf : dℓ(ξ

i) = 0
}
. (41)

Proof. Necessity. Suppose that (v, z) ∈ C(N0,N1) ̸= ∅. By (39), there must exist some ℓ ∈ L
such that dℓ(v) = 1. For i ∈ Nℓ, we have dℓ(ξ

i) = 0, which together with dℓ(v) = 1 and the fact
that dℓ(v

1) ≤ dℓ(v
2) holds for any v1, v2 ∈ Rm

+ with v1 ≥ v2, implies v ≱ ξi, and thus zi = 1.
Combining with zj = 1 for j ∈ N1 and (3), this indicates

∑
i∈Nℓ∪N1

pi =
∑

i∈Nℓ∪N1

pizi ≤
n∑

i=1

pizi ≤ ϵ.

Sufficiency. Suppose that (41) holds for some ℓ ∈ L. We define a point (v̂, ẑ) ∈ Rm
+ × {0, 1}n

as follows:

v̂k =


min

ℓj=k, j∈N1

{ξjℓj} − δ, if k ∈M′;

max
i∈[n]
{ξik} , otherwise,

∀ k ∈ [m], (42)

ẑi =

{
1, if i ∈ N1 ∪Nℓ;

0, otherwise,
∀ i ∈ [n], (43)
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where δ > 0 is a sufficiently small value andM′ = {ℓj : j ∈ N1}. From ℓ ∈ L, we have ℓj ∈ Mj

and ξjℓj > ξN0
ℓj
≥ 0 for all j ∈ N1. By (42) and the fact that δ > 0 is sufficiently small, we can

derive v̂ ≥ ξN0 ≥ 0. Together with (41) and (43), this implies that (3) and (4) hold at point (v̂, ẑ).
In the following, we shall prove (v̂, ẑ) ∈ C(N0,N1) by showing that constraints (2) and (17) hold
at (v̂, ẑ).

To prove that (2) holds at (v̂, ẑ), it suffices to show v̂ ≥ ξi for every i ∈ N0 ∪ (Nf\Nℓ). For
i ∈ N0, v̂ ≥ ξi follows from v̂ ≥ ξN0 . Now consider the case i ∈ Nf\Nℓ. First, from the definition
of v̂ in (42), v̂k ≥ ξik holds for all k ∈ [m]\M′. Second, by the definition of Nℓ in (41) and

i ∈ Nf\Nℓ, we obtain dℓ(ξ
i) =

∧
j∈N1

(
ξiℓj < ξjℓj

)
= 1, which, together with the fact that δ > 0 is

a sufficiently small value, implies ξiℓj ≤ ξjℓj − δ for all j ∈ N1. Therefore, for k ∈M′, it also follows

ξik ≤ min
ℓj=k, j∈N1

{ξjℓj} − δ = v̂k.

Finally, we show that (17) holds at point (v̂, ẑ), which can be done by proving v̂ ≱ ξi for all
i ∈ N1 ∪ Nℓ. From the definition of v̂ in (42) and δ > 0, it is simple to see dℓ(v̂) = 1 and v̂ ≱ ξi

for all i ∈ N1. For i ∈ Nℓ, we have dℓ(ξ
i) = 0, which together with dℓ(v̂) = 1 and the fact that

dℓ(v
1) ≤ dℓ(v

2) holds for any v1, v2 ∈ Rm
+ with v1 ≥ v2, implies v̂ ≱ ξi.

Theorem 4.1 enables to determine whether C(N0,N1) ̸= ∅ by solving an MILP problem.
Specifically, for j ∈ N1 and i ∈ Nf , letMji = {k ∈ Mj : ξjk ≤ ξik}; for j ∈ N1 and k ∈ Mj, let
wjk ∈ {0, 1} denote whether vk < ξjk is included in (40); and for i ∈ Nf , let zi ∈ {0, 1} denote
whether i ∈ Nℓ holds. Then it follows from Theorem 4.1 that

Corollary 4.2. (v, z) ∈ C(N0,N1) holds if and only if there exists a vector w for which (w, z)
satisfies ∑

k∈Mj

wjk = 1, ∀ j ∈ N1, (44)

∑
k∈Mji

wjk ≤ zi, ∀ j ∈ N1, i ∈ Nf , (45)

∑
i∈Nf

pizi ≤ ϵ−
∑
j∈N1

pj, (46)

wjk ∈ {0, 1}, ∀ j ∈ N1, k ∈Mj, zi ∈ {0, 1}, ∀ i ∈ Nf . (47)

Therefore, to determine whether C(N0,N1) ̸= ∅, we can solve the following MILP problem

o = min
w, z

∑
i∈Nf

pizi : (44), (45), (47)

 . (48)

If o ≤ ϵ−
∑

j∈N1
pj, then C(N0,N1) ̸= ∅ and the optimal solution z can define a feasible solution

(v, z) of C(N0,N1); otherwise, C(N0,N1) = ∅.
Next, we attempt to derive variable fixings for the case C(N0,N1) ̸= ∅. Let (v, z) ∈ C(N0,N1).

