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Abstract. This paper addresses the study of nonconvex derivative-free optimization problems, where
only information of either smooth objective functions or their noisy approximations is available. General
derivative-free methods are proposed for minimizing differentiable (not necessarily convex) functions with
globally Lipschitz continuous gradients, where the accuracy of approximate gradients is interacting with
stepsizes and exact gradient values. Analysis in the noiseless case guarantees convergence of the gradient
sequence to the origin as well as global convergence with constructive convergence rates of the sequence of
iterates under the Kurdyka-Łojasiewicz property. In the noisy case, without any noise level information,
the designed algorithms reach near-stationary points with providing estimates on the required number
of iterations and function evaluations. Addressing functions with locally Lipschitzian gradients, two
algorithms are introduced to handle the noiseless and noisy cases, respectively. The noiseless version is
based on the standard backtracking linesearch and achieves fundamental convergence properties similarly
to the global Lipschitzian case. The noisy version is based on a novel bidirectional linesearch and is shown
to reach near-stationary points after a finite number of iterations when the Polyak-Łojasiewicz inequality
is imposed. Numerical experiments are conducted on a diverse set of test problems to demonstrate more
robustness of the newly proposed algorithms in comparison with other finite-difference-based schemes
and some highly efficient, production-ready codes from the SciPy library.

Key words: derivative-free optimization, nonconvex smooth objective functions, finite differences, black-
box optimization, noisy optimization, zeroth-order optimization, globally convergent algorithms
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1 Introduction
This paper is devoted to the development of novel derivative-free methods of solving unconstrained opti-
mization problems given in the form

minimize f(x) subject to x ∈ IRn, (1.1)

where f : IRn → IR is a continuously differentiable (C1-smooth) function, not necessarily convex. In
the context of derivative-free optimization, we assume that only information of either f(x) (noiseless
case) or its noisy approximation ϕ(x) = f(x) + ξ(x) (noisy case) is available, where ξ(x) : IRn → IR
is the noise function bounded by a positive constant ξf . These problems have received much attention
with a variety of methods being developed over the years [5, 16]. The major developments in this
vein are provided by the Nelder-Mead simplex method [42, 45], direct search methods [29, 32], conjugate
direction method [50], trust-region methods [17, 50], and finite-difference-based methods [6, 8, 46, 56, 58].
Applications of derivative-free optimization methods [2, 5, 16] have also gained a lot of interest since many
efficient methods, including Nelder-Mead, Powell (a short name of Powell’s conjugate direction method)
[50], COBYLA [51], and L-BFGS-B, are implemented as production-ready codes in SciPy [59], a well-
known Python library. More recently, numerous empirical results conducted by Shi et al. in [58] show
that derivative-free optimization methods based on finite differences are accurate, efficient, and in some
cases superior to other state-of-the-art derivative-free optimization methods developed in the literature.
Meanwhile, extensive numerical comparisons in Berahas et al. [7], together with further analysis by
Scheinberg [54], also tell us that the accuracy of gradients obtained from standard finite differences is
significantly higher than from randomized schemes [19, 26, 27, 46]. These empirical results suggest that
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the methods using standard finite differences have much to be recommended, and that the research in
this direction should be strongly encouraged.

When no error is present within the function evaluations, implementing finite difference approxima-
tions for gradient descent methods is rather simple because it is possible to use a fixed, sufficiently small
finite difference interval (referred to as GD (fixed) for the sake of brevity). However, dealing with noisy
problems is more challenging since finding the optimal finite difference interval requires not only the noise
level information but also the higher-order derivatives of the function that are often unavailable. Hence
this topic attracts many studies, which develop finite-difference-based methods under different types of
noise. Kelley et al. [15, 24, 36] proposed the implicit filtering algorithm based on a finite difference
approach to deal with noisy smooth box-constrained optimization problems with the noise being decayed
near local minimizers. Berahas et al. [6, 8] developed finite-difference-based linesearch methods for the
minimization of smooth functions with bounded noise. The schemes to adapt the finite difference intervals
were also studied by Gill et al. [23], Moré and Wild [44], and recently by Shi et al. [56, 57].

Motivations. Although methods of this type are often used in practice to solve derivative-free smooth
problems with and without noise, there are still some significant concerns related to their theoretical and
practical developments that should be addressed.

• Analysis in the noiseless case: In the noiseless case, due to the usage of a fixed finite difference
interval, GD (fixed) methods do not obtain sufficient convergence properties compared to standard
gradient descent methods. These properties include the stationarity of accumulation points and
the convergence of the sequence of iterates to nonisolated stationary points under the Kurdyka-
Łojasiewicz (KL) condition [3, 37, 38, 39, 41, 43], which is a rather mild regularity condition
satisfied for the vast majority of objective functions in practice. Note that simply letting the finite
difference interval approach zero is not a favorable approach, since without careful adaptations the
approximate gradient obtained may not be even a descent direction.

• Dealing with small noise without any noise level information: The practical implementations of
finite-difference-based algorithms also face issues in this case since choosing sufficiently small finite
difference intervals makes GD (fixed) methods perform poorly due to the roundoff error, while using
an adaptive scheme as in [23, 44, 56] becomes impossible since the noise level is unknown.

• Assumption on the gradient global Lipschitz continuity, i.e., the C1,1
L property of objective functions:

This assumption seems to be omnipresent in derivative-free linesearch methods; see, e.g., [15, The-
orem 2.1], [6, Assumption A1], and [8, Assumption 1.1]. For general derivative-free trust-region
methods, Conn et al. [17] proved global convergence results for C1,1

L minimization problems under
the additional assumption on the Lipschitz continuity of the Hessian of the objective function. Such
properties were also employed in the proximal point method adapted to derivative-free smooth op-
timization problems by Hare and Lucet [30, Assumption 1]. In [55], the class of smooth functions
with Hölderian gradients, being larger than the class of C1,1

L functions, was investigated. How-
ever, we are not familiar with any efficient finite-difference-based method considering specifically
the class of smooth functions with locally Lipschitzian gradients, i.e., the class of C1,1 functions,
which is much broader than the class of C1,1

L ones. This is in contrast to the exact versions of
gradient descent methods that obtain various convergence properties including the stationarity of
accumulation points for the version with backtracking stepsizes in the class of C1-smooth functions
[9, Proposition 1.2.1] and the global convergence for the version with sufficiently small stepsizes
in the class of definable C1,1 functions [34]. This raises the need for the design and analysis of
finite-difference-based methods concerning the class of C1,1 functions, which is the best we can hope
in this context since the error bounds for finite differences are not available outside of this class.

Contributions. Having in mind the above discussions, we first address C1,1
L optimization problems

and propose the derivative-free method with constant stepsize (DFC). The method offers generalizations
and improvements in both theoretical and practical aspects compared to GD (fixed) algorithms. The
generalizations imply that other gradient approximation methods can be employed in DFC besides finite
differences, provided that the approximation methods adhere to general conditions outlined in Defini-
tion 3.1. The improvements of DFC in comparison with GD (fixed) algorithms are as follows.

• In the theoretical aspects, DFC comes with a detailed convergence analysis, which is presented in
Section 4 and contains the following.

– In the noiseless case, our analysis establishes the convergence to the origin for the gradient
sequence, global convergence of iterates under the KL property, and constructive convergence
rates depending on the KL exponents. Note that none of these properties can be achieved by
GD (fixed) algorithms.

– In the noisy case, the finite convergence of the sequence of iterates to a near-stationary point
is established, along with estimates on the number of iterations and function evaluations
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needed to reach the near-stationary point. The construction of DFC and all of its convergence
properties in the noisy case do not require the knowledge of noise levels, although it does
require some mild conditions for initialization.

• In the practical aspects, DFC achieves at least similar, or even better, numerical performance in
comparison with GD (fixed) methods in the noiseless case being more efficient in the presence of
small noise with an unknown noise level. These numerical results are presented in Section 6.

Note that the main feature in the algorithmic constructions of DFC, which allows us to achieve the above
goals, is the adaptivity of the finite difference interval. Contrarily to using a fixed small interval as in GD
(fixed) methods, we start with a much larger finite difference interval and decrease it along the sequence
of iterates if a descent condition is not satisfied. The finite difference interval in DFC also interacts with
the approximate Lipschitz constant (or equivalently, the stepsize), which creates more robustness for the
algorithm. This interaction distinguishes DFC from the methods in [23, 44, 56, 57], where the finite
difference interval is constructed independently from the stepsize. By adopting this approach, we are
able to theoretically derive the fundamental convergence properties of DFC for both noiseless and noisy
functions. Practically this approach helps DFC avoiding roundoff errors as much as possible to ensure the
quality of the gradient approximation, which leads us to the numerical performance highlighted above.

Next we address the class of C1,1 functions. Due to the complex structure of functions in this class,
we introduce two different algorithms as follows.

• DFB: Derivative-free method with backtracking linesearch to deal with noiseless problems and prob-
lems with small noise. This algorithm is inspired by DFC, with the primary difference that a
backtracking linesearch step is performed in each iteration, similarly to the standard approach of
gradient descent methods when dealing with C1,1 functions. The analysis is conducted in the noise-
less case and establishes the stationarity of the accumulation point, global convergence under the
KL property, and constructive convergence rates depending on the KL exponents.

• DFBD: Derivative-free method with bidirectional linesearch to deal with problems with large noise
and known noise level. To be more specific, in each iteration DFBD uses a bidirectional linesearch
to approximate the local Lipschitz constant of the gradient in a region around the current iterate.
The approximate Lipschitz constant is then used for determining both the stepsize and the finite
difference interval. By employing this approach, DFBD exhibits more favorable numerical behavior
compared to other finite difference schemes [24, 46, 56] as demonstrated in Figure 2. This example
also shows that the standard backtracking linesearch does not work well for functions of C1,1 class
with large noise, which is the main motivation for us to implement the bidirectional linesearch
in DFBD. The global analysis of DFBD demonstrates that the algorithm always makes progress
whenever the gradient at the current iterate is not near the origin. It is also established that
the sequence of iterates finds a near-stationary point after a finite number of iterations, with a
constructive estimate given when the Polyak-Łojasiewicz inequality (cf. [49] and [43]) is satisfied.

To demonstrate the practical aspects of our study, extensive numerical experiments on synthetic
problems with and without noise are conducted in Section 6. The results when the noise is small show that
DFC and DFB methods do improve the performance of GD (fixed) methods as well as the performance
of the implicit filtering (IMFIL) algorithm [24] and random gradient-free (RG) algorithm [46]. When the
noise is large, our DFBD demonstrates its numerical reliability in comparison with SciPy [59] production-
ready codes, including Powell, COBYLA and L-BFGS-B algorithms.

Related Works. The adaptivity of the finite difference interval to ensure the quality of the approxi-
mate gradient is a main feature employed in many finite-difference-based methods. Cartis and Scheinberg
[13] analyzed a general linesearch algorithm for smooth functions without noise under the major condi-
tion that the gradient estimates are sufficiently accurate with a certain probability. This analysis is then
extended in Berahas et al. [6] to the case where the function values are noisy. The practical schemes
to choose the finite difference intervals adaptively based on testing ratios were also studied by Gill et
al. [23], Shi et al. [56, 57], and heuristically by Moré and Wild [44]. The adaptivity in the selection of
the finite difference interval is also related to the dynamic accuracy of gradient approximations, which
is considered for adaptive regularization algorithms without noise in [12, 28] and with noise in [14, 11].
Among the aforementioned publications, [13] and [6] are the most related to our DFC development for
C1,1
L functions. These results are discussed in more detail in Remark 4.4 and Remark 4.10.

Organization. The rest of the paper is organized as follows. Section 2 presents some basic defi-
nitions and preliminaries used throughout the entire paper. Section 3 examines two types of gradient
approximations that include finite differences. The main parts of our work, concerning the design and
convergence properties of general derivative-free methods under the global and local Lipschitz continuity
of the gradient, are given in Section 4 and Section 5, respectively. Numerical experiments, which compare
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the efficiency of the proposed methods with other derivative-free methods for both noisy and noiseless
functions, are conducted in Section 6. Concluding remarks on the main contributions of this paper
together with some open questions and perspectives of our future research are presented in Section 7.

2 Preliminaries
First we recall some basic notions and notation frequently used in the paper. All our considerations are
given in the space IRn with the Euclidean norm ∥ · ∥. For any i = 1, . . . , n, let ei denote the ith basic
vector in IRn. As always, IN := {1, 2, . . .} signifies the collection of natural numbers. For any x ∈ IRn and
ε > 0, let B(x, ε) and B(x, ε) stand for the open and closed balls centered at x with radius ε, respectively.
When x = 0, these balls are denoted simply by εB and εB.

Recall that a mapping G : IRn → IRm is Lipschitz continuous on a subset D of IRn if there exists a
constant L > 0 such that we have

∥G(x)−G(y)∥ ≤ L ∥x− y∥ for all x, y ∈ D.

If D = IRn, the mapping G is said to be globally Lipschitz continuous. The local Lipschitz continuity of
G on IRn is understood as the Lipschitz continuity of this mapping on every compact subset of IRn. The
latter is equivalent to saying that for any x ∈ IRn there is a neighborhood U of x such that G is Lipschitz
continuous on U . In what follows, we denote by C1,1 the class of C1-smooth mappings that have a locally
Lipschitz continuous gradient on IRn and by C1,1

L the class of C1-smooth mappings that have a globally
Lipschitz continuous gradient with the constant L > 0 (i.e., L-Lipschitz continuous) on the entire space.

Our convergence analysis of the numerical algorithms developed in the subsequent sections largely
exploits the following important results and notions. The first result taken from [33, Lemma A.11]
presents a simple albeit very useful property of real-valued functions with Lipschitz continuous gradients.

Lemma 2.1. Let f : IRn → IR, let x, y ∈ IRn, and let L > 0. If f is differentiable on the line segment
[x, y] with its derivative being L-Lipschitz continuous on this segment, then

|f(y)− f(x)− ⟨∇f(x), y − x⟩| ≤ L

2
∥y − x∥2 . (2.1)

The second lemma established in [37, Section 3] is crucial in the convergence analysis of the general
linesearch methods developed in this paper.

