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Abstract

We first consider the convex composite optimization models with the local Lipschitzness condition imposed on the gradi-
ent of the differentiable term. The classical proximal gradient method will be studied with our novel enhanced adaptive
stepsize selection. To obtain the convergence of the proposed algorithm, we establish a sufficient decrease type inequal-
ity associated with our new stepsize choice. This allows us to demonstrate the descent of the objective value from
some fixed iteration and yield the sublinear convergence rate of the new method. Especially, in the case of locally strong
convexity of the smooth term, our algorithm converges Q-linearly. Additionally, we further show that our method can
be applied to nonconvex composite optimization problems provided that the differentiable function has a globally
Lipschitz gradient. Finally, the efficiency of our proposed algorithms is shown by numerical results for numerous
applicable test instances in comparison with the other state-of-the-art algorithms.
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1. Introduction

1.1. Problem description and motivation
Composite optimization models (COM) have arisen from many real-life applications, such as machine learning,

signal processing, data science, etc, and have received a lot of attention recently, see e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13]. The formulation of (COM) considered in this paper can be described as follows:

min
x∈Rn

F (x) = f(x) + g(x), (P)

where f and g are functions satisfying Assumption 1 below.

Assumption 1. (A1) g : Rn → (−∞,+∞] is a proper and closed convex function.

(A2) f : Rn → (−∞,+∞] is proper and closed such that dom(f) is convex, dom(g) ⊂ int(dom(f)) and f is differentiable on
int(dom(f)).

(A3) The optimal solution set X∗ of (P) is nonempty and F∗ stands for the optimal value of (P).

One of the conventional methods for solving the problem (P) is proximal gradient method (PG) introduced by
Fukushima and Mine [14] in 1981 and has now become classical. As a matter of fact, the further origin of the
proximal gradient method can be traced back to 1970s with the work of Brucks [15] and Passty [16] in the more
general setting of forward backward splitting method. The detailed methodology of the PG method can be found
in [5, 6]. It is observed that the optimal condition for the problem (P) relates to the concept of its stationary points.
Specifically, if x∗ ∈ int(dom(f)) is a local optimal solution of (P) then it should be a stationary point of (P), i.e., for
some t > 0

x∗ = Proxtg(x
∗ − t∇f(x∗)), (1.1)

∗Corresponding author
Email addresses: hoai.phamthi@hust.edu.vn (Pham Thi Hoai), duythai09092002@gmail.com (Nguyen Pham Duy Thai)

1



P.T. Hoai and N.P.D. Thai2

where Prox(.) is the proximal operator and is defined as the unique optimal solution of the minimization problem

Proxtg(y) = argminx∈Rn

{
g(x) +

1

2t
∥x− y∥2

}
. (1.2)

In the convex situation of (P), i.e., f is convex, the set of stationary points of (P) is coincident with X∗. One
can see [5] (Theorem 3.72, 10.7) for more details. Based on the stationary condition (1.1), starting from some x0 ∈
int(dom(f)), the well-known PG method to solve problem (P) is designed by generating the sequence {xk} according
to the rule

xk+1 = Proxtkg(x
k − tk∇f(xk)), k = 0, 1, 2, ..., (1.3)

The PG scheme (1.3) is useful if we can compute Proxtkg(x
k − tk∇f(xk)) easily by some explicit formulas. Though,

there is a list of functions whose proximal operator is analytically computable and that list can be found in [5]; for
instances, g is the ℓ1 norm or the indicator function of a closed convex set C ⊂ Rn. In formula (1.3), tk > 0, k =
0, 1, 2, ... are defined as stepsizes which play a crucial role in the proximal gradient scheme. A suitable stepsize
selection can be drawn in the two main points: firstly, it should guarantee the convergence of {xk} to some stationary
point of problem (P); secondly, it should navigate xk to a ”good” stationary point. i.e., providing, for example, the
low objective value as much as possible with a cheap computational cost. For the class of Lf− smooth function f,
i.e.,

∥∇f(x)−∇f(y)∥ ≤ Lf∥x− y∥, ∀x, y ∈ int(dom(f)),

the stepsize tk in (1.3) can be controlled flexibly by using constant stepsize in
(
0, 2

Lf

)
or backtracking line search rule.

Followed by [5] (Theorem 10.21), one gets the sublinear rate of convergence, i.e., computational complexity O( 1k ) of

F (xk) − F∗ if f is assumed to be convex and tk is either in
(
0, 1

Lf

]
or taken by backtracking procedure. In the case

where f is strongly convex, the convergence rate of {xk} to some x∗ ∈ X∗ is proved to be Q-linear. These properties
can be seen as the generalization of the convergence results for the gradient descent method solving unconstrained
nonlinear optimization problems, i.e., problem (P) with g = 0.

Recently, researchers have been concerned about problem (P) without the global Lipschitzness assumption on ∇f,
see, e.g., [17, 18, 9, 19, 20] because the class of such functions occurs in many applied problems (see e.g., [19, 21, 22]
and the references therein). In 2017, Bauschke et al. [17] proposed NoLips Algorithm that requires Bregman distances-
based computation and constant L in the Lipschitz-like/convexity condition (LC). One can see [23] to find the role
of non-Euclidean proximal distances of Bregman type in the development and analysis of some typical first order
optimization algorithms. The stepsize selection of NoLips is then chosen in (0, 2−δ

L ). This algorithm is shown in
[17] to have the convergent results similar to the ones of the normal PG scheme. Following that, Dragomir et al.
[24] give a lower bound to prove that the O

(
1
k

)
convergence rate of the NoLips method is optimal for the class

of problems satisfying the relative smoothness assumption. The other recent results on the convergence of the PG
method without globally Lipschitz assumption have been studied in Kanzow and Mehlitz [19] and then Jia et al. [9].
Their proposed methods can be applied for the nonconvex setting of (P) with the presence of Kurdyka–Łojasiewicz
condition. The stepsize choice is based on backtracking line search procedure. Nevertheless, one knows that there
are some restrictions of taking stepsize within

(
0, 2

Lf

)
or

(
0, 2−δ

L

)
like: firstly, the process of finding these constants

is not easy in general and secondly, if the coefficients Lf or L are large then constant stepsizes will be very small
and that may take long executing time. Analogously, the backtracking computation for stepsize selection probably
consumes expensive cost and also may cause the stepsize to gradually decrease to a tiny number. To overcome the
mentioned drawbacks above, an interesting question should be considered is:

Question 1.1. Under Assumption 1 and assuming that f is convex and has a locally Lipschitz gradient, is there an adaptive
way to find stepsizes explicitly for PG scheme solving problem (P) such that we do not need neither estimating constants like
Lf , L, ... nor backtracking line search procedures?

1.2. Some recent algorithms considering Question 1.1
In the specific context of the problem (P) with g = 0, two algorithms named AdGD and NGD were proposed

by Malitsky and Mishchenko [25] (2019) and Hoai et al. [26] (2024), respectively. Both of them use explicit stepsize
strategies based on the local curvature of f. In the general setting of problem (P), to give an answer to Question 1.1,
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Malitsky and Mishchenko [27] have developed their method AdGD [25] to AdPG (Adaptive Proximal Gradient) for
solving the problem (P) recently. The stepsize of AdPG is defined by

tk = tk−1 min


√

2

3
+ θk−1,

1√[
2t2k−1∥∇f(xk)−∇f(xk−1)∥2

∥xk−xk−1∥2 − 1
]+

 , (AdPG)

where θ0 = 1
3 , θk = tk

tk−1
, k ≥ 1. And for some t ∈ R, the notation t+ stands for max{t, 0}. The iterates of AdPG

are proved to converge to an optimal solution of (P) with the worst-case sublinear rate, i.e., the complexity O( 1k ) of
min
1≤i≤k

(F (xi)− F∗). In parallel with this work, Latafat et al. [28] proposed adaPGM that has

tk = tk−1 min


√

1 +
tk−1

tk−2
,

1

2

√[
tk−1

(
tk−1∥∇f(xk)−∇f(xk−1)∥2−⟨∇f(xk)−∇f(xk−1,xk−xk−1⟩

∥xk−xk−1∥2

)]+
 , k ≥ 1. (adaPGM)

Soon after, adaPGM is generalized to be AdaPGq,r in Latafat et al. [29] with

tk = tk−1 min


√

1

q
+

tk−1

tk−2
,

√√√√ 1− r/q[
t2k−1∥∇f(xk)−∇f(xk−1)∥2+2tk−1(r−1)⟨∇f(xk)−∇f(xk−1,xk−xk−1⟩

∥xk−xk−1∥2 − (2r − 1)
]+

 , (AdaPGq,r)

where 1
2 ≤ r < p ≤ 3+

√
5

2 , t0 = t−1 > 0, k ≥ 1. Notably, AdaPGq,r recovers AdPG if (p, r) =
(
3
2 ,

3
4

)
and adaPGM if

(p, r) =
(
1, 12

)
with slight improvements (see [29] for details). The convergence of AdaPGq,r is then established with

the worst-case sublinear convergence rate.