Observe that zi = 0 (respectively, zi = 1) holds for all (v, z) ∈ C(N0,N1) if and only if C(N0,N1 ∪
{i}) = ∅ (respectively, C(N0 ∪ {i},N1) = ∅) holds for i ∈ Nf . Hence, the largest subsets R0 and
R1 satisfying (37) can be written as

R0 = {i ∈ Nf : C(N0,N1 ∪ {i}) = ∅} and R1 = {i ∈ Nf : C(N0 ∪ {i},N1) = ∅}.
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As a result, determining the largest subsetsR0 andR1 satisfying (37) can be done by solving 2|Nf |
MILPs of the form (48). Notice that for i ∈ Nf\(R0 ∪R1), both C(N0 ∪R0 ∪ {i},N1 ∪R1) ̸= ∅
and C(N0 ∪R0,N1 ∪R1 ∪ {i}) ̸= ∅ must hold. Therefore,

Remark 4.3. If the overlap-oriented variable fixing is performed to find the largest subsets R0

and R1 satisfying (37) at all nodes of the search tree, then no overlap-oriented node pruning can
be performed. That is, for any node (N0,N1) in the search tree, it must follow C(N0,N1) ̸= ∅.

Example 4.4 (continued). Applying the dominance-based branching and overlap-oriented variable
fixing to the problem in Example 2.1, we obtain the search tree in Figure 3. All variables fixed to
0 or 1 by overlap-oriented variable fixing are underlined in Figure 3.

Let us perform variable fixing at node 5 where, at the beginning, N0 := B0 = {4} and N1 :=
B1 = {5}. By simple computations, we have M5 = {1}, M51 =M52 =M53 = ∅, and M56 =
M57 = {1}. Hence, problem (48) reduces to

min

1

7

∑
i∈[7]\{4,5}

zi : w51 = 1, w51 ≤ z6, w51 ≤ z7, w51 ∈ {0, 1}, zi ∈ {0, 1},∀ i ∈ [7]\{4, 5}

 .

As the optimal value of the above problem is 2
7
≤ ϵ−

∑
j∈N1

pj =
3
7
, from Corollary 4.2 C({4}, {5}) ̸=

∅ holds. Similarly, we can show that C({4, 6}, {5}) = C({4, 7}, {5}) = C({4}, {2, 5}) = C({4}, {3, 5}) =
∅, C({1, 4}, {5}) ̸= ∅, and C({4}, {1, 5}) ̸= ∅. Thus, we can fix z2 = z3 = 0 and z6 = z7 = 1 at
node 5.
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Figure 3: The B&C search tree of the problem in Example 2.1 with the proposed dominance-
based branching and overlap-oriented variable fixing applied.

The above example helps to demonstrate the advantage of the overlap-oriented variable fixing.
For instance, for node 5 in the search tree in Figure 3, the overlap-oriented variable fixing improves
the LP relaxation bound from 50 to 62 and avoids further branching. Overall, applying the
dominance-based branching and overlap-oriented variable fixing, only 9 nodes are explored while
applying the vanilla dominance-based branching, 19 nodes are explored; see Figures 2 and 3.

To apply the overlap-oriented node pruning and variable fixing, we need to determine whether
the system of the form (44)–(47) has a feasible solution (which can be done by solving MILP
problems of the form (48)). Unfortunately, the following theorem shows that there does not exist
a polynomial-time exact algorithm for solving the above problem.
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Theorem 4.5. Given N0,N1 ⊆ [n], determining whether (44)–(47) has a feasible solution is
strongly NP-complete.

Proof. We shall prove the strong NP-completeness of the problem of deciding whether (44)–(47)
has a feasible solution by establishing a polynomial-time reduction from the strongly NP-hard
problem: set covering (SC) problem [24]. We first introduce the SC problem: given t subsets
J1,J2, . . . ,Jt of J where J is a finite set of r elements, does there exist S ⊆ [t] such that |S| ≤ B
and ∪i∈SJi = J ? The SC problem is equivalent to deciding whether the following system

t∑
i=1

zi ≤ B,
∑
i∈Ij

zi ≥ 1, ∀ j ∈ J , zi ∈ {0, 1}, ∀ i ∈ [t], (49)

has a feasible solution z, where Ij = {i ∈ [t] : j ∈ Ji}. For notations purpose, we denote
J = {t+ 1, t+ 2, . . . , t+ r}.

Given any instance of the SC problem, we construct an instance of deciding whether (44)–(47)
has a feasible solution as follows:

(i) n := t + r, m := t, pi :=
1

t+r
, i ∈ [t + r], ϵ := B+r

t+r
, N0 := ∅, and N1 := J = {t + 1, t +

2, . . . , t+ r};

(ii) For each i ∈ [t], we define ξi := ei where ei is the i-th unit vector of dimension t, and for
each j ∈ {t+ 1, t+ 2, . . . , t+ r}, we define ξj as follows:

ξjk :=

{
1, if k ∈ Ij;
0, otherwise,

∀ k ∈ [t]. (50)

By the definitions of pi, ϵ, N0, and N1, (46) reduces to

t∑
i=1

zi ≤ B. (51)

As N0 = ∅, it follows ξN0 = 0. For j ∈ N1, it follows from (50) thatMj = {k ∈ [t] : ξjk > 0} =
{k ∈ [t] : ξjk = 1} = Ij. Thus (44) and (47) reduce to∑

i∈Ij

wji = 1, ∀ j ∈ N1, (52)

wji ∈ {0, 1}, ∀ j ∈ N1, i ∈ Ij, zi ∈ {0, 1}, ∀ i ∈ [t]. (53)

For j ∈ N1 and i ∈ [t], we haveMji = {k ∈Mj : ξjk ≤ ξik} = {k ∈ Ij : ξjk ≤ ξik} = {k ∈ Ij : 1 ≤
ξik}, which, together with ξi = ei, implies

Mji =

{
{i}, if i ∈ Ij;
∅, otherwise.

