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Abstract

Facial reduction is a pre-processing method aimed at reformulating a problem to ensure
strict feasibility. The importance of constructing a robust model is widely recognized in the
literature, and facial reduction has emerged an attractive approach for achieving robustness.
In this note, we outline a facial reduction algorithm for a standard spectrahedra, the in-
tersection of the cone of positive semidefinite matrices and a set of linear equalities. We
address an optimization problem that serves as an intermediate step in the facial reduction
process. To tackle this optimization problem, we employ an interior point method that uses
the Gauss-Newton method.

1 Introduction

Facial reduction (FR) is a pre-processing method aimed at reformulating a problem to ensure
strict feasibility [1,2]. The importance of constructing a robust model is widely recognized in the
literature, and facial reduction has emerged an attractive approach for achieving robustness. In
this note, we address an optimization problem that serves as an intermediate step in the facial
reduction process. To tackle this optimization problem, we employ an interior point method
that uses the Gauss-Newton method inspired by [8,12]. The Gauss-Newton method (e.g., see [5,
Chapter 10]) offers a powerful framework for satisfying the first-order optimality conditions of the
primal-dual pair. This approach interprets the optimality conditions of the problem as solving an
overdetermined nonlinear system. Successful applications of this type can be found in [8,12,13].

Notation We let Rn,Cn denote the set of vectors with n coordinates in real and complex
vector spaces, respectively. We let Sn and Hn denote the space of n-be-n symmetric matrices
and n-by-n Hermitian matrices, respectively. Given x ∈ Cn, X ∈ Hn, we use x∗, X∗ to denote
the conjugate transpose of x and X. We let Sn+ denote the set of positive semidefinite matrices
in Sn, i.e., Sn+ = {X ∈ Sn : yTXy ≥ 0, ∀y ∈ Rn}. Similarly, we use Hn

+ to denote the set of
positive semidefinite matrices in Hn, i.e., Hn

+ = {X ∈ Hn : y∗Xy ≥ 0, ∀y ∈ Cn}. The set
of positive definite matrices are defined by Sn++ = {X ∈ Sn : yTXy > 0, ∀y ∈ Rn \ {0}} and
Hn

++ = {X ∈ Hn : y∗Xy > 0, ∀y ∈ Cn \ {0}}. We often use the partial order notation X � 0
(X � 0, respectively) to indicate that X is positive semidefinite (positive definite, respectively).
We use 〈·, ·〉 to denote the usual inner product in the spaces Rn,Cn, Sn and Hn. In is used as
the n-by-n identity matrix, and ei is the i-th columns of the identity matrix. Given a matrix X,
range(X) and null(X) denote the range of X and null-space of X, respectively. Given a linear
map T , we let T ∗ denote the adjoint of T .

2 Facial Reduction Process

Facial reduction, first appeared in [1, 2], is a proprocessing method aimed at reformulating a
problem to ensure strict feasibility. In this note, we focus on the standard feasible region in Hn
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(or Sn) that arises in the class of semidefinite programs:

F := {X : A(X) = b,X � 0}, (2.1)

where A is a linear map from Hn to Rm (or Sn → Rm ) and b ∈ Rm . The i-th equality of
A(X) = b is often written using the usual inner product form 〈Ai, X〉 = bi.

The set F is said to hold strict feasibility if there exists a positive definite X̂ ∈ F . If F fails
strict feasibility, there exists a matrix V , with fewer columns than n, such that

∀X ∈ F , X = V RV ∗, for some R � 0. (2.2)

The role of V can be viewed as confining the range of feasible points in F , and some researchers
refer to such V a facial range vector. If V is identified in a way that X̄ ∈ F and X̄ = V RV ∗

with R � 0, then V is called a minimal facial range vector. For detailed derivation of V , we
lead the readers to [6,9]. Finding the matrix V can often be challenging, hence we typically rely
on an auxiliary lemma. Lemma 2.1 below is fundamental to the construction of the FRprocess.
There is a large number of literature that uses Lemma 2.1 analytically. For example, Lemma 2.1
is used for certifying absence of strict feasibility, e.g., [3, 18]. Moreover, Lemma 2.1 is often
used for constructing an efficient algorithm for solving some classes of combinatorial problems,
e.g., [4, 7, 14].