Lemma 2.2. Let
{
xk
}

and
{
dk
}

be sequences in IRn satisfying the condition

∞∑
k=1

∥∥xk+1 − xk
∥∥ · ∥∥dk∥∥ <∞. (2.2)

If x̄ is an accumulation point of
{
xk
}

and if the origin is an accumulation point of
{
dk
}
, then there exists

an infinite set J ⊂ IN such that

xk
J→ x̄ and dk

J→ 0. (2.3)

Next we recall the classical results from [20, Section 8.3.1] that describe important properties of
accumulation points generated by a sequence satisfying the limit condition introduced by Ostrowski [48].

Lemma 2.3. Let
{
xk
}
⊂ IRn be a sequence satisfying the Ostrowski condition

lim
k→∞

∥xk+1 − xk∥ = 0. (2.4)

Then the following assertions are fulfilled:
(i) If

{
xk
}

is bounded, then the set of accumulation points of
{
xk
}

is nonempty, compact, and
connected in IRn.

(ii) If
{
xk
}

has an isolated accumulation point x̄, then this sequence converges to x̄.

The version of the fundamental Kurdyka-Łojasiewicz (KL) property formulated below is taken from
Absil et al. [1, Theorem 3.4].

Definition 2.4. Let f : IRn → IR be a differentiable function. We say that f satisfies the KL property at
x̄ ∈ IRn if there exist a number η > 0, a neighborhood U of x̄, and a nondecreasing function ψ : (0, η) →
(0,∞) such that the function 1/ψ is integrable over (0, η) and we have

∥∇f(x)∥ ≥ ψ
(
f(x)− f(x̄)

)
for all x ∈ U with f(x̄) < f(x) < f(x̄) + η. (2.5)
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Remark 2.5. If f satisfies the KL property at x̄ with a neighborhood U , it is clear that the same property
holds for any x ∈ U where f(x) = f(x̄). It has been realized that the KL property is satisfied in broad
settings. In particular, it holds at every nonstationary point of f ; see [3, Lemma 2.1 and Remark 3.2(b)].
Furthermore, it is proved in the seminal paper by Łojasiewicz [43] that any analytic function f : IRn → IR
satisfies the KL property at every point x̄ with ψ(t) = Mtq for some q ∈ [0, 1). As demonstrated in [37,
Section 2], the KL property formulated in Attouch et al. [3] is stronger than the one in Definition 2.4.
Typical smooth functions that satisfy the KL property from [3], and hence the one from Definition 2.4, are
smooth semialgebraic functions and also those from the more general class of functions known as definable
in o-minimal structures; see [3, 4, 41]. The latter property is fulfilled, e.g., in important models arising
in deep neural networks, low-rank matrix recovery, principal component analysis, and matrix completion
as discussed in [10, Section 6.2].

Next we present, based on [1], some descent-type conditions ensuring the global convergence of iterates
for smooth functions that satisfy the KL property.

Proposition 2.6. Let f : IRn → IR be a C1-smooth function, and let the sequence of iterations
{
xk
}
⊂ IRn

satisfy the following conditions:

(H1) (primary descent condition). There exists σ > 0 such that for sufficiently large k ∈ IN, we have

f(xk)− f(xk+1) ≥ σ
∥∥∇f(xk)∥∥ · ∥∥xk+1 − xk

∥∥ .
(H2) (complementary descent condition). For sufficiently large k ∈ IN, we have[

f(xk+1) = f(xk)
]
=⇒ [xk+1 = xk].

If x̄ is an accumulation point of
{
xk
}

and f satisfies the KL property at x̄, then xk → x̄ as k → ∞.

When the sequence under consideration is generated by a linesearch method and satisfies some con-
ditions stronger than (H1) and (H2) in Proposition 2.6, its convergence rates are established in [37,
Proposition 2.4] under the KL property with ψ(t) =Mtq as given below.

Proposition 2.7. Let f : IRn → IR be a C1-smooth function, and let the sequences
{
xk
}
⊂ IRn, {τk} ⊂

[0,∞),
{
dk
}

⊂ IRn satisfy the iterative condition xk+1 = xk + τkd
k for all k ∈ IN. Assume that for

sufficiently large k ∈ IN, we have xk+1 ̸= xk together with the estimates

f(xk)− f(xk+1) ≥ βτk
∥∥dk∥∥2 and

∥∥∇f(xk)∥∥ ≤ α
∥∥dk∥∥ , (2.6)

where α, β are some positive constants. Suppose in addition that the sequence {τk} is bounded away from
0 (i.e., there exists some τ̄ > 0 such that τk ≥ τ̄ for sufficiently large k ∈ IN), that x̄ is an accumulation
point of

{
xk
}
, and that f satisfies the KL property at x̄ with ψ(t) =Mtq for some M > 0 and q ∈ [1/2, 1).

Then the following convergence rates are guaranteed:

(i) If q = 1/2, then the sequence
{
xk
}

converges linearly to x̄.

(ii) If q ∈ (1/2, 1), then we have the estimate∥∥xk − x̄
∥∥ = O

(
k−

1−q
2q−1

)
.

Remark 2.8. Observe that the two conditions in (2.6) together with the boundedness away from 0 of
{τk} yield assumptions (H1), (H2) in Proposition 2.6. Indeed, (H1) is verified by the following inequalities:

f(xk)− f(xk+1) ≥ βτk
∥∥dk∥∥2 = β

∥∥τkdk∥∥ · ∥∥dk∥∥
≥ β

α

∥∥xk+1 − xk
∥∥ · ∥∥∇f(xk)∥∥ .

In addition, since {τk} is bounded away from 0, there exists τ̄ > 0 such that τk ≥ τ̄ for sufficiently large
k ∈ IN. Then for such k, the condition f(xk+1) = f(xk) implies that dk = 0 by the first inequality in
(2.6), and hence xk+1 = xk by the iterative procedure xk+1 = xk + τkd

k, which therefore verifies (H2).
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3 Global and Local Approximations of Gradients
This section is devoted to analyzing several methods for approximating gradients of a smooth function
f : IRn → IR by using only information about the function values that frequently appears in derivative-
free optimization. Methods of this type include, in particular, finite differences [47, Section 9], the
Gupal estimation [31], and gradient estimation via linear interpolation [7]. We construct two types of
approximations that cover all these methods.

Definition 3.1. Let f : IRn → IR be a C1-smooth function. A mapping G : IRn × (0,∞) → IRn is:
(i) A global approximation of ∇f if there is a constant C > 0 such that

∥G(x, δ)−∇f(x)∥ ≤ Cδ for any (x, δ) ∈ IRn × (0,∞). (3.1)

(ii) A local approximation of ∇f if for any bounded set Ω ⊂ IRn and any ∆ > 0, there is C > 0 with

∥G(x, δ)−∇f(x)∥ ≤ Cδ for any (x, δ) ∈ Ω× (0,∆]. (3.2)

Remark 3.2. We have the following observations related to Definition 3.1:
(i) If G is a global approximation of ∇f , then it is also a local approximation of ∇f .
(ii) Assume that G is a local approximation of ∇f and that x ∈ IRn. Then we deduce from (3.2) with

Ω = {x} and any ∆ > 0 the condition

lim sup
δ↓0

∥G(x, δ)−∇f(x)∥
δ

<∞. (3.3)

Next we formulate the two standard types of finite differences taken from [47, Section 9], which serve
as typical examples of the approximations in Definition 3.1.

• Forward finite difference:

G(x, δ) := 1

δ

n∑
i=1

(f(x+ δei)− f(x)) ei for any (x, δ) ∈ IRn × (0,∞). (3.4)

• Central finite difference:

G(x, δ) := 1

2δ

n∑
i=1

(f(x+ δei)− f(x− δei)) ei for any (x, δ) ∈ IRn × (0,∞). (3.5)

Remark 3.3. Let us now recall some results on the error bounds for the two types of finite differences
that are mentioned above.

(i) The global error bound for the forward finite difference (see, e.g., [7, Theorem 2.1] and [47,
Section 8]) shows that it is a global approximation of ∇f when f ∈ C1,1

L . The local error bound for the
forward finite difference is also given in [47, Exercise 9.13].

(ii) On the other hand, the global error bound for the central finite difference (see, e.g., [7, The-
orem 2.2] and [47, Lemma 9.1]) requires that f is twice continuously differentiable with a Lipschitz
continuous Hessian, which is a rather restrictive assumption.

For completeness, we present a short proof showing that both types of finite differences are global
approximations of ∇f when f ∈ C1,1

L and are local approximations of ∇f when f ∈ C1,1.

Proposition 3.4. Let f : IRn → IR be a C1-smooth function. Then the following hold:
(i) Given x ∈ IRn and δ > 0, if the gradient ∇f is Lipschitz continuous on B(x, δ) with the constant

L > 0, then both forward finite difference (3.4) and central finite difference (3.5) satisfy the estimate

∥G(x, δ)−∇f(x)∥ ≤ L
√
nδ

2
. (3.6)

(ii) If the gradient ∇f is globally Lipschitz continuous with the constant L > 0, then both forward
finite difference (3.4) and central finite difference (3.5) satisfy the estimate

∥G(x, δ)−∇f(x)∥ ≤ L
√
nδ

2
for any (x, δ) ∈ IRn × (0,∞). (3.7)

(iii) If the gradient ∇f is locally Lipschitz continuous, then for any bounded set Ω ⊂ IRn and for any
∆ > 0, there exists a positive number L such that both forward finite difference (3.4) and central finite
difference (3.5) satisfy the estimate

∥G(x, δ)−∇f(x)∥ ≤ L
√
nδ

2
for any (x, δ) ∈ Ω× (0,∆]. (3.8)
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Proof. We begin with verifying (i) for each type of the aforementioned finite differences and then employ
(i) to justify (ii) and (iii) for both types.

(i) Take any x ∈ IRn, δ > 0 and assume that ∇f is Lipschitz continuous on B(x, δ) with the constant
L > 0. Consider first the case where G is given by the forward finite difference (3.4). Then for any
i = 1, . . . , n, we get by employing Lemma 2.1 that

|f(x+ δei)− f(x)− ⟨∇f(x), x+ δei − x⟩| ≤ L

2
∥x+ δei − x∥2 =

Lδ2

2
, (3.9)

which is clearly equivalent to ∣∣∣∣1δ (f (x+ δei)− f (x))− ∂f

∂xi
(x)

∣∣∣∣ ≤ Lδ

2
.

Since the latter inequality holds for all i = 1, . . . , n, we deduce that

∥G(x, δ)−∇f(x)∥ =

√√√√ n∑
i=1

(
1

δ
(f(x+ δei)− f (x))− ∂f

∂xi
(x)

)2

≤ L
√
nδ

2
,

which therefore verifies estimate (3.6).
Assume now that G is given by the central finite difference (3.5). Employing Lemma 2.1 gives us for

any i = 1, . . . , n the two estimates

|f(x+ δei)− f(x)− ⟨∇f(x), (x+ δei)− x⟩| ≤ Lδ2

2
,

|f(x)− f(x− δei)− ⟨∇f(x), x− (x− δei)⟩| ≤
Lδ2

2
.

Summing up the above estimates and using the triangle inequality, we deduce that

|f(x+ δei)− f(x− δei)− 2 ⟨∇f(x), δei⟩| ≤ Lδ2,

which implies in turn the conditions∣∣∣∣ 12δ (f (x+ δei)− f (x− δei))−
∂f

∂xi
(x)

∣∣∣∣ ≤ Lδ

2

for all i = 1, . . . , n. Therefore, we get

∥G(x, δ)−∇f(x)∥ =

√√√√ n∑
i=1

(
1

2δ
(f(x+ δei)− f (x− δei))−

∂f

∂xi
(x)

)2

≤ L
√
nδ

2
,

which brings us to (3.6) and thus justifies (i).
Assertion (ii) follows directly from (i). To verify (iii), pick some ∆ > 0 and a bounded set Ω ⊂ IRn,

and then find r > 0 such that Ω ⊂ rB. Defining Θ := (r + ∆)B, it is clear that Θ is compact. Since
∇f is locally Lipschitzian, it is Lipschitz continuous on Θ with some constant L > 0. Taking any
(x, δ) ∈ Ω × (0,∆], we get that B(x, δ) ⊂ Θ, and thus ∇f is Lipschitz continuous on B(x, δ) with the
same constant L. Employing finally (i) justifies assertion (iii).

The following example shows that when the local Lipschitz continuity of ∇f is replaced by merely
the continuity of ∇f , the finite differences may not be a local approximation of ∇f .

Example 1. Define the univariate real-valued function f by

f(x) :=

{
2
3

√
x3 if x ≥ 0,

− 2
3

√
−x3 if x < 0.

The derivative of f is calculated by

∇f(x) =

{√
x if x ≥ 0,

√
−x if x < 0

7



being clearly continuous on IR while not Lipschitz continuous around 0. If we suppose that G(x, δ) is the
forward finite difference approximation of ∇f(x) from (3.4), we get that

G(0, δ) = f(δ)− f(0)

δ
=

2
3

√
δ3

δ
=

2
√
δ

3
for all δ > 0,

which implies that G(0, δ)/δ → ∞ as δ ↓ 0. It follows from (3.3) that G(x, δ) is not a local approximation
of the derivative ∇f . Supposing now that G(x, δ) is the central finite difference approximation of ∇f(x),
we deduce from (3.5) the expression

G(0, δ) = f(δ)− f(−δ)
2δ

=
4
√
δ

3
for all δ > 0,

which also tells us that G(x, δ) is not a local approximation of ∇f .

4 General Derivative-Free Methods for C1,1
L Functions

This section addresses the optimization problem (1.1) when f ∈ C1,1
L for some L > 0. By employ-

ing gradient approximation methods that satisfy the global error bound (3.1), we propose the general
derivative-free method with constant stepsize (DFC) to solve this problem for both noiseless and noisy
cases, providing its convergence analysis. The DFC algorithm is described as follows.