Therefore, (45) reduces to
wji ≤ zi, ∀ j ∈ N1, i ∈ Ij. (54)

Observe that (x, z) satisfies (52)–(54) if and only if
∑

i∈Ij zi ≥ 1 and zi ∈ {0, 1} hold for all j ∈ N1

and i ∈ [t], respectively. Therefore, (51)–(54) has a feasible solution if and only if (49) has a
feasible solution, which completes the proof.

Due to the negative result in Theorem 4.5, we shall develop an efficient heuristic algorithm to
apply the overlap-oriented node pruning and variable fixing in the following.

19



4.2 The polynomial-time approximation approach

In this subsection, we present a polynomial-time approximation approach to apply overlap-oriented
node pruning and variable fixing. The proposed approach iteratively performs the following two
steps until no more reduction is found: (i) deriving lower bounds for variables v from the constraints
in C(N0,N1), and (ii) using the derived lower bounds to identify when C(N0,N1) = ∅ or determine
R0 and R1 satisfying (37). Before going into the details, we note that if ϵ−

∑
i∈N1

pi < 0, it must
follow C(N0,N1) = ∅, and therefore, to perform the reductions, it suffices to consider the case

ϵ−
∑
i∈N1

pi ≥ 0. (55)

4.2.1 Deriving lower bounds for variables v

As noted in Section 4.1, using constraints (2) and zi = 0 for i ∈ N0 in C(N0,N1), we obtain the
following lower bounds for variables v:

vk ≥ ξN0
k , ∀ k ∈ [m], (56)

where we recall that ξN0
k = maxi∈N0{ξik}. Another way to derive lower bounds for variables v is to

use the technique as in Section 3.3. Specifically, for each k ∈ [m], let πk(1), πk(2), . . . , πk(|Nf |) be
a permutation of Nf satisfying

ξ
πk(1)
k ≥ ξ

πk(2)
k ≥ · · · ≥ ξ

πk(|Nf |)
k , (57)

and let

τk := min

{
s ∈ [|Nf |] :

s∑
i=1

pπk(i) > ϵ−
∑
i∈N1

pi

}
. (58)

By equation (55), we must have τk ≥ 1. Using the same technique in Section 3.3, the following
must hold:

vk ≥ ξ
πk(τk)
k , ∀ k ∈ [m]. (59)

Combining (56) and (59), we can obtain tighter lower bounds for variables v:

vk ≥ ξN0,N1

k := max
{
ξN0
k , ξ

πk(τk)
k

}
, ∀ k ∈ [m]. (60)

It is worthy noting that the lower bounds ξN0,N1

k depend on both N0 and N1: the larger the N0

and N1, the tighter the lower bounds ξN0,N1

k .
Obviously, the computation of ξN0

k , k ∈ [m], in (56) can be done in the complexity of O(m|N0|).
As for the computation of ξ

πk(τk)
k , k ∈ [m], we need to, for each k ∈ [m], sort ξik, i ∈ Nf , satisfying

(57) and then determine τk satisfying (58), which can be implemented with the complexity of
O(m|Nf | log(|Nf |)). Therefore, the complexity for the computation of lower bounds for variables
v is O(m|N0|+m|Nf | log(|Nf |)).

4.2.2 Node pruning and variable fixing

Using the lower bounds of variables v in (60), we are able to give a sufficient condition under
which node (N0,N1) can be pruned, as detailed in the following proposition.
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Proposition 4.6. Let N0, N1 ⊆ [n] be such that N0 ∩ N1 = ∅. If ξj ≤ ξN0,N1 for some j ∈ N1,
then C(N0,N1) = ∅.

Proof. Let j ∈ N1 such that ξj ≤ ξN0,N1 . Suppose, otherwise, that (v, z) ∈ C(N0,N1). By (60),
we have v ≥ ξN0,N1 ≥ ξj, which, together with zj ∈ {0, 1} and (17), implies that zj = 0. However,
this contradicts with zj = 1 (as j ∈ N1) and thus C(N0,N1) = ∅.

Next, we attempt to perform variable fixing for the case that the condition in Proposition 4.6
does not hold, i.e.,

ξj ≰ ξN0,N1 , ∀ j ∈ N1. (61)

To begin with, we note that using the lower bounds of variables v in (60), constraints v ≱ ξj, or

equivalently,
∨

k∈[m]

(
vk < ξjk

)
= 1 in C(N0,N1) can be simplified as

cj(v) :=
∨

k∈M̄j

(
vk < ξjk

)
= 1, ∀ j ∈ N1, (62)

where
M̄j :=

{
k ∈ [m] : ξjk > ξN0,N1

k

}
. (63)

Let
R1 :=

{
i ∈ Nf : cj(ξ

i) = 0 holds for some j ∈ N1

}
,

R0 :=

{
i ∈ Nf : pi > ϵ−

∑
j∈N1∪R1

pj or ξ
i ≤ ξN0,N1

}
.

(64)

Note that compared with the definitionMj in Section 4.1, we use the tighter lower bounds ξN0,N1

k

for the definition of M̄j, and thus M̄j ⊆Mj. Also note that the tighter the lower bounds ξN0,N1

k ,
the smaller the M̄j, and the larger the R0 and R1.