Lemma 2.1. (Theorem of the alternative) [6, Theorem 3.1.3] For the feasible constraint system
in (2.1), exactly one of the following statements holds:

1. There exists X � 0 such that A(X) = b.

2. There exists y such that
0 6= A∗(y) � 0 , 〈b, y〉 = 0. (2.3)

The matrix A∗(y) in (2.3) is called an exposing vector. One can show that

A∗(y)X = 0, ∀X ∈ F ,

i.e., every feasible solution lies in the orthogonal complement of A∗(y). Consequently, a facial
range vector V in (2.2) can be constructed by choosing a V such that A∗(y)V = 0. Our goal is
to find y that satisfies (2.3) so that we can find a facial range vector.

An explicit solution y to (2.3) is often unavailable for an arbitrary problem. In this case,
finding a solution y to (2.3) can be passed to a numerical solver in the form of

p∗ = min
y
{〈b, y〉 : A∗(y) � 0, trace(A∗(y)) = 1}. (2.4)

The constraint trace(A∗(y)) = 1 in (2.4) is imposed to avoid having the trivial solution y∗ = 0.
Here, we use a different equality to allow some flexibilities. Let P � 0 and α > 0. Consider the
following problem motivated by (2.4):

(PFR ) p∗FR := min
y
{〈b, y〉 : A∗y � 0, 〈P,A∗y〉 = α} . (2.5)

If P = I and α = 1, (2.5) is identical to (2.4). We note that the dual (DFR ) of (PFR ) is

(DFR ) d∗FR := max
λ,W
{αλ : A(W ) + λA(P ) = b, W � 0} . (2.6)

Note that if F has a feasible point X̄, the dual (2.6) is also feasible with (λ̄, W̄ ) = (0, X̄). Let y∗

be an optimal solution to (2.6), i.e., p∗FR = 〈b, y∗〉. Given a feasible F , the optimal value p∗FR is
nonnegative. If p∗FR = 0, then solution y∗ is a solution to (2.3). If p∗FR < 0, then F is infeasible;
and the conditions A∗y∗ � 0 and 〈b, y∗〉 < 0 serve as certificate if infeasibility.

We now list some properties of the primal-dual pair (PFR ) and (DFR ).
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Lemma 2.2. Let F be a feasible system. Then the following holds.

1. There exists a positive definite P such that the problem (2.6) possesses a Slater point.

2. If the problem data {Ai}mi=1 contains a positive definite or negative definite matrix, the
Slater condition holds for (PFR ).

3. Let (λ∗,W ∗) be an optimal solution to (2.6) with d∗FR > 0. Then W ∗ + λ∗P is a Slater
point of F .

Proof. 1. Let W̄ � 0 be any feasible point to F . Let

W̄ =
[
V U

] [DV 0
0 0

] [
V U

]T
be the spectral decomposition of W̄ . We let T̄ = UDUU

T � 0, where DU � 0. Consider
Ŵ = 2W̄ + 2T̄ and P = 2T̄ + W̄ . Clearly, both Ŵ and P are positive definite. We note
that

A(Ŵ )− 1 · A(P ) = A(Ŵ − P ) = A(W̄ ) = b.

Hence, (2.6) contains a strictly feasible point.

2. Without loss of generality, letA1 be positive definite. Then choosing ȳ = (α/〈A1, P 〉, 0, . . . , 0)T

gives the desired property. If A1 is negative definite, we may replace 〈A1, X〉 = b1 with
〈−A1, X〉 = −b1 and apply the above.

3. Let (λ∗,W ∗) be an optimal solution to (2.6) with d∗FR > 0. Then

A(W ∗) + λ∗A(P ) = A(W ∗) + λ∗A(P ) = b and W ∗ + λ∗P � 0.

Item 1 of Lemma 2.2 is particularly useful since the purpose of FR is to obtain an exposing
vector for F . When the dual (DFR ) has a Slater point, the primal (PFR ) must attain its optimal
value. Hence, by strong duality, Lemma 2.2 guarantees the attainability of the exposing vector,
which is the primary objective of the FRprocess. It is noteworthy that for a structured problem,
a feasible solution to F is often available. Hence, we may choose P in (2.5) as constructed in the
proof of Lemma 2.2.