4.1 Algorithm Construction

Algorithm 1 (DFC).

Step 0. Choose a global approximation G of ∇f under condition (3.1). Select an initial point x1 ∈ IRn,
an initial sampling radius δ1 > 0, a constant C1 > 0, a reduction factor θ ∈ (0, 1), and scaling factors
µ > 2, η > 1, κ > 0. Set k := 1.

Step 1 (approximate gradient). Find gk and the smallest nonnegative integer ik such that

gk = G(xk, θikδk) and
∥∥gk∥∥ > µCkθ

ikδk.

Then set δk+1 := θikδk.

Step 2 (update). If f
(
xk− κ

Ck
gk
)
≤ f(xk)− κ(µ− 2)

2Ckµ

∥∥gk∥∥2, then xk+1 := xk− κ

Ck
gk and Ck+1 := Ck.

Otherwise, xk+1 := xk and Ck+1 := ηCk.

Remark 4.1. Let us present some observations concerning Algorithm 1. The first observation clarifies
the existence of gk and ik in Step 1. Observation (ii) explains the iteration updates in Step 2 while
observation (iii) interprets the term “constant stepsize” in the name of our method.

(i) The procedure of finding gk and ik that satisfy Step 1 can be given as follows. Set ik := 0 and

gk := G(xk, δk). (4.1)

While
∥∥gk∥∥ ≤ µCkθ

ikδk, increase ik by 1 and recalculate gk under (4.1). When ∇f(xk) ̸= 0, the existence
of gk and ik in Step 1 is guaranteed. Indeed, otherwise we get a sequence

{
gki
}

with

gki = G(xk, θiδk) and
∥∥gki ∥∥ ≤ µθiδk for all i ∈ IN. (4.2)

Since θ ∈ (0, 1), the latter means that gki → 0 as i→ ∞. Remembering that G is a global approximation
of ∇f , we get for C > 0 given in (3.1) that∥∥gki −∇f(xk)

∥∥ ≤ Cθiδk whenever i ∈ IN.

Letting i → ∞ with taking into account that gki → 0, the latter inequality implies that ∇f(xk) = 0,
which is a contradiction.

(ii) The condition f(xk − C−1
k κgk) ≤ f(xk) − κ(µ− 2)

2Ckµ

∥∥gk∥∥2 determines whether Ck is a good

approximation for C in the sense that the objective function f is sufficiently decreasing when the iterate
moves from xk to xk+1 := xk −C−1

k κgk. If this condition fails, we increase Ck by setting Ck+1 := rCk to
get a better approximation for C and stagnate the iterative sequence by setting xk+1 := xk.

(iii) It will be shown in Proposition 4.2 that there exists a positive number C̄ such that Ck = C̄ for
sufficiently large k ∈ IN, which also implies that xk+1 = xk − κC̄−1gk for such k. This explains the term
“constant stepsize” in the name of our algorithm.
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4.2 Analysis for Noiseless Functions
In this subsection, we derive convergence properties of DFC in Algorithm 2 for noiseless functions, i.e.,
when f(x) is available for all x ∈ IRn. Our analysis begins with a crucial result showing that the tail of
the sequence {Ck} generated by Algorithm 1 is constant.

Proposition 4.2. Let {Ck} be the sequence generated by Algorithm 1. Assume that ∇f(xk) ̸= 0 for all
k ∈ IN. Then there exists a number N ∈ IN such that Ck+1 = Ck whenever k ≥ N .

Proof. Since G is a global approximation of ∇f under condition (3.1), there exists C > 0 such that

∥G(x, δ)−∇f(x)∥ ≤ Cδ for all (x, δ) ∈ IRn × (0,∞). (4.3)

By the imposed assumption, we find L > 0 such that ∇f is Lipschitz continuous with the constant L on
IRn. Arguing by contradiction, suppose that the number N asserted in the proposition does not exist.
By Step 2 of Algorithm 1, this implies that Ck+1 = ηCk for infinitely many k ∈ IN, and hence Ck → ∞
as k → ∞. Therefore, there exists a number K ∈ IN such that CK+1 = ηCK and CK > max {C,Lκ}.
Using Step 2 of Algorithm 1 together with the update CK+1 = ηCK , we deduce that

f
(
xK − κ

CK
gK
)
> f(xK)− κ(µ− 2)

2CKµ

∥∥gK∥∥2 . (4.4)

Combining gK = G(xK , δK+1) and
∥∥gK∥∥ ≥ µCKδK+1 from Step 1 of Algorithm 1 with (4.3) and CK > C

as above, we get the relationships∥∥gK −∇f(xK)
∥∥ =

∥∥G(xK , δK+1)−∇f(xK)
∥∥

≤ CδK+1 ≤ CKδK+1 ≤ µ−1
∥∥gK∥∥ .

By the Cauchy-Schwarz inequality, the latter tells us that〈
∇f(xK), gK

〉
=
〈
∇f(xK)− gK , gK

〉
+
∥∥gK∥∥2

≥ −
∥∥∇f(xK)− gK

∥∥ · ∥∥gK∥∥+ ∥∥gK∥∥2
≥ (1− µ−1)

∥∥gK∥∥2 .
Combining this with Lemma 2.1 and taking into account the global Lipschitz continuity of ∇f with the
constant L as well as the condition CK > Lκ as above, we get that

f
(
xK − κ

CK
gK
)
− f(xK) ≤ − κ

CK

〈
∇f(xK), gK

〉
+
L

2

∥∥∥∥ κ

CK
gK
∥∥∥∥2

≤ − κ

CK

(
1− 1

µ

)∥∥gK∥∥2 + κ

2CK

∥∥gK∥∥2
= − κ

CK

∥∥gK∥∥2 (1
2
− 1

µ

)
= −κ(µ− 2)

2CKµ

∥∥gK∥∥2 ,
which clearly contradicts (4.4) and thus completes the proof of the proposition.

Now we are ready to establish the convergence properties of Algorithm 1 in the noiseless case.

Theorem 4.3. Let
{
xk
}

be the sequence generated by Algorithm 1 and assume that ∇f(xk) ̸= 0 for all
k ∈ IN. Then either f(xk) → −∞ as k → ∞, or we have the assertions:

(i) The gradient sequence
{
∇f(xk)

}
converges to 0 as k → ∞.

(ii) If f satisfies the KL property at some accumulation point x̄ of
{
xk
}
, then xk → x̄ as k → ∞.

(iii) If f satisfies the KL property at some accumulation point x̄ of
{
xk
}

with ψ(t) =Mtq for M > 0

and q ∈ [1/2, 1), then the following convergence rates are guaranteed for
{
xk
}
:

• If q = 1/2, then
{
xk
}
,
{
∇f(xk)

}
, and

{
f(xk)

}
converge linearly to x̄, 0, and f(x̄), respectively.

• The setting of q ∈ (1/2, 1) ensures the estimates∥∥xk − x̄
∥∥ = O

(
k−

1−q
2q−1

)
,
∥∥∇f(xk)∥∥ = O

(
k−

1−q
2q−1

)
, and f(xk)− f(x̄) = O

(
k−

2−2q
2q−1

)
.

Proof. Since G is a global approximation of ∇f under condition (3.1), there exists C > 0 such that

∥G(x, δ)−∇f(x)∥ ≤ Cδ for all (x, δ) ∈ IRn × (0,∞). (4.5)
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By f ∈ C1,1
L , we find L > 0 such that the gradient mapping ∇f is Lipschitz continuous with the constant

L on IRn. Taking the number N ∈ IN from Proposition 4.2 ensures that Ck = CN for all k ≥ N . This
implies by Step 2 of Algorithm 1 that

f(xk+1) = f
(
xk − κ

CN
gk
)
≤ f(xk)− κ(µ− 2)

2CNµ

∥∥gk∥∥2 for all k ≥ N, (4.6)

which tells us that
{
f(xk)

}
k≥N

is decreasing. If f(xk) → −∞, there is nothing to prove, so we assume that
f(xk) ̸→ −∞, which implies that

{
f(xk)

}
is convergent. As a consequence, we get f(xk)− f(xk+1) → 0

as k → ∞. Then (4.6) tells us that gk → 0. From Step 1 of Algorithm 1 it follows that∥∥gk∥∥ > µCkδk+1 = µCNδk+1 for all k ≥ N (4.7)

ensuring that δk+1 ↓ 0 as k → ∞. It further follows from gk = G(xk, δk+1) and (4.5) that∥∥gk −∇f(xk)
∥∥ =

∥∥G(xk, δk+1)−∇f(xk)
∥∥ ≤ Cδk+1 for all k ∈ IN, (4.8)

which yields ∇f(xk) → 0 as k → ∞ and thus justifies (i).
To verify (ii), take any accumulation point x̄ of

{
xk
}

and assume that f satisfies the KL property at
x̄. By (4.7) and (4.8), we obtain that∥∥∇f(xk)∥∥ ≤

∥∥gk∥∥+ ∥∥∇f(xk)− gk
∥∥ ≤

∥∥gk∥∥+ Cδk+1

≤
∥∥gk∥∥+ C

∥∥gk∥∥
µCN

= α
∥∥gk∥∥ for all k ≥ N,

where α := µCN+C
µCN

. This together with (4.6) brings us to condition (2.6). By Remark 2.8(i), assumptions
(H1) and (H2) in Proposition 2.6 hold. Therefore, xk → x̄ as k → ∞, which justifies (ii).

To proceed with the proof of assertion (iii) under the KL property at x̄ with ψ(t) = Mtq, we use
the iterations xk+1 = xk − C−1κgk as in Step 2 of Algorithm 1 together with ∥gk∥ > 0 from Step 1 of
Algorithm 1. This gives us xk+1 ̸= xk for k ≥ N . Combining the latter with (4.6) and (4.9), we see
that all the assumptions in Proposition 2.7 are satisfied. This verifies the convergence rates of

{
xk
}

to x̄
stated in (iii). Since x̄ is an accumulation point of

{
xk
}
, it follows from (i) that x̄ is a stationary point

of f , i.e., ∇f(x̄) = 0. Hence the usage of Lemma 2.1 and the decreasing property of
{
f(xk)

}
k≥N

yields

0 ≤ f(xk)− f(x̄) ≤
〈
∇f(x̄), xk − x̄

〉
+
L

2

∥∥xk − x̄
∥∥2 =

L

2

∥∥xk − x̄
∥∥2 ,

which justifies the convergence rates of
{
f(xk)

}
to f(x̄) as asserted in (iii).

It remains to verify the convergence rates for
{
∇f(xk)

}
. Since ∇f is Lipschitz continuous with the

constant L > 0, the claimed property follows from the convergence rates for
{
xk
}

due to∥∥∇f(xk)∥∥ =
∥∥∇f(xk)−∇f(x̄)

∥∥ ≤ L
∥∥xk − x̄

∥∥ .
This therefore completes the proof of the theorem.

Remark 4.4. Here we present a comparison between our analysis for DFC with the analysis in [13].
While both [13] and our paper address the noiseless case and [13] considers a more general approach, our
analysis provides additional developments that are not studied in [13]. Specifically:

(i) Our DFC method (Algorithm 1) explicitly specifies how to construct the gradient approximation.
In contrast, [13, Algorithm 3.1] assumes a more general construction and requires the gradient
approximation to be sufficiently accurate (as per [13, Assumption 3.1]). In order to make the
gradient approximation in DFC satisfying [13, Assumption 3.1], the constant Ck should be larger
than C, which is not required in and not ensured by our analysis. Furthermore, the finite difference
interval and the stepsize are interacting each other in our DFC method, while they are considered
separately in [13, Algorithm 3.1].

(ii) Additionally, [13, Algorithm 3.1] employs a different rule for choosing stepsize, allowing it to in-
crease after each iteration, while our DFC does not allow this. The numerical experiments in
Subsection 6.1.1 demonstrate that this small change significantly affects the numerical performance
of the methods with a more favourable result for DFC.

(iii) Apart from the differences in algorithmic constructions, our analysis takes a distinct direction by
demonstrating the convergence of the gradient sequence to 0 and the convergence of the sequence of
iterates to a stationary point. On the other hand, [13, Theorem 3.1] reveals the number of iterations
required to reach a near-stationary point, and it also establishes that lim infk→∞

∥∥∇f(xk)∥∥ = 0.
Although we do not conduct the complexity analysis for DFC in this section, our asymptotic results
look to be transparently stronger.
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4.3 Analysis for Noisy Functions
In this part, we provide the convergence analysis with error bounds for DFC in Algorithm 1 addressing
problem (1.1) when only a noisy approximation ϕ(x) = f(x) + ξ(x) of f is available, where ξ : IRn → IR
is a noise function bounded by some constant ξf > 0, i.e.,

|ξ(x)| ≤ ξf for all x ∈ IRn. (4.9)

Due to the design of DFC, we do not assume that ξf is known. For brevity, consider only the forward
finite difference approximation, while other gradient approximation methods can be employed via mod-
ifications of the inexact conditions in Definition 3.1 for noisy functions. We first construct the gradient
approximation for f via the forward finite difference with the noisy function ϕ defined by

G̃(x, δ) := 1

δ

n∑
i=1

(
ϕ(x+ δei)− ϕ(x)

)
ei for any (x, δ) ∈ IRn × (0,∞), (4.10)

where the positive number δ in (4.10) is named the finite difference interval. Recall the following noisy
version of Proposition 3.4, which is well known and can be found in, e.g., [7, Theorem 2.1].

Proposition 4.5. Let f : IRn → IR be a C1,1
L function. Then the noisy forward finite difference (4.10)

satisfies the error bound ∥∥∥G̃(x, δ)−∇f(x)
∥∥∥ ≤ L

√
nδ

2
+

2
√
nξf
δ

for all δ > 0. (4.11)

For a better exposition, consider DFC with specific parameters µ = 4 and κ = L
√
n

2 , although
other general selections of µ > 2 and κ > 0 still work with the same analysis. We also define Lk :=
Ck

κ for each k ∈ N as approximate Lipschitz constants. In order to deal with noise, a relaxation
is required in the descent condition in Step 2 of DFC, which leads us to the following algorithm.