The following proposition shows that for node (N0,N1), variables zi for i ∈ R0 can be fixed to
zero; and variables zi for i ∈ R1 can be fixed to one.

Proposition 4.7. Let N0, N1 ⊆ [n] be such that N0 ∩N1 = ∅ and (61) hold, and R0 and R1 be
defined in (64). Then C(N0,N1) = C(N0 ∪R0,N1 ∪R1).

Proof. We shall show that for any (v, z) ∈ C(N0,N1), zi = 1 and zi = 0 hold for i ∈ R1 and
i ∈ R0, respectively.

(i) For i ∈ R1, cj(ξ
i) = 0 holds for some j ∈ N1. By (62), we have cj(v) = 1. Then v ≱ ξi

follows from the definition of cj(·) in (62), that is, for any v1, v2 ∈ Rm
+ with v1 ≤ v2, it

follows cj(v
2) ≤ cj(v

1). Together with zi ∈ {0, 1} and (2), this implies zi = 1.

(ii) For i ∈ R0, if pi > ϵ−
∑

j∈N1∪R1
pj, then it follows from (3) and zj = 1 for all j ∈ N1 ∪R1

that zi = 0. Otherwise, ξi ≤ ξN0,N1 , and by (60), v ≥ ξN0,N1 ≥ ξi holds. Together with
zi ∈ {0, 1} and (17), this implies zi = 0.

Notice that using Proposition 4.6 to determine whether C(N0,N1) = ∅ and computing cj(v),
j ∈ N1, can all be done in the complexity of O(m|N1|). The computations of R0 and R1 in (64)
can be implemented with the complexity of O(m|N1||Nf |). Therefore, the overall complexity of
performing node pruning and variable fixing is O(m|N1||Nf |).
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4.2.3 The overall algorithmic framework

After performing the variable fixing in Section 4.2.2, we may compute tighter lower bounds for
variables v using the procedure Section 4.2.1 again, which, in turn, opens up new possibilities to
detect more reductions using the procedure in Section 4.2.2. We illustrate this using the following
example.

Example 4.8. Let us consider node 5 in Figure 2 where the dominance-based branching is applied
to solve the problem in Example 2.1. At the beginning, N0 := B0 = {4} and N1 := B1 =
{5}. Applying the procedure in Section 4.2.1, we obtain the lower bounds ξN0,N1 = (5, 2, 6)⊤ for
variables v. Applying the procedure in Section 4.2.2, we obtain R0 = ∅ and R1 = {6, 7}, and thus
C({4}, {5}) = C({4}, {5, 6, 7}).

Now letting N0 := {4} and N1 := {5, 6, 7}, applying the procedure in Section 4.2.1 again, we
obtain the tighter lower bounds ξN0,N1 = (5, 2, 10)⊤ for variables v. Similarly, applying the proce-
dure in Section 4.2.2 again, we can obtain R0 = {2, 3} and R1 = ∅, and thus C({4}, {5, 6, 7}) =
C({2, 3, 4}, {5, 6, 7}).

Example 4.8 offers a hint to the algorithmic design for the overlap-oriented node pruning and
variable fixing. Specifically, we can iteratively apply the procedures in Sections 4.2.1 and 4.2.2
to detect reductions for node (N0,N1) until no more reduction is found (i.e., either the node
is pruned or R0 = R1 = ∅). The details are summarized in Algorithm 1. Note that in one
iteration of Algorithm 1, either the procedure is terminated or at least one more variable is fixed.
Therefore, the number of iterations in Algorithm 1 is at most |Nf |, and the worst-case complexity
of Algorithm 1 is polynomial. Moreover, as will be demonstrated in Section 5, Algorithm 1 is
indeed competitive with the exact approach in Section 4.1 in terms of reducing the tree size while
enjoying a high computational efficiency.

Algorithm 1: An iterative procedure for overlap-oriented node pruning and variable
fixing

Input: Node (N0,N1).
1 repeat
2 If ϵ−

∑
i∈N1

pi < 0, stop and claim that the node is infeasible;

3 Compute the lower bounds ξN0,N1 as in (60);
4 If ξj ≤ ξN0,N1 for some j ∈ N1, stop and claim that the node is infeasible;
5 Compute R0 and R1 as in (64);
6 Update N0 ← N0 ∪R0 and N1 ← N1 ∪R1;

7 until no more reduction is found ;

5 Computational results

In this section, we present computational results to illustrate the effectiveness of the proposed
dominance-based branching and overlap-oriented node pruning and variable fixing techniques.
The proposed methods were implemented in C language and linked to the state-of-the-art open
source MILP solver SCIP 8.0.0 [13], using SoPlex 6.0.0 as the LP solver. SCIP includes a routine
of domain propagation methods [3] that is applied at each node of the search tree to tighten the
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variable bounds (including variable fixings) or detect infeasible subproblems. Therefore, we imple-
mented the proposed dominance-based branching and overlap-oriented node pruning and variable
fixing techniques as domain propagation methods. With this implementation, other sophisticated
components of SCIP including the default fine-tuned branching strategy (called hybrid branching)
can still be used. Moreover, as demonstrated in [22, 23], when selecting the branching variables,
the default branching strategy of SCIP will invoke the domain propagation methods; and thus,
this implementation also enables the proposed dominance-based branching and overlap-oriented
node pruning and variable fixing techniques to guide the selection of branching variables.