Regarding item 2 of Lemma 2.2, some classes of problems permit positive definite data matri-
ces. For example, the feasible solution that arises in the quantum information theory frequently
involve the unit trace constraint, e.g., see [8]. Moreover, it is shown that SDP relaxations of
quadratic assignment problem and protein side-chain positioning problem incorporate a type of
trace constraint, see [4, 7]. We also note that if there exists ȳ satisfying A∗(ȳ) � 0, (2.5) holds
strict feasibility and item 2 of Lemma 2.2 reduces to a special case. Items 1 and 2 of Lemma 2.2
together endow strict feasibility of both primal-dual pair (2.5) and (2.6), which is crucial for the
performance of interior point methods.

3 Algorithm

3.1 Optimality Conditions

In this section we consider the optimality conditions of the primal-dual pair (2.5) and (2.6)
to be used for construction an interior point method. Currently, there is a FR algorithm in the
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literature that uses the self-dual embedding [17]. In this note, we propose an alternative approach.
We propose an algorithm motivated by the approach in [8] that arises from the interior point
method for solving an application in the quantum information theory. In nutshell, [8] solves
a convex optimization problem with a nonlinear objective over a standard spectraheron via a
tailored interior point method. Here, we construct a tailored interior point method for (2.5).

We employ a slack variable S ∈ Sn+ to (2.5) and write the perturbed optimality conditions
for the primal-dual pair (PFR ) and (DFR ). Let W,S � 0, µ > 0 and consider

dual feasibility A(W ) + λA(P )− b = 0
primal feasibility 1 A∗y − S = 0
primal feasibility 2 trace(A∗y)− α = 0
perturbed complementarity WS − µI = 0.

(3.1)

One may substitute primal feasibility 1 (A∗(y)−S = 0) in (3.1) to the complementary slackness
condition.

0 =

A(W ) + λA(P )− b
trace(A∗y)− α
W (A∗y)− µI


Depending on the linear map A, we may not be able to find y satisfying A∗y � 0. In this case we
would be impossible to maintain A∗y � 0 in the complementary block W (A∗y)− µI during the
execution of the interior point method. Thus we work with (3.1) directly without substituting
primal feasibility 1 (A∗(y)−S = 0) in (3.1) to the complementarity condition. Consequently, we
are interested solving the following overdetermined system of equations:

0 =


F df
µ (W,λ)

F
pf1
µ (y)

F
pf2
µ (y, S)
F cs
µ (W,S)

 =

A(W ) + λA(P )− b (dual feasibility)
trace(A∗y)− α (primal feasibility 1)
A∗y − S (primal feasibility 2)
WS − µI (pertuberd complementarity)

3.2 Projected Gauss-Newton Direction

Let Ŵ , λ̂ be a pair of particular solutions to the dual feasibility equation, i.e., A(Ŵ ) + λ̂A(P ) =
b. We replace the dual feasibility F df

µ (W,λ) = A(W ) + λA(P ) − b = 0 using the null-space
representation [

NW
Nλ

]
v +

[
Ŵ

λ̂

]
−
[
W
λ

]
=

[
F d,1µ

F d,2µ

]
(dual feasibility 1)
(dual feasibility 2).

Here, NW (v) =
∑

iN
i
W vi and Nλ(v) = N1

λv for some {N i
W } and N1

λ . Similarly, let ŷ, Ŝ be a

pair of particular solutions to the primal feasibility equations F
pf1
µ (y) = 0 and F

pf2
µ (y, S) = 0,

i.e., trace(A∗ŷ) = α and A∗ŷ − Ŝ = 0. We replace the primal feasibilities using the null-space
representation[

F p,1µ

F p,2µ

]
=

[
trace(A∗y)− α
A∗y − S

]
=

[
Ny
NS

]
u+

[
ŷ

Ŝ

]
−
[
y
S

]
(primal feasibility 1)
(primal feasibility 2).