Algorithm 2 (DFC for noisy functions).

Step 0. Select some x1 ∈ IRn, δ1 > 0, L1 > 0, θ ∈ (0, 1), and η > 1.

Step 1 (approximate gradient). Find gk and the smallest nonnegative integer ik such that

gk = G̃(xk, θikδk) and
∥∥gk∥∥ > 2Lk

√
nθikδk. (4.12)

Then set δk+1 := θikδk.

Step 2 (update). If ϕ
(
xk − 1

Lk
gk
)
≤ ϕ(xk)− 1

24Lk

∥∥gk∥∥2, then xk+1 := xk − 1

Lk
gk and Lk+1 := Lk.

Otherwise, xk+1 := xk and Lk+1 := ηLk.

Due to the presence of noise, there is no guarantee that Step 1 of Algorithm 2 will terminate after
a finite number of trials for ik. Therefore, we say that Step 1 is successful if such an ik is found, and
is unsuccessful otherwise. Let us begin our analysis with a result that ensures the success of Step 1 of
Algorithm 2 and provides a bound for the approximate Lipschitz constant Lk, whenever the gradient of
the current iterate is not near 0.

Proposition 4.6. At the kth iteration of Algorithm 2, if the conditions

∥∥∇f(xk)∥∥ ≥ (4θ−1η + θ−1 + 1)
√
Lnξf , δk ≥

√
4ξf
L
, Lk < ηL

are satisfied, then Step 1 is successful with δk+1 ≥
√

4ξf
L .

Proof. Let i := ⌊logθ
(

1
δk

√
4ξf
L

)
⌋, where ⌊·⌋ stands for the floor/greatest integer function. Since we have

δk ≥
√

4ξf
L and θ ∈ (0, 1), the number i is a nonnegative integer satisfying the inclusion

i ∈

(
logθ

(
1

δk

√
4ξf
L

)
− 1, logθ

(
1

δk

√
4ξf
L

)]
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while implying in turn that θiδk ∈
[√

4ξf
L , θ−1

√
4ξf
L

)
. We now show that inequality (4.12) in Step 1 of

Algorithm 2 is satisfied for ik = i, which yields the success of the step with δk+1 ≥ θiδk ≥
√

4ξf
L . Indeed,

with gki := G̃(xk, θiδk), the error bound (4.11) and θiδk ∈
[√

4ξf
L , θ−1

√
4ξf
L

)
tell us that

∥∥gki −∇f(xk)
∥∥ ≤ L

√
n

2
θiδk +

2
√
nξf

θiδk

≤ θ−1
√
Lnξf +

√
Lnξf = (1 + θ−1)

√
Lnξf .

Since
∥∥∇f(xk)∥∥ ≥ (4θ−1η + θ−1 + 1)

√
Lnξf and Lk < ηL, we get that

∥∥gki ∥∥ ≥
∥∥∇f(xk)∥∥− ∥∥gki −∇f(xk)

∥∥ ≥ 4θ−1η
√
Lnξf = 2ηL

√
nθ−1

√
4ξf
L

> 2Lk

√
nθiδk.

Therefore, Step 1 of Algorithm 2 is successful with δk+1 ≥ θiδk ≥
√

4ξf
L .

Proposition 4.7. At the kth iteration of Algorithm 2, suppose that
∥∥∇f(xk)∥∥ ≥ 16

√
Lnξf and that

Step 1 is successful with δk+1 ≥
√

4ξf
L . The following assertions hold:

(i)
∥∥gk −∇f(xk)

∥∥ ≤ 4L+Lk

15Lk

∥∥gk∥∥.
(ii) If in addition Lk ≥ L, then

〈
∇f(xk), gk

〉
≥ 2

3

∥∥gk∥∥2 and
∥∥∇f(xk)∥∥ ≤ 4

3

∥∥gk∥∥.
(iii) If in addition Lk < ηL, then Lk+1 < ηL.

Proof. (i) Since Step 1 of Algorithm 2 is successful, we deduce that
∥∥gk∥∥ ≥ 2Lk

√
nδk+1. Combining

this with gk = G̃(xk, δk+1), (4.11), and the estimates δk+1 ≥
√

4ξf
L ,

∥∥∇f(xk)∥∥ ≥ 16
√
Lnξf brings us to

∥∥gk −∇f(xk)
∥∥ ≤ L

√
n

2
δk+1 +

2
√
nξf

δk+1

≤ L
√
n

2

∥∥gk∥∥
2Lk

√
n
+
√
Lnξf

≤ L

4Lk

∥∥gk∥∥+ 1

16

∥∥∇f(xk)∥∥
≤ L

4Lk

∥∥gk∥∥+ 1

16

∥∥gk∥∥+ 1

16

∥∥gk −∇f(xk)
∥∥ .

The latter inequality yields
∥∥gk −∇f(xk)

∥∥ ≤ 4L+Lk

15Lk

∥∥gk∥∥ , which verifies (i).
(ii) Using (i) and Lk ≥ L gives us

∥∥gk −∇f(xk)
∥∥ ≤ 1

3

∥∥gk∥∥. Combining this estimates with the
Cauchy-Schwarz inequality, we arrive at〈

∇f(xk), gk
〉
≥
〈
∇f(xk)− gk, gk

〉
+
∥∥gk∥∥2

≥ −
∥∥∇f(xk)− gk

∥∥ ∥∥gk∥∥+ ∥∥gk∥∥2 ≥ 2

3

∥∥gk∥∥2 .
In addition, it follows from

∥∥gk −∇f(xk)
∥∥ ≤ 1

3

∥∥gk∥∥ that

∥∥gk∥∥ ≥
∥∥∇f(xk)∥∥− ∥∥gk −∇f(xk)

∥∥ ≥
∥∥∇f(xk)∥∥− 1

3

∥∥gk∥∥ ,
which justifies the claimed estimates

∥∥∇f(xk)∥∥ ≤ 4
3

∥∥gk∥∥.
(iii) This assertion obviously holds if Lk+1 = Lk, so we consider the case where Lk+1 = ηLk. Sup-

pose on the contrary that Lk+1 ≥ ηL, which yields Lk ≥ L. Then it follows from assertion (ii) that〈
∇f(xk), gk

〉
≥ 2

3

∥∥gk∥∥2. Furthermore, Lemma 2.1 tells us that

f
(
xk − 1

Lk
gk
)
− f(xk) ≤ − 1

Lk

〈
∇f(xk), gk

〉
+
L

2

∥∥∥∥ 1

Lk
gk
∥∥∥∥2

≤ − 1

Lk

2
3

∥∥gk∥∥2 + 1

2Lk

∥∥gk∥∥2 = − 1

6Lk

∥∥gk∥∥2 . (4.13)
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Since Step 1 is successful with δk+1 ≥
√

4ξf
L and Lk ≥ L, we deduce that

∥∥gk∥∥ > 2Lkδk+1 ≥ 2Lk

√
4ξf
L

≥ 4
√
Lkξf ,

which means that ξf ≤ 1
16Lk

∥∥gk∥∥2 . Combining the latter with (4.9) and (4.13) gives us

ϕ
(
xk − 1

Lk
gk
)
− ϕ(xk) ≤ f

(
xk − 1

Lk
gk
)
− f(xk) + 2ξf

≤ − 1

6Lk

∥∥gk∥∥2 + 1

8Lk

∥∥gk∥∥2 = − 1

24Lk

∥∥gk∥∥2 .
By Step 2 of Algorithm 2, it follows that Lk+1 = Lk, a contradiction, which justifies Lk+1 < ηL.

In the propositions above, we can choose θ ∈ (0, 1) and η > 1 to get 4θ−1η + θ−1 + 1 < 16 by taking,
e.g., θ =

√
2
2 and η = 2. To simplify the presentation, we make such a selection of parameters in the

results below. Under this choice, the following property of Algorithm 2 can be deduced immediately from
Proposition 4.6 and Proposition 4.7(iii).

Proposition 4.8. Let
{
xk
}

be generated by Algorithm 2 with L1 < ηL and δ1 ≥
√

4ξf
L . If for some K ∈

IN we have
∥∥∇f(xk)∥∥ ≥ 16

√
Lnηξf whenever k = 1, . . . ,K, then Step 1 is successful with δk+1 ≥

√
4ξf
L

and Lk+1 < ηL for all k = 1, . . . ,K.

Now we are ready to establish the main convergence properties of Algorithm 2.

Theorem 4.9. Let
{
xk
}

be generated by Algorithm 2 with δ1 ≥
√

4ξf
L and L1 < ηL. Then the number

N of iterations that Algorithm 2 takes until
∥∥∇f(xN )

∥∥ < 16
√
Lnξf is bounded by

N ≤ Nopt := 1 +

⌊
f(x1)− f∗ + 2ξf

Mξf

⌋
+

⌊
logη

(
ηL

L1

)⌋
, where M :=

15nL2
1

η(L+ 4L1)2
.

The total number Nfval of function evaluations needed to achieve this goal is bounded by

Nfval ≤ (n+ 2)Nopt + n

⌊
logθ

(
2
√
ξf

δ1
√
L

)⌋
.

Proof. If Step 1 is unsuccessful for the first time at K ≤ Nopt, then it follows from Proposition 4.8 that∥∥∇f(xN )
∥∥ < 16

√
Lnξf for some N ≤ K, which verifies the claimed bound. Now we suppose that Step 1

is successful for all k = 1, . . . , Nopt and assume on the contrary that∥∥∇f(xk)∥∥ ≥ 16
√
Lnξf for all k = 1, . . . , Nopt.

Proposition 4.8 tells us that δk+1 ≥
√

4ξf
L and Lk+1 < ηL for all k = 1, . . . , Nopt, and thus it follows

from Proposition 4.7(i) and the construction of {Lk} that∥∥gk −∇f(xk)
∥∥ ≤ 4L+ Lk

15Lk

∥∥gk∥∥ ≤ 4L+ L1

15L1

∥∥gk∥∥ .
This gives us in turn the estimates

16
√
Lnξf ≤

∥∥∇f(xk)∥∥ ≤
∥∥gk∥∥+ ∥∥gk −∇f(xk)

∥∥ ≤ 4L+ 16L1

15L1

∥∥gk∥∥ for all k = 1, . . . , Nopt. (4.14)

Define I := {k ∈ IN | 1 ≤ k ≤ Nopt, Lk+1 = Lk} and deduce from the construction of {Lk} with Lk+1 <

ηL as k = 1, . . . , Nopt that there are at most
⌊
logη

(
ηL
L1

)⌋
iterations for which Lk+1 = ηLk. This yields

|I| ≥ Nopt −
⌊
logη

(
ηL

L1

)⌋
= 1 +

⌊
f(x1)− f∗ + 2ξf

Mξf

⌋
. (4.15)

Take any k = 1, . . . , Nopt. If k /∈ I, we get that ϕ(xk+1) = ϕ(xk). For any k ∈ I, it follows from Step 2
of Algorithm 2, Lk < ηL and (4.14) that

ϕ(xk+1)− ϕ(xk) ≤ − 1

24Lk

∥∥gk∥∥2 ≤ − 1

24ηL

∥∥gk∥∥2 ≤ −Mξf ,
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where M is defined in the statement of the theorem. Since ϕ(xk) = ϕ(xk+1) when k /∈ I, we have

f∗ − ξf ≤ ϕ(xNopt+1) = ϕ(x1) +

Nopt∑
k=1

(ϕ(xk+1)− ϕ(xk)) ≤ f(x1) + ξf − |I|Mξf ,

which yields |I| ≤ f(x1)−f∗+2ξf
Mξf

and thus contradicts (4.15).
(iii) By (ii), at most Nopt iterations are needed to reach the near stationary point. For each iteration

of Algorithm 2, we need at least one approximate gradient evaluation gk in Step 1. Since {δk} is

nonincreasing with δ1 ≥ δk ≥
√

4ξf
L , the number of additional approximate gradient evaluations gk

required to adjust the finite difference intervals δk throughout all the iterations is at most
⌊
logθ

(
2
√

ξf

δ1
√
L

)⌋
.

Employing the forward finite difference, we can reuse ϕ(xk) for additional gradient evaluations. This tells
us that the total number of function evaluations for determining the approximate gradient gk is at

most (n + 1)Nopt + n

⌊
logθ

(
2
√

ξf

δ1
√
L

)⌋
. We also need one additional function evaluation to check the

descent condition in Step 2 of Algorithm 2 at each iteration, which results in at most (n + 2)Nopt +

n

⌊
logθ

(
2
√

ξf

δ1
√
L

)⌋
total function evaluations.

Remark 4.10. Let us briefly discuss relationships between our analysis for DFC and the analysis in
[6]. First observe that the noise level is unknown for our DFC algorithm, while it is required to be
known for the analysis in [6] as mentioned after [6, Assumption 1.3]. The algorithmic construction of [6,
Algorithm 2.1] shares many similarities with [13, Algorithm 3.1], and so it has some major differences
with our DFC as mentioned above in Remark 4.4(i,ii).

5 General Derivative-Free Methods for C1,1 Functions
In this section, we consider problem (1.1), where f is of class C1,1 and develop new derivative-free
optimization methods in both cases of noiseless and noisy objective functions.

5.1 Backtracking Linesearch for Noiseless Functions
Here we propose and justify the novel derivative-free method with backtracking stepsize (DFB) to solve the
optimization problem (1.1) in the noiseless setting. The main result of this subsection establishes the global
convergence with convergence rates of the following algorithm, which employs gradient approximations
satisfying the local error bound estimate (3.2).

Algorithm 3 (DFB).

Step 0 (initialization). Choose a local approximation G of ∇f under condition (3.2). Select an initial
point x1 ∈ IRn and initial radius δ1 > 0, a constant C1 > 0, factors θ ∈ (0, 1), µ > 2, η > 1, linesearch
constants β ∈ (0, 1/2), γ ∈ (0, 1), τ̄ > 0, and an initial bound tmin

1 ∈ (0, τ̄). Choose a sequence of
manually controlled errors {νk} ⊂ [0,∞) such that νk ↓ 0 as k → ∞. Set k := 1.