In order to improve the overall solution efficiency, we follow [38] to apply the preprocessing
technique to strengthen formulation (MILP) of problem (CCP). Specifically, since ξ0 are the
lower bounds for variables v (see Lemma 3.5), we can remove constraint vk ≥ ξik(1− zi) from the
problem formulation if ξik ≤ ξ0k and strengthen it as vk ≥ ξik−(ξik−ξ0k)zi otherwise. In addition, we
also implemented the (strengthened) mixing cuts [7, 25], which is recognized as one of the most
effective cutting planes for solving formulation (MILP) of problem (CCP) [38], to speed up the
solution process.

In our computational study, we consider three CCPs studied in the literature, which are the
CCRP problem [26, 36], CCMPP problem [21], and CCLS problem [12]. Our testset consists of
135 CCRP instances, 135 CCMPP instances, and 180 CCLS instances. The descriptions of the
problems and the instance construction procedures are provided in Appendix B. Except where
explicitly stated, all computations were performed on a cluster of Intel(R) Xeon(R) Gold 6140
CPU @ 2.30GHz computers running Linux, with a time limit of 4 hours and a relative gap of 0%.
Throughout this section, all averages are reported as the shifted geometric mean with shifts of
1 second and 100 nodes for the CPU time and the number of explored nodes, respectively. The
shifted geometric mean of values x1, x2, . . . , xn with shift s is defined as

∏n
k=1(xk + s)1/n − s; see

[3].

5.1 Comparison of the dominance-based branching with the direct use
of dominance inequalities

In this subsection, we compare the performance of the dominance-based branching with the direct
use of dominance inequalities. Specifically, we compare the performance of the following two
settings.

• DB: solving formulation (MILP) using the B&C algorithm with the proposed dominance-
based branching (but without the overlap-oriented node pruning and variable fixing in Sec-
tion 4);

• DI: solving formulation (MILP) with the dominance inequalities in (32) using the B&C
algorithm with the classic variable branching;

For benchmarking purposes, we also report the results of solving formulation (MILP) with the
weaker version of dominance inequalities in (27) (in the sense that inequalities in (32) imply all
inequalities in (27)), denoted as w-DI. When adding the dominance inequalities into formulation
(MILP), we only add the nonredundant ones; see Remarks 3.2 and 3.6.

Table 1 summarizes the computational results of the three problems 1. In column #, we report

1Throughout, we report the aggregated results (for each of the three problems). Detailed statistics of instance-
wise computational results can be found in the online supplement available at https://drive.google.com/file/
d/1hZnv0jgoFUjyIS7Fwyo6bA_6p1tu9yil/view?usp=share_link.
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the number of instances that can be solved to optimality within the time limit by at least one
setting. For each setting, we report the number of solved instances (S), the average CPU time in
seconds (T) (which includes the CPU time spent in the implementation of dominance-based branch-
ing), and the average number of explored nodes (N). For settings w-DI and DI, we additionally
report the percentage of dominance pairs between scenarios and the percentage of nonredundant
dominance inequalities, defined by ∆DP := #DP/#MDP×100 and ∆NDI := #NDI/#MDP×100, respec-
tively. Here, #DP is the number of dominance pairs, #MDP = n(n − 1)/2 is the maximum number
of possible dominance pairs, and #NDI is the number of nonredundant dominance inequalities.

Table 1: Performance comparison of settings DB, DI, and w-DI.

Probs #
DB DI w-DI

S T N S T N ∆DP ∆NDI S T N ∆DP ∆NDI

CCRP 110 109 156.6 120 108 210.9 82 51.7 1.2 100 284.2 202 5.0 4.3
CCMPP 110 110 35.9 330 108 44.7 273 40.3 0.2 83 294.4 3843 0.1 0.1
CCLS 174 174 134.9 631 170 182.0 493 90.0 0.4 160 234.3 745 34.8 7.3

All 394 393 97.4 351 386 128.4 275 63.9 0.6 343 263.6 875 15.7 4.4

We first compare the performance of settings DB and DI. As shown in Section 3.2, the two
settings are theoretically equivalent under certain conditions in terms of exploring the same search
trees. In Table 1, we observe that the numbers of explored nodes returned by the two settings
are similar; overall, DI returns a slightly smaller number of explored nodes than DB. Notice that
the latter is reasonable as directly adding the dominance inequalities into the formulation can
enhance other components of MILP solvers, such as triggering more internal cuts generation and
more conflict analysis [2, 58]. However, the smaller number of explored nodes returned DI cannot
compensate for the overhead of a large problem size, as the dominance inequalities in (32) need
to be added as constraints into the formulation. In contrast, the proposed DB avoids solving a
problem with a large problem size and thus achieves an overall better performance. In particular,
the proposed DB enables to solve 7 more instances to optimality and to reduce the CPU time by
a factor of 1.3.

Next, we can observe from Table 1 that the number of dominance pairs in (32) is much larger
than that in (27), which shows the effectiveness of the preprocessing technique in Section 3.3 in
detecting more dominance pairs. Although the number of dominance pairs in (32) is very large,
only a small proportion of the inequalities (i.e., the nonredundant ones) needs to be added into the
formulation; in some cases, the number of nonredundant inequalities in (32) is even smaller than
that of the nonredundant ones in (27). Due to these two advantages, DI performs much better
than w-DI. In particular, using DI, 43 more instances can be solved to optimality, and the CPU
time and the number of explored nodes are reduced by factors of 2.1 and 3.2, respectively.