1.3. Contributions
In this paper, we develop the idea of adaptive stepsize in NGD [26] to be (NPG) used for proximal gradient

scheme (1.3) solving problem (P) with locally Lipschitz gradient condition imposed on the smooth term f as follows:

For 0 < c1 < c0 < 1√
2

and a convergent positive series
+∞∑
k=0

γk, t−1 = t0 > 0

If ∥∇f(xk)−∇f(xk−1)∥ >
c0
tk−1

∥xk − xk−1∥

then tk = c1
∥xk − xk−1∥

∥∇f(xk)−∇f(xk−1)∥
(NPG)

else γ′
k−1 = γk−1 if

tk−1

tk−2
< 1 then γ′

k−1 = min

{
γk−1,

√
1 +

tk−1

tk−2
− 1

}
tk = (1 + γ′

k−1)tk−1.

More precisely, we give a positive response to Question 1.1 with the main contributions including:

• Firstly, NPG recovers NGD [26] in the case g = 0 but provides
√
2 times bigger range of step length. In

particular, the constants c0, c1 belong to (0, 1/2) for NGD but (0, 1/
√
2) for NPG.

• Secondly, we provide a sufficient decrease type inequality associated with NPG. This inequality plays a crucial role
to prove the decreasing of the objective function from some fixed iteration. And more importantly, it derives
the sublinear rate of the proposed method. In addition, in the case of locally strong convexity of f, our sufficient
descent lemma helps to deduce the Q-linear rate of the iterates. Observably, the recent algorithms AdPG [27],
adaPGM [28] and AdaPGq,r [29] just obtain the worst-case sublinear rate. The lack of the descent property of
the objective value prevents the existing methods from achieving the sublinear rate (for (P) under Assumption
1) and Q-linear rate if f is complemented the locally strongly convexity.

• Moreover, when ∇f is globally Lipschitz, we further show that our method can be extended to the nonconvex
composite optimization models. As a byproduct, one special version solving problem (P) is designed in the
case where f is indefinite quadratic with the capability of enlarging stepsize.
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• Besides the adaptation in computation of the stepsize selection as the existing methods AdPG, adaPGM, AdaPGq,r,
the sequence of our stepsize NPG is confirmed to be increasing to a positive value.

• Finally, we implement our new algorithms in comparison with the recent ones for numerous applicable test
instances including: 1. Lasso problems; 2. Minimum length piecewise-linear curve subject to equality con-
straints; 3. Dual of the entropy; 4. Maximum likelihood estimate of the information matrix; 5. Nonnegative
matrix factorization. Data used for testing are randomly generated with diversity dimensions from small to
large. The reported results demonstrate the crucial efficiency of the proposed method.

1.4. Structure of the paper
The rest of the paper is structured as follows. After summarizing some necessary preliminaries in Section 2, we

propose our new proximal algorithm in Section 3 for solving the convex situation of (P) under the locally Lipschitz
condition of ∇f. In the sequel, we consider a nonconvex case of (P) with an other new algorithm. Section 5 presents
a particular version of proposed method applied for the indefinite quadratic function f. The numerical experiments
on a set of practical examples are stated in Section 6. Lastly, the paper is closed by some conclusions in Section 7.

2. Preliminaries

In this section, we recall some necessary fundamental results which are useful to derive our main contributions in
the upcoming sections.

Lemma 2.1. Under Assumption 1, the sequence {xk} generated by proximal gradient scheme (1.3) for solving the problem (P)
has the following properties:

(i) there exists ∂g(xk+1) ∈ ∂g(xk+1) such that xk+1 = xk − tk
(
∇f(xk) + ∂g(xk+1)

)
;

(ii) for all x ∈ int(dom(f)), we have

g(x)− g(xk+1) ≥
〈
xk+1 − x,∇f(xk) +

xk+1 − xk

tk

〉
. (2.1)

Proof. (i) Since xk+1 ∈ argmin
x∈Rn

{
g(x) + 1

2tk

∥∥x− (xk − tk∇f(xk))
∥∥2} then

0 ∈ ∂g(xk+1) +
1

tk

(
xk+1 − xk + tk∇f(xk)

)
.

Hence there exists ∂g(xk+1) ∈ ∂g(xk+1) such that

xk+1 = xk − tk(∇f(xk) + ∂g(xk+1)). (2.2)

(ii) From (i) and the convexity of g we are easy to get that

g(x)− g(xk+1) ≥
〈
x− xk+1, ∂g(xk+1)

〉
=

〈
xk+1 − x,∇f(xk) +

xk+1 − xk

tk

〉
.

Lemma 2.2 (Opial lemma). Let {xk} ⊂ Rn be a bounded sequence where its cluster points in X ⊂ Rn and the real sequence
{ak} ⊂ R+. If

∥xk+1 − x∥2 + ak+1 ≤ ∥xk − x∥2 + ak, ∀x ∈ X, (2.3)

then {xk} converges to an element of X.

Proof. One can see the proof of Lemma 2 in [25].
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3. A new proximal gradient algorithm for the convex case of the problem (P) with locally Lipschitz ∇f

It is worth noting that when f has a globally Lipschitz gradient with constant Lf and tk is chosen as a fixed number in(
0, 2

Lf

)
or by line search strategy, the common technique establishing the convergence of proximal gradient method

(1.3) for solving (P) is related to the sufficient decrease inequality, i.e., showing the existence of a positive constant M
such that

F (xk)− F (xk+1) ≥ M∥xk+1 − xk∥, k ≥ 0, ( sufficient decrease ieq.)

For the proximal gradient algorithms using adaptive stepsizes solving problem (P) in the literature like AdPG
[27], adaPGM[28] and AdaPGq,r [29], the obstacle of the locally Lipschitz gradient condition has been overcome by
constructing Lyapunov type functions and then obtain the boundedness of the iterates. Since, on the compact set
T = conv

(
{x0, x1, ...} ∪X∗) all properties of a function f with locally Lipschitz gradient can be operated as those of a

globally Lipschitz gradient function. The convergence of their proposed approaches are then deduced by relying on
the interesting techniques different from the usual way based on the sufficient decrease ieq. . However, the absence
of descent property prevents their algorithms from achieving sublinear convergence rate O

(
1
k

)
of F (xk) − F∗ but

only worst-case convergence rate O
(
1
k

)
of min

1≤i≤k
{F (xi)−F∗} for solving convex problem (P) under locally Lipschitz

gradient condition. Notably, our stepsize selection NPG is not only adapted with the local curvature of f but also

controllable by using the pre-selected positive convergent series
+∞∑
k=0

γk. Then, in contrast of the existing algorithms,

our proposed algorithms based on NPG stepsize can establish sufficient decrease ieq. for (P). We will successively
explore how to establish this inequality in the subsequent parts of the paper.

Firstly, in this section, we set up NPG for the proximal gradient method to solve problem (P) under Assumption
1 and Assumption 2 below.

Assumption 2. f is convex and has a locally Lipschitz gradient.

Algorithm 3.1 (NPG1)

Step 0. Select t0 > 0, 0 < c1 < c0 < 1√
2

and a positive real sequence {γk} such that
+∞∑
k=0

γk < ∞. Choose x0 ∈ int(dom(f)),

x1 = Proxt0g(x
0 − t0∇f(xk)), t−1 = t0 and set k = 1.

Step 1.

If ∥∇f(xk)−∇f(xk−1)∥ >
c0
tk−1

∥xk − xk−1∥ (3.1)

then tk = c1
∥xk − xk−1∥

∥∇f(xk)−∇f(xk−1)∥
(3.2)

else γ′
k−1 = γk−1

if
tk−1

tk−2
< 1 then γ′

k−1 = min

{
γk−1,

√
1 +

tk−1

tk−2
− 1

}
(3.3)

tk = (1 + γ′
k−1)tk−1. (3.4)

Step 2. Compute xk+1 = Proxtkg(x
k − tk∇f(xk)).

Step 3. If ∥xk+1 − xk∥ < ϵ then STOP else setting k := k + 1 and return to Step 1.

Remark 3.1. It is observed that, in the case g = 0, Algorithm 3.1 (NPG1) becomes NGD [26] with larger bounds of
c0, c1. In particular, for NGD, c0, c1 ∈

(
0, 12

)
but for NPG1, c0, c1 ∈

(
0, 1√

2

)
.

Analogous to existing methods we need to prepare some lemmas which will help us to prove the boundedness
of {xk} - a key step to overcome the difficulties generated by the locally Lipschitz continuity of ∇f.