Step 1 (approximate gradient). Select gk and the smallest nonnegative integer ik so that

gk = G
(
xk,min

{
θikδk, νk

} )
and

∥∥gk∥∥ > µCkθ
ikδk. (5.1)

Then set δk+1 := θikθk.

Step 2 (linesearch). Set tk := τ̄ . While

f(xk − tkg
k) > f(xk)− βtk

∥∥gk∥∥2 and tk ≥ tmin
k , (5.2)

set tk := γtk.

Step 3 (stepsize and parameters update). If tk ≥ tmin
k , then set τk := tk, Ck+1 := Ck, and tmin

k+1 := tmin
k .

Otherwise, set τk := 0, Ck+1 := ηCk, and tmin
k+1 := γtmin

k .

Step 4 (iteration update). Set xk+1 := xk − τkg
k. Increase k by 1 and go back to Step 1.

14



Remark 5.1. (i) Fix any k ∈ IN. The procedure of finding gk and ik that satisfies Step 1 of Algorithm 3
can be described as follows. Set ik := 0 and calculate gk as

gk = G
(
xk,min{θikδk, νk}

)
. (5.3)

While
∥∥gk∥∥ ≤ µCkθ

ikδk, increase ik by 1 and recalculate gk by formula (5.3). We now show that when
∇f(xk) ̸= 0, this procedure stops after a finite number of steps giving us gk and ik as desired. Indeed,
assuming on the contrary that the procedure does not stop, we get a sequence of

{
gki
}

with

gki = G
(
xk,min

{
θiδk, νk

} )
and

∥∥gki ∥∥ ≤ µCkθ
iδk for all i ∈ IN. (5.4)

Since G is a local approximation of ∇f , for any fixed ∆ > 0 condition (3.2) with Ω =
{
xk
}

ensures the
existence of a positive number C such that∥∥G(xk, δ)−∇f(xk)

∥∥ ≤ Cδ whenever 0 < δ ≤ ∆. (5.5)

By θ ∈ (0, 1), there is N ∈ IN with θiδk ≤ ∆ for all i ≥ N . Combining this with (5.4) and (5.5) yields∥∥gki −∇f(xk)
∥∥ ≤ Cθiδk and

∥∥gki ∥∥ ≤ µCkθ
iδk for all i ≥ N.

Letting i→ ∞, we arrive at ∇f(xk) = 0, which is a contradiction.
(ii) It follows directly from the construction of δk in Step 1 of Algorithm 3 that

gk = G
(
xk,min {δk+1, νk}

)
and

∥∥gk∥∥ > µCkδk+1. (5.6)

To proceed further with the convergence analysis of Algorithm 3, we obtain two results of their
independent interest. The first one reveals some uniformity of general linesearch procedures with respect
to the selections of reference points, stepsizes, and directions.

Lemma 5.2. Let f : IRn → IR be a function with a locally Lipschitz continuous gradient, and let
β ∈ (0, 1/2). Then for any nonempty bounded set Ω ⊂ IRn, there exists t̄ > 0 such that

f(x− tg) ≤ f(x)− βt ∥g∥2 whenever x ∈ Ω, 2 ∥g −∇f(x)∥ ≤ ∥g∥ , and t ∈ (0, t̄].

Proof. The boundedness of Ω gives us r > 0 such that Ω ⊂ rB. Using the continuity of ∇f and the
compactness of rB, define r′ := max

{
∥∇f(x)∥ | x ∈ rB

}
. Since f ∈ C1,1, there exists L > 0 such that

∇f is Lipschitz continuous with the constant L on Θ := (r + 2r′)B. By β < 1/2, we find t̄ > 0 with
t̄ < min

{
1, L−1(1− 2β)

}
. Now take some x ∈ Ω ⊂ Θ and g ∈ IRn such that 2 ∥g −∇f(x)∥ ≤ ∥g∥ and

t ∈ (0, t̄]. The choice of g gives us by the Cauchy-Schwarz inequality that

⟨∇f(x), g⟩ = ⟨∇f(x)− g, g⟩+ ∥g∥2 ≥ −∥∇f(x)− g∥ ∥g∥+ ∥g∥2

≥ − 1
2 ∥g∥

2
+ ∥g∥2 = 1

2 ∥g∥
2
,

(5.7)

and by using the triangle inequality that

∥∇f(x)∥ ≥ ∥g∥ − ∥g −∇f(x)∥ ≥ 1
2 ∥g∥ .

Combining the latter with the choice of t, t̄, x ∈ Ω ⊂ rB and the construction of r′ yields

t ∥g∥ ≤ t̄ ∥g∥ ≤ 2t̄ ∥∇f(x)∥ ≤ 2t̄r′ < 2r′,

which ensures that x− tg ∈ Θ. The convexity of Θ tells us that the entire line segment [x, x− tg] lies on
Θ. Remembering that ∇f is Lipschitz continuous with the constant L on Θ, we employ Lemma 2.1 by
taking into account that t ≤ t̄ < L−1(1− 2β) and that (5.7). This gives us

f(x− tg)− f(x) ≤ ⟨x− tg − x,∇f(x)⟩+ L

2
∥x− tg − x∥2

= −t ⟨g,∇f(x)⟩+ Lt2

2
∥g∥2 ≤ − t

2
∥g∥2 + Lt2

2
∥g∥2

= −βt ∥g∥2 + t ∥g∥2 2β − 1 + Lt

2
≤ −βt ∥g∥2

and thus completes the proof of the lemma.

Employing the obtained lemma, we derive the next result showing that unless the stationary point is
found, Algorithm 3 always makes a progress after a finite number of iterations.
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Proposition 5.3. Let
{
xk
}

and {τk} be the sequences generated by Algorithm 3, and let K ∈ IN be such
that ∇f(xK) ̸= 0. Then we can choose a number N ≥ K so that τN > 0.

Proof. Assume on the contrary that τk = 0 for all k ≥ K. Steps 3 and 4 of Algorithm 3 give us

tmin
k+1 = γtmin

k and xk = xK for all k ≥ K. (5.8)

Therefore, ∇f(xk) = ∇f(xK) ̸= 0 for all k ≥ K, which implies that gk and ik in Step 1 of Algorithm 3
exist for all k ≥ K. Since G is a local approximation of ∇f , for any fixed ∆ > 0 condition (3.2) with
Ω =

{
xK
}

ensures the existence of C > 0 with∥∥G(xK , δ)−∇f(xK)
∥∥ ≤ Cδ whenever 0 < δ ≤ ∆. (5.9)

It follows from Lemma 5.2 with Ω =
{
xK
}

that there exists some t̄ > 0 such that

f(xK − tg) ≤ f(xK)− βt ∥g∥2 whenever 2
∥∥g −∇f(xK)

∥∥ ≤ ∥g∥ and t ∈ (0, t̄]. (5.10)

Using νk ↓ 0, tmin
k ↓ 0, ∇f(xK) ̸= 0, and (5.8) gives us N ≥ K for which νN < min

{
∆, 1

3C

∥∥∇f(xK)
∥∥}

and tmin
N < γt̄. Then we get from (5.9) with taking into account xN = xK that∥∥G(xN ,min {δN+1, νN})−∇f(xN )

∥∥ ≤ Cmin {δN+1, νN} ≤ CνN ≤ 1

3

∥∥∇f(xN )
∥∥ .

Combining this with gN = G(xN ,min {δN+1, νN}) from (5.6) provides the estimate∥∥gN −∇f(xN )
∥∥ ≤ 1

3

∥∥∇f(xN )
∥∥ ,

which implies by the triangle inequality that∥∥gN∥∥ ≥
∥∥∇f(xN )

∥∥− ∥∥gN −∇f(xN )
∥∥ ≥ 2

∥∥gN −∇f(xN )
∥∥ .

Employing the latter together with (5.10) and xN = xK yields

f(xN − tgN ) ≤ f(xN )− βt
∥∥gN∥∥2 for all t ∈ (0, t̄]. (5.11)

It follows from (5.11) and the choice of parameters that

max
{
t
∣∣ f(xN − tgN ) ≤ f(xN )− βt

∥∥gN∥∥2 , t = τ̄ , τ̄ γ, τ̄γ2, . . .
}
> γt̄ > tmin

N ,

which implies in turn by Step 2 of Algorithm 3 that

tN = max
{
t
∣∣ f(xN − tgN ) ≤ f(xN )− βt

∥∥gN∥∥2 , t = τ̄ , τ̄ γ, τ̄γ2, . . .
}
> tmin

N .

By Step 3 of Algorithm 3, we conclude that τN = tN > 0, a contradiction completing the proof.

Now we are ready the establish the convergence properties of Algorithm 3.

Theorem 5.4. Let
{
xk
}

be the sequence generated by Algorithm 3 and assume that ∇f(xk) ̸= 0 for all
k ∈ IN. Then either f(xk) → −∞ as k → ∞, or the following assertions hold:

(i) Every accumulation point of
{
xk
}

is a stationary point of f .
(ii) If the sequence

{
xk
}

is bounded, then the set of accumulation points of
{
xk
}

is nonempty, compact,
and connected in IRn.

(iii) If
{
xk
}

has an isolated accumulation point x̄, then this sequence converges to x̄.

Proof. First it follows from Steps 2 and 3 of Algorithm 3 that

βτk
∥∥gk∥∥2 ≤ f(xk)− f(xk+1) for all k ∈ IN, (5.12)

which tells us that
{
f(xk)

}
is nonincreasing. If f(xk) → −∞, there is nothing to prove; so we assume that

f(xk) ̸→ −∞, which implies by the nonincreasing property of
{
f(xk)

}
that inf f(xk) > −∞. Summing

up the inequalities in (5.12) over k = 1, 2, . . . with taking into account that xk+1 = xk − τkg
k from the

update in Step 3 of Algorithm 3 gives us
∞∑
k=1

τk
∥∥gk∥∥2 <∞ and

∞∑
k=1

∥∥gk∥∥ · ∥∥xk+1 − xk
∥∥ <∞. (5.13)

We divide the proof of (i) into two parts by showing first that the origin is an accumulation point of{
gk
}

and then employing Lemma 2.2 to establish stationarity of all the accumulation points of
{
xk
}
.
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Claim 1. The origin 0 ∈ IRn is an accumulation point of the sequence
{
gk
}
.

Arguing by contradiction, suppose that there are numbers ε > 0 and K ∈ IN such that∥∥gk∥∥ ≥ ε for all k ≥ K. (5.14)

Combining this with (5.13) gives us τk ↓ 0 and
∑∞

k=1

∥∥xk+1 − xk
∥∥ < ∞. The latter implies that

{
xk
}

converges to some x̄ ∈ IRn. By taking a larger K, we can assume that τk < τ̄ for all k ≥ K. Let N be the
set of all k ∈ IN such that τk > 0. It follows from Proposition 5.3 that N is infinite. Hence we can take
any k ≥ K with k ∈ N and get that τk ∈ (0, τ̄). Step 3 of Algorithm 3 ensures that τk = tk ∈ [tmin

k , τ̄).
Fixing such an index k, we get from the exit condition in Step 2 of Algorithm 3 that

−γ−1βτk
∥∥gk∥∥2 < f(xk − γ−1τkg

k)− f(xk). (5.15)

The classical mean value theorem gives us x̃k ∈ [xk, xk − γ−1τkg
k] such that

f(xk − γ−1τkg
k)− f(xk) = −γ−1τk

〈
gk,∇f(x̃k)

〉
. (5.16)

Combining this with (5.15) yields

−γ−1βτk
∥∥gk∥∥2 < −γ−1τk

〈
gk,∇f(x̃k)

〉
,

which implies by dividing both sides of the inequality by −γ−1τk < 0 that〈
gk,∇f(x̃k)

〉
< β

∥∥gk∥∥2 for all k ≥ K, k ∈ N . (5.17)

Take some neighborhood Ω of x̄ and ∆ > 0. Since G is a local approximation of ∇f under condition
(3.2), there exists C > 0 such that

∥G(x, δ)−∇f(x)∥ ≤ Cδ whenever 0 < δ ≤ ∆ and x ∈ Ω. (5.18)

Since νk ↓ 0 and xk → x̄, by taking a larger K we can assume that νk < ∆ and xk ∈ Ω for all k ≥ K.
Using this together with (5.18) and gk = G(xk,min {δk+1, νk}) in (5.6) tells us that∥∥gk −∇f(xk)

∥∥ =
∥∥G(xk,min {δk+1, νk})−∇f(xk)

∥∥ ≤ Cmin {δk+1, νk} ≤ Cνk.

Combining the latter with xk → x̄, νk ↓ 0 as k → ∞, and the continuity of ∇f gives us

gk → ∇f(x̄) as k → ∞, (5.19)

which yields ∥∇f(x̄)∥ > 0 by (5.14). It follows from (5.19), τk ↓ 0, xk → x̄, and x̃k ∈ [xk, xk − γ−1τkg
k]

for all k ≥ K with k ∈ N that x̃k N→ x̄. Letting k N→ ∞ in (5.17) and taking into account the convergence
above and (5.19) bring us to the estimate

∥∇f(x̄)∥2 ≤ β ∥∇f(x̄)∥2 .

This contradicts β < 1
2 and ∥∇f(x̄)∥ > 0. Thus the origin is an accumulation point of

{
gk
}

as claimed.

Claim 2. Every accumulation point of
{
xk
}

is a stationary point of f .

Pick any accumulation point x̄ of
{
xk
}
. Using Claim 1, the second inequality in (5.13), and Lemma 2.2

tells us that there exists an infinite set J ⊂ IN such that

xk
J→ x̄ and gk J→ 0.