5.2 Performance effect of the overlap-oriented node pruning and vari-
able fixing

We now evaluate the performance effect of the overlap-oriented node pruning and variable fixing
in Section 4. Table 2 summarizes the computational results of settings DB and DB+AOPF, where
DB+AOPF is denoted by
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• DB+AOPF: solving formulation (MILP) using the B&C algorithm with the proposed dominance-
based branching and the approximation approach of the overlap-oriented node pruning and
variable fixing in Section 4.2.

In Table 2, column PT reports the CPU time spent in the implementation of the proposed
dominance-based branching (with the approximation approach of the overlap-oriented node prun-
ing and variable fixing). The rows “≥ s” collect the subsets of instances that can be solved by at
least one setting within the time limit and for which the number of explored nodes returned by
at least one of the two settings is at least s. With the increasing s, this provides a hierarchy of
subsets of increasing difficulty (as the tree size is large).

As shown in Table 2, the overlap-oriented node pruning and variable fixing can effectively
improve the performance of solving all three problems while the computational overhead of the
approximation approach for implementing them is fairly small. In total, equipped with the overlap-
oriented node pruning and variable fixing, DB+AOPF can solve 27 more instances to optimality.
Additionally, the average CPU time and number of explored nodes are reduced by factors of 1.3
and 1.9, respectively. For hard instances that require to explore at least 1000 nodes by at least
one of the two settings, we can even observe a factor of 1.7 runtime speed-up and a factor of 2.7
tree size reduction. This shows the effectiveness of the overlap-oriented node pruning and variable
fixing in further improving the performance of the dominance-based branching for solving CCPs.

Table 2: Performance comparison of settings DB and DB+AOPF.

Probs #
DB DB+AOPF

S T N PT S T N PT

CCRP 119 109 220.7 146 1.5 119 156.3 66 9.6
CCMPP 123 110 68.3 547 1.6 123 48.0 182 3.0
CCLS 178 174 149.9 685 1.5 178 141.9 477 18.0

All 420 393 133.0 434 1.5 420 106.3 229 9.2
≥ 10 312 285 287.9 842 2.1 312 202.7 391 13.2
≥ 100 245 218 542.2 1519 2.7 245 343.0 629 18.4
≥ 1000 151 124 1200.1 3764 4.2 151 706.3 1381 30.2

In order to illustrate the effectiveness of the proposed approximation approach in Section 4.2 for
implementing the overlap-oriented node pruning and variable fixing, we compare it with the exact
approach in Section 4.1 (denoted by DB+EOPF). In Table 3, we report the computational results of
287 instances that can be solved to optimally in both DB+AOPF and DB+EOPF within 24 hours. We
observe that DB+AOPF is much more efficient than DB+EOPF. This is quite expected because DB+EOPF
needs to solve several MILP problems of the form (48) to perform the reductions, which is very
time-consuming, as shown in column PT under setting DB+EOPF. On the other hand, the number of
explored nodes returned by DB+EOPF is only slightly smaller than that of DB+AOPF. These results
demonstrate that the proposed approximation algorithm for implementing the overlap-oriented
node pruning and variable fixing is competitive with the exact algorithm in terms of reducing the
tree size while enjoying a high computational efficiency.
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Table 3: Performance comparison of settings DB+AOPF and DB+EOPF.

Probs #
DB+AOPF DB+EOPF

S T N PT S T N PT

CCRP 81 81 48.6 13 6.7 81 667.2 12 520.4
CCMPP 90 90 16.0 44 1.4 90 279.4 44 233.9
CCLS 116 116 48.5 147 7.9 116 1420.1 138 1262.9

All 287 287 34.5 67 4.7 287 689.4 64 579.8
≥ 10 133 133 55.1 192 6.6 133 3610.9 180 3440.6
≥ 100 82 82 84.4 394 9.7 82 12873.3 367 12763.8
≥ 1000 14 14 182.5 1391 28.5 14 34748.9 1232 34605.7

5.3 Comparison with the classic branch-and-cut algorithm

We now compare the performance of applying the proposed dominance-based branching and (the
approximation approach of) overlap-oriented node pruning and variable fixing techniques to solve
the CCP based on formulation (MILP) against the default B&C algorithm of SCIP with the classic
variable branching (denoted by cB&C). The results are summarized in Table 4. We can observe from
Table 4 that DB+AOPF significantly outperforms cB&C. In particular, using the proposed DB+AOPF,
73 more instances can be solved to optimality within the given 4 hours limits; the average number
of exploded nodes is reduced by a factor of 5.5; and the average CPU time is reduced by a factor of
2.8. Moreover, for hard instances that require to explore at least 1000 nodes by at least one of the
two settings, we can observe a drastic node reduction factor of 10.4 and a drastic runtime speed-up
factor of 5.8. In addition, among the three problems, we can observe a tremendous improvement
on CCMPP instances where the tree size constructed by cB&C is relatively large. Indeed, using
the proposed DB+AOPF, the average number of explored nodes and CPU time decrease from 4614
and 436.5 seconds to 182 and 48.0 seconds, respectively, with 39 more solved instances. These
results show the efficiency of the proposed dominance-based branching and overlap-oriented node
pruning and variable fixing techniques in reducing the search tree size and improving the efficiency
of solving CCPs, especially for hard instances.

Table 4: Performance comparison of settings cB&C and DB+AOPF.