Lemma 3.2. For all x ∈ int(dom(f)) we have

∥xk+1 − x∥2 + 2tk

(
F (xk)− F (x)

)
≤ ∥xk − x∥2 + t2k

∥∥∥∇f(xk) + ∂g(xk)
∥∥∥2 .
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Proof. From Lemma 2.1 (ii), for all x ∈ int(dom(f))

2tk

(
g(xk+1)− g(x)

)
≤ 2

〈
xk+1 − xk + tk∇f(xk), x− xk+1

〉
= ∥xk − x∥2 − ∥xk+1 − xk∥2 − ∥xk+1 − x∥2+

+ 2tk

〈
∇f(xk), x− xk+1

〉
. (3.5)

Using the convexity of f and g, we continue evaluating

⟨∇f(xk), x− xk+1⟩ = ⟨∇f(xk), x− xk⟩+ ⟨∇f(xk) + ∂g(xk), xk − xk+1⟩+ ⟨∂g(xk), xk+1 − xk⟩

≤ f(x)− f(xk) +
〈
∇f(xk) + ∂g(xk), xk − xk+1

〉
+ g(xk+1)− g(xk). (3.6)

From (3.5) and (3.6), we derive that

∥xk+1 − x∥2 + 2tk

(
F (xk)− F (x)

)
≤ ∥xk − x∥2 +R, (3.7)

where

R = 2tk

〈
∇f(xk) + ∂g(xk), xk − xk+1

〉
− ∥xk+1 − xk∥2

= tk

〈
2∇f(xk) + 2∂g(xk)−∇f(xk)− ∂g(xk+1), xk − xk+1

〉
= t2k

〈
∇f(xk) + 2∂g(xk)− ∂g(xk+1),∇f(xk) + ∂g(xk+1)

〉
= t2k

(∥∥∥∇f(xk) + ∂g(xk)
∥∥∥2 − ∥∥∥∂g(xk+1)− ∂g(xk)

∥∥∥2)
≤ t2k

∥∥∥∇f(xk) + ∂g(xk)
∥∥∥2 . (3.8)

The final conclusion is obtained by (3.7) and (3.8).

Lemma 3.3. Let {tk} be a sequence of stepsizes generated by Algorithm 3.1 then there exists k0 ∈ N such that

1 +
tk
tk−1

≥
t2k+1

t2k
∀k ≥ k0. (3.9)

Proof. If ∥∇f(xk+1)−∇f(xk)∥ > c0
tk
∥xk+1 − xk∥ then tk+1 =

c1∥xk+1−xk∥
∥∇f(xk+1)−∇f(xk)∥ < c1tk

c0
(by (3.2)). Hence tk+1

tk
< c1

c0
< 1

and (3.9) is followed. Conversely, in the case that ∥∇f(xk+1)−∇f(xk)∥ ≤ c0
tk
∥xk+1−xk∥ then by (3.4), tk+1 = (1+γ′k)tk

and (3.9) is equivalent to (
tk+1

tk

)2

= (1 + γ′k)
2 ≤ 1 +

tk
tk−1

. (3.10)

Moreover, from (3.3), if tk
tk−1

≥ 1 then γ′k = γk and because
+∞∑
k=0

γk < +∞, there is k0 such that

γ′k = γk ≤
√
2− 1 ≤

√
1 +

tk
tk−1

− 1 ∀k ≥ k0. (3.11)

For the remaining case tk
tk−1

< 1, we have

γ′k = min

{
γk,

√
1 +

tk
tk−1

− 1

}
≤

√
1 +

tk
tk−1

− 1. (3.12)

Thus, (3.9) is proved from (3.11) and (3.12).
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As mentioned above, the bounded property of the sequence {xk} in the following lemma provides us an impor-
tant key beyond the challenge of locally Lipschitz continuity of ∇f .

Lemma 3.4. Let {xk} be a sequence generated by Algorithm 3.1 then the following statements hold

(i) there exists k1 ≥ k0 such that for all k ≥ k1,

t2k

∥∥∥∇f(xk) + ∂g(xk)
∥∥∥2 ≤ 1

2
∥xk − xk−1∥2 +

t2k
tk−1

(
F (xk−1)− F (xk)

)
; (3.13)

(ii) {xk} is bounded.

Proof. (i) We have the relation

t2k

∥∥∥∇f(xk) + ∂g(xk)
∥∥∥2 = t2k

∥∥∥∇f(xk)−∇f(xk−1)
∥∥∥2︸ ︷︷ ︸

A

+B, (3.14)

where

B = 2t2k

〈
∇f(xk) + ∂g(xk),∇f(xk−1) + ∂g(xk)

〉
− t2k

∥∥∥∇f(xk−1) + ∂g(xk)
∥∥∥2

=
t2k
tk−1

〈
∇f(xk) + ∂g(xk), xk−1 − xk

〉
+

t2k
tk−1

〈
∇f(xk)−∇f(xk−1), xk−1 − xk

〉
︸ ︷︷ ︸

≤0

≤
t2k
tk−1

(
F (xk−1)− F (xk)

)
. (3.15)

We now prove that there exists k1 ≥ k0 such that

A ≤ 1

2
∥xk − xk−1∥2 ∀k ≥ k1. (3.16)

Indeed, from Algorithm 3.1, if
∥∥∇f(xk)−∇f(xk−1)

∥∥ > c0
tk−1

∥xk − xk−1∥ then tk = c1∥xk−xk−1∥
∥∇f(xk)−∇f(xk−1)

∥ and since

c1 <
1√
2
, we have

A = t2k∥∇f(xk)−∇f(xk−1)∥2 = c21∥xk − xk−1∥2 < 1

2
∥xk − xk−1∥2.

Conversely, if ∥∇f(xk)−∇f(xk−1)∥ ≤ c0
tk−1

∥xk − xk−1∥ then

tk = (1 + γ′k−1)tk−1 ≤ (1 + γk−1)
c0∥xk − xk−1∥

∥∇f(xk)−∇f(xk−1)∥

which follows
t2k∥∇f(xk)−∇f(xk−1)∥2 ≤ (1 + γk−1)

2c20∥xk − xk−1∥2. (3.17)

The convergence of
+∞∑
k=0

γk indicates that there exists k1 ≥ k0 satisfying

γk−1 ≤
1√
2c0

− 1 ∀k ≥ k1

(
1√
2c0

− 1 > 0 since c0 <
1√
2

)
, (3.18)

which is equivalent to (1 + γk−1)
2c20 ≤ 1

2 for all k ≥ k1. From (3.17) we have (3.16). The combination of (3.14), (3.15)
and (3.16) indicates (3.13).

(ii) Using Lemma 3.2 with x = x∗ and (3.13), for all k ≥ k1 we have

∥xk+1 − x∗∥2 + 2tk

(
F (xk)− F (x∗)

)
+ t2k

∥∥∥∇f(xk) + ∂g(xk)
∥∥∥2

≤ ∥xk − x∗∥2 + 2t2k

∥∥∥∇f(xk) + ∂g(xk)
∥∥∥2

≤ ∥xk − x∗∥2 + ∥xk − xk−1∥2 + 2
t2k
tk−1

(
F (xk−1)− F (xk)

)
. (3.19)
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Nevertheless,

t2k

∥∥∥∇f(xk) + ∂g(xk)
∥∥∥2 = ∥∥∥tk (∇f(xk) + ∂g(xk+1)

)
+ tk

(
∂g(xk)− ∂g(xk+1)

)∥∥∥2
=

∥∥∥(xk − xk+1) + tk

(
∂g(xk)− ∂g(xk+1)

)∥∥∥2
= ∥xk − xk+1∥2 + 2tk

〈
xk − xk+1, ∂g(xk)− ∂g(xk+1)

〉
︸ ︷︷ ︸

≥0 because g is convex

+t2k ∥∂g(xk)− ∂g(xk+1)∥2︸ ︷︷ ︸
≥0

≥ ∥xk − xk+1∥2. (3.20)

Hence, using inequality (3.20) for the left hand side of (3.19) we obtain that

∥xk+1 − x∗∥2 + 2tk

(
1 +

tk
tk−1

)(
F (xk)− F (x∗)

)
+ ∥xk − xk+1∥2

≤ ∥xk − x∗∥2 + ∥xk−1 − xk∥2 + 2
t2k
tk−1

(
F (xk−1)− F (x∗)

)
. (3.21)

Remember that from Lemma 3.3 we derive 2tk

(
1 + tk

tk−1

)
≥ 2t2k+1

tk
∀ k ≥ k1. Therefore, by (3.21), for all k ≥ k1 we

have

∥xk+1 − x∗∥2 + ∥xk − xk+1∥2 +
2t2k+1

tk

(
F (xk)− F (x∗)

)
≤ ∥xk − x∗∥2 + ∥xk−1 − xk∥2 +

2t2k
tk−1

(
F (xk−1)− F (x∗)

)
. (3.22)

This inequality follows that

∥xk+1 − x∗∥2 + ∥xk − xk+1∥2 +
2t2k+1

tk

(
F (xk)− F (x∗)

)
≤ K, ∀k ≥ k1 (3.23)

where

K = ∥xk1 − x∗∥2 + ∥xk1−1 − xk1∥2 +
2t2k1
tk1−1

(
F (xk1−1)− F (x∗)

)
.

The relation (3.23) implies the boundedness of {xk}.

Remark 3.5. From the proof of Lemma 3.4 (eq. (3.11) and (3.18)), we see that if the convergent positive series
+∞∑
k=0

γk

is created such that γk ≤ min
{

1√
2c0

− 1,
√
2− 1

}
for all k ≥ 1 then k1 = 1 and therefore we obtain (3.22) for all k ≥ 1.

Consequently, by using arguments analogous to those given by Malitsky and Mishchenko [27] we immediately
obtain all similar convergent results of NPG1 as that of AdPG [27] such as the worst-case sublinear convergence of
{xk} to an optimal solution of problem (P).

Nevertheless, one will see in the upcoming parts of the paper, we analyze the convergent results of NPG1 by
designing a sufficient decrease inequality (in Corollary 3.10) without globally Lipschitz assumption on ∇f(x) . This
technique is different from that of [27, 28, 29]. To get this, in the sequel, we deploy the special properties of {tk}
presented in the following lemma.

Lemma 3.6. Let {tk} be a sequence of stepsizes generated by Algorithm 3.1. Then

(i) {tk} is lower bounded by a positive number;

(ii) {tk} is convergent and has a positive limit.

Proof. (i) By Lemma 3.4 the set T = conv
(
{x0, x1, ...} ∪X∗) is closed and compact. From the local Lipschitz conti-

nuity of ∇f , it is easy to see that there exists L0 > 0 satisfying ∥∇f(x)−∇f(y)∥ ≤ L0∥x− y∥ ∀x, y ∈ T. Thereafter,
either t1 ≥ c1

L0
or t1 = (1 + γ′0)t0 ≥ t0. The induction process derives that

tk ≥ min{ c1
L0

, t0} = η > 0 ∀k ≥ 0. (3.24)
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(ii) If we set rk = ln tk+1 − ln tk and r+k = max{0, rk} ≥ 0, r−k = −min{0, rk} ≥ 0, ∀k ≥ 0 then rk = r+k − r−k . On the
other hand, from Algorithm 3.1, we observe that 0 < c1 < c0 <

1√
2
, hence both of (3.2) and (3.4) give

rk = ln
tk+1

tk
≤ ln(1 + γ′k) ≤ γ′k ≤ γk ∀k ≥ 0.

Thus, r+k ≤ γk. Moreover, the series
+∞∑
k=0

γk converges then
+∞∑
k=0

r+k < +∞. Noticeably,

ln tk+1 − ln t0 =
k∑

i=0

ri =
k∑

i=0

(r+i − r−i ) =
k∑

i=0

r+i −
k∑

i=0

r−i . (3.25)

Hence if the nonnegative series
+∞∑
k=0

r−k diverges, i.e., lim
k→+∞

k∑
i=0

r−i = +∞ then

lim
k→+∞

(ln tk+1) = −∞

which implies lim
k→+∞

tk = 0. This result is contradict with the assertion (i). Thus,
+∞∑
k=0

r−k is convergent and therefore

lim
k→+∞

tk = t∗ ∈ (0,+∞) (followed by (3.25)).

The result in the following lemma gives us an inequality like Lipschitz gradient continuity but with flexible
constant for each pair of xk−1 and xk.

Lemma 3.7. There exists k∗ such that

∥∇f(xk)−∇f(xk−1)∥ ≤ c0
tk−1

∥xk − xk−1∥, ∀k ≥ k∗. (3.26)

Proof. Assuming that there is a subsequence {ki} ⊂ N, ki → +∞ such that

∥∇f(xki)−∇f(xki−1)∥ >
c0

tki−1
∥xki − xki−1∥.

By Algorithm 3.1, in this case we have

tki
tki−1

=
c1∥xki − xki−1∥

tki−1∥∇f(xki)−∇f(xki−1)∥
<

c1
c0

∀ki.

However, Lemma 3.6 gives
lim

ki→+∞
tki = lim

ki→+∞
tki−1 = lim

k→+∞
tk = t∗.

Consequently, t∗

t∗ ≤ c1
c0

< 1 that is impossible and we obtain the conclusion of the lemma.

Remark 3.8. From Lemma 3.7, we immediately obtain the increasing of the sequence {tk}k≥k∗ and 0 < η < tk ≤
max{t0, ..., tk∗−1, t

∗} = tmax, k ≥ 0.

The next lemma plays a crucial role in proving the convergence of Algorithm 3.1 (NPG1).

Lemma 3.9. For any x ∈ int(dom(f)), we have

F (x)− F (xk+1) ≥ 1− c0
tk

∥xk+1 − xk∥2 + 1

tk
⟨xk − xk+1, x− xk⟩, for all k ≥ k∗. (3.27)



P.T. Hoai and N.P.D. Thai10

Proof. Because of the convexity of f and Lemma 2.1 (ii) we have

F (x)− F (xk+1) = f(x) + g(x)− f(xk+1)− g(xk+1)

≥ f(xk) +
〈
x− xk,∇f(xk)

〉
+

〈
xk+1 − x,∇f(xk) +

xk+1 − xk

tk

〉
− f(xk+1)

= f(xk)− f(xk+1) +
〈
xk+1 − xk,∇f(xk)

〉
+

1

tk

〈
xk+1 − xk, xk+1 − x

〉
≥ ⟨∇f(xk+1)−∇f(xk), xk − xk+1⟩+ 1

tk

∥∥∥xk+1 − xk
∥∥∥2 + 1

tk

〈
xk+1 − xk, xk − x

〉
.

(3.28)

On the other hand, by using Lemma 3.7, we have the evaluation〈
∇f(xk+1)−∇f(xk), xk − xk+1

〉
≥ −

∥∥∥∇f(xk)−∇f(xk+1)
∥∥∥ ∥xk − xk+1∥

≥ −c0
tk
∥xk+1 − xk∥2 ∀k ≥ k∗. (3.29)

The proof is completed by utilizing (3.28) and (3.29).

It is observed that if we substitute x by xk in (3.27) of Lemma 3.9 and using Remark 3.8 we immediately get the
following corollary known as a sufficient decrease type inequality.

Corollary 3.10 (sufficient decrease type inequality). For all k ≥ k∗ we have

F (xk)− F (xk+1) ≥ 1− c0
tk

∥xk+1 − xk∥2 ≥ 1− c0
t∗

∥xk+1 − xk∥2 ≥ 0, for all k ≥ k∗. (3.30)

Now we are ready to establish the convergent properties of Algorithm 3.1 (NPG1) in the following theorem.

Theorem 3.11 (the convergence of NPG1). Suppose that problem (P) satisfies Assumptions 1 and 2. Then the following
assertions hold for Algorithm 3.1.

(i) The sequence {F (xk)}k≥k∗ descends to lim
k→+∞

F (xk) = F∗.

(ii) The sequence {xk} converges to an optimal solution of problem (P).

(iii) For any x∗ ∈ X∗ and k ≥ k∗ + 1 we have

F (xk)− F∗ = F (xk)− F (x∗) ≤ D

2tk∗(k − k∗)
= O

(
1

k

)
, (3.31)

where
D = max

{
∥x∗ − xk

∗∥2, ∥x∗ − xk
∗∥2 + t∗(2c0 − 1)

1− c0

(
F (xk

∗
)− F∗

)}
.

Proof. (i) By (3.30), the sequence {F (xk)}k≥k∗ is decreasing. On the other hand, it is lower bounded by F∗ hence
converges to F ≥ F∗. Thus, F (xk)− F (xk+1) → 0. And consequently, the inequality (3.30) follows

lim
k→+∞

∥xk+1 − xk∥ = 0. (3.32)

Now, replacing x with x∗ in (3.27) of Lemma 3.9 to obtain

0 ≤ F (xk+1)− F (x∗) ≤ −1− c0
tk

∥xk+1 − xk∥2 − 1

tk
⟨xk − xk+1, x∗ − xk⟩

≤ (c0 − 1)∥xk+1 − xk∥2 + ∥xk+1 − xk∥∥xk − x∗∥
tk

, for all k ≥ k∗. (3.33)

However, {xk} is bounded (by Lemma 3.4(ii)) and lim
k→+∞

tk = t∗ (from Lemma 3.6) then combining with (3.32) we

deduce that the limit of the right hand side of (3.33) is zero as k tending to infinity. Hence, again, by (3.33) we have
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lim
k→+∞

F (xk) = F∗.

(ii) Taking into account that the sequence {xk} is bounded then for each cluster point x of {xk}, we can take a
subsequence {xki} such that xki → x. On the other hand, the closedness of F (from Assumption 1) follows its lower
semi-continuity and therefore F (x) ≤ lim

ki→∞
F (xki) = F∗, which implies x ∈ X∗.

Setting ak = ∥xk−1 − xk∥2 + 2t2k
tk−1

(
F (xk−1)− F (x∗)

)
≥ 0 and rewrite (3.22) to be

∥xk+1 − x∗∥2 + ak+1 ≤ ∥xk − x∗∥2 + ak, ∀x∗ ∈ X∗, k ≥ k1.

Moreover, we have just shown that all cluster points of {xk} belong to X∗. Therefore, applying Lemma 2.2 we obtain
that {xk} converges to some element of X∗.

(iii) In (3.30), substituting k by j then summing up it from j = k∗ to k we derive that

F (xk
∗
)− F (xk+1) ≥ 1− c0

t∗

k∑
j=k∗

∥xj+1 − xj∥2. (3.34)

This indicates the convergence of
+∞∑
j=k∗

∥xj+1 − xj∥2 and

+∞∑
j=k∗

∥xj+1 − xj∥2 ≤ t∗

1− c0

(
F (xk

∗
)− F∗

)
. (3.35)

Applying (3.27) again, we obtain that

F (x∗)− F (xj+1) ≥ 1

2tj

(
∥xj+1 − xj∥2 + 2

〈
xj − xj+1, x∗ − xj

〉)
+

(
1

2
− c0

)
∥xj − xj+1∥2

tj

≥ 1

2tj

(
∥x∗ − xj+1∥2 − ∥x∗ − xj∥2

)
+

(
1

2
− c0

)
∥xj − xj+1∥2

tj
∀j ≥ k∗. (3.36)

On the other hand, Remark 3.8 gives tj ≥ tk∗ ∀j ≥ k∗ which helps to infer the following inequality from (3.36)

2tk∗
(
F (xj+1)− F (x∗)

)
≤ 2tj

(
F (xj+1)− F (x∗)

)
≤

(
∥x∗ − xj∥2 − ∥x∗ − xj+1∥2

)
+ (2c0 − 1) ∥xj − xj+1∥2 ∀j ≥ k∗. (3.37)

Summing (3.37) side by side for j = k∗ to k + k∗ − 1 (k ≥ 1), we get that

2tk∗

k+k∗−1∑
j=k∗

F (xj+1)− kF (x∗)

 ≤
(
∥x∗ − xk

∗∥2 − ∥x∗ − xk+k∗∥2
)
+

+ (2c0 − 1)

k+k∗−1∑
j=k∗

∥xj − xj+1∥2

≤ D, (3.38)

where, (from (3.35))D is defined by

D = max

{
∥x∗ − xk

∗∥2, ∥x∗ − xk
∗∥2 + t∗(2c0 − 1)

1− c0

(
F (xk

∗
)− F∗

)}
.

Additionally, the descent of {F (xk)}k≥k∗ induces
k+k∗−1∑
j=k∗

F (xj+1) ≥ kF (xk+k∗). Therefore by (3.38), we have

F (xk+k∗)− F (x∗) ≤ 1

2tk∗

D

k
∀k ≥ 1,

which means that F (xk)− F (x∗) ≤ D

2tk∗

1

k − k∗
= O

(
1

k

)
∀k ≥ k∗ + 1.



P.T. Hoai and N.P.D. Thai12

The last result in this section, we prove a stronger convergence rate of Algorithm 3.1 if f is locally strongly
convex. The detail is as follows.

Theorem 3.12. Assuming that c0 ≤ 1
2 and problem (P) satisfies Assumption 1 and Assumption 2. Additionally, f is locally

strongly convex then the sequence {xk} generated by Algorithm 3.1 satisfies

∥xk+1 − x∗∥2 ≤ (1− σtk∗)∥xk − x∗∥2, ∀k ≥ k∗, (3.39)

where σ > 0 is strong convexity constant of f on the compact set T = conv
(
{x0, x1, ...} ∪X∗) . Consequently, this result

shows the Q-linear convergence rate of {xk}.

Proof. The σ− strong convexity on T of f implies that

f(x)− f(xk) ≥ ⟨∇f(xk), x− xk⟩+ σ

2
∥x− xk∥2, ∀x ∈ T.

We update this change and the condition c0 ≤ 1
2 in the argument of formula (3.28) and (3.36) to obtain the following

inequality

F (x∗)− F (xk+1) ≥ 1

2tk
∥x∗ − xk+1∥2 +

(
σ

2
− 1

2tk

)
∥x∗ − xk∥2,

for all x∗ ∈ X∗, k ≥ k∗, Remember that F (x∗)− F (xk+1) ≤ 0 ∀k hence

1

2tk
∥x∗ − xk+1∥2 ≤

(
1

2tk
− σ

2

)
∥x∗ − xk∥2, k ≥ k∗. (3.40)

By (3.40), Lemma 3.6(i) and Remark 3.8, we have: ∀k ≥ k∗

0 < 1− σtk ≤ 1− σtk∗ ≤ 1− ση < 1,

which derives
∥xk+1 − x∗∥2 ≤ (1− σtk∗) ∥xk − x∗∥2, k ≥ k∗.

The last inequality aims the Q-linear convergence rate of {xk}.

4. For a class of the nonconvex case of problem (P)

We now consider problem (P) satisfying Assumption 1 and other conditions in Assumption 3 below

Assumption 3. (i) f has a globally Lipschitz gradient with constant Lf on int(dom(f)).

(ii) For u, v ∈ int(dom(f)), the function huv : [0, 1] → R defined by

huv(t) = f ′
t(u+ t(v − u)) = ⟨∇f(u+ t(v − u)), v − u⟩

is quasiconvex.

Example 4.1. Suppose that f is either convex or concave. Then f satisfies Assumption 3 (ii). Indeed, the convexity
(concavity, resp.) of f follows the convexity (concavity, resp.) of f(u + t(v − u)) on the set {t ∈ R | u + t(v − u) ∈
int(dom(f))} ⊃ [0, 1] (since int(dom(f)) is convex). As a result, f ′

t(u + t(v − u)) is increasing (decreasing, resp.)
monotone over [0, 1] and therefore quasiconvex on that. In the case where f is a concave function then F = f + g is
actually the difference of the two convex functions, or in other words, F belongs to the class of dc functions.

Example 4.2. The indefinite quadratic function f(x) = 1
2x

TAx + bTx (A is a symmetric matrix in Rn×n and b ∈ Rn)
satisfies both of Assumption 1 and Assumption 3 since huv(t) = ⟨A(u + t(v − u)) + b, v − u⟩ is linear and hence
quasiconvex on [0, 1] for any u, v ∈ int(dom(f)) = Rn.
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From Example 4.1 and 4.2, we see that the class of problem (P) satisfying Assumption 1 and Assumption 3 is nonconvex
in general. Subsequently, we propose an other version of Algorithm 3.1 that can be applied for such a kind of
problems.

Algorithm 4.1 (NPG2)
Step 0 (Initialization). Select t0 > 0, 0 < c1 < c0 < 1, x0 ∈ int(dom(f)) a tolerance ϵ > 0 and a positive real sequence {γk} such

that
+∞∑
k=0

γk < ∞. Taking x1 = Proxt0g(x
0 − t0∇f(x0)), t−1 = t0 and k = 1.

Step 1.

If ∥∇f(xk)−∇f(xk−1)∥ >
c0
tk−1

∥xk − xk−1∥

then tk = c1
∥xk − xk−1∥

∥∇f(xk)−∇f(xk−1)∥
(4.1)

else γ′
k−1 = γk−1

if
tk−1

tk−2
< 1 then γ′

k−1 = min

{
γk−1,

√
1 +

tk−1

tk−2
− 1

}
(4.2)

tk = (1 + γ′
k−1)tk−1.

Step 2. Compute xk+1 = Proxtkg(x
k − tk∇f(xk)).

Step 3. If ∥xk+1 − xk∥ < ϵ then STOP else setting k := k + 1 and return to Step 1.

Due to the lack of the convexity of f, the analysis on the convergence of our method in the sequel focus on

showing the iterates tending to a stationary point of (P). In particular, we will show
+∞∑
k=0

∥xk+1 − xk∥2 is convergent

in Theorem 4.6. We first start with some preparing lemmas in the sequel.

Lemma 4.3. The sequence {tk} in Algorithm 4.1 satisfies inf
k≥0

tk > 0 and has a positive limit.

Proof. Similarly to Lemma 3.6 (i), it is clear that tk ≥ min{t0, c1
Lf

} > 0 for all k ≥ 0. As a result, inf
k≥0

tk > 0. The

remaining conclusion is shown as Lemma 3.6 (ii).

Lemma 4.4. For Algorithm 4.1, there exists k such that

∥∇f(xk)−∇f(xk−1)∥ ≤ c0
tk−1

∥xk − xk−1∥ ∀k ≥ k.

Proof. The proof is similar to that of Lemma 3.7.

The following lemma presents the sufficient decrease type inequality - a key step to obtain the convergence
results of our algorithms.

Lemma 4.5. Assuming that problem (P) satisfies Assumption 1 and Assumption 3 then the sequence {xk} generated by
Algorithm 4.1 has the following property

F (xk)− F (xk+1) ≥ 1− c0
tk

∥xk+1 − xk∥2, ∀k ≥ k.

Proof. Invoking the Fundamental Theorem of Calculus, we have

f(xk+1)− f(xk) =

∫ 1

0

〈
∇f(xk + t(xk+1 − xk)), xk+1 − xk

〉
dt

= ⟨∇f(xk), xk+1 − xk⟩+
∫ 1

0
uk(t)dt, ∀k ≥ k (4.3)

where

uk(t) = ⟨∇f(xk + t(xk+1 − xk))−∇f(xk), xk+1 − xk⟩
= hxkxk+1(t)− ⟨∇f(xk), xk+1 − xk⟩.
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According to Assumption 3, the quasiconvexity of uk(t) in [0, 1] follows that

uk(t) ≤ max{uk(0), uk(1)} = max{0, uk(1)} ≤ |uk(1)|
= |⟨∇f(xk+1)−∇f(xk), xk+1 − xk⟩|, ∀t ∈ [0, 1].

Thereafter, using Lemma 4.4, we derive that∫ 1

0
uk(t)dt ≤

c0
tk
∥xk+1 − xk∥2, ∀k ≥ k. (4.4)

Now, combining (4.3), (4.4) and Lemma 2.1(ii) with x = xk+1 we get that

F (xk)− F (xk+1) = f(xk)− f(xk+1) + g(xk)− g(xk+1)

≥ −
〈
xk+1 − xk,∇f(xk)

〉
− c0

tk
∥xk+1 − xk∥2+

+

〈
xk+1 − xk,∇f(xk) +

xk+1 − xk

tk

〉
=

1− c0
tk

∥xk+1 − xk∥2 ∀k ≥ k. (4.5)

The following theorem provides the convergence results of Algorithm 4.1 (NPG2) under Assumption 1 and Assump-
tion 3 for solving the problem (P).

Theorem 4.6. Under Assumptions 1 and 3, the following assertions hold for Algorithm 4.1:

(i) The sequence {F (xk)}k≥k is decreasing and for any k ≥ k, F (xk+1) < F (xk) unless xk is a stationary point of problem
(P).

(ii) F (xk)− F (xk+1) → 0 and

min
k≤k≤K

∥xk+1 − xk∥2 ≤ t∗(F (xk)− F̂ )

(K − k)(1− c0)
= O

(
1√
K

)
∀K ≥ k.

(iii)
+∞∑
k=0

∥xk+1 − xk∥2 is convergent.

Proof. (i) By (4.5) and c0 < 1, it is clear to see that F (xk) ≥ F (xk+1) for all k ≥ k. If F (xk) = F (xk+1) then
xk+1 = xk = Proxtkg(x

k − tk∇f(xk)) meaning xk is a stationary point of (P).

(ii) Since problem (P) has a non-empty optimal solution set then the sequence {F (xk)}k≥k is decreasing and lower
bounded by F∗. This follows the existence of a finite limit F̂ of {F (xk)}k≥k (F̂ ≥ F∗). It means that F (xk) −
F (xk+1) → 0. Moreover, by Lemma 4.3 we have {tk}k≥k increasing to lim

k→+∞
tk = t∗. On the other hand,

inequality (4.5) indicates that

∥xk+1 − xk∥2 ≤ tk
1− c0

(F (xk)− F (xk+1)) ≤ t∗

1− c0
(F (xk)− F (xk+1)) ∀k ≥ k. (4.6)

Therefore by summing (4.6) from k = k to K we obtain that

K∑
k=k

∥xk+1 − xk∥2 ≤ t∗

1− c0
(F (xk)− F (xK+1)) ≤ t∗

1− c0
(F (xk)− F̂ ) ∀K ≥ k (4.7)

which implies that

min
k≤k≤K

∥xk+1 − xk∥2 ≤ t∗(F (xk)− F̂ )

(K − k)(1− c0)
= O

(
1√
K

)
∀K ≥ k. (4.8)
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(iii) It is followed directly from (4.7) that
+∞∑
k=k

∥xk − xk+1∥2 ≤ F (xk)− F̂ and we obtain the desired conclusion.

Remark 4.7. (i) Remember that c0, c1 ∈
(
0, 1√

2

)
for Algorithm 3.1 (NPG1) but c0, c1 ∈ (0, 1) for Algorithm 4.1

(NPG2).

(ii) Actually, the command (4.2) in Algorithm 4.1 is optional since we do not need it during the proof of the con-
vergence of NPG2. However, through out the implementation for numerical experiments we realize that this
step helps the performance of the algorithm be better.

5. Problem (P) with quadratic function f

In this section, we propose an extension of NPG2 called NPG-quad solving problem (P) with the quadratic function
f, i.e., f(x) = 1

2x
TAx+ bTx as described in Example 4.2. The changes compared with NPG2 are in the two points:

(i) Firstly, c0, c1 in (0, 2) (while c0, c1 in (0, 1) for NPG2 );

(ii) Secondly,

tk( in (5.2)) =
c1∥xk − xk−1∥2

(xk − xk−1)TA(xk − xk−1)
≥ c1∥xk − xk−1∥

∥Axk −Axk−1∥
= tk( in (4.1)).

These probably make the stepsize of NPG-quad larger and therefore the execution time of it shorter in comparison
with NPG1 and NPG2 .

Algorithm 5.1 (NPG-quad)
Step 0 (Initialization). Select t0 > 0, 0 < c1 < c0 < 2, x0 ∈ dom(g), a tolerance ϵ > 0 and a positive real sequence {γk} such that
+∞∑
k=0

γk < +∞. Taking x1 = Proxt0g(x
0 − t0∇f(x0)), t−1 = t0, and k = 1.

Step 1.

If (xk − xk−1)TA(xk − xk−1) > c0
∥xk − xk−1∥2

tk−1
(5.1)

then tk =
c1∥xk − xk−1∥2

(xk − xk−1)TA(xk − xk−1)
(5.2)

else γ′
k−1 = γk−1

if
tk−1

tk−2
< 1 then γ′

k−1 = min

{
γk−1,

√
1 +

tk−1

tk−2
− 1

}
(5.3)

tk = (1 + γ′
k−1)tk−1. (5.4)

Step 2. Compute xk+1 = Proxtkg(x
k − tk∇f(xk)).

Step 3. If ∥xk+1 − xk∥ < ϵ then STOP else setting k := k + 1 and return to Step 1.

Lemma 5.1. The sequence {tk} generated by Algorithm 5.1 has a positive limit.

Proof. Analogous to former sections, we are easy to have tk ≥ min
{
t0,

c1
∥A∥

}
> 0 for all k ≥ 0. Therefore, inf

k≥0
tk > 0.

The computation of tk by (5.2) or (5.4) provides ln
(
tk+1

tk

)
< ln(1 + γk). The subsequent arguments are akin to the

one of Lemma 3.6 (ii).

Lemma 5.2. For Algorithm 5.1, there exists k̃ such that

(xk − xk−1)TA(xk − xk−1) ≤ c0
∥xk − xk−1∥2

tk−1
, for all k ≥ k̃. (5.5)

Proof. Based on the properties of {tk} in Lemma 5.1 and arguing by contradiction as Lemma 3.7 we have the desired
conclusion.



P.T. Hoai and N.P.D. Thai16

The last result of the paper is on the convergence of Algorithm 5.1 in the following theorem.

Theorem 5.3. Supposing problem (P) satisfies Assumption 1 and f has a quadratic form as in Example 4.2. For {xk} generated

by Algorithm 5.1, the sequence {F (xk)}k≥k̃ is decreasing to a finite limit F̃ ≥ F∗ and
+∞∑
k=0

∥xk+1 − xk∥2 is convergent.

Additionally,

min
k̃≤k≤K

∥xk+1 − xk∥2 ≤ t∗(F (xk̃)− F̃ )

(K − k̃)(1− c0
2 )

= O

(
1√
K

)
∀K ≥ k̃.

Proof. We have

f(xk+1)− f(xk) =

∫ 1

0

〈
∇f(xk + t(xk+1 − xk)), xk+1 − xk

〉
dt

=

∫ 1

0

〈
A(xk + t(xk+1 − xk)) + b, xk+1 − xk

〉
dt

=
〈
A(xk+1 − xk), xk+1 − xk

〉∫ 1

0
tdt+

〈
Axk + b, xk+1 − xk

〉
=

1

2
(xk+1 − xk)TA(xk+1 − xk) +

〈
∇f(xk), xk+1 − xk

〉
. (5.6)

Now plugging (5.6) in F (xk)− F (xk+1) and using Lemma 2.1(ii) to obtain

F (xk)− F (xk+1) = f(xk)− f(xk+1) + g(xk)− g(xk+1)

≥ −1

2
(xk+1 − xk)TA(xk+1 − xk)− ⟨∇f(xk), xk+1 − xk⟩+

+

〈
xk+1 − xk,∇f(xk) +

xk+1 − xk

tk

〉
= −1

2
(xk+1 − xk)TA(xk+1 − xk) +

1

tk
∥xk+1 − xk∥2. (5.7)

Next, applying Lemma 5.2 for (5.7) we obtain for all k ≥ k̃,

F (xk)− F (xk+1) ≥
(
1− c0

2

) ∥xk+1 − xk∥2

tk
. (5.8)

The remaining arguments are similar to those of Theorem 4.6.