Take a neighborhood Ω of x̄ and ∆ > 0. Since G is a local approximation of ∇f under condition (3.2),
there exists C > 0 for which

∥G(x, δ)−∇f(x)∥ ≤ Cδ whenever 0 < δ ≤ ∆ and x ∈ Ω. (5.20)

Since νk ↓ 0 and xk
J→ x̄, we can select K ∈ IN so that νk ≤ ∆ and xk ∈ Ω for all k ≥ K, k ∈ J . This

ensures together with (5.20) that∥∥gk −∇f(xk)
∥∥ =

∥∥G(xk,min {δk+1, νk})−∇f(xk)
∥∥ ≤ Cνk for all k ≥ K, k ∈ J.
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Employing gk J→ 0 and νk ↓ 0 as above, we deduce that ∇f(xk) J→ 0, and hence ∇f(x̄) = 0. Therefore,
x̄ is a stationary point of f, which justifies (i).

Now we verify (ii) and (iii) simultaneously. It follows from (5.13) and τk ≤ 1 for all k ∈ IN by the
choice of τk in Step 3 of Algorithm 3 that

∞∑
k=1

∥∥xk+1 − xk
∥∥2 =

∞∑
k=1

τ2k
∥∥gk∥∥2 ≤ τ̄

∞∑
k=1

τk
∥∥gk∥∥2 <∞,

which implies that
∥∥xk+1 − xk

∥∥→ 0. Then both assertions (ii) and (iii) follow from Lemma 2.3.

The next result establishes the global convergence with convergence rates of the iterates
{
xk
}

in
Algorithm 3 under the KL property and the boundedness of

{
xk
}
. We have already discussed the KL

property in Remark 2.5. The boundedness of
{
xk
}

is also a standard assumption that appears in many
works on gradient descent methods; see, e.g., [4, Theorem 4.1], [34, Theorem 1], and [40, Assumption 7].

Theorem 5.5. Let
{
xk
}

be the sequence of iterates generated by Algorithm 3. Assuming that ∇f(xk) ̸= 0

for all k ∈ IN and that
{
xk
}

is bounded yields the assertions:
(i) If x̄ is an accumulation point of

{
xk
}

and f satisfies the KL property at x̄, then xk → x̄ as k → ∞.
(ii) If in addition to (i), the KL property at x̄ is satisfied with ψ(t) =Mtq for some M > 0, q ∈ [1/2, 1),

then the following convergence rates are guaranteed:
• If q = 1/2, then the sequence

{
xk
}

converges linearly to x̄.
• If q ∈ (1/2, 1), then we have the estimate∥∥xk − x̄

∥∥ = O
(
k−

1−q
2q−1

)
.

Proof. Let Ω :=
{
xk
}
, and let ∆ > 0. Since G is a local approximation of ∇f satisfying condition (3.2),

there exists a positive number C such that

∥G(x, δ)−∇f(x)∥ ≤ Cδ whenever x ∈ Ω and 0 < δ ≤ ∆. (5.21)

Select K ∈ IN so that νk < ∆ for all k ≥ K, which implies by (5.21) and the choice of gk in Step 1 of
Algorithm 3 the relationships∥∥gk −∇f(xk)

∥∥ =
∥∥G(xk,min {δk+1, νk})−∇f(xk)

∥∥
≤ Cmin {δk+1, νk} ≤ Cδk+1 for all k ≥ K. (5.22)

We split the proof of the result into two parts by showing first that the sequences {Ck} and
{
tmin
k

}
are

constant after a finite number of iterations and verifying then the convergence of
{
xk
}

in (i) with the
rates in (ii) by using Propositions 2.6 and 2.7.

Claim 1. There exists k0 ∈ IN such that Ck = Ck0 and tmin
k = tmin

k0
for all k ≥ k0.

Arguing by contradiction, suppose that such a number k0 does not exist. By the construction of {Ck}
and

{
tmin
k

}
in Step 3 of Algorithm 3, we deduce that Ck ↑ ∞ and tmin

k ↓ 0 as k → ∞. Since Ω is bounded,
Lemma 5.2 allows us to find t̄ ∈ (0, 1) for which

f(x− tg) ≤ f(x)− βt ∥g∥2 whenever x ∈ Ω, ∥g −∇f(x)∥ ≤ 1

2
∥g∥ , and t ∈ (0, t̄]. (5.23)

Using the aforementioned properties of {Ck} and {tmin
k }, we get N ≥ K such that Ck > C and tmin

k < γt̄
for all k ≥ N . Fix such a number k and then combine the condition

∥∥gk∥∥ > µCkδk+1 from (5.1) with
Ck > C, µ > 2, and (5.22). This gives us the inequalities∥∥gk∥∥ > µCkδk+1 ≥ µCδk+1 ≥ 2

∥∥gk −∇f(xk)
∥∥ ,

which imply together with xk ∈ Ω and (5.23) the estimate

f(xk − tgk) ≤ f(xk)− βt
∥∥gk∥∥2 for all t ∈ (0, t̄]

and thus tell us that tk > γt̄ > tmin
k . Employing Step 3 of Algorithm 3 yields tmin

k+1 = tmin
k . Since the

latter holds whenever k ≥ N , we conclude that the equality tmin
k = tmin

N is satisfied for all k ≥ N . This
contradicts the condition tmin

k ↓ 0 as k → ∞ and hence justifies the claimed assertion.

Claim 2. All the assertions in (i) and (ii) are fulfilled.

18



From Step 2 and Step 3 of Algorithm 3, we deduce that

f(xk)− f(xk+1) ≥ βτk
∥∥gk∥∥2 for all k ∈ IN. (5.24)

Defining N := max {K, k0} with k0 taken from Claim 1 gives us the equalities

Ck = CN and tmin
k = tmin

N whenever k ≥ N. (5.25)

Combining Ck = CN with (5.22) and
∥∥gk∥∥ > µCkδk+1 from (5.1) ensures that∥∥∇f(xk)∥∥ ≤
∥∥gk∥∥+ Cδk+1

≤
∥∥gk∥∥+ C

µCN

∥∥gk∥∥ = α
∥∥gk∥∥ for all k ≥ N, (5.26)

where α := 1 + C
µCN

. In addition, we have tmin
k+1 = tmin

k = tmin
N in (5.25), which implies together with

Step 3 of Algorithm 3 the relationships

τk = tk ≥ tmin
k = tmin

N as k ≥ N (5.27)

confirming the boundedness of {τk} from below. If the KL property of f holds at the accumulation point
x̄ of

{
xk
}
, it follows from Remark 2.8(i), (5.24), (5.26), and (5.27) that assumptions (H1) and (H2) in

Proposition 2.6 hold. Thus xk → x̄ as k → ∞, which verifies (i).
Assume finally that the KL property at x̄ is satisfied with ψ(t) =Mtq, M > 0, and q ∈ [1/2, 1). The

iterative procedure xk+1 = xk − τkg
k in Step 4 of Algorithm 3 together with (5.27) and gk > 0 from

Step 1 therein tells us that xk+1 ̸= xk for k ≥ N. Combining this with (5.24), (5.26), and (5.27) verifies
all the assumptions of Proposition 2.7 and therefore completes the proof of the theorem.

5.2 Bidirectional Linesearch for Noisy Functions
In this subsection, we continue the study of problem (1.1) with the objective function f : IRn → IR of
class C1,1. Similarly to Subsection 4.3, assume that only a noisy approximation ϕ(x) = f(x) + ξ(x) of f
is available, where ξ : IRn → IR is a noise function bounded by some known constant ξf > 0. However,
differently from Subsection 4.3 dealing with C1,1

L functions, we suppose here that the noise level ξf is
known. Considering only the forward finite difference given by

G̃(x, δ) = 1

δ

n∑
i=1

(
ϕ(x+ δei)− ϕ(x)

)
ei for any (x, δ) ∈ IRn × (0,∞), (5.28)

we state the following noisy version of Proposition 3.4 that can be verified similarly.

Proposition 5.6. Let f : IRn → IR be a C1-smooth function such that ∇f is Lipschitz continuous on
B(x,∆) with constant ℓ > 0. Then the noisy forward finite difference (5.28) satisfies the error bound∥∥∥G̃(x, δ)−∇f(x)

∥∥∥ ≤ ℓ
√
nδ

2
+

2
√
nξf
δ

for all δ ∈ (0,∆]. (5.29)

Now we are ready to design the algorithm, which main feature is to be a bidirectional linesearch, for
determining both the stepsize and the finite difference interval.

Algorithm 4 (DFBD for noisy functions).

Step 0 (initialization). Select an initial point x1 ∈ IRn, η > 1, and L1 > 0. Set k := 1.

Step 1 (bidirectional linesearch). Find ik ∈ Z with the smallest absolute value such that for gk :=

G̃
(
xk,
√

4ξf
ηikLk

)
and τk = 1

ηikLk
, it holds that

ϕ
(
xk − τkg

k
)
≤ ϕ(xk)− τk

9

∥∥gk∥∥2 . (5.30)

Step 2 (stepsize and parameters update). Set xk+1 := xk − τkg
k and Lk+1 := ηikLk.

Remark 5.7 (Discussion on bidirectional linesearch).

• In Step 1 of Algorithm 4, we employ bidirectional linesearch to find an approximation Lk+1 := ηikLk

for the Lipschitz constant ℓk of ∇f locally around the current iterate xk. Then we use Lk+1 to
determine both the stepsize τk = 1

Lk+1
and the finite difference interval

√
4ξf
Lk+1

, which is the
minimizer of the right-hand side of (5.29) with respect to δ when ℓ = Lk+1.
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• The idea of using bidirectional linesearch to adjust the stepsize is not new as it has been already
employed in the recent works [22, 53] for gradient descent methods with the exact gradient, and in
[7, 8] for derivative-free optimization methods. To the best of our knowledge, using this procedure
to determine both stepsize and finite-difference interval appears for the first time in this paper.

• The bidirectional linesearch procedure plays an important role not only in our convergence analysis
but also in practical modeling. Theoretically, condition (5.30) is necessary for the value ηikLk in
Step 1 being a good approximation of the Lipschitz constant ℓk of ∇f locally around the reference
iterate xk, which is confirmed by Proposition 5.9. Numerically, by automatically approximating
the local Lipschitz constant of the gradient, our DFBD has a better performance in comparison
with other finite-difference-based algorithms for noisy C1,1 functions with complex structures. To
illustrate this claim, we consider the function f(x, y) := (e2x+3y−1 + e3x−y + ex−y−6 − 3)2 with the
graph in IR3 depicted below.

Figure 1: Graph of f(x, y) = (e2x+3y−1 + e3x−y + ex−y−6 − 3)2

This function is inspired by a univariate function in [56, Section 4.1.2]. It provides a challenging
example for finite-difference-based methods in both cases of approximate gradients and finding
minimizers. This is because f has very small first- and second-order derivatives at points belonging
to most of the second and third parts of the plane. As in the context of noisy DFO, we manually
inject into f uniformly distributed stochastic noises with different levels. The plots below show the
trajectories of iterates generated by our DFBD (Algorithm 4) and the following algorithms:

– IMFIL: The implicit filtering algorithm [24, Algorithm 2.2] with the forward finite difference.

– RG: The random gradient-free method [46, Section 5].

– L-BGFS (Ada): The noise-tolerant quasi-Newton algorithm [57, Algorithm 2.1], where the
gradient is approximated by the forward finite difference with the adaptive finite difference
interval estimation from [56, Algorithm 2.1].

– GD-BD (Ada): Gradient descent with bidirectional linesearch, where the gradient is approx-
imated by the forward finite difference with the adaptive finite difference interval estimation
from [56, Algorithm 2.1].

– DF-backtracking: A modified version of our basic DFBD, where the bidirectional linesearch is
replaced by the standard backtracking linesearch, i.e., the condition i ∈ Z is replaced by i ∈ IN
in Step 1 of Algorithm 4.

In the algorithms above, only our DFBD method (Algorithm 4) uses the bidirectional linesearch to
determine both stepsize and finite difference interval. The selections of stepsize and finite difference
interval for each method are listed in Table 1, where GS in the selections of RG means grid search.
Details for the settings of the algorithms and additional numerical results on this experiment can
be found in Appendix A, where different noise levels are addressed.

Method IMFIL RG GD-BD (Ada) L-BFGS (Ada) DF-backtracking DFBD
Stepsize Backtracking GS Bidirectional Armijo + Wolfe Backtracking Bidirectional
FD interval Decreasing GS Adaptive Adaptive Backtracking Bidirectional

Table 1: Stepsize and finite difference interval selections

It can be observed from Figure 2 addressing the noise level 0.01 that only the last points (red stars)
generated by our DFBD method successfully identify the minimum region (depicted in dark blue)
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regardless of the choice of initial points (blue circles). L-BFGS (Ada) locates the minimum region
in the only case when the initial point is (−4,−4). Other algorithms including RG, IMFIL, GD-BD
(Ada), and DF-backtracking perform even worse since they remain stuck at the initial points in all
the scenarios. Additional graphs in Appendix A also show that these results are stable with respect
to different levels of noise ranging from 1 or 10−3. The failure of GD-BD (Ada) and DF-backtracking
emphasizes the crucial role of using bidirectional linesearch to determine both the stepsize and the
finite difference interval in the construction of DFBD.

Figure 2: Finite-difference-based methods on minimizing a C1,1 function with complex structure

The rest of this subsection is devoted to deriving the fundamental convergence properties of Algo-
rithm 4 for noisy smooth functions. We begin with a simple albeit useful lemma about the optimal local
Lipschitz constant of the gradient of a C1,1 function.

Lemma 5.8. Let Ω ⊂ IRn be a nonempty bounded set. Then for any ξ > 0, there exists some ℓ > 0 such
that ℓ is the Lipschitz constant of ∇f on

⋃
x∈Ω B(x, δx), where

δx := max

{
3

2ℓ
∥∇f(x)∥ ,

√
4ξ

ℓ

}
.

Proof. Define the number M := sup
{
∥∇f(x)∥

∣∣ x ∈ Ω
}

∈ IR and deduce from the assumed C1,1

property of f that f is Lipschitz continuous on the set
⋃

x∈Ω B(x,max
{

3
2M, 2

√
ξ
}
) with some Lipschitz

constant L > 0. Denoting ℓ := max {1, L}, we get

δx = max

{
3

2ℓ
∥∇f(x)∥ ,

√
4ξ

ℓ

}
≤ max

{
3

2
M, 2

√
ξ

}
for all x ∈ Ω.

This tells us that ∇f is Lipschitz continuous with the constant ℓ on
⋃

x∈Ω B(x, δx) as claimed.

The next result plays a crucial technical role in deriving the convergence properties in what follows.

Proposition 5.9. Let ℓ > 0 and x ∈ IRn be such that ∇f is Lipschitz continuous with some constant

ℓ > 0 on B
(
x,max

{
3
2ℓ ∥∇f(x)∥ ,

√
4ξf
ℓ

})
, and let ℓ̃ > 0, i ∈ Z, η > 1 be selected so that ℓ ∈ (ηi−1ℓ̃, ηiℓ̃].

Define g ∈ IRn and τ > 0 by

g := G̃

(
x,

√
4ξf

ηiℓ̃

)
and τ :=

1

ηiℓ̃
,

where G̃ is taken from (5.28). If ∥∇f(x)∥ ≥ 8
√
ℓηnξf , then we have the estimates

(i) f(x− τg) ≤ f(x)− 3τ
32 ∥∇f(x)∥

2,

(ii) ϕ(x− τg) ≤ ϕ(x)− τ
9 ∥g∥

2
.
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Proof. Since ℓ is the Lipschitz constant of ∇f on B
(
x,
√

4ξf
ℓ

)
, we deduce from Proposition 5.28 that

∥∥∥G̃(x, δ)−∇f(x)
∥∥∥ ≤ ℓ

√
nδ

2
+

2
√
nξf
δ

for all δ ∈

(
0,

√
4ξf
ℓ

]
. (5.31)

Combining this with g = G̃
(
x,
√

4ξf
ηiL

)
and ℓ ≤ ηiL tells us that

∥g −∇f(x)∥ ≤ ℓ
√
n

2

√
4ξf
ηiL

+ 2
√
nξf

√
ηiℓ̃

4ξf

≤ ηiℓ̃
√
n

2

√
4ξf
ηiL

+ 2
√
nξf

√
ηiL

4ξf
= 2

√
ηiℓ̃nξf .

Using the triangle inequality and ηi−1ℓ̃ < ℓ yields

∥g∥ ≥ ∥∇f(x)∥ − ∥g −∇f(x)∥
≥ 8
√
ηℓnξf − 2

√
ηiℓ̃nξf

> 6

√
ηiℓ̃nξf ≥ 3 ∥g −∇f(x)∥ ,

(5.32)

which being combined with the Cauchy-Schwarz inequality ensures that

⟨∇f(x), g⟩ = ⟨∇f(x)− g, g⟩+ ∥g∥2

≥ −∥∇f(x)− g∥ ∥g∥+ ∥g∥2 ≥ 2

3
∥g∥2 .

Thus we arrive at ∥g∥ ≤ 3
2 ∥∇f(x)∥ implying together with τ = 1

ηiL ≤ 1
ℓ that

x− τg ∈ B
(
x,

3

2ηiL
∥∇f(x)∥

)
⊂ B

(
x,

3

2ℓ
∥∇f(x)∥

)
.

By the Lipschitz continuity of ∇f with constant ℓ on the ball above and Lemma 2.1, we get

f(x− τg) ≤ f(x) + ⟨x− τg − x,∇f(x)⟩+ ℓ
2 ∥x− τg − x∥2

= f(x)− τ ⟨g,∇f(x)⟩+ ℓτ2

2 ∥g∥2

≤ f(x)− 2τ
3 ∥g∥2 + τ

2 ∥g∥
2
= f(x)− τ

6 ∥g∥
2
.

(5.33)

It also follows from (5.32) that

∥g∥ ≥ ∥∇f(x)∥ − ∥g −∇f(x)∥ ≥ ∥∇f(x)∥ − 1

3
∥g∥ ,

which yields ∥∇f(x)∥ ≤ 4
3 ∥g∥ and, being combined with (5.33), verifies (i).

(ii) Using (5.33) and the construction of the noisy approximation ϕ gives us the estimate

ϕ(x− τg) ≤ ϕ(x)− τ

6
∥g∥2 + 2ξf , (5.34)

which implies together with ηi−1ℓ̃ < ℓ, n ≥ 1, and ∥∇f(x)∥ ≥ 8
√
ℓηnξf that

τ

18
∥g∥2 ≥ 1

18ηiℓ̃

9

16
∥∇f(x)∥2 ≥ 2

64ηiℓ̃
64ηℓnξf ≥ 2ξf .

Combining the latter with (5.34) leads us the conclusion in (ii) and thus completes the proof.

Similarly to Subsection 4.3, we say that Step 1 of Algorithm 4 is successful if the integer number ik
is found, and unsuccessful otherwise. It follows directly from Proposition 5.9 that Step 1 of Algorithm 4
is successful whenever

∥∥∇f(xk)∥∥ is not near 0 as stated below.

Corollary 5.10. At the kth iteration of Algorithm 4, let ℓk be such that ∇f is Lipschitz continuous on
B
(
xk,max

{
3

2ℓk

∥∥∇f(xk)∥∥ ,√ 4ξf
ℓk

})
with some constant ℓk > 0. If the condition∥∥∇f(xk)∥∥ ≥ 8

√
ℓkηnξf (5.35)

is satisfied, then Step 1 of Algorithm 4 is successful.
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Employing the obtained corollary, we arrive at the next proposition, which is useful in the proof of
the main convergence results below.

Proposition 5.11. At some kth iteration of Algorithm 4, let L > 0 be such that ∇f is Lipschitz contin-

uous with constant L on B
(
xk,max

{
3
2L

∥∥∇f(xk)∥∥ ,√ 4ξf
L

})
and assume that∥∥∇f(xk)∥∥ ≥ 8

√
Lηnξf .

The following assertions hold:

(i) If Lk < ηL then Lk+1 < ηL.

(ii) If Lk ≥ L then Lk+1 ≥ L.

(iii) If Lk ∈ [L, ηL) then Lk+1 = Lk.

Proof. (i) By the construction of {Lk}, we find m ∈ Z such that Lk+1 = ηmLk. If m ≤ 0, then
Lk+1 ≤ Lk < ηL, and so we assume that m > 0. Then the exit condition in Step 1 of Algorithm 4 yields

ϕ
(
xk − 1

ηiLk
gki

)
> ϕ(xk)− 1

ηiLk

∥∥gki ∥∥2 for all i ∈ {0, . . . ,m− 1} , (5.36)

where gki := G̃
(
xk,
√

4εf
ηiLk

)
. Observe that condition (5.35) holds for ℓk = L, which is a Lipschitz constant

of ∇f on B
(
xk,max{ 3

2L

∥∥∇f(xk)∥∥ ,√ 4ξf
L

})
by the assumptions made. Combining this with Corol-

lary 5.10 and estimate (5.36), we deduce that ηiLk /∈ [L, ηL) for all i ∈ {0, . . . ,m− 1}. This fact together
with Lk < ηL tells us that Lk+1 = ηmLk < ηL.

(ii) By the construction of {Lk}, we find some m ∈ Z such that Lk+1 = ηmLk. If m ≥ 0, then
Lk+1 ≥ Lk ≥ L, and so we assume that m < 0. Then the exit condition in Step 1 of Algorithm 4 yields

ϕ
(
xk − 1

ηiLk
gki

)
> ϕ(xk)− 1

ηiLk

∥∥gki ∥∥2 for all i ∈ {0,−1, . . . ,m+ 1} , (5.37)

where gki := G̃
(
xk,
√

4εf
ηiLk

)
. Observe that condition (5.35) holds for ℓk = L, which is also a Lipschitz

constant of ∇f on B
(
xk,max

{
3
2L

∥∥∇f(xk)∥∥ ,√ 4ξf
L

})
by the assumptions made. Combining this with

Corollary 5.10 and (5.37), we get that ηiLk /∈ [L, ηL) for all i ∈ {0,−1, . . . ,m+ 1}. This fact together
with Lk ≥ L verifies that Lk+1 = ηmLk ≥ L.

Now we in a position to derive convergence properties of DFBD from Algorithm 4. Consider first the
case where at some Kth iteration, Step 1 of Algorithm 4 is not successful, i.e., we cannot find iK ∈ Z that
ensures the descent condition (5.30). Then Corollary 5.10 tells us that

∥∥∇f(xK)
∥∥ < 8

√
ℓKηnξf , where

ℓK is a Lipschitz constant of ∇f around xK . In this case, Algorithm 4 finds a point near a stationary one
after a finite number of iteration. In practice, to avoid the process of finding ik in Step 1 of Algorithm 4
from running infinitely to cause a computational error, the users can add a lower bound sufficiently small
and an upper bound sufficiently large for ik in the loop.

The main theorem of this section concerns the case where Step 1 of Algorithm 4 is successful for
all k ∈ IN. In this scenario, we can find a point near a stationary one, along the sequence of iterates
generated by the algorithm, if just one of the Lipschitz approximations is appropriate.

Theorem 5.12. Assume that Step 1 of Algorithm 4 is successful for all k ∈ IN and that there exists L > 0

such that ∇f is Lipschitz continuous on
⋃∞

k=1 B
(
xk,max

{
3
2L

∥∥∇f(xk)∥∥ ,√ 4ξf
L

})
. If infk∈IN f(x

k) > −∞
and for some K ∈ IN we have LK ∈ [L, ηL), then the following assertions hold:

(i) There exists N ∈ IN for which ∥∥∇f(xN )
∥∥ < 8

√
Lηnξf . (5.38)

(ii) Assume in addition that f has a global minimizer with the minimum value f∗, that f(xK) > f∗,
and that f satisfies the Polyak-Łojasiewicz inequality with some constant µ > 0, i.e.,

µ(f(x)− f∗) ≤ 1

2
∥∇f(x)∥2 for all x ∈ IRn. (5.39)

Then the number N from (5.38) admits the upper estimate

N ≤ max
{
1 +K, 1 +K + log1− 3µ

16ηL

( 32ηnξf
f(xK)− f∗

)}
. (5.40)
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Proof. (i) Assume on the contrary that
∥∥∇f(xk)∥∥ ≥ 8

√
Lηnξf as k ∈ IN. It follows from Proposition 5.11

and LK ∈ [L, ηL) that Lk+1 = Lk whenever k ≥ K. Using Proposition 5.9(i) with

ℓ := L, x := xk, ℓ̃ := Lk, and i := 0,

we get the relationship below between two subsequent iterations

f(xk+1) ≤ f(xk)− 3

32LK
∥∇f(xk)∥ whenever k ≥ K,

which tells us that
{
f(xk)

}
is a strictly decreasing sequence. By infk∈IN f(x

k) > −∞, this sequence is
convergent, and hence ∇f(xk) → 0 as k → ∞. We arrive at a contradiction with

∥∥∇f(xk)∥∥ ≥ 8
√
Lηnξf

for all k ∈ IN, and thus justify (5.38) in (i).
To verify now assertion (ii), let N be the first iteration for which (5.38) holds, i.e.,∥∥∇f(xk)∥∥ ≥ 8

√
Lηnξf for k ∈ {1, . . . , N − 1} .

If N ≤ K + 1, estimate (5.40) is obviously satisfied, and thus we suppose that N > K + 1. It follows
from Proposition 5.11 that Lk = LK ∈ [L, ηL) for all k ∈ {K, . . . , N − 1}. Fixing such a number k and
employing Proposition 5.9(i) for

ℓ := L, x := xk, ℓ̃ := Lk, and i := 0

clearly bring us to the estimates

f(xk+1) ≤ f(xk)− 3

32LK

∥∥∇f(xk)∥∥2 ≤ f(xk)− 3

32ηL

∥∥∇f(xk)∥∥2 .
Combining this with the Polyak-Łojasiewicz inequality from (5.39), we obtain the condition

f(xk+1) ≤ f(xk)− 3µ

16ηL
(f(xk)− f∗),

which can be equivalently rewritten as

f(xk+1)− f∗ ≤
(
1− 3µ

16ηL

)(
f(xk)− f∗

)
.

Using the latter condition for k = K,K + 1, . . . , N − 2 gives us

f(xN−1)− f∗ ≤
(
1− 3µ

16ηL

)N−1−K(
f(xK)− f∗

)
. (5.41)

Since ∇f is Lipschitz continuous on B
(
xN−1, 1

L∇f(x
N−1)

)
with constant L, Lemma 2.1 yields

f∗ ≤ f
(
xN−1 − 1

L
∇f(xN−1)

)
≤ f(xN−1) +

〈
xN−1 − 1

L
∇f(xN−1)− xN−1,∇f(xN−1)

〉
+
L

2

∥∥∥∥xN−1 − 1

L
∇f(xN−1)− xN−1

∥∥∥∥2
= f(xN−1)− 1

L

∥∥∇f(xN−1)
∥∥2 + 1

2L

∥∥∇f(xN−1)
∥∥2 ,

which ensures in turn the fulfillment of

f(xN−1)− f∗ ≥ 1

2L

∥∥∇f(xN−1)
∥∥2 ≥ 1

2L
64Lηnξf = 32ηnξf .

Combining the obtained estimates with (5.41) tells us that

32ηnξf ≤
(
1− 3µ

16ηL

)N−1−K

(f(xK)− f∗),

and thus verifies the claimed conclusion (5.40).

Remark 5.13. The existence of the constant L in the assumptions of Theorem 5.12 is guaranteed under
the fulfillment of either one of the following conditions:

• The objective function f is of class C1,1
L .

• The level set
{
x | f(x) ≤ f(x1) + 2ξf

}
is bounded. Indeed, it follows from (5.30) that the sets{

xk
}
⊂
{
x ∈ IRn

∣∣ ϕ(x) ≤ ϕ(x1)
}
⊂
{
x ∈ IRn

∣∣ f(x) ≤ f(x1) + 2ξf
}

are bounded as well. Combining this with Proposition 5.8 for Ω :=
{
xk
}

verifies the existence of L.
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6 Numerical Experiments
In this section, we present numerical experiments demonstrating the efficiency of our methods in solving
derivative-free optimization problems with and without the presence of noise. This section is split into
two subsections addressing different noise levels: small noise, which also includes the noiseless case, and
large noise. For each type of the noise level, we compare the performance of our newly developed methods
with various well-known algorithms to ensure the diversity of the numerical experiments. In total, 786
test problems and 10 algorithms are considered in what follows.

6.1 Finite-Difference-Based Algorithms for Functions with Small Noise
Here we compare the performance of our DFC (Algorithm 1) and DFB (Algorithm 3) methods with other
finite-difference-based algorithms to minimize smooth (convex and nonconvex) functions either without
noise, or with small noise. The results in this subsection suggest that, in addition to the theoretical
guarantees, our methods are more robust than the standard implementations of gradient descent meth-
ods with a constant/backtracking stepsize and with finite difference gradient for a fixed finite difference
interval. The presented results also confirm the practicality of DFC and DFB methods in comparison
with other well-known algorithms as in [24, 46].

6.1.1 Experiments with C1,1
L Functions

The first part of the subsection compares the performance of our DFC method using forward finite
differences with some other well-known derivative-free methods for minimizing C1,1

L functions. Since our
DFC method is of the gradient descent type, we choose the set of testing algorithms as follows:

(i) GDC (fixed), i.e., the standard gradient descent with a constant stepsize and gradients obtained
from forward finite differences with a fixed finite difference interval.

(ii) GD-ada, a variant of DFC with the stepsize being update by the rule in [6, Algorithm 2.2].

(iii) IMFIL, i.e., the implicit filtering algorithm with forward finite differences [24].
(iv) RG, i.e., a random gradient-free algorithm for smooth optimization proposed in [46].

The testing objective functions f are chosen as follows.
1. Least-square (LS) regression: f(x) := ∥Ax− b∥2, where A is an n× n matrix and b ∈ IRn.
2. A smooth nonconvex (NC) objective: f(x) :=

∑n
i=1 log(1 + (Ax− b)2i ), where A is an n× n matrix

and b is a vector in IRn. This problem is considered in [52, Section 5.5] and [39, Section 4] with a
nonsmooth term added to the objective function.

Random datasets are generated with different sizes for the testing purpose. To be more specific, an
n × n matrix A and a vector b ∈ IRn are generated randomly with i.i.d. (independent and identically
distributed) standard Gaussian entries. The dimension n is chosen from the set {10i, i = 1, . . . , 20}. We
inject a uniformly distributed random noise with level ξf ≥ 0, i.e., ξ(x) ∼ U(−ξf , ξf ) to the function
f and assume only the access to ϕ(x) := f(x) + ξ(x) for all the objective functions. The noise level is
chosen from the set ξf ∈

{
10i, i = −9, . . . ,−4

}
. The initial points are chosen as the zero vector for all

the tests and algorithms. We also assume that the noise level is unknown in these numerical experiments.
For that reason, the settings for DFC and GDC (fixed) are chosen as follows:

• DFC, GD-ada: The initial finite difference interval is δ1 = 10−2. Other parameters are chosen as:
µ = 2.5, r = 2, κ =

√
n/2, θ = 0.5.

• GDC (fixed): The finite difference interval is chosen as δ = 10−8 for the noiseless case and δ = 2
√
ξf

for the noisy case, which is of the same order as the optimal finite difference interval. Note that the
latter selection is for testing purposes only since GDC (fixed) does not perform well with δ = 10−8 in
the presence of noise. Of course, when the noise level is unknown, choosing a good finite difference
interval for GDC (fixed) is not an easy task. To ensure a fair comparison, the stepsize of GDC
(fixed) is chosen by a grid search on the set

{
1
n ,

0.2
n ,

0.1
n

}
, where n is the dimension of the problem.

The setting of IMFIL is similar to the one given in Appendix A. The setting of RG is also similar to that
in Appendix A, except that the approximate Lipschitz constant is chosen by a grid search on {n, 5n, 10n} ,
where n is the dimension of the problem, to ensure a fair comparison. All the methods are executed until
they reach the maximum number of function evaluations of 200n.

In order to illustrate the performance of the algorithms, we use the performance profiles [18] with the
measure fsp − f∗p , where fsp is the function value obtained by method s for problem p, and where f∗p is
the optimal value of the problem p. To be more specific, we assume that the set of problem tests is P .
For each method s, we plot the graph of the function

ρs(τ) :=
1

|P |

∣∣∣{p ∈ P
∣∣∣ fsp − f∗p
fbest
p − f∗p

≤ τ
}∣∣∣ for τ ≥ 1,
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where |P | is the size of P, and where fbest
p is the smallest function value obtained by all the methods in

problem p. For example, ρs(1) represents the percentage of problems where the method s performs the
best. Due to the structure of the problems, f∗p is always chosen to be 0. The results for different levels are
presented in Figure 3. It can be seen that DFC performs the best in most tests. The robustness of DFC
is also good for most selections of performance ratios and is increasing when the noise level is increasing.

Figure 3: Performance profiles of finite-difference-based methods in minimizing C1,1
L functions

6.1.2 Experiments with C1,1 Functions
In this subsection, we illustrate the performance of DFB method, i.e., Algorithm 3 with forward finite
differences on a subset of CUTEst problems [21, 25] with the details given in Table 2. We also inject
uniformly distributed stochastic noise as before, with the noise level ξf is either 0, or is chosen from the set{
10i, i = −9, . . . ,−4

}
while being unknown to the tested algorithms. In addition to DFB, the methods

considered in this numerical experiment are IMFIL, RG with the same setting as in Subsection 6.1.1, and
GDB (fixed), i.e., the standard gradient descent method with backtracking stepsize, where the approximate
gradient is obtained from the forward finite difference with a fixed finite difference interval.

Problem n Problem n Problem n Problem n

ALLINITU 4 DIXMAANB 90 HIMMELBG 2 SPARSINE 100
ARWHEAD 100 DQRTIC 10 HIMMELBH 2 TOINTGSS 50
BARD 3 ENGVAL1 50 HUMPS 2 TOINTGSS 100
BDQRTIC 100 ENGVAL1 100 LOGHAIRY 2 TQUARTIC 100
BOX3 3 FLETBV3M 10 NCB20B 100 TRIDIA 100
BOXPOWER 100 FLETBV3M 100 NONDIA 100 VARDIM 10
BRKMCC 2 FLETCBV2 10 NONDQUAR 100 VAREIGVL 50
BROWNAL 100 FLETCBV3 10 PENALTY3 50 VAREIGVL 100
COSINE 10 FLETCBV3 100 POWELLSG 4 WOODS 100
CRAGGLVY 4 FLETCHCR 100 ROSENBRTU 2 ZANGWIL2 2
CURLY30 100 GULF 3 SENSORS 3
DIXMAANB 15 HIMMELBCLS 2 SISSER 2

Table 2: A set of unconstrained problems from CUTEst

The settings for DFB and GDB (fixed) are chosen as follows:

• DFB: The initial finite difference interval δ1 = 10−2. Other parameters are chosen as: θ = 0.5, µ =

2.1, η = 2, β = 0.1, γ = 0.5, C1 =
√
n
2 , t

min
1 = 10−6, τ̄ = 1, νk = 1/k.

• GDB (fixed): The finite difference interval is chosen as δ = 10−8 for the noiseless case and δ = 2
√
ξf

for the noisy case, similarly to the selection in GDC (fixed) in previous numerical experiments. The
linesearch reduction factor is 0.5, the linesearch constant is 0.1, and the lower bound of the linesearch
stepsize is 10−10.

All the methods are executed until they reach the maximum number of function evaluations of 200∗n.
Similarly to the previous experiments, the results here are illustrated by the performance profiles with
the same measure as in Subsection 6.1.1. Since the exact optimal value is unknown, we approximate it
by running DFB and Powell algorithm from SciPy library [59] with the maximum number of function
evaluations of 400∗n on the noiseless function. The performance profiles with different levels are presented
in Figure 4 showing that DFB achieves the best performance for most of the performance ratios.
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Figure 4: Performance profiles of finite-difference-based methods on minimizing C1,1 functions

6.2 SciPy Production-Ready Algorithms for Functions with Large Noise
This subsection contains some illustrations of the performance of DFBD (Algorithm 4) on the same sub-
set of CUTEst problems [25] with the details given in Table 2. To demonstrate the efficiency of DFBD
in handling large noise, we inject the uniformly distributed stochastic noise into the tested problems as
in the previous experiments with the high levels of noise ξf ∈

{
1, 10−1, 10−2, 10−3

}
. In this experiment,

the performance of DFBD is compared with efficient production-ready codes from the well-known SciPy
library [59] of Python; namely, L-BFGS-B, Powell, and COBYLA algorithms. To the best of our knowl-
edge, these methods are among the most popular, efficient, and state-of-the-art derivative-free methods
for smooth functions. Although the Nelder-Mead method is also presented in the SciPy library, we do
not consider it here due to its poor performance on smooth functions, since it does not take smooth
structures into account in the algorithmic design.

All the algorithms are executed until they reach the maximum number of function evaluations of
200∗n. The setting of DFBD is similar to the one given in Appendix A, while the settings of L-BFGS-B,
Powell, and COBYLA algorithms are chosen to be standard without any modifications.

The illustration of the results is similar to the one mentioned in Subsection 6.1.2 and is presented in
Figure 5. While we found that the Powell and COBYLA algorithms usually work well for the smallest
noise ξf = 10−3, our DFBD method exhibits better results when the noise is larger, i.e., ξf ≥ 10−2. For
this reason, we illustrate in Figure 6 below the results for few representative problems in 100-dimensional
spaces with the noise levels 1 and 10−3. Since the L-BFGS-B method does not achieve a comparable
performance with other methods due to the large noise, we do not plot the results obtained by L-BFGS-B.

Figure 5: Performance profiles of derivative-free methods on C1,1 functions with large noise

(a) ξf = 1

(b) ξf = 10−3

Figure 6: Comparison of forward-difference DFBD with Powell and COBYLA algorithms from SciPy
library. The exact function values against the function evaluations are presented. The dashed black line
shows the noise level ξf of the function.
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7 Concluding Remarks
This paper addresses derivative-free optimization problems with smooth and not necessarily convex ob-
jectives. A general derivative-free optimization method with a constant stepsize (DFC) is proposed to
deal with C1,1

L problems. This novel method is shown to achieve the fundamental convergence properties
of standard gradient descent in the noiseless case and reach a near-stationary point in the noisy case with-
out demanding any noise level information. Constructive estimates of the number of required iterations
and function evaluations are established in the paper .

To deal with C1,1 problems, a general derivative-free optimization method with backtracking stepsize
(DFB) is proposed. The analysis of DFB in the noiseless case recovers convergence properties of the
standard gradient descent method with a backtracking stepsize. To handle C1,1 problems with large
noise, a derivative-free optimization method with bidirectional linesearch (DFBD) is proposed. It is
revealed that DFBD offers greater robustness than other finite-difference-based schemes to solve C1,1

problems with complex structure. The conducted analysis shows that under certain conditions, DFBD
reaches a near-stationary point after a finite number of iterations.

Numerical results demonstrate that DFC and DFB achieve higher efficiency and robustness in com-
parison with other well-known finite-difference-based schemes in solving noiseless problems and problems
with small noise. Moreover, DFBD provide favorable results compared to some production-ready codes
from SciPy library when the noise is large.

Our future research includes convergence analysis of the newly developed algorithms coupled with
quasi-Newton methods for noisy smooth functions or accelerations. We also intend to establish efficient
conditions to ensure local and global convergence to local minimizers of iterative sequences generated by
derivative-free methods for problems of nonsmooth unconstrained/constrained optimization.
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A Numerical Results on Bivariate Functions
In this appendix, we present additional results for the experiment conducted in Remark 5.7. The setup
for the experiment is the following:

• DFBD: The parameters are chosen as η = 2, L1 = 1.

• IMFIL: The setting of IMFIL in this experiment follows the original development at [24, Page 279],
with ᾱ = 10−10;β = 0.1; γ = 0.5 and hk = 21−k.

• RG: The parameters of RG in this experiment also obey the equations (55) and (58) in the original
paper [46], i.e., h = 1

4(n+4)L and µ = 5
3(n+4)

√
ε
2L . Since the function in question does not have a

globally Lipschitz continuous gradient, we tune the Lipschitz constant L by grid search on the set
{0.1, 1, 10} and choose the best one corresponding to the smallest function value at the last iterate.

• DF-backtracking: The parameters are chosen as η = 2 and L1 = 1 similarly to DFBD.

• GD-BD (Ada): The code for the adaptive finite difference interval estimation is given in [56, Algo-
rithm 2.1]. The parameters for bidirectional linesearch are similar to DFBD.

• L-BFGS (Ada): The L-BFGS code 1 is provided is taken from [57], while the code for the adaptive
finite difference interval estimation is provided by [56, Algorithm 2.1].

All the algorithms are executed for 200 function evaluations with the three different initial points
(−4, 0), (−4,−4), (−6, 0). We also choose the noise levels {1, 0.1, 0.01, 0.001}. Since the result with a
noise level of 0.01 is already presented in Remark 5.7, we do not represent it here. In addition, while
conducting the experiments, due to the randomness of the noisy objective function, there are some cases
where the iterative sequence generated by the RG method explodes to extremely large numbers (around
1026) and does not find the minimum region properly. For this reason, we exclusively plot points gen-
erated by the methods within a ball centered at the origin with the radius 20. It can be seen that our
DFBD is stable with respect to different levels of noise, and fails only in one over nine cases when the
noise is 0.1 and the initial point is (−4, 0).

Figure 7: Finite-difference-based methods on minimizing a bivariate C1,1 function (noise level 1)

1https://github.com/hjmshi/noise-tolerant-bfgs
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Figure 8: Finite-difference-based methods on minimizing a bivariate C1,1 function (noise level 10−1)

Figure 9: Finite-difference-based methods on minimizing a bivariate C1,1 function (noise level 10−3)
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