Probs #
cB&C DB+AOPF

S T N S T N PT

CCRP 119 102 323.7 232 119 156.3 66 9.6
CCMPP 123 84 436.5 4614 123 48.0 182 3.0
CCLS 178 161 213.4 1401 178 141.9 477 18.0

All 420 347 296.2 1269 420 106.3 229 9.2
≥ 10 364 291 502.1 1938 364 147.5 293 10.9
≥ 100 320 247 731.2 2833 320 187.1 370 12.4
≥ 1000 221 148 1707.2 6842 221 295.6 658 16.4
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6 Conclusion

In this paper, it has been shown that the presence of the overlap in the search tree makes the stan-
dard MILP formulation of the CCP difficult to be solved by state-of-the-art MILP solvers. In an
effort to remedy this, we have developed several approaches to remove the overlap during the B&C
process. In particular, we have showed that a family of valid nonlinear if-then constraints is able to
remove all overlaps in the search tree. To tackle the highly nonlinear if-then constraints, we have
proposed the dominance-based branching, which, compared with the classic variable branching,
is able to partition the current problem into two MILP subproblems with much smaller feasible
regions, especially when the number of dominance pairs between scenarios is large. Moreover, by
considering the joint mixing set with a knapsack constraint and the if-then constraints, we have
developed overlap-oriented node pruning and variable fixing, applied at each node of the search
tree, to remove more overlaps in the tree. Both of the proposed dominance-based branching and
overlap-oriented node pruning and variable fixing are easily to be embedded into the B&C frame-
work along with other sophisticated components of MILP solvers. By extensive computational
experiments, we have demonstrated that the proposed dominance-based branching and overlap-
orient node pruning and variable fixing techniques can significantly reduce the B&C search tree
size and substantially improve the computational performance of the MILP-based approach to
solving CCPs.

Appendix A An example to illustrate Remark 2.2

In this section, we present an example to illustrate Remark 2.2. The example is based on the
problem obtained by modifying scenario ξ6 to (6, 2, 5)⊤ in problem (10). As such, formulation
(MILP) for the modified problem reduces to

min

{
6v1 + v2 + 3v3 : v ≥ ξi(1− zi), ∀ i ∈ [7],

1

7

7∑
i=1

zi ≤
4

7
, v ∈ R3

+, z ∈ {0, 1}7
}
, (65)

where

ξ1 =

 2
1
12

 , ξ2 =

 3
1
10

 , ξ3 =

 4
2
7

 ,

ξ4 =

 5
2
6

 , ξ5 =

 6
2
6

 , ξ6 =

 6
2
5

 , ξ7 =

 12
1
2

 .

We choose variable z4 to branch on. The left and right branches (after removing the fixed
variable z4) reduces to

OL = min

{
6v1 + v2 + 3v3 :

1

7
(z1 + z2 + z3 + z5 + z6 + z7) ≤

4

7
, v ≥ ξ4 = (5, 2, 6)⊤,

v ≥ ξi(1− zi), ∀ i ∈ {1, 2, 3, 5, 6, 7}, v ∈ R3
+, z ∈ {0, 1}6

}
,

(66)
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OR = min

{
6v1 + v2 + 3v3 :

1

7
(z1 + z2 + z3 + z5 + z6 + z7) ≤

3

7
, v ≥ 0,

v ≥ ξi(1− zi), ∀ i ∈ {1, 2, 3, 5, 6, 7}, v ∈ R3
+, z ∈ {0, 1}6

}
.

(67)

By Remark 2.2, the new left branch OL2 reduces to

min

{
6v1 + v2 + 3v3 :

3

7
<

1

7
(z1 + z2 + z3 + z5 + z6 + z7) ≤

4

7
, v ≥ ξ4 = (5, 2, 6)⊤,

v ≥ ξi(1− zi), ∀ i ∈ {1, 2, 3, 5, 6, 7}, v ∈ R3
+, z ∈ {0, 1}6

}
.

(68)

Although the feasible regions of branches (67) and (68) do not contain an overlap, their projection
on the v space, however, do contain overlaps. Indeed, point v∗ = (6, 2, 7)⊤ can define feasible
solutions

(v∗, ẑ) = (6, 2, 7, 1, 1, 0, 0, 0, 1)⊤and (v∗, z̄) = (6, 2, 7, 1, 1, 0, 0, 1, 1)⊤

of the two branches (67) and (68), respectively.

Appendix B Test problems

Here we introduce the CCRP, CCMPP, and CCLS problems considered in the computational
experiments and the details of the procedures to generate the instances.

B.1 Chance-constrained resource planning problem [26, 36]

Consider a set of resources I with unit cost ci for each i ∈ I and a set of customers J with
random demand λ̃j for each j ∈ J . The CCRP problem attempts to choose the quantities of
the resources and allocate these resources to customers such that the total cost of resources is
minimized, while requiring that the allocation does not exceed the available resources and meets
the customer demand with a probability at least 1− ϵ.

Let xi denote the quantity of resource i ∈ I and yij denote the amount of resource i allocated
to customer j ∈ J . The mathematical formulation of this problem can be stated as:

min
(x,y)∈R|I|+|I||J |

+

{∑
i∈I

cixi :
∑
j∈J

yij ≤ ρixi,∀ i ∈ I, P

{∑
i∈I

µijyij ≥ λ̃j,∀ j ∈ J

}
≥ 1− ϵ

}
,

where ρi ∈ (0, 1] is the yield of resource i and µij ≥ 0 is the service rate of resource i to customer j.
We use the data available at https://jrluedtke.github.io; see [36] for the detailed generation
procedure. The numbers of resources and customers, represented as (|I|, |J |), are chosen from
{(20, 30), (40, 50), (50, 100)}. The scenario size n for the random variables {λ̃j} and the confidence
parameter ϵ are taken from {1000, 2000, 3000} and {0.10, 0.15, 0.20}, respectively. The probabili-
ties pi, i ∈ [n], are all set to 1/n. For each (|I|, |J |), n, and ϵ, there are 5 instances, leading to a
testbed of 135 CCRP instances.
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B.2 Chance-constrained multiperiod power planning problem [21]

The CCMPP problem attempts to expand the electric power capacity of a state by building
new coal and nuclear power plants to meet the demand of the state over a planning horizon of T
periods. Coal and nuclear plants are operational for Tc and Tn time periods after their construction,
respectively. The objective of the problem is to minimize the total capital cost associated with the
construction of the power plants while requiring that the fraction of nuclear capacity to the total
capacity does not exceed a predetermined threshold f (as required by legal restrictions mandate),
and the demands are met with a probability at least 1− ϵ.

Let xt and yt be the amount of coal and nuclear capacity (in megawatt) brought on line at the
beginning of period t, respectively. Then, the mathematical formulation of this problem is given
by

min
(x,y)∈R2T

+

∑
t∈[T ]

(ctxt + ntyt) :
t∑

i=τn(t)

yi ≤ f ·

et +
t∑

i=τc(t)

xi +
t∑

i=τn(t)

yi

 , ∀ t ∈ [T ],

P

et +
t∑

i=τc(t)

xi +
t∑

i=τn(t)

yi ≥ d̃t, ∀ t ∈ [T ]

 ≥ 1− ϵ

 ,

where ct and nt are the capital costs per megawatt for coal and nuclear power plants, respectively,
et is the electric capacity from existing resources in period t, τc(t) = max{1, t − Tc + 1}, and
τn(t) = max{1, t − Tn + 1}, t ∈ [T ]. We use a similar procedure of [21] to construct CCMPP
instances. Specifically,

• the electricity demands {d̃t} are independent random integers, and their scenarios are uni-
formly chosen from {300, 301, . . . , 700};

• the costs ct and nt are uniformly chosen from {100, 101, . . . , 300} and {100, 101, . . . , 200},
respectively;

• the initial capacity resource e1 is an integer uniformly chosen {100, 101, . . . , 500} and the
capacity resources in the subsequent periods are calculated as et = e1 · rt−1, where t =
2, 3, . . . , T , and r is uniformly chosen from [0.7, 1);

• the lifespans of coal and nuclear power plants, Tc and Tn, are set to 15 and 10, respectively;

• the number of periods T is taken from {10, 20, 30};

• the scenario size n for the random variables {d̃t} and the confidence parameter ϵ are taken
from {1000, 2000, 3000} and {0.05, 0.10, 0.20}, respectively;

• the probabilities pi, i ∈ [n], are all set to 1/n.

For each T , n, and ϵ, we randomly generate 5 instances, and thus in total, there are 135 CCMPP
instances.
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B.3 Chance-constrained lot-sizing problem [12]

The CCLS problem attempts to determine a production schedule for T periods that minimizes a
summation of the fixed setup cost, the production cost, and the expected inventory cost while sat-
isfying the capacity constraint in each period and meeting the customer demand with a probability
at least 1− ϵ.

Let xt be the binary variable denoting whether a setup of production is performed in period
t, and yt be the continuous variable characterizing the corresponding quantity to be produced.
Mathematically, the CCLS problem can be written by

min
(x,y)∈{0,1}T×RT

+

∑
t∈[T ]

ftxt + ctyt + htE

∑
j∈[t]

yj −
∑
j∈[t]

d̃j

+ :

yt ≤ Ctxt, ∀ t ∈ [T ], P

∑
j∈[t]

yj ≥
∑
j∈[t]

d̃j, ∀ t ∈ [T ]

 ≥ 1− ϵ

 ,

where for each t ∈ [T ], ct is the fixed setup cost per production run, ft is the unit production cost,
ht is the unit holding cost, Ct is the production capacity, and d̃t is the random demand. Notice
that the CCLS problem can also be transformed into an MILP problem of the form (MILP); see
[59]. We use a similar procedure as in [1] to construct the CCLS instances. Specifically,

• the demands {d̃j} are independent variables, and their scenarios are uniformly chosen from
(1, 100);

• the setup cost ft, the unit production cost ct, and the unit holding cost ht are uniformly
chosen from (1, 1000), (1, 10), and (1, 5), respectively;

• the number of periods T is taken from {5, 10, 15, 20};

• the scenario size n for the random variables {d̃j} and the confidence parameter ϵ are taken
from {1000, 2000, 3000} and {0.05, 0.10, 0.20}, respectively;

• the probabilities pi, i ∈ [n], are all set to 1/n.

For each T , n, and ϵ, we randomly generate 5 instances, and thus in total, there are 180 CCLS
instances.
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[28] Küçükyavuz, S. (2012). On mixing sets arising in chance-constrained programming. Math.
Program., 132:31–56.
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[48] Prékopa, A. (2003). Probabilistic programming. In Ruszczyński, A. and Shapiro, A., editors,
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