Finally, the perturbed optimality conditions then become

0 = Fµ(v,W, λ, u, y, S) =


F d,1µ (v,W )

F d,2µ (v, λ)

F p,1µ (u, y)

F p,2µ (u, S)
F cµ(W,S)

 =


NW v + Ŵ −W
Nλv + λ̂− λ
Nyu+ ŷ − y
NSu+ Ŝ − S
WS − µI

 . (3.2)
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We solve (3.2) by viewing the optimality conditions as an over-determined system equalities.
Note that the over-determinedness originates from the complementarity equation. Hence we
solve (3.2) via Gauss-Newton method while driving µ ↓ 0. For detailed discussion of the usage
of the Gauss-Newton method, we lead the readers to [9, Section 2.4.2].

The Gauss-Newton method requires linearization step. The linearization of (3.2) yields

F ′µ∆d =


NW∆v −∆W
Nλ∆v −∆λ
Ny∆u−∆y
NS∆u−∆S

(∆W )S +W (∆S)

 = −


F d,1µ

F d,2µ

F p,1µ

F p,2µ

F cµ

 , (3.3)

where ∆d = (∆v,∆W,∆λ,∆u,∆y,∆S). We note that the first four blocks of (3.3) produce

∆W = NW∆v + F d,1µ , ∆λ = Nλ∆v + F d,2µ , ∆y = Ny∆u+ F p,1µ , ∆S = NS∆u+ F p,2µ . (3.4)

We use (∆W,∆S) to make substitutions into the last block of (3.3)

−F cµ = (∆W )S +W (∆S)

= (NW∆v + F d,1µ )S +W (NS∆u+ F p,2µ )

= (NW∆v)S + (F d,1µ )S +W (NS∆u) +WF p,2µ .

Rearranging the terms, we solve the following system

(NW∆v)S +W (NS∆u) = −F cµ − (F d,1µ )S −W (F p,2µ ). (3.5)

We then use (∆v,∆u), the solution from (3.5), to backsolve and obtain the remaining components
of the search direction (∆W,∆λ,∆y,∆S) via (3.4):

∆W
∆λ
∆y
∆S

 =


NW∆v
Nλ∆v
Ny∆u
NS∆u

+


F d,1µ

F d,2µ

F p,1µ

F p,2µ

 .

Finally, we update the iterates along these directions with appropriate positive step sizes αy, αλ,
αW , αS : 

W
λ
y
S

←

W
λ
y
S

+


αW∆W
αλ∆λ
αy∆y
αS∆S

 . (3.6)

Note that the stepsizes are taken so that the positive definiteness of W,S is maintained.

Matrix Representation We provide the matrix representation of (NW∆v)S +W (NS∆u) in
the system (3.5) to be used in the implementation. We first define some related notations. We
use vec(X) to denote the usual vectorization map that stacks the columns of a real matrix X
into a single vector. Given a complex matrix X, let <(X) and =(X) be the real and imaginary
parts of X, respectively. We define the mapping Cvec : Cm×n → R2mn by

Cvec(X) =

(
vec(<(X))
vec(=(X))

)
.
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We now consider F in Hn
+. Let N i

W be the i-th data matrix in NW . In other words,
N i
W = NW (ei). Then

Cvec ((NW∆v)S) =
[
Cvec(N1

WS) · · · Cvec(Nn2−m
W S)

] ∆v1
...

∆vn2−m

 .
Let N i

S be i-th data matrix in NS , i.e., N i
S = NS(ei). Then we obtain

Cvec (WNS∆u) =
[
Cvec(WN1

S) · · · Cvec(WNm−1
S )

]  ∆u1
...

∆um−1

 .
Putting all together, the solution (∆v,∆u) of

(NW∆v)S +W (NS∆u) = −F cµ − (F d,1µ )S −W (F p,2µ )

is obtained by solving the following linear equation in the usual matrix-vector form:[[
Cvec(N i

WS)
]
i=1,...,n2−m ,

[
Cvec(WN j

S)
]
j=1,...,m−1

] [∆v
∆u

]
= −Cvec

(
F cµ + (F d,1µ )S +W (F p,2µ )

)
.

The analogous representation of (3.5) for F in Sn+ is obtained by replacing Cvec with vec, and
with appropriate dimensions.

Predictor-Corrector Steps The traditional search direction of interior point method is de-
termined by solving (3.5). Many researchers adopt predictor-corrector steps to enhance compu-
tational efficiency, e.g., see [10, 11, 15, 16]. Typically, a set of predictor-corrector steps involves
solving two linear systems, differing only in their right-hand-side data. That is, the data matrix
(NW∆v)S+W (NS∆u) in (3.5) remains unchanged while the right-hand-side data are altered in
these two steps. Below, we outline how these right-hand-side data are computed.

The predictor step is performed by solving

(NW∆v)S +W (NS∆u) = RHSp, (3.7)

where
RHSp = −

(
WS + F p,2µ + F d,1µ S

)
.

The remaining components of the direction are obtained using the backsolve step (3.4). In
particular, we use ∆W aff,∆Saff to denote the W,S related search directions. The direction
obtained by the predictor step is often called the affine scaling direction.

For the corrector step, choose step-sizes αaff
W , α

aff
S ∈ (0, 1] so that W + αaff

W∆W aff � 0 and
S + αaff

S ∆Saff � 0 are satisfied. Compute

µaff =
1

n
trace

(
(W + αaff

W∆W aff) · (S + αaff
S ∆Saff)

)
and σ = (µaff/µ)3, (3.8)

where µ is the duality gap measure trace(WS) evaluated by the previous iterates W,S. We then
solve

(NW∆v)S +W (NS∆u) = RHSc, (3.9)

where
RHSc = −

(
WS + ∆W aff∆Saff − σµI +WF p,2µ + F d,1µ S

)
.

Finally, using the solutions in (3.9) to obtain the remaining components of the search direction
via (3.4) completes the corrector step.
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Stopping Conditions The algorithm terminates if one of the following conditions holds:

1. (Stalling) The minimum eigenvalues of W or S is near 0 for a certain number of consecutive
iterations.

2. (Max iteration) The algorithm reached the pre-defined maximum number of iterations.

3. (Optimality measure) For a pre-defined tolerance ε > 0,

� min{trace(WS),best primal objective value-best dual objective value} < ε

� ‖Fµ(v,W, λ, y, u, S)|| < ε

4. (Objective value)

� The dual feasibility is achieved with a positive dual objective value. (This means
that the primal optimal value is never 0 hence we obtain a Slater point by item 3 of
Lemma 2.2.)

� Similarly, the primal feasibility is achieved with a negative primal objective value.
(This means that F 6= ∅. In this case, the vector A∗(y) provides a certificate of
infeasibility.)

Algorithm 1 below summarizes a step of the FR process.

Algorithm 1 Pseudo-Code for Checking Strict Feasibility of F
Require: data (A, b) for spectrahedon F = {X � 0 : A(X) = b}
1: while stopping criteria are not satisfied do
2: Solve (3.7) (predictor step)
3: Compute the parameters µaff and σ via (3.8)
4: Solve (3.9) (corrector step)
5: Choose step lengths and update iterates using (3.6)
6: end while
7: if p∗FR = 0 then
8: Compute a full column rank matrix V such that range(V ) = null(A∗(y))
9: else if p∗FR > 0 then

10: strict feasibility holds for F
11: else if p∗FR < 0 then
12: F is infeasible
13: end if

4 Conclusions

We have addressed an optimization problem that serves as an intermediate step on the facial
reduction process. Specifically, we outlined a primal-dual interior point method that uses Gauss-
Newton method for finding a point that satisfies the first optimality conditions. However, future
improvements are needed. In cases where the dual feasible region is unbounded, the algorithm
inflates the variable W , causing S to become relatively small due to the complementarity condi-
tion WS = µI. This premature termination occurs because S cannot make significant progress
due to its small magnitude. We aim to devise a method to mitigate this issue. Additionally, the
termination of Algorithm 1 provides the information about whether F satisfies strict feasibility.

7



However, this termination does not necessarily produce an exposing vector that fully identifies
the minimal facial range vector, especially when singularity degree of F exceeds 1. We intend to
incorporate functionality to address these scenarios. Lastly, we wish to include computational
results obtained by pre-processing the instances from SDPLIB.
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