
Noname manuscript No.
(will be inserted by the editor)

Composite optimization models via proximal gradient method with
increasing adaptive stepsizes

Pham Thi Hoai1 · Nguyen Pham Duy Thai1

Received: date / Accepted: date

Abstract We first consider the convex composite optimization models with locally Lipschitz con-
dition imposed on the gradient of the differentiable term. The classical method which is proximal
gradient will be studied with our new strategy of stepsize selection. Our proposed stepsize can
be computed conveniently by explicit forms. The sequence of our stepsizes is proved to be in-
creasing to a finite positive limitation. The PG method with our stepsize selection is shown to
be decreasing and convergent with the complexity computation O

(1
k

)
for F(xk)−F∗. This rate is

strengthened to be Q-linear if f is added the locally strong convexity property. To the best of our
knowledge, for proximal algorithm using an adaptive stepsize selection solving convex composite
optimization models without globally Lipschitz gradient condition of the smooth term, there has
been no method with such convergent properties so far. In addition, we show that our algorithm
can be extended for solving a class of nonconvex composite model as complementing the global
Lipschitz condition on ∇ f . The significant efficiency of our proposed algorithms is expressed by
numerical results for a numerous of applicable test problems.

Keywords proximal gradient method · nonlinear programming · composite optimization
model · locally Lipschitz gradient · Lasso problem
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1 Introduction

Composite optimization models (COM) are arisen from many real-life applications such as: ma-
chine learning, signal processing, data science, etc, and have received a lot of attention recently,
see e.g., [1,3,4,5,6,7,11,25,21,29,32,12,9,24,20,26]. The formulation of (COM) considered in this
paper can be described as follows:

min
x∈Rn

F(x) = f (x)+g(x), (P)

where f and g are functions satisfying Assumption 1 below.
Assumption 1:

(A1) g : Rn → (−∞,+∞] is a proper and closed convex function.
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(A2) f : Rn → (−∞,+∞] is proper and closed such that dom( f ) is convex, dom(g)⊂ int(dom( f ))
and f is differentiable on int(dom( f )).

(A3) The optimal solution set X∗ of (P) is nonempty and F∗ stands for the optimal value of (P).

One of the conventional methods for solving problem (P) is proximal gradient (PG) introduced by
Fukushima and Mine [18] in 1981 and has become now classical. The detail methodology of the
PG method can be found in Beck [6,7]. It is observed that the optimal conditions for problem (P)
relates to the concept of its stationary points. Specifically, if x∗ ∈ int(dom( f )) is a local optimal
solution of (P) then it should be a stationary point of (P), i.e., for some t > 0

x∗ = Proxtg(x∗), (1.1)

where Proxtg(x∗) is defined as the unique optimal solution of the minimization problem

min
x∈Rn

{
g(x)+

1
2t

∥x− (x∗− t∇ f (x∗))∥2
}
. (1.2)

In the convex situation of (P), i.e., f is convex, the set of stationary points of (P) are coincident
with X∗. One can see [6] (Theorem 3.72, 10.7) for more details. Based on the mentioned stationary
condition, starting from some x0 ∈ int(dom( f )), the well-known PG method to solve problem (P)
is designed by generating the sequence {xk} according to the rule

xk+1 = Proxtkg(xk), k = 0,1,2, ..., (1.3)

where

Proxtkg(xk) := argmin
x∈Rn

{
g(x)+

1
2tk

∥∥x− (xk − tk∇ f (xk))
∥∥2
}
. (1.4)

As a matter of fact, the PG scheme (1.3) is very useful if we can compute Proxtkg(xk) easily by
some explicit formulas. There is a list of such functions that can be found in [6]; for instances, g
is ℓ1 norm or the indicator function of a closed convex set C ⊂ Rn. In (1.3), tk > 0,k = 0,1,2, ... are
defined as stepsizes which play a crucial role in the proximal gradient scheme. A suitable stepsize
selection can be drawn in the two main points: firstly, it should guarantee the convergence of {xk}
to some stationary point of problem (P); secondly, it should also navigate xk to a good stationary
point (that provides, for example, the objective value as low as possible) with a cheap cost. For
the class of L f− smooth function f , i.e.,

∥∇ f (x)−∇ f (y)∥ ≤ L f ∥x− y∥, ∀x,y ∈ int(dom( f )),

the stepsize tk in (1.3) can be controlled flexibly by using constant stepsize in
(

0, 2
L f

)
or backtracking

line-search rule. Followed by [6] (Theorem 10.21), one get the complexity computation O(1
k ) of

F(xk)−F∗ if f is assumed to be convex and for the strongly convex case of f , the convergence
rate of {xk} to some x∗ ∈ X∗ is proved to be Q-linear. These important properties can be seen as
the generalization of the results for the gradient descent method solving unconstrained nonlinear
optimization problems, i.e., problem (P) with g = 0.

Recently, researchers have concerned problem (P) without the global Lipschitzness assumption on
∇ f , see, e.g., [2,8,21,23,13,14,15] since the class of such functions occurs in many applied prob-
lems, see e.g., [23,22,33] and the references therein. In 2017, Bauske et al. [2] proposed NoLips
Algorithm that requires Bregman distances-based computation and constant L in the Lipschitz-
like/convexity condition (LC). One can see [31] to find the role of non-Euclidean proximal distances
of Bregman type in the development and analysis of some typical first order optimization algo-
rithms. The stepsize selection of NoLips is then chosen in (0, 2−δ

L ). This algorithm is shown in
[2] to have the convergent results similar to the ones of the normal PG scheme. Following that,
Dragomir et al. [16] give a lower bound to prove that the O(1

k ) convergence rate of the NoLips
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method is optimal for the class of problems satisfying the relative smoothness assumption. The
other recent results on the convergence of PG method without globally Lipschitz assumption
have been studied in Kanzow and Mehlitz [23] and then Jia et al. [21]. Their proposed method
can be applied for the nonconvex setting of (P) with the presence of Kurdyka–Łojasiewicz condi-
tion. The stepsize choice is based on backtracking line-search procedure. Nevertheless, one know
that there are some restrictions of taking stepsize within (0, 2

L f
) or (0, 2−δ

L ) like: firstly, the process
of finding these constants are not easy in general and secondly, if they are large then such step-
sizes will be very small that may take long running time for executing algorithms. Analogously,
the backtracking computation for stepsize selection probably consumes expensive cost and also
may cause the stepsize to gradually decrease to a tiny number.

To overcome the mentioned drawbacks above, an interesting question should be considered
is: ”Under Assumption 1 and f satisfying convex and locally Lipschitz gradient, is there an efficient way
to find stepsizes explicitly for PG scheme solving problem (P) such that we do not need neither estimating
constants like L f ,L, ... nor backtracking line-search procedures?” In the specific context of problem
(P) with g = 0, such an algorithm named AdGD (Adaptive Gradient Descent) was proposed by
Malitsky and Mishchenko [28] in 2019 for solving unconstrained convex optimization problems
satisfying locally Lipschitz gradient. Continuing this research direction, Hoai et al. [19] proposed
NGD algorithm that uses an explicit stepsize strategy based on the local curvature of f .

Contributions: In this paper, we give a positive answer for the question presented above. In
particular, by utilizing the idea of adaptive stepsize in NGD [19] with PG scheme (1.3) we propose
new proximal gradient algorithms for solving problem (P) with locally Lipschitz gradient condi-
tion imposed on the smooth term. More precisely, under Assumption 1 and f is a convex function
satisfying local Lipschitz gradient, we address the following properties for PG algorithm with
our new stepsize selection:

• our proposed stepsize is quickly computed by explicit forms without the requirement of esti-
mating any constant (for guaranteeing the convergence) as well as backtracking calculation;

• our proposed method is proved to be decreasing from some fixed iteration;

• the complexity computation of F(xk)−F∗ is O(1
k );

• in the case of locally strongly convexity of f , we get the Q-linear rate of the iterates;

• the sequence of our proposed stepsize is increasing to a positive number;

• the range of step length of our proposed stepsize is proved to be bigger than NGD if g = 0.

It is worth noting that without global Lipschitz gradient continuity of f , these above conver-
gent results are often obtained with standard strategies of choosing stepsize like fixed stepsize
within a given interval (e.g., (0, 2−δ

L ) with constant L satisfies Lipschitz-like/convexity condition
(LC) for NoLips algorithm) or line-search procedures. However, for PG scheme using an adaptive
stepsize selection, to the best of our knowledge, there has been no method with such convergent
properties so far. Moreover, we show that our method can be extended to apply for a class of
nonconvex of (P) if ∇ f satisfies global Lipschitz continuity. As a byproduct, one special version
solving problem (P) is designed in the case f is an indefinite quadratic form with the capability
of enlarging stepsize. We also implement our new algorithms in comparison with the recent ones
for a numerous of test instances to figure out the crucial efficiency of the new method.

The rest of the paper is structured as follows. After summarizing some necessary preliminar-
ies in Section 2, we propose our new proximal algorithm in Section 3 for solving the convex situ-
ation of (P) under locally Lipschitz condition of ∇ f . In the sequel, we consider a nonconvex case
of (P) with an other new algorithm. Section 5 presents a particular version of proposed method
applied for the indefinite quadratic function f . The numerical experiments on a set of practical
examples are stated in Section 6. Lastly, the paper is closed by some conclusions in Section 7.
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2 Preliminaries

In this section, we recall some necessary fundamental results which are useful to derive our main
contributions in the upcoming sections.

Through out this paper, for any z ∈∈ int(dom( f )), and t > 0, we use the definition of the prox-
imity as follows

Proxtg(z) := argmin
x∈Rn

{
g(x)+

1
2tk

∥x− (z− t∇ f (z))∥2
}
.

Lemma 2.1 Under Assumption 1, the sequence {xk} generated by proximal gradient scheme (1.3) for
solving problem (P) has the following properties:

(i) there exists ∂g(xk+1) ∈ ∂g(xk+1) such that xk+1 = xk − tk
(

∇ f (xk)+∂g(xk+1)
)

;

(ii) for all x ∈ int(dom( f )), we have

g(x)−g(xk+1)≥
〈

xk+1 − x,∇ f (xk)+
xk+1 − xk

tk

〉
. (2.1)

Proof (i) Since xk+1 ∈ argmin
x∈Rn

{
g(x)+ 1

2tk

∥∥x− (xk − tk∇ f (xk))
∥∥2
}

then

0 ∈ ∂g(xk+1)+
1
tk

(
xk+1 − xk + tk∇ f (xk)

)
.

Hence there exists ∂g(xk+1) ∈ ∂g(xk+1) such that

xk+1 = xk − tk(∇ f (xk)+∂g(xk+1)). (2.2)

(ii) From (i) and the convexity of g we are easy to get that

g(x)−g(xk+1)≥
〈

x− xk+1,∂g(xk+1)
〉

=

〈
xk+1 − x,∇ f (xk)+

xk+1 − xk

tk

〉
.

Lemma 2.2 (Lemma 2 in [28]) Let {xk} ⊂Rn be a bounded sequence where its cluster points in X ⊂Rn

and the real sequence {ak} ⊂ R+. If

∥xk+1 − x∥2 +ak+1 ≤ ∥xk − x∥2 +ak, ∀x ∈ X , (2.3)

then {xk} converges to an element of X .

3 A new proximal gradient algorithm for the problem (P) with f being convex and
locally Lipschitz gradient

In this section, we propose a new proximal gradient algorithm for solving problem (P) satisfying
Assumption 1 and Assumption 2 below.
Assumption 2: f is convex and locally Lipschitz gradient.
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Algorithm 3.1 (NPG1)

Step 0. Select t0 > 0, 0 < c1 < c0 <
1√
2

and a positive real sequence {γk} such that
+∞

∑
k=0

γk < ∞. Choose x0 ∈

int(dom( f )), x1 = Proxt0g(x0), t−1 = t0 and set k = 1.
Step 1.

If ∥∇ f (xk)−∇ f (xk−1)∥> c0

tk−1
∥xk − xk−1∥ (3.1)

then tk = c1
∥xk − xk−1∥

∥∇ f (xk)−∇ f (xk−1)∥
(3.2)

else γ
′
k−1 = γk−1

if
tk−1

tk−2
< 1 then γ

′
k−1 = min

{
γk−1,

√
1+

tk−1

tk−2
−1
}

(3.3)

tk = (1+ γ
′
k−1)tk−1. (3.4)

Step 2. Compute xk+1 = Proxtkg(xk).
Step 3. If ∥xk+1 − xk∥< ε then STOP else setting k := k+1 and return to Step 1.

Lemma 3.1 For all x ∈ int(dom( f )) we have

∥xk+1 − x∥2 +2tk
(

F(xk)−F(x)
)
≤ ∥xk − x∥2 + t2

k

∥∥∥∇ f (xk)+∂g(xk)
∥∥∥2

.

Proof From Lemma 2.1 (ii), for all x ∈ int(dom( f ))

2tk
(

g(xk+1)−g(x)
)
≤ 2

〈
xk+1 − xk + tk∇ f (xk),x− xk+1

〉
= ∥xk − x∥2 −∥xk+1 − xk∥2 −∥xk+1 − x∥2+

+2tk
〈

∇ f (xk),x− xk+1
〉
. (3.5)

Using the convexity of f and g, we continue evaluating

⟨∇ f (xk),x− xk+1⟩= ⟨∇ f (xk),x− xk⟩+ ⟨∇ f (xk)+∂g(xk),xk − xk+1⟩+ ⟨∂g(xk),xk+1 − xk⟩

≤ f (x)− f (xk)+
〈

∇ f (xk)+∂g(xk),xk − xk+1
〉
+g(xk+1)−g(xk). (3.6)

From (3.5) and (3.6), we derive that

∥xk+1 − x∥2 +2tk
(

F(xk)−F(x)
)
≤ ∥xk − x∥2 +R, (3.7)

where

R = 2tk
〈

∇ f (xk)+∂g(xk),xk − xk+1
〉
−∥xk+1 − xk∥2

= tk
〈

2∇ f (xk)+2∂g(xk)−∇ f (xk)−∂g(xk+1),xk − xk+1
〉

= t2
k

〈
∇ f (xk)+2∂g(xk)−∂g(xk+1),∇ f (xk)+∂g(xk+1)

〉
= t2

k

(∥∥∥∇ f (xk)+∂g(xk)
∥∥∥2

−
∥∥∥∂g(xk+1)−∂g(xk)

∥∥∥2
)

≤ t2
k

∥∥∥∇ f (xk)+∂g(xk)
∥∥∥2

. (3.8)

The final conclusion is obtained by (3.7) and (3.8).

Lemma 3.2 Let {tk} be a sequence of stepsizes generated by Algorithm 3.1 then there exists k0 ∈ N such
that

1+
tk

tk−1
≥

t2
k+1

t2
k

∀k ≥ k0. (3.9)
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Proof If ∥∇ f (xk+1)− ∇ f (xk)∥ > c0
tk
∥xk+1 − xk∥ then tk+1 = c1∥xk+1−xk∥

∥∇ f (xk+1)−∇ f (xk)∥ < c1tk
c0

(by (3.2)). Hence
tk+1
tk

< c1
c0
< 1 and (3.9) is followed. Conversely, in the case that ∥∇ f (xk+1)−∇ f (xk)∥ ≤ c0

tk
∥xk+1−xk∥

then by (3.4), tk+1 = (1+ γ ′k)tk and (3.9) is equivalent to(
tk+1

tk

)2

= (1+ γ
′
k)

2 ≤ 1+
tk

tk−1
. (3.10)

Moreover, from (3.3), if tk
tk−1

≥ 1 then γ ′k = γk and because
+∞

∑
k=0

γk <+∞, there is k0 such that

γ
′
k = γk ≤

√
2−1 ≤

√
1+

tk
tk−1

−1 ∀k ≥ k0. (3.11)

For the remaining case tk
tk−1

< 1, we have

γ
′
k = min

{
γk,

√
1+

tk
tk−1

−1
}
≤
√

1+
tk

tk−1
−1. (3.12)

Thus, (3.9) is proved from (3.11) and (3.12).

Lemma 3.3 Let {xk} be a sequence generated by Algorithm 3.1 then the following statements hold

(i) there exists k1 ≥ k0 such that for all k ≥ k1,

t2
k

∥∥∥∇ f (xk)+∂g(xk)
∥∥∥2

≤ 1
2
∥xk − xk−1∥2 +

t2
k

tk−1

(
F(xk−1)−F(xk)

)
; (3.13)

(ii) {xk} is bounded.

Proof (i) We have the relation

t2
k

∥∥∥∇ f (xk)+∂g(xk)
∥∥∥2

= t2
k

∥∥∇ f (xk)−∇ f (xk−1)
∥∥2︸ ︷︷ ︸

A

+B, (3.14)

where

B = 2t2
k

〈
∇ f (xk)+∂g(xk),∇ f (xk−1)+∂g(xk)

〉
− t2

k

∥∥∥∇ f (xk−1)+∂g(xk)
∥∥∥2

=
t2
k

tk−1

〈
∇ f (xk)+∂g(xk),xk−1 − xk

〉
+

t2
k

tk−1

〈
∇ f (xk)−∇ f (xk−1),xk−1 − xk

〉
︸ ︷︷ ︸

≤0

≤
t2
k

tk−1

(
F(xk−1)−F(xk)

)
. (3.15)

We now prove that there exists k1 ≥ k0 such that

A ≤ 1
2
∥xk − xk−1∥2 ∀k ≥ k1. (3.16)

Indeed, from Algorithm 3.1, if
∥∥∇ f (xk)−∇ f (xk−1)

∥∥> c0
tk−1

∥xk −xk−1∥ then tk =
c1∥xk−xk−1∥

∥∇ f (xk)−∇ f (xk−1)
∥ and

since c1 <
1√
2
, we have

A = t2
k ∥∇ f (xk)−∇ f (xk−1)∥2 = c2

1∥xk − xk−1∥2 <
1
2
∥xk − xk−1∥2.
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Conversely, if ∥∇ f (xk)−∇ f (xk−1)∥ ≤ c0
tk−1

∥xk − xk−1∥ then

tk = (1+ γ
′
k−1)tk−1 ≤ (1+ γk−1)

c0∥xk − xk−1∥
∥∇ f (xk)−∇ f (xk−1)∥

which follows
t2
k ∥∇ f (xk)−∇ f (xk−1)∥2 ≤ (1+ γk−1)

2c2
0∥xk − xk−1∥2. (3.17)

The convergence of
+∞

∑
k=0

γk indicates that there exists k1 ≥ k0 satisfying

γk−1 ≤
1√
2c0

−1 ∀k ≥ k1

(
1√
2c0

−1 > 0 since c0 <
1√
2

)
, (3.18)

which is equivalent to (1+γk−1)
2c2

0 ≤ 1
2 for all k ≥ k1. From (3.17) we have (3.16). The combination

of (3.14), (3.15) and (3.16) indicates (3.13).

(ii) Using Lemma 3.1 with x = x∗ and (3.13), for all k ≥ k1 we have

∥xk+1 − x∗∥2 +2tk
(

F(xk)−F(x∗)
)
+ t2

k

∥∥∥∇ f (xk)+∂g(xk)
∥∥∥2

≤ ∥xk − x∗∥2 +2t2
k

∥∥∥∇ f (xk)+∂g(xk)
∥∥∥2

≤ ∥xk − x∗∥2 +∥xk − xk−1∥2 +2
t2
k

tk−1

(
F(xk−1)−F(xk)

)
. (3.19)

Nevertheless,

t2
k

∥∥∥∇ f (xk)+∂g(xk)
∥∥∥2

=
∥∥∥tk
(

∇ f (xk)+∂g(xk+1)
)
+ tk

(
∂g(xk)−∂g(xk+1)

)∥∥∥2

=
∥∥∥(xk − xk+1)+ tk

(
∂g(xk)−∂g(xk+1)

)∥∥∥2

= ∥xk − xk+1∥2 +2tk
〈

xk − xk+1,∂g(xk)−∂g(xk+1)
〉

︸ ︷︷ ︸
≥0 because g is convex

+t2
k ∥∂g(xk)−∂g(xk+1)∥2︸ ︷︷ ︸

≥0

≥ ∥xk − xk+1∥2. (3.20)

Hence, using inequality (3.20) for the left hand side of (3.19) we obtain that

∥xk+1 − x∗∥2 +2tk

(
1+

tk
tk−1

)(
F(xk)−F(x∗)

)
+∥xk − xk+1∥2

≤ ∥xk − x∗∥2 +∥xk−1 − xk∥2 +2
t2
k

tk−1

(
F(xk−1)−F(x∗)

)
. (3.21)

Remember that from Lemma 3.2 we derive 2tk
(

1+ tk
tk−1

)
≥ 2t2

k+1
tk

∀ k ≥ k1. Therefore, by (3.21), for
all k ≥ k1 we have

∥xk+1 − x∗∥2 +∥xk − xk+1∥2 +
2t2

k+1

tk

(
F(xk)−F(x∗)

)
≤ ∥xk − x∗∥2 +∥xk−1 − xk∥2 +

2t2
k

tk−1

(
F(xk−1)−F(x∗)

)
. (3.22)

This inequality follows that

∥xk+1 − x∗∥2 +∥xk − xk+1∥2 +
2t2

k+1

tk

(
F(xk)−F(x∗)

)
≤ K, (3.23)
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where

K = ∥xk1 − x∗∥2 +∥xk1−1 − xk1∥2 +
2t2

k1

tk1−1

(
F(xk1−1)−F(x∗)

)
.

The relation (3.23) implies the boundedness of {xk}.

Remark 3.1 From the proof of Lemma 3.3 (eq. (3.11) and (3.18)), we see that if the convergent

positive series
+∞

∑
k=0

γk is created such that γk ≤ min
{

1√
2c0

−1,
√

2−1
}

for all k ≥ 1 then k1 = 1 and

therefore we obtain (3.22) for any k ≥ 1.

The bounded property of the sequence {xk} in Lemma 3.3 provides us an important key
to beyond the challenge of the usual condition imposed on the gradient of f that the globally
Lipschitz continuity of ∇ f . In the upcoming lemma, we start deploying the locally Lipschitz of
∇ f to obtain several typical characteristics of the sequence of our new stepsize.

Lemma 3.4 Let {tk} be a sequence of stepsizes generated by Algorithm 3.1. Then

(i) {tk} is lower bounded by a positive number;

(ii) {tk} is convergent and has a positive limitation.

Proof (i) By Lemma 3.3 the set T = conv{x∗,x0,x1, ...} is closed and compact. From the local Lip-
schitz continuity of ∇ f , it is easy to see that there exists L0 > 0 satisfying ∥∇ f (x)− ∇ f (y)∥ ≤
L0∥x− y∥ ∀x,y ∈ T. Thereafter, either t1 ≥ c1

L0
or t1 = (1+ γ ′0)t0 ≥ t0. The induction process derives

that
tk ≥ min{ c1

L0
, t0}= η > 0 ∀k ≥ 0. (3.24)

(ii) If we set rk = ln tk+1− ln tk and r+k =max{0,rk}≥ 0,r−k =−min{0,rk}≥ 0, ∀k ≥ 0 then rk = r+k −r−k .
On the other hand, from Algorithm 3.1, we observe that 0 < c1 < c0 <

1√
2
, hence both of (3.2) and

(3.4) give

rk = ln
tk+1

tk
≤ ln(1+ γ

′
k)≤ γ

′
k ≤ γk ∀k ≥ 0.

Thus, r+k ≤ γk. Moreover, the series
+∞

∑
k=0

γk converges then
+∞

∑
k=0

r+k <+∞. Noticeably,

ln tk+1 − ln t0 =
k

∑
i=0

ri =
k

∑
i=0

(r+i − r−i ) =
k

∑
i=0

r+i −
k

∑
i=0

r−i . (3.25)

Hence if the nonnegative series
+∞

∑
k=0

r−k diverges, i.e., lim
k→+∞

k
∑

i=0
r−i =+∞ then

lim
k→+∞

(ln tk+1) =−∞

which implies lim
k→+∞

tk = 0. This result is contradict with the assertion (i). Thus,
+∞

∑
k=0

r−k is convergent

and therefore lim
k→+∞

tk = t∗ ∈ (0,+∞) (followed by (3.25)).

Lemma 3.5 There exists k∗ such that

∥∇ f (xk)−∇ f (xk−1)∥ ≤ c0

tk−1
∥xk − xk−1∥, ∀k ≥ k∗. (3.26)
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Proof Assuming that there is a subsequence {ki} ⊂ N, ki →+∞ such that

∥∇ f (xki)−∇ f (xki−1)∥> c0

tki−1
∥xki − xki−1∥.

By Algorithm 3.1, in this case we have

tki

tki−1
=

c1∥xki − xki−1∥
tki−1∥∇ f (xki)−∇ f (xki−1)∥

<
c1

c0
∀ki.

However, Lemma 3.4 gives

lim
ki→+∞

tki = lim
ki→+∞

tki−1 = lim
k→+∞

tk = t∗.

Consequently, t∗
t∗ ≤

c1
c0
< 1 that is impossible and we obtain the conclusion of the lemma.

Remark 3.2 From Lemma 3.5, we immediately obtain the increasing of the sequence {tk}k≥k∗ and
0 < η < tk ≤ max{t0, ..., tk∗−1, t∗}= tmax, k ≥ 0.

Lemma 3.6 For any x ∈ int(dom( f )), we have

F(x)−F(xk+1)≥ 1− c0

tk
∥xk+1 − xk∥2 +

1
tk
⟨xk − xk+1,x− xk⟩, for all k ≥ k∗. (3.27)

Proof Because of the convexity of f and Lemma 2.1 (ii) we have

F(x)−F(xk+1) = f (x)+g(x)− f (xk+1)−g(xk+1)

≥ f (xk)+
〈

x− xk,∇ f (xk)
〉
+

〈
xk+1 − x,∇ f (xk)+

xk+1 − xk

tk

〉
− f (xk+1)

= f (xk)− f (xk+1)+
〈

xk+1 − xk,∇ f (xk)
〉
+

1
tk

〈
xk+1 − xk,xk+1 − x

〉
≥ ⟨∇ f (xk+1)−∇ f (xk),xk − xk+1⟩+ 1

tk

∥∥xk+1 − xk
∥∥2

+
1
tk

〈
xk+1 − xk,xk − x

〉
(3.28)

On the other hand, by using Lemma 3.5, we have the evaluation〈
∇ f (xk+1)−∇ f (xk),xk − xk+1

〉
≥−

∥∥∇ f (xk)−∇ f (xk+1)
∥∥∥xk − xk+1∥

≥ −c0

tk
∥xk+1 − xk∥2 ∀k ≥ k∗. (3.29)

The proof is completed by utilizing (3.28) and (3.29).

The convergent properties of Algorithm 3.1 are given in the following theorem.

Theorem 3.1 Suppose that problem (P) satisfies Assumptions 1 and 2. Then the following assertions hold
for Algorithm 3.1.

(i) The sequence {F(xk)}k≥k∗ descends to lim
k→+∞

F(xk) = F∗.

(ii) The sequence {xk} converges to an optimal solution of problem (P).

(iii) For any x∗ ∈ X∗ and k ≥ k∗+1 we have

F(xk)−F∗ = F(xk)−F(x∗)≤ D
2tk∗(k− k∗)

= O
(

1
k

)
, (3.30)

where
D = max

{
∥x∗− xk∗∥2,∥x∗− xk∗∥2 +

t∗(2c0 −1)
1− c0

(
F(xk∗)−F∗

)}
.
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Proof (i) Substituting x by xk in (3.27) of Lemma 3.6 we get that

F(xk)−F(xk+1)≥ 1− c0

tk
∥xk+1 − xk∥2 ≥ 1− c0

t∗
∥xk+1 − xk∥2 ≥ 0, for all k ≥ k∗. (3.31)

By (3.31), the sequence {F(xk)}k≥k∗ is decreasing. On the other hand, it is lower bounded by F∗
hence converges to F̄ ≥ F∗. Thus, F(xk)−F(xk+1) → 0. And consequently, the inequality (3.31)
follows

lim
k→+∞

∥xk+1 − xk∥= 0. (3.32)

Now, replacing x with x∗ in (3.27) of Lemma 3.6 to obtain

0 ≤ F(xk+1)−F(x∗)≤−1− c0

tk
∥xk+1 − xk∥2 − 1

tk
⟨xk − xk+1,x∗− xk⟩

≤ (c0 −1)∥xk+1 − xk∥2 +∥xk+1 − xk∥∥xk − x∗∥
tk

, for all k ≥ k∗. (3.33)

However, {xk} is bounded (by Lemma 3.3(ii)) and lim
k→+∞

tk = t∗ (from Lemma 3.4) then combining

with (3.32) we deduce that the limitation of the right hand side of (3.33) is zero as k tending to
infinity. Hence, again, by (3.33) we have lim

k→+∞

F(xk) = F∗.

(ii) Taking into account that the sequence {xk} is bounded then for each cluster point x of {xk},
we can take a subsequence {xki} such that xki → x. On the other hand, the closedness of F (from
Assumption 1) follows its lower semi-continuous and therefore F(x)≤ lim

ki→∞

F(xki) = F∗, which im-

plies x ∈ X∗.

Setting ak = ∥xk−1 − xk∥2 +
2t2

k
tk−1

(
F(xk−1)−F(x∗)

)
≥ 0 and rewrite (3.22) to be

∥xk+1 − x∗∥2 +ak+1 ≤ ∥xk − x∗∥2 +ak, ∀x∗ ∈ X∗, k ≥ k1.

Moreover, we have just shown that all cluster points of {xk} belong to X∗. Therefore, applying
Lemma 2.2 we obtain that {xk} converges to some element of X∗.

(iii) In (3.31), substituting k by j then summing up it from j = k∗ to k we derive that

F(xk∗)−F(xk+1)≥ 1− c0

t∗
k

∑
j=k∗

∥x j+1 − x j∥2. (3.34)

This indicates the convergence of
+∞

∑
j=k∗

∥x j+1 − x j∥2 and

+∞

∑
j=k∗

∥x j+1 − x j∥2 ≤ t∗

1− c0

(
F(xk∗)−F∗

)
. (3.35)

Applying (3.27) again, we obtain that

F(x∗)−F(x j+1)≥ 1
2t j

(
∥x j+1 − x j∥2 +2

〈
x j − x j+1,x∗− x j〉)+(1

2
− c0

)
∥x j − x j+1∥2

t j

≥ 1
2t j

(
∥x∗− x j+1∥2 −∥x∗− x j∥2)+(1

2
− c0

)
∥x j − x j+1∥2

t j
∀ j ≥ k∗. (3.36)

On the other hand, Remark 3.2 gives t j ≥ tk∗ ∀ j ≥ k∗ which helps to infer the following inequality
from (3.36)

2tk∗
(
F(x j+1)−F(x∗)

)
≤ 2t j

(
F(x j+1)−F(x∗)

)
≤
(
∥x∗− x j∥2 −∥x∗− x j+1∥2)+(2c0 −1)∥x j − x j+1∥2 ∀ j ≥ k∗. (3.37)
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Summing (3.37) side by side for j = k∗ to k+ k∗−1(k ≥ 1), we get that

2tk∗

(
k+k∗−1

∑
j=k∗

F(x j+1)− kF(x∗)

)
≤
(
∥x∗− xk∗∥2 −∥x∗− xk+k∗∥2

)
+

+(2c0 −1)
k+k∗−1

∑
j=k∗

∥x j − x j+1∥2

≤ D, (3.38)

where, (from (3.35))D is defined by

D = max
{
∥x∗− xk∗∥2,∥x∗− xk∗∥2 +

t∗(2c0 −1)
1− c0

(
F(xk∗)−F∗

)}
.

Additionally, the descent of {F(xk)}k≥k∗ induces
k+k∗−1

∑
j=k∗

F(x j+1) ≥ kF(xk+k∗). Therefore by (3.38),

we have

F(xk+k∗)−F(x∗)≤ 1
2tk∗

D
k

∀k ≥ 1,

which means that F(xk)−F(x∗)≤ D
2tk∗

1
k− k∗

= O
(

1
k

)
∀k ≥ k∗+1.

Next, we prove a stronger convergent result of Algorithm 3.1 if f is locally strongly convex.
The details is the following.

Theorem 3.2 Assuming that c0 ≤ 1
2 and problem (P) satisfies Assumption 1, Assumption 2. Additionally,

f is locally strongly convex then the sequence {xk} generated by Algorithm 3.1 satisfies

∥xk+1 − x∗∥2 ≤ (1−σtk∗)∥xk − x∗∥2, ∀k ≥ k∗, (3.39)

where σ > 0 is strong convexity constant of f on the compact set T = conv{x∗,x0,x1, ...}. Consequently,
this result shows the Q-linear convergence rate of {xk}.

Proof The σ− strong convexity on T of f implies that

f (x)− f (xk)≥ ⟨∇ f (xk),x− xk⟩+ σ

2
∥x− xk∥2, ∀x ∈ T.

We update this change and the condition c0 ≤ 1
2 in the argument of formula (3.28) and (3.36) to

obtain the following inequality

F(x∗)−F(xk+1)≥ 1
2tk

∥x∗− xk+1∥2 +

(
σ

2
− 1

2tk

)
∥x∗− xk∥2,

for all x∗ ∈ X∗,k ≥ k∗, Remember that F(x∗)−F(xk+1)≤ 0 ∀k hence

1
2tk

∥x∗− xk+1∥2 ≤
(

1
2tk

− σ

2

)
∥x∗− xk∥2, k ≥ k∗. (3.40)

By (3.40), Lemma 3.4(i) and Remark 3.2, we have: ∀k ≥ k∗

0 < 1−σtk ≤ 1−σtk∗ ≤ 1−ση < 1,

which derives
∥xk+1 − x∗∥2 ≤ (1−σtk∗)∥xk − x∗∥2, k ≥ k∗.

The last inequality aims the Q-linear convergence rate of {xk}.
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Remark 3.3 (Comparison with the related work)

(i) It is observed that, in the case g = 0, NPG1 becomes NGD [19] with the bigger range of c0,c1.
In particular, for NGD, c0,c1 ∈

(
0, 1

2

)
but for NPG1, c0,c1 ∈

(
0, 1√

2

)
.

(ii) It is worth noting that very recently, Malitsky and Mishchenko [27] has developed their method
AdGD [28] to be AdPG (Adaptive Proximal Gradient) for solving problem (P) with the convex
f satifying locally Lipschitz gradient assumption. The stepsize is defined by

tk = min


√

2
3
+θk−1tk−1,

tk−1√[
2t2

k−1∥∇ f (xk)−∇ f (xk−1)∥2

∥xk−xk−1∥2 −1
]
+

 ,k ≥ 1,

where θ0 =
1
3 ,θk =

tk
tk−1

,k ≥ 1 and [t]+ = max{t,0} for t ∈ R. The iterates of AdPG is proved to
converge to an optimal solution of (P) with the complexity O(1

k ) of min
1≤i≤k

(F(xi)−F∗). However,

the lack of descent property of AdPG deduces two obstacles

(a) the first one is in producing the convergent result O(1
k ) of F(xk)−F∗ and the Q-linear rate

of {xk} generated by AdPG in the case f assumed to be locally strongly convex. This re-
striction can be seen as one of open questions mentioned in [27]. Fortunately, as presented
above, our proposed method (NPG1) in this paper is able to fill all these gaps. Moreover,
the lack of descent property of AdPG

(b) the second one is in the capability of extending to the nonconvex case of (P). However,
with NPG1 stepsize, in the upcoming section, we extend it to work for a class of nonconvex
composite optimization models.

4 The nonconvex case of problem (P)

We now consider problem (P) satisfying Assumption 1 and other conditions in Assumption 3 below
Assumption 3:

(i) f is globally Lipschitz gradient with constant L f on int(dom( f )).

(ii) For u,v ∈ int(dom( f )), the function huv : [0,1]→ R defined by

huv(t) = f ′t (u+ t(v−u)) = ⟨∇ f (u+ t(v−u)),v−u⟩

is quasiconvex.

Example 4.1 Suppose that f is either convex or concave. Then f satisfies Assumption 3 (ii). Indeed,
the convexity (concavity, resp.) of f follows the convexity (concavity, resp.) of f (u + t(v − u))
on the set {t ∈ R | u+ t(v− u) ∈ int(dom( f ))} ⊃ [0,1] (since int(dom( f )) is convex). As a result,
f ′t (u+ t(v−u)) is increasing (decreasing, resp.) monotone over [0,1] and therefore quasiconvex on
that. In the case, f is a concave function then F = f +g is actually the difference of the two convex
functions, or in other words, F belongs to the class of dc functions.

Example 4.2 The indefinite quadratic function f (x) = 1
2 xT Ax+bT x (A is a symmetric matrix in Rn×n

and b ∈Rn) satisfies both of Assumption 1 and Assumption 3 since huv(t) = ⟨A(u+ t(v−u))+b,v−u⟩
is linear and hence quasiconvex on [0,1] for any u,v ∈ int(dom( f )) = Rn.

From Example 4.1 and 4.2, we see that the class of problem (P) satisfying Assumption 1 and As-
sumption 3 is nonconvex in general. Subsequently, we propose an other version of Algorithm 3.1
that can be applied for such a kind of problems.
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Algorithm 4.1 (NPG2)
Step 0 (Initialization). Select t0 > 0, 0 < c1 < c0 < 1, x0 ∈ int(dom( f )) a tolerance ε > 0 and a positive real

sequence {γk} such that
∞

∑
k=0

γk < ∞. Taking x1 = Pt0g(x0), t−1 = t0 and k = 1.

Step 1.

If ∥∇ f (xk)−∇ f (xk−1)∥> c0

tk−1
∥xk − xk−1∥

then tk = c1
∥xk − xk−1∥

∥∇ f (xk)−∇ f (xk−1)∥
else γ

′
k−1 = γk−1

if
tk−1

tk−2
< 1 then γ

′
k−1 = min

{
γk−1,

√
1+

tk−1

tk−2
−1
}

(4.1)

tk = (1+ γ
′
k−1)tk−1.

Step 2. Compute xk+1 = Ptkg(xk).
Step 3. If ∥xk+1 − xk∥< ε then STOP else setting k := k+1 and return to Step 1.

The convergence of Algorithm 4.1 is established after some lemmas analogous to the ones of
Section 3.

Lemma 4.1 The sequence {tk} in Algorithm 4.1 satisfies inf
k≥0

tk > 0 and has a positive limitation.

Proof Similarly as Lemma 3.4 (i), it is clearly to get that tk ≥min{t0, c1
L f
}> 0 for all k ≥ 0. As a result,

inf
k≥0

tk > 0. The remaining conclusion is shown as Lemma 3.4 (ii).

Lemma 4.2 For Algorithm 4.1, there exists k̄ such that

∥∇ f (xk)−∇ f (xk−1)∥ ≤ c0

tk−1
∥xk − xk−1∥ ∀k ≥ k̄.

Proof The proof is the same as in Lemma 3.5.

Lemma 4.3 Assuming that problem (P) satisfies Assumption 1 and Assumption 3 then the sequence {xk}
generated by Algorithm 4.1 has the following property

F(xk)−F(xk+1)≥ 1− c0

tk
∥xk+1 − xk∥2, ∀k ≥ k̄.

Proof Invoking the Fundamental Theorem of Calculus, we have

f (xk+1)− f (xk) =
∫ 1

0

〈
∇ f (xk + t(xk+1 − xk)),xk+1 − xk

〉
dt

= ⟨∇ f (xk),xk+1 − xk⟩+
∫ 1

0
uk(t)dt, ∀k ≥ k̄ (4.2)

where

uk(t) = ⟨∇ f (xk + t(xk+1 − xk))−∇ f (xk),xk+1 − xk⟩
= hxkxk+1(t)−⟨∇ f (xk),xk+1 − xk⟩.

According to Assumption 3, the quasiconvexity of uk(t) in [0,1] follows that

uk(t)≤ max{uk(0),uk(1)}= max{0,uk(1)} ≤ |uk(1)|
= |⟨∇ f (xk+1)−∇ f (xk),xk+1 − xk⟩|, ∀t ∈ [0,1].
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Thereafter, using Lemma 4.2, we derive that

∫ 1

0
uk(t)dt ≤ c0

tk
∥xk+1 − xk∥2, ∀k ≥ k̄. (4.3)

Now, combining (4.2), (4.3) and Lemma 2.1(ii) with x = xk+1 we get that

F(xk)−F(xk+1) = f (xk)− f (xk+1)+g(xk)−g(xk+1)

≥−
〈

xk+1 − xk,∇ f (xk)
〉
− c0

tk
∥xk+1 − xk∥2+

+

〈
xk+1 − xk,∇ f (xk)+

xk+1 − xk

tk

〉
=

1− c0

tk
∥xk+1 − xk∥2 ∀k ≥ k̄. (4.4)

The following theorem gives the convergence of Algorithm 4.1 for solving the problem (P).

Theorem 4.1 Under Assumption 1 and 3, the following assertions hold for Algorithm 4.1:

(i) The sequence {F(xk)}k≥k̄ is decreasing and for any k ≥ k̄, F(xk+1) < F(xk) unless xk is a stationary
point of problem (P).

(ii) F(xk)−F(xk+1)→ 0 and
+∞

∑
k=0

∥xk+1 − xk∥ is convergent.

Proof (i) By (4.4) and c0 < 1, it is clear to see that F(xk) ≥ F(xk+1) for all k ≥ k̄. If F(xk) = F(xk+1)
then xk+1 = xk = Proxtkg(xk) meaning xk is a stationary point of (P).

(ii) Since problem (P) has a non-empty optimal solution set then the sequence {F(xk)}k≥k̄ is de-
creasing and lower bounded by F∗. This follows the existence of a finite limitation F̂ of {F(xk)}k≥k̄
(F̂ ≥ F∗). It means that F(xk)−F(xk+1)→ 0. Moreover, by Lemma 4.1 we have {tk}k≥k increas-
ing to lim

k→+∞

tk = t∗. On the other hand, inequality (4.4) indicates that ∥xk+1−xk∥2 ≤ tk
1−c0

(F(xk)−

F(xk+1))≤ t∗
1−c0

(F(xk)−F(xk+1)) for all k ≥ k. Therefore
+∞

∑

k=k
∥xk − xk+1∥ ≤ F(xk)− F̂ that follows

the desired conclusion.

Remark 4.1 (i) Remember that c0,c1 ∈
(

0, 1√
2

)
for Algorithm 3.1 (NPG1) but c0,c1 ∈ (0,1) for Al-

gorithm 4.1 (NPG2).

(ii) Actually, the command (4.1) in Algorithm 4.1 is optional since we do not need it during the
proof of the convergence of NPG2.

5 Problem (P) with quadratic function f

In this section, we propose an extension of Algorithm 4.1 called NPG-quad solving problem (P)
with quadratic function f , i.e., f (x) = 1

2 xT Ax+ bT x as described in Example 4.2. With the range
of c0,c1 in (0,2), the stepsize in NPG-quad can be bigger than the previous ones. This probably
makes the execution time of NPG-quad shorter.
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Algorithm 5.1 (NPG-quad)
Step 0 (Initialization). Select t0 > 0, 0 < c1 < c0 < 2, x0 ∈ dom(g), a tolerance ε > 0 and a positive real

sequence {γk} such that
∞

∑
k=0

γk < ∞. Taking x1 = Pt0g(x0), t−1 = t0, and k = 1.

Step 1.

If (xk − xk−1)T A(xk − xk−1)> c0
∥xk − xk−1∥2

tk−1
(5.1)

then tk =
c1∥xk − xk−1∥2

(xk − xk−1)T A(xk − xk−1)
(5.2)

else γ
′
k−1 = γk−1

if
tk−1

tk−2
< 1 then γ

′
k−1 = min

{
γk−1,

√
1+

tk−1

tk−2
−1
}

(5.3)

tk = (1+ γ
′
k−1)tk−1. (5.4)

Step 2. Compute xk+1 = Ptkg(xk).
Step 3. If ∥xk+1 − xk∥< ε then STOP else setting k := k+1 and return to Step 1.

Lemma 5.1 The sequence {tk} generated by Algorithm 5.1 has a positive limitation.

Proof Analogous to former sections, we are easy to have tk ≥ min
{

t0, c1
∥A∥

}
> 0 for all k ≥ 0. There-

fore, inf
k≥0

tk > 0. The computation of tk by (5.2) or (5.4) provides ln
(

tk+1
tk

)
< ln(1+γk). The subsequent

arguments are akin to the one of Lemma 3.4 (ii).

Lemma 5.2 For Algorithm 5.1, there exists k̃ such that

(xk − xk−1)T A(xk − xk−1)≤ c0
∥xk − xk−1∥2

tk−1
, for all k ≥ k̃. (5.5)

Proof Based on the properties of {tk} in Lemma 5.1 and arguing by contradiction as Lemma 3.5
we have the desired conclusion.

Theorem 5.1 Supposing problem (P) satisfies Assumption 1 and f has quadratic form as in Example 4.2.
For {xk} generated by Algorithm 5.1, the sequence {F(xk)}k≥k̃ is decreasing to a limitation F̃ ≥ F∗ and
+∞

∑
k=0

∥xk+1 − xk∥ is convergent.

Proof We have

f (xk+1)− f (xk) =
∫ 1

0

〈
∇ f (xk + t(xk+1 − xk)),xk+1 − xk

〉
dt

=
∫ 1

0

〈
A(xk + t(xk+1 − xk))+b,xk+1 − xk

〉
dt

=
〈

A(xk+1 − xk),xk+1 − xk
〉∫ 1

0
tdt +

〈
Axk +b,xk+1 − xk

〉
=

1
2
(xk+1 − xk)T A(xk+1 − xk)+

〈
∇ f (xk),xk+1 − xk

〉
. (5.6)
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Now plugging (5.6) in F(xk)−F(xk+1) and using Lemma 2.1(ii) to obtain

F(xk)−F(xk+1) = f (xk)− f (xk+1)+g(xk)−g(xk+1)

≥−1
2
(xk+1 − xk)T A(xk+1 − xk)−⟨∇ f (xk),xk+1 − xk⟩+

+

〈
xk+1 − xk,∇ f (xk)+

xk+1 − xk

tk

〉
=−1

2
(xk+1 − xk)T A(xk+1 − xk)+

1
tk
∥xk+1 − xk∥2. (5.7)

Next, applying Lemma 5.2 for (5.7) we obtain for all k ≥ k̃,

F(xk)−F(xk+1)≥
(

1− c0

2

) ∥xk+1 − xk∥2

tk
. (5.8)

The remaining arguments are similar as Theorem 4.1.

Remark 5.1 If f is a concave quadratic function i.e., A is negative semi-definite then the condition
(5.1) is false, hence

• k̃ in Lemma 5.2 should be zero;

• tk is always defined by formula (5.4) and {tk}k≥0 is increasing to a finite limitation;

• the evaluation (5.8) should be

F(xk)−F(xk+1)≥ ∥xk+1 − xk∥2

tk
, ∀k ≥ 0. (5.9)

6 Numerical experiments

In this section, we investigate the performance of our new stepsize for the proximal gradi-
ent scheme by comparing our Algorithms 3.1(NPG1), 4.1 (NPG2) and 5.1 (NPG-quad) with:
1. the AdPG proposed by Malitksy and Mischenko [27], 2. the proximal gradient algorithms
ProxGD(s,r) with stepsize selection based on an improved version of Armijo’s backtracking pro-
cedure, i.e., For s > 1, r < 1, Armijo’s linesearch in finds the largest tk = sritk−1 for i = 0,1, ...
such that f (xk+1) ≤ f (xk) + ⟨∇ f (xk),xk+1 − xk⟩+ 1

2tk
∥xk+1 − xk∥2.. In the implementation we put

(s,r) = (1.1,0.5) or (1.2,0.5). The chosen parameters for ProxGD are taken as the two most effec-
tive sets from the observation on the numerical results provided in [27]. For our algorithms, we

use the convergent series
+∞

∑
k=0

γk defined by

γk−1 =
0.1(lnk)5.7

k1.1 , ∀k ≥ 1,

and setting (c0,c1) = (0.7,0.69) for NPG1, (c0,c1) = (0.99,0.98) for NPG2 and NPG-quad. For all
implemented algorithms, the stopping criterion is either the residual ∥xk+1 − xk∥ ≤ 1e−06 or the
number of iterations over Nmax.

We conduct experiments on five typical optimization problems with various sizes for each
one. The average results on 10 randomly generated data for each size of considered problems
with respect to

(i) the number of iterations (Iter.),

(ii) ∥xk+1 − xk∥ (Res.),
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(iii) F(xk)−F∗ (Obj.), where F∗ is computed as the minimum of F(xk) over all iterations and all
tested algorithms,

(iv) running time in seconds (Time(s)).

The details are reported on Tables 1, 2, 3, 4, 5. We emphasize the best results among all by bold
characters and the worst results by italic type. We also choose one arbitrary data for each kind of
problems to illustrate the performance by Figures 1, 2, 3, 4, 5.

All experiments were implemented in Python and executed on a personal computer equipped
with a 12th Gen Intel(R) Core(TM) i7-1260P 2.10 GHz processor, RAM 16.0 GB. For details see
our data repository at https://github.com/hoaiphamthi/NPG-for-composite-models

6.1 Lasso problems

The formulation of Lasso problem is formulated as the ℓ1 regularized least squares

min
x∈Rn

1
2
∥Ax−b∥2 +λ∥x∥1, (Lasso)

where A ∈ Rm×n,b ∈ Rm. The applications of Lasso can be found in statistic, machine learning,
signal processing, see e.g., [5,11,17]. By using the similar rules in [17], we randomly gener-
ate A ∈ Rm×n with entries drawn from the normal distribution N (0,1). We then construct a
sparse solution x∗ with 5% approximately non-zero entries, drawn from a mixture distribution
N (0,1)×B(1,0.05) then setting b = Ax∗+δ , where δ is white Gaussian noise with variance 0.01.
The regularization term λ = 0.01∥AT b∥∞. Obviously, Lasso satisfies Assumptions 1, 2, 3 then both
of NPG1 and NPG2 are available for it. Moreover, f is quadratic hence NPG-quad can be applied
for solving this problem also. Figure 1 illustrates the performance of mentioned algorithms for
one of randomly generated data with m = 2048, n = 8192. The obtained average results in Table 1
show the best performance of NPG-quad for almost dimensions of Lasso.
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Fig. 1: Illustration for one of randomly generated data of Lasso with size m = 2048,n = 8192.

https://github.com/hoaiphamthi/NPG-for-composite-models
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Size Metrics Average of all datasets

m n AdPG PG-LS
(1.1, 0.5)

PG-LS
(1.2, 0.5) NPG1 NPG2 NPG-quad

512 1024

Iter. 114,4 146,7 138,4 92,1 85,4 79,7
Res. 7,95E-07 6,76E-07 6,29E-07 7,99E-07 7,16E-07 6,25E-07
Obj. 1,07E-10 7,05E-11 7,52E-11 3,45E-10 1,05E-10 1,03E-11
Time(s) 0,041622 0,060324 0,057674 0,029767 0,027424 0,025698

512 2048

Iter. 307,7 402,9 381,5 235,7 197,6 204,7
Res. 7,26E-07 8,05E-07 8,55E-07 6,1E-07 7,29E-07 4,25E-07
Obj. 8,71E-09 2,71E-09 4,35E-09 7,23E-09 4,99E-09 8,57E-11
Time(s) 0,133219 0,188929 0,211354 0,110316 0,092419 0,096476

512 4096

Iter. 5923,4 8311,4 8269,7 5690 4534,1 3066,5
Res. 9,65E-07 9,68E-07 9,43E-07 9,8E-07 9,73E-07 9,22E-07
Obj. 6,5E-06 1,2E-06 5,69E-07 9,81E-06 5,56E-06 6,86E-08
Time(s) 5,106856 8,503539 9,265539 5,189247 4,11577 2,790751

1024 2048

Iter. 118,8 153,6 144,8 102 90,9 89,6
Res. 8,18E-07 6,45E-07 5,9E-07 7,94E-07 7,82E-07 5,68E-07
Obj. 3,23E-10 1,97E-10 1,55E-10 9,11E-10 2,64E-10 3,34E-11
Time(s) 0,091836 0,127233 0,138282 0,081234 0,073686 0,076868

1024 4096

Iter. 282,6 366,6 342,2 221,7 187,7 188,8
Res. 7,57E-07 9,1E-07 7,5E-07 7,24E-07 7,46E-07 5,91E-07
Obj. 1,13E-08 4,27E-09 6E-09 1,89E-08 1,11E-08 9,4E-11
Time(s) 0,900778 1,335362 1,334489 0,690471 0,581451 0,588497

1024 8192

Iter. 5422,5 7953 7839,9 5431,7 4345,8 2967,5
Res. 9,42E-07 9,7E-07 9,45E-07 9,61E-07 9,78E-07 9,43E-07
Obj. 1,76E-05 2,34E-06 1,65E-06 1,84E-05 1,14E-05 4,27E-07
Time(s) 41,86462 69,53798 75,38844 41,31976 33,15261 23,23451

2048 4096

Iter. 107 135,6 129,3 97,5 86,6 79,2
Res. 7,76E-07 7,48E-07 7,19E-07 7,43E-07 7,57E-07 5,46E-07
Obj. 4,13E-10 5,13E-10 3,07E-10 1,37E-09 3,69E-10 1,16E-10
Time(s) 0,905618 1,328207 1,350697 0,79346 0,706674 0,646555

2048 8192

Iter. 289,1 380,7 361,1 226,8 199,6 183,5
Res. 7,52E-07 7,85E-07 8,42E-07 7,67E-07 7,11E-07 5,15E-07
Obj. 3,93E-08 1,31E-08 1,33E-08 3,65E-08 2,58E-08 5,18E-10
Time(s) 4,878866 6,889515 7,239163 3,60845 3,178414 2,932337

Table 1: Average results for Lasso problem (Nmax = 15000).

6.2 Minimum length piecewise-linear curve subject to equality constraints

We consider an other optimization problem from [10, Example 10.4], where the objective is mini-
mizing the length of the piecewise-linear curve connecting the points (0,0),(1,x1), ...,(n,xn) while
satisfying the equality constraint Ax = b, the problem can be formed as

min
√

1+ x2
1 +

n−1

∑
i=1

√
1+(xi+1 − xi)2 s.t. Ax = b, (Min-length)

where A ∈ Rm×n,b ∈ Rm. It is seen that Min-length1 satisfies Assumption 1,2,3 and we can use
NPG1 and NPG2 to solve it. In the implementation, all members of A are randomly generated
by normal distribution N (0,1). Taking b = Ax∗, where x∗ ∼ N (0,1). Figure 2 provides the line
graphs of one randomly generated data with m = 2000,n = 10000. Table 2 includes the average
computation results for various sizes of Min-length. Notably, both NPG1 and NPG2 outperform
the remaining ones with the big deviation in term of computational time, residual, objective

1 Min-length is a case of problem (P) with f (x) =
√

1+ x2
1 +

n−1
∑

i=1

√
1+(xi+1 − xi)2 and g(x) = ıC (the indicator function

of C) with C = {x ∈ Rn | Ax = b}.
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value and the number of iterations. The speed of NPG1 can be seen as the best among all for
Min-length.
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Fig. 2: Illustrations for one of randomly generated data of Min-length with m = 2000,n = 10000.

Size Metrics Average of all datasets

m n AdPG PG-LS
(1.1, 0.5)

PG-LS
(1.2, 0.5) NPG1 NPG2

50 5000

Iter. 45399,2 50000 50000 14476,8 30012,6
Res. 3,72E-06 1,63E-05 1,51E-05 9,92E-07 9,94E-07
Obj. 9,35E-08 7,17E-06 6,71E-06 2,68E-08 0
Time(s) 15,65872 19,51051 21,40545 4,981068 10,22737

500 5000

Iter. 1035,1 1623,9 1631,4 357,2 328,4
Res. 9,44E-07 8,82E-07 8,68E-07 7,73E-07 7,67E-07
Obj. 3,1E-10 1,88E-10 1,51E-10 1,94E-10 7,77E-11
Time(s) 1,632963 3,080268 3,386024 0,587674 0,533654

2000 5000

Iter. 120,4 165,1 163,7 73,9 87,9
Res. 6,07E-07 6,82E-07 7,87E-07 6,75E-07 6,28E-07
Obj. 1,36E-11 1,41E-11 1,33E-11 2,91E-12 1,14E-11
Time(s) 1,130271 1,666739 1,711799 0,604635 0,718454

100 10000

Iter. 49008,7 50000 50000 17646,5 36450,4
Res. 8,29E-06 3,84E-05 3,97E-05 9,85E-07 9,88E-07
Obj. 3,7E-07 2,68E-05 2,49E-05 3,87E-08 0
Time(s) 36,15325 42,87928 47,1404 13,09231 27,43948

1000 10000

Iter. 1052,9 1614,2 1609,5 367,4 354,2
Res. 9,47E-07 6,35E-07 7,61E-07 7,29E-07 7,71E-07
Obj. 3,6E-10 3,86E-10 3,22E-10 1,37E-10 7,55E-11
Time(s) 8,05511 13,69401 15,06101 2,742484 2,656093

2000 10000

Iter. 330,1 526 500,3 140 181,3
Res. 8,38E-07 6,99E-07 5,91E-07 7,34E-07 5,88E-07
Obj. 1,17E-10 9,79E-11 1,09E-10 4,27E-11 2,55E-12
Time(s) 5,022146 8,726909 9,14353 2,041686 2,64932

Table 2: Average results for Min-length problem (Nmax = 50000).

6.3 Dual of the entropy maximization problems

We consider the entropy maximization problem subject to linear constraints [10, Section 5.1.6]
which is

min
n

∑
i=1

xi logxi s.t. Ax ≤ b,
n

∑
i=1

xi = 1, and xi > 0, i = 1, ...,n, (6.1)

where A = [a1,a2, ...,an] ∈Rm×n, with ai ∈Rm is the i−th column of A and b ∈Rm. Its dual problem
is

min e−µ−1
n

∑
i=1

e−(ai)T λ +bT
λ +µ, s.t. λ ∈ Rm

+, µ ∈ R. (Dual-max-entropy)
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It is observed that Problem Dual-max-entropy2 matches Assumption 1, 2 but Assumption 3. There-
fore the use of NPG1 is straightforward for it. We still run NPG2 for Dual-max-entropy as a
heuristic approach. We use the similar rule of generating data as [27]. Specifically, a m×n matrix
A with entries are generated from N (0,1), b = Ax∗ with a ℓ1-normalized x∗ sampled from the
uniform distribution U [0.1,1). Results are depicted in Table 3 and Figure 3. It is shown that the
performance of NPG2 significant efficiency compared to the remaining ones.
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Fig. 3: Illustration for one of randomly generated data of Dual-max-entropy with m = 4000,n =
5000.

Size Metrics Average of all datasets

m n AdPG PG-LS
(1.1, 0.5)

PG-LS
(1.2, 0.5) NPG1 NPG2

100 500

Iter. 32,7 80 51,1 30,6 29,1
Res. 4,69E-07 5,9E-07 4,72E-07 5,67E-07 4,75E-07
Obj. 3,85E-14 1,19E-13 1,04E-13 3,1E-13 1,57E-14
Time(s) 0,02434 0,040698 0,027038 0,013777 0,013373

500 2000

Iter. 35,3 83,7 54,8 33,4 31,9
Res. 7,44E-07 7,9E-07 5,96E-07 6,3E-07 4,97E-07
Obj. 2,08E-13 7,62E-13 1,49E-13 7,41E-13 4,89E-14
Time(s) 0,492897 1,27927 0,886613 0,496571 0,466446

2000 4000

Iter. 50,1 102,1 70,2 47,5 45,9
Res. 5,68E-07 8,26E-07 7,53E-07 5,02E-07 4,8E-07
Obj. 2,18E-14 8,17E-13 7,68E-13 1,68E-12 6,67E-13
Time(s) 5,598936 12,29137 9,333802 5,594557 5,436425

4000 5000

Iter. 79,6 151,7 116,1 73,1 60,4
Res. 6,28E-07 7,63E-07 7,42E-07 6,56E-07 4,28E-07
Obj. 6,27E-12 4,53E-12 6,53E-12 2,94E-12 1,39E-12
Time(s) 21,63522 46,93658 38,94247 20,23978 16,44809

Table 3: Average results for Dual-max-entropy problem (Nmax = 200).

6.4 Maximum likelihood estimate of the information matrix

This problem (see [10, Equation (7.5)]) aims to estimate the inverse of a covariance matrix Y
of a multivariate random variable subject to the eigenvalue bounds given some samples of the
random variable. The problem can be formulated as

min f (X) =− logdet(X)+ tr(XY ) s.t., X ∈ Sn and lI ⪯ X ⪯ uI. (Max-likelyhood)

2 Dual-max-entropy is a case of problem (P) with f (λ ,µ)= e−µ−1
n
∑

i=1
e−(ai)T λ +bT λ +µ and g(λ ,µ)= ıC (the indicator

function of C) with C = Rm
+×R and ∇ f does not global Lipschitz on C.
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Here Sn denotes the space of real symmetric matrices of dimension n× n, and A ⪯ B indicates
that B−A is positive semi-definite. Observably, Max-likelyhood3 satisfies Assumption 1,2,3 then
NPG1 and NPG2 are exact methods to solve Max-likelyhood. The dataset for the implementation
is generated analogously to [27] as follows. We initially generate a random vector y ∈ Rn with
entries from N (0,10) and δi ∈ Rn with entries from N (0,1), and then set yi = y+δi, i = 1, . . . ,M.

The covariance matrix of the samples y1, ...,yM is Y = 1
M

M
∑

i=1
yiyT

i . The obtained results are shown in

Table 4 and Figure 4. It is seen that for Max-likelyhood, both of NPG1 and NPG2 provide better
results compared to the others with the big deviation. And most of cases NPG2 performs best.
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Fig. 4: Illustrations for one of randomly generated data of Max-likelyhood with n = 100, l =
0.1,u = 10,M = 500.

Size Metrics Average of all datasets

n, l, u, M AdPG PG-LS
(1.1, 0.5)

PG-LS
(1.2, 0.5) NPG1 NPG2

100, 0.1, 10, 50

Iter. 1661,5 2439 2364,5 1259,7 1171,8
Res. 9,58E-07 8,68E-07 9,16E-07 9,21E-07 8,59E-07
Obj. 4,27E-09 1,94E-09 2,74E-09 6,45E-09 8,4E-10
Time(s) 44,42071 74,11472 82,07483 32,88484 28,012

100, 0.1, 10, 500

Iter. 133,7 219,2 197,7 103,5 93,6
Res. 7,15E-07 6,76E-07 7,42E-07 5,66E-07 6,45E-07
Obj. 2,69E-11 1,29E-11 2,93E-11 1,7E-11 7,07E-12
Time(s) 3,48568 6,391397 6,273465 2,579751 2,252374

100, 0.1, 10, 1000

Iter. 57,9 103,9 83,8 58 49,7
Res. 5,69E-07 4,91E-07 4,44E-07 7,56E-07 6,19E-07
Obj. 3,46E-12 5,79E-12 4,9E-12 8,64E-13 2,1E-12
Time(s) 1,53195 2,907321 2,620872 1,525524 1,305989

30, 0.1, 1000, 50

Iter. 5210,2 7612,8 7518,9 4684,2 3295,8
Res. 9,69E-07 2,05E-06 1,86E-06 9,3E-07 9,49E-07
Obj. 4,28E-09 1,34E-07 1,2E-07 4,69E-09 1,54E-09
Time(s) 6,992612 11,99245 12,3711 6,013213 4,227009

50, 0.1, 1000, 100

Iter. 1644,2 2589,4 2545,9 1193,8 954,1
Res. 9,4E-07 8,62E-07 9,01E-07 8,7E-07 8,67E-07
Obj. 8,07E-10 4,87E-10 3,91E-10 1,35E-09 1,52E-10
Time(s) 10,78987 19,67659 20,37514 7,702965 6,14909

Table 4: Average results for Max-likelyhood problem (Nmax = 20000).

3 Max-likelyhood is a case of problem (P) with f (X) =− logdet(X)+ tr(XY ) and g(X) = ıC (the indicator function of
C) with C = {X ∈ Sn | lI ⪯ X ⪯ uI}.
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6.5 Nonnegative matrix factorization

One of efficient approaches to solve recommendation system problems [30] is based on nonneg-
ative matrix factorization4

min f (U,V ) =
1
2
∥UV T −A∥2

F , s.t. U ∈ R+
m×r,V ∈ R+

n×r, (NMF)

where A ∈ Rm×n is a low-rank matrix, ∥ · ∥F stands for Frobenius norm. This problem does not
satisfy Assumption 2 and Assumption 3. Therefore our algorithms can be seen as heuristic methods
for it. Akin to [27], we create A by multiplying matrices B and C⊤, where B ∈ R+

m×r and C ∈
R+

n×r have entries drawn from a normal distribution N (0,1). All negative entries of B and C are
replaced with zero. The computational results are reported in Table 5 and illustrated by Figure 5.
For this problem, NPG1 and NPG2 are alternative the most effective method in comparison with
the remaining ones.
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Fig. 5: Illustrations for one of randomly generated data of NMF problem with m = 3000,n =
3000,r = 30.

7 Conclusions

In this paper, we propose an efficient explicit stepsize applied for the proximal gradient (PG)
scheme. In particular, NPG1 solves the convex situation of problem (P) under locally Lipschitz
gradient condition imposed on f . The iterates is proved to converge to an optimal solution of
(P) with the complexity computation O(1

k ) of F(xk)−F∗ and the Q-linear rate if f has local strong
convexity property. These convergence results are based on the descent of our proposed method.
Moreover, the extensions of NPG1 that NPG2 and NPG-quad are also designed for (P) in case of
nonconvex f . Our stepsize selection is computed quickly by a closed formulas without linesearch
computation or estimating some constant (like Lipschitz constant of gradient) to ensure the con-
vergence of the PG algorithm. Moreover, the increasing of the sequence of our stepsizes from
some fixed iteration opens the ability to speed up the corresponding PG algorithms. The deep
experiments on a variety of test instances with various sizes show the crucial efficiency of the
proposed method compared to the recent ones. Future research includes deploying our adaptive
stepsize for the composite models in the absence of both convexity and global Lipschitz gradient
assumptions on f .

References

1. Ahookhosh, M., Themelis, A., Patrinos, P.: A Bregman forward-backward linesearch algorithm for
nonconvex composite optimization: superlinear convergence to nonisolated local minima. SIAM J.
Optim. 31(1), pp. 653-685 (2021)

4 NMF is a case of problem (P) with f (U,V ) = 1
2∥UV T −A∥2

F and g(U,V ) = ıC (the indicator function of C) with
C = R+

m×r ×R+
n×r.



Composite optimization models via PG method with increasing adaptive stepsizes 23

Size Metrics Average of all datasets

m r n AdPG PG-LS
(1.1, 0.5)

PG-LS
(1.2, 0.5) NPG1 NPG2

500 20 1000

Iter. 537 801,4 746,3 302,6 308,5
Res. 9,07E-07 8,8E-07 8,84E-07 7,93E-07 6,6E-07
Obj. 1,93E-07 6,04E-08 8,27E-08 1,04E-07 1,37E-08
Time(s) 5,941108 9,572103 9,001703 2,949437 2,95718

1000 20 500

Iter. 543,9 777,7 751,7 300,5 309,9
Res. 8,42E-07 9,04E-07 8,7E-07 8,57E-07 7,76E-07
Obj. 1,44E-07 7,8E-08 5,78E-08 2,05E-08 2,85E-08
Time(s) 4,319812 7,194566 7,430679 2,572676 2,431692

2000 20 3000

Iter. 506,7 731,9 699,9 301 302,6
Res. 8,33E-07 9,29E-07 9,01E-07 7,56E-07 7,69E-07
Obj. 4,86E-07 2,13E-07 1,65E-07 1,49E-07 1,44E-07
Time(s) 31,53794 51,34798 55,23237 18,86799 19,00453

3000 20 2000

Iter. 509,8 716,2 672,7 290,1 305
Res. 8,26E-07 8,26E-07 8,82E-07 8,15E-07 6,7E-07
Obj. 4,56E-07 1,08E-07 2,11E-07 2,65E-07 6,11E-08
Time(s) 34,89519 56,01866 57,75551 19,84947 21,09172

3000 20 3000

Iter. 498,1 701 671,9 275,3 276,9
Res. 7,95E-07 8,39E-07 8,97E-07 8,74E-07 8,11E-07
Obj. 4,63E-07 1,49E-07 2,44E-07 2,08E-07 5,89E-08
Time(s) 43,91157 69,55736 74,0461 24,11349 24,23001

500 30 1000

Iter. 982,7 1493,6 1422,9 633,6 598,5
Res. 9,38E-07 8,85E-07 9,01E-07 8,37E-07 8,84E-07
Obj. 4,76E-07 1,85E-07 1,38E-07 4,04E-07 6,43E-08
Time(s) 9,063069 16,18621 16,60831 5,608065 5,171566

1000 30 500

Iter. 1026,1 1502,3 1430,2 603,3 587,3
Res. 9E-07 8,93E-07 8,57E-07 7,87E-07 8,63E-07
Obj. 4,28E-07 1,78E-07 1,09E-07 2,44E-07 3,35E-08
Time(s) 7,197391 12,64285 13,08158 4,361314 3,594271

2000 30 3000

Iter. 876,2 1247,9 1200,2 435,5 467,2
Res. 8,75E-07 8,78E-07 8,77E-07 8,94E-07 7,64E-07
Obj. 1,49E-06 2,88E-07 3,06E-07 3,27E-07 1,1E-07
Time(s) 56,17322 96,50053 115,0343 33,76644 35,68324

3000 30 2000

Iter. 907,4 1280 1247,7 439,6 469,3
Res. 8,95E-07 9,1E-07 9,06E-07 7,71E-07 8,06E-07
Obj. 1,47E-06 5,77E-07 6,12E-07 4,89E-07 1,3E-07
Time(s) 76,98802 117,8925 125,9915 35,08839 37,14086

3000 30 3000

Iter. 914,1 1303,2 1252,5 457,9 504
Res. 8,81E-07 8,8E-07 8,89E-07 8,74E-07 7,46E-07
Obj. 1,7E-06 4,86E-07 7,59E-07 1,84E-07 3,96E-07
Time(s) 94,52072 157,0848 150,6168 43,47812 48,21538

Table 5: Average results for NMF problem (Nmax = 5000).
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17. Figueiredo, MÁrio A.T., Nowak, R.D., Wright, S.J.: Gradient Projection for Sparse Reconstruction: Ap-
plication to Compressed Sensing and Other Inverse Problems. IEEE Journal of Selected Topics in Sig-
nal Processing Vol. 1, No. 4, pp. 586-597 (2007)

18. Fukushima, M., Mine, H.: A generalized proximal point algorithm for certain non-convex minimiza-
tion problems. Int. J. Syst. Sci. 12(8), pp. 989-1000 (1981)

19. Hoai, P.T., Vinh, N.T., Chung, N.P.H.: A novel stepsize for gradient descent method. Operations Re-
search Letters, 107072 (2024) https://doi.org/10.1016/j.orl.2024.107072.

20. Iusem, A.N.: On the convergence properties of the projected gradient method for convex optimization.
Comput. Appl. Math. 22, pp. 37-52 (2003)

21. Jia, X., Kanzow, C., Mehlitz, P.: Convergence Analysis of the Proximal Gradient Method in the Pres-
ence of the Kurdyka–Łojasiewicz Property Without Global Lipschitz Assumptions. SIAM Journal on
Optimization, Vol. 33, No. 4, pp. 3038–3056 (2023)

22. Jia, X., Kanzow, C., Mehlitz, P., Wachsmuth, G.: An augmented Lagrangian method for optimization
problems with structured geometric constraints. Math. Program. 199, pp. 1365–1415 (2023)

23. Kanzow, C., Mehlitz, P.: Convergence properties of monotone and nonmonotone proximal gradient
methods revisited. Journal of Optimization Theory and Applications. 195(2), pp.624–646 (2022)

24. Li, G., Pong, T.K.: Global convergence of splitting methods for nonconvex composite optimization.
SIAM J. Opt. 25(4), pp. 2434–2460 (2015)

25. Liu, H., Wang, T., Liu, Z.: Some modifed fast iterative shrinkage thresholding algorithms with a new
adaptive non-monotone step- size strategy for nonsmooth and convex minimization problems, Com-
put. Optim. Appl. 83, pp. 651-691 (2022)

26. Lee, J.D., Sun, Y., Saunders, M. A.: Proximal Newton-type methods for minimizing composite func-
tions, SIAM J. Optim., 24, pp. 1420-1443 (2014)

27. Malitsky, Y., Mishchenko, K.: Adaptive proximal gradient method for convex optimization
https://arxiv.org/pdf/2308.02261.pdf

28. Malitsky, Y., Mishchenko, K.: Adaptive gradient descent without descent, ICML 119, pp. 6702-6712
(2020)

29. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), pp. 127–239 (2014)
30. Symeonidis, P., Zioupos, A.: Matrix and Tensor Factorization Techniques for Recommender Systems.

Springer Briefs in Computer Science (2016)

https://doi.org/10.1016/j.orl.2024.107072
https://arxiv.org/pdf/2308.02261.pdf


Composite optimization models via PG method with increasing adaptive stepsizes 25

31. Teboulle, M.: A simplified view of first order methods for optimization. Math. Program. 170(1), pp.
67-96 (2018)

32. Themelis, A., Stella, L., Patrinos, P.: Forward-backward envelope for the sum of two nonconvex func-
tions: further properties and nonmonotone linesearch algorithms. SIAM J. Optim. 28(3), pp. 2274- 2303
(2018)

33. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation. IEEE
Trans. Signal Process. 57(7), pp. 2479-2493 (2009)


	Introduction
	Preliminaries
	A new proximal gradient algorithm for the problem (P) with f being convex and locally Lipschitz gradient
	The nonconvex case of problem (P)
	Problem (P) with quadratic function f
	Numerical experiments
	Conclusions