Remark 5.4. If f is a concave quadratic function i.e., A is negative semi-definite then the condition (5.1) is false,
hence

• k̃ in Lemma 5.2 should be zero;

• tk is always defined by formula (5.4) and {tk}k≥0 is increasing to a finite limit;

• the evaluation (5.8) should be

F (xk)− F (xk+1) ≥ ∥xk+1 − xk∥2

tk
, ∀k ≥ 0. (5.9)

6. Numerical experiments

In this section, we investigate the performance of our new stepsize for the proximal gradient scheme by comparing
NPG1 (Algorithm 3.1), NPG2 (Algorithm 4.1) and NPG-quad (Algorithm 5.1) with the recent algorithms including:

• the AdPG proposed by Malitksy and Mishchenko [27] (Algorithm 3 in [27]);

• the AdaPGq,r from Latafat et al. in [29] using (q, r) =
(
3
2 ,

3
4

)
;
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• the proximal gradient algorithms with stepsize selection based on an improved version of Armijo’s backtrack-
ing procedure1, denoted by ProxGD(s, r) where (s, r) equals (1.1, 0.5) or (1.2, 0.5).

For our algorithms, we use the convergent series
+∞∑
k=0

γk defined by

γk−1 =
0.1(ln k)5.7

k1.1
, ∀k ≥ 1,

and setting (c0, c1) = (0.7, 0.69) for NPG1 , (c0, c1) = (0.99, 0.98) for NPG2 and NPG-quad .
The AdPG, ProxGD(1.1, 0.5) and ProxGD(1.2, 0.5) are the top three algorithms in the experiments conducted in

[27], with AdPG notably outperforming all others. At the same time, the numerical simulations of [29] indicate that
AdaPG( 3

2
, 3
4) is the most effective one for almost cases reported in [29]. Considering all of the above, we believe this

section includes a comprehensive comparison of the most effective algorithms in the literature.
We conduct experiments on five typical composite type optimization problems with various sizes for each one.

The average results on 10 randomly generated data for each size of considered problems are reported with respect
to

1. the number of iterations (Iter.);

2. ∥xk+1 − xk∥ (Res.);

3. F (xk)− F∗ (Obj.), where F∗ is computed as the minimum of F (xk) over all iterations and all tested algorithms;

4. the running time in seconds (Time(s)).

For all implemented algorithms, the stopping criterion is either the residual ∥xk+1 − xk∥ ≤ 1e− 06 or the number of
iterations over Nmax. The detailed information is on Tables 1, 2, 3, 4, 5. We emphasize the best results among all by
bold characters and the worst results by italic type. We also choose one arbitrary data for each kind of problems to
illustrate the performance by Figures 1, 2, 3, 4, 5.

All experiments2 were implemented in Python and executed on a personal computer equipped with a 12th Gen
Intel(R) Core(TM) i7-1260P 2.10 GHz processor, RAM 16.0 GB.

6.1. Lasso problems
The formulation of Lasso problem is formulated as the ℓ1 regularized least squares

min
x∈Rn

1

2
∥Ax− b∥2 + λ∥x∥1, (Lasso)

where A ∈ Rm×n, b ∈ Rm. The applications of Lasso can be found in statistic, machine learning, signal processing,
see e.g., [4, 7, 30]. By using the similar rules in [30], we randomly generate A ∈ Rm×n with entries drawn from the
normal distribution N (0, 1). We then construct a sparse solution x∗ with 5% approximately non-zero entries, drawn
from a mixture distribution N (0, 1) × B(1, 0.05) then setting b = Ax∗ + δ, where δ is white Gaussian noise with
variance 0.01. The regularization term λ = 0.01∥AT b∥∞. Obviously, Lasso satisfies Assumptions 1, 2, 3 then both of
NPG1 and NPG2 are available for it. Moreover, f is quadratic hence NPG-quad can be applied for solving this

problem formally. Figure 1 illustrates the performance of mentioned algorithms for one of randomly generated data
with m = 2048, n = 8192. The obtained average results in Table 1 show the best performance of NPG-quad for
almost dimensions of Lasso.

1For s > 1, r < 1, Armijo’s linesearch in finds the largest tk = sritk−1 for i = 0, 1, ... such that f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
1

2tk
∥xk+1 − xk∥2.
2All codes are available at our repository https://github.com/hoaiphamthi/NPG-for-composite-models.

https://github.com/hoaiphamthi/NPG-for-composite-models
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Figure 1: Illustration for one of randomly generated data of Lasso with size m = 2048, n = 8192.

Size Metrics Average of all datasets

m n AdPG AdaPG( 3
2
, 3
4 ) PG-LS

(1.1, 0.5)
PG-LS

(1.2, 0.5) NPG1 NPG2 NPG-quad

512 1024

Iter. 114,4 115,4 146,7 138,4 92,1 85,4 79,7
Res. 7,95E-07 8E-07 6,76E-07 6,29E-07 7,99E-07 7,16E-07 6,25E-07
Obj. 1,07E-10 1,08E-10 7,05E-11 7,52E-11 3,45E-10 1,05E-10 1,03E-11
Time(s) 0,042869 0,039073 0,051572 0,052111 0,028284 0,026564 0,025459

512 2048

Iter. 307,7 306,2 402,9 381,5 235,7 197,6 204,7
Res. 7,26E-07 7,1E-07 8,05E-07 8,55E-07 6,1E-07 7,29E-07 4,25E-07
Obj. 8,72E-09 5,03E-09 2,72E-09 4,35E-09 7,24E-09 4,99E-09 9,19E-11
Time(s) 0,123599 0,134157 0,215685 0,25036 0,129324 0,107936 0,119032

512 4096

Iter. 5923,4 5478,9 8311,4 8269,7 5690 4534,1 3066,5
Res. 9,65E-07 9,52E-07 9,68E-07 9,43E-07 9,8E-07 9,73E-07 9,22E-07
Obj. 6,5E-06 7,08E-06 1,2E-06 5,69E-07 9,81E-06 5,56E-06 6,86E-08
Time(s) 6,289767 6,476083 10,43385 12,00841 6,641218 5,188084 3,442947

1024 2048

Iter. 118,8 123,2 153,6 144,8 102 90,9 89,6
Res. 8,18E-07 7,58E-07 6,45E-07 5,9E-07 7,94E-07 7,82E-07 5,68E-07
Obj. 3,23E-10 2,3E-10 1,97E-10 1,55E-10 9,11E-10 2,64E-10 3,34E-11
Time(s) 0,094191 0,101175 0,152634 0,177035 0,105597 0,105269 0,109908

1024 4096

Iter. 282,6 282 366,6 342,2 221,7 187,7 188,8
Res. 7,57E-07 6,93E-07 9,1E-07 7,5E-07 7,24E-07 7,46E-07 5,91E-07
Obj. 1,13E-08 5,93E-09 4,27E-09 6E-09 1,89E-08 1,11E-08 9,4E-11
Time(s) 0,942224 1,029607 1,429591 1,506059 0,769672 0,657381 0,675595

1024 8192

Iter. 5422,5 5197,2 7953 7839,9 5431,7 4345,8 2967,5
Res. 9,42E-07 9,69E-07 9,7E-07 9,45E-07 9,61E-07 9,78E-07 9,43E-07
Obj. 1,76E-05 1,49E-05 2,34E-06 1,65E-06 1,84E-05 1,14E-05 4,27E-07
Time(s) 45,3179 43,95711 78,10607 83,31711 44,58026 36,09447 25,52683

2048 4096

Iter. 107 111,5 135,6 129,3 97,5 86,6 79,2
Res. 7,76E-07 8,06E-07 7,48E-07 7,19E-07 7,43E-07 7,57E-07 5,46E-07
Obj. 4,13E-10 3,98E-10 5,13E-10 3,07E-10 1,37E-09 3,69E-10 1,16E-10
Time(s) 1,008659 1,057126 1,350391 1,420677 0,856957 0,763448 0,698618

2048 8192

Iter. 289,1 288,2 380,7 361,1 226,8 199,6 183,5
Res. 7,52E-07 7,46E-07 7,85E-07 8,42E-07 7,67E-07 7,11E-07 5,15E-07
Obj. 3,93E-08 3,5E-08 1,31E-08 1,33E-08 3,65E-08 2,58E-08 5,18E-10
Time(s) 5,192244 5,059049 7,395414 7,782476 3,8797 3,397991 3,145621

Table 1: Average results for Lasso problem (Nmax = 15000).
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6.2. Minimum length piecewise-linear curve subject to equality constraints
We consider an other optimization problem from [31, Example 10.4], where the objective is minimizing the length

of the piecewise-linear curve connecting the points (0, 0), (1, x1), ..., (n, xn) such that Ax = b, where A ∈ Rm×n, b ∈
Rm. The problem therefore can be formed as

min
√
1 + x21 +

n−1∑
i=1

√
1 + (xi+1 − xi)2 s.t. Ax = b. (Min-length)

It is seen that Min-length3 satisfies Assumption 1,2,3 and we can use NPG1 and NPG2 to solve it exactly. In the
implementation, all members of A are randomly generated by normal distribution N (0, 1). Taking b = Ax∗, where
x∗ ∼ N (0, 1). Figure 2 provides the line graphs of one randomly generated data with m = 2000, n = 10000. Table
2 includes the average computation results for various sizes of Min-length. Notably, both NPG1 and NPG2 out-
perform the remaining ones with the big deviation in term of computational time, residual, objective value and the
number of iterations. The speed of NPG1 can be seen as the best among all for Min-length.
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Figure 2: Illustrations for one of randomly generated data of Min-length with m = 2000, n = 10000.

6.3. Dual of the entropy maximization problems
We consider the entropy maximization problem subject to linear constraints [31, Section 5.1.6] which is

min
n∑

i=1

xi log xi s.t. Ax ≤ b,
n∑

i=1

xi = 1, and xi > 0, i = 1, ..., n, (6.1)

where A = [a1, a2, ..., an] ∈ Rm×n, with ai ∈ Rm is the i−th column of A and b ∈ Rm. Its dual problem is

min e−µ−1
n∑

i=1

e−(ai)Tλ + bTλ+ µ, s.t. λ ∈ Rm
+ , µ ∈ R. (Dual-max-entropy)

It is observed that Problem Dual-max-entropy4 matches Assumption 1, 2 but Assumption 3. Therefore the use of
NPG1 is straightforward for it. We still run NPG2 for Dual-max-entropy as a heuristic approach. We use the similar
rule of generating data as [27]. Specifically, a m× n matrix A with entries are generated from N (0, 1), b = Ax∗ with
a ℓ1-normalized x∗ sampled from the uniform distribution U [0.1, 1). Results are depicted in Table 3 and Figure 3. It
is shown that the performance of NPG2 is more significantly efficient than the remaining ones.

3Min-length is a case of problem (P) with f(x) =
√

1 + x2
1 +

n−1∑
i=1

√
1 + (xi+1 − xi)2 and g(x) = ıC (the indicator function of C) with

C = {x ∈ Rn | Ax = b}.
4Dual-max-entropy is a case of problem (P) with f(λ, µ) = e−µ−1

n∑
i=1

e−(ai)T λ + bTλ + µ and g(λ, µ) = ıC (the indicator function of C)

with C = Rm
+ × R and ∇f does not global Lipschitz on C.
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Size
Metrics

Average of all datasets

m n AdPG AdaPG( 3
2
, 3
4) PG-LS

(1.1, 0.5)
PG-LS

(1.2, 0.5)
NPG1 NPG2

50 5000

Iter. 45399,2 46076,7 50000 50000 22437,5 30189,1
Res. 3,72E-06 3,42E-06 1,63E-05 1,51E-05 9,88E-07 9,84E-07
Obj. 8,92E-08 1,15E-07 7,16E-06 6,71E-06 2,96E-08 0
Time(s) 11,0176 11,94366 13,94243 15,4938 5,38424 7,227166

500 5000

Iter. 1035,1 1060,1 1623,9 1631,4 442,3 404,3
Res. 9,44E-07 8,97E-07 8,82E-07 8,68E-07 8,1E-07 8,04E-07
Obj. 3,51E-10 3,53E-10 2,29E-10 1,92E-10 1,92E-10 7,22E-11
Time(s) 1,00071 1,040429 1,694592 1,876264 0,402679 0,368048

2000 5000

Iter. 120,4 122,4 165,1 163,7 70,1 85,5
Res. 6,07E-07 6,31E-07 6,82E-07 7,87E-07 6,45E-07 6,34E-07
Obj. 1,32E-11 1,07E-11 1,36E-11 1,28E-11 6,37E-13 9,73E-12
Time(s) 1,07501 1,107907 1,508984 1,609584 0,601122 0,727446

100 10000

Iter. 49008,7 49202,7 50000 50000 26747,2 36521,4
Res. 8,29E-06 9,51E-06 3,84E-05 3,97E-05 9,86E-07 9,81E-07
Obj. 3,67E-07 4,76E-07 2,68E-05 2,49E-05 5,31E-08 0
Time(s) 21,82338 23,03032 25,43881 29,56451 12,71977 17,39741

1000 10000

Iter. 1052,9 1089,5 1614,2 1609,5 451,3 409
Res. 9,47E-07 8,7E-07 6,35E-07 7,61E-07 8,42E-07 8,56E-07
Obj. 3,79E-10 2,99E-10 4,05E-10 3,41E-10 1,06E-10 5,66E-11
Time(s) 7,133321 7,081205 11,93754 13,21689 2,975329 2,691825

2000 10000

Iter. 330,1 343,1 526 500,3 153,2 146
Res. 8,38E-07 8,42E-07 6,99E-07 5,91E-07 7,2E-07 6,44E-07
Obj. 1,23E-10 9,39E-11 1,04E-10 1,15E-10 1,75E-11 2,42E-11
Time(s) 4,892416 4,825672 8,328903 8,78495 2,213989 2,131633

Table 2: Average results for Min-length problem (Nmax = 50000).
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Figure 3: Illustrations for one of randomly generated data of Dual-max-entropy with m = 4000, n = 5000.

6.4. Maximum likelihood estimate of the information matrix
This problem (see [31, Eq. (7.5)]) aims to estimate the inverse of a covariance matrix Y of a multivariate ran-

dom variable subject to the eigenvalue bounds given some samples of the random variable. The problem can be
formulated as

min f(X) = − log det(X) + tr(XY ) s.t. X ∈ Sn and lI ⪯ X ⪯ uI. (Max-likelyhood)

Here Sn denotes the space of real symmetric matrices of dimension n×n, and A ⪯ B indicates that B−A is positive
semi-definite. Observably, Max-likelyhood5 satisfies Assumption 1,2,3 then NPG1 and NPG2 are exact methods to

5Max-likelyhood is a case of problem (P) with f(X) = − log det(X)+ tr(XY ) and g(X) = ıC (the indicator function of C) with C = {X ∈
Sn | lI ⪯ X ⪯ uI}.
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Size
Metrics

Average of all datasets

m n AdPG AdaPG( 3
2
, 3
4) PG-LS

(1.1, 0.5)
PG-LS

(1.2, 0.5)
NPG1 NPG2

100 500

Iter. 32,7 31,6 80 51,1 30,6 29,1
Res. 4,69E-07 5,93E-07 5,9E-07 4,72E-07 5,67E-07 4,75E-07
Obj. 3,85E-14 1,37E-13 1,19E-13 1,04E-13 3,1E-13 1,57E-14
Time(s) 0,013965 0,013373 0,032767 0,021095 0,011194 0,010558

500 2000

Iter. 35,3 33,3 83,7 54,8 33,4 31,9
Res. 7,44E-07 6,83E-07 7,9E-07 5,96E-07 6,3E-07 4,97E-07
Obj. 2,19E-13 9,17E-14 7,72E-13 1,6E-13 7,51E-13 5,93E-14
Time(s) 0,328293 0,306634 0,803013 0,545206 0,303972 0,29314

2000 4000

Iter. 50,1 48,7 102,1 70,2 47,5 45,9
Res. 5,68E-07 4,8E-07 8,26E-07 7,53E-07 5,02E-07 4,8E-07
Obj. 7,23E-14 6,69E-13 8,67E-13 8,19E-13 1,73E-12 7,17E-13
Time(s) 3,447821 3,267871 7,103997 5,344434 3,184719 3,14644

4000 5000

Iter. 79,6 76,4 151,7 116,1 73,1 60,4
Res. 6,28E-07 5,52E-07 7,63E-07 7,42E-07 6,56E-07 4,28E-07
Obj. 6,27E-12 4,01E-12 4,53E-12 6,53E-12 2,94E-12 1,39E-12
Time(s) 14,65683 13,33189 28,72655 24,29627 12,93086 10,5829

Table 3: Average results for Dual-max-entropy problem (Nmax = 200).

solve Max-likelyhood. The dataset for the implementation is generated analogously to [27] as follows. We initially
generate a random vector y ∈ Rn with entries from N (0, 10) and δi ∈ Rn with entries from N (0, 1), and then set

yi = y + δi, i = 1, . . . ,M . The covariance matrix of the samples y1, ..., yM is Y = 1
M

M∑
i=1

yiy
T
i . The obtained results are

shown in Table 4 and Figure 4. It is seen that for Max-likelyhood, both of NPG1 and NPG2 provide better results
compared to the others with the big deviation. And most of cases NPG2 performs best.
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Figure 4: Illustrations for one of randomly generated data of Max-likelyhood with n = 100, l = 0.1, u = 10,M = 500.

6.5. Nonnegative matrix factorization
One of efficient approaches to solve recommendation system problems [32] is based on nonnegative matrix fac-

torization6

min f(U, V ) =
1

2
∥UV T −A∥2F , s.t. U ∈ R+

m×r, V ∈ R+
n×r, (NMF)

where A ∈ Rm×n is a low-rank matrix, ∥ · ∥F stands for Frobenius norm. This problem does not satisfy Assumption
2 and Assumption 3. Therefore our algorithms can be seen as heuristic methods for it. Akin to [27], we create A by
multiplying matrices B and C⊤, where B ∈ R+

m×r and C ∈ R+
n×r have entries drawn from a normal distribution

N (0, 1). All negative entries of B and C are replaced with zero. The numerical results are reported in Table 5 and

6NMF is a case of problem (P) with f(U, V ) = 1
2
∥UV T −A∥2F and g(U, V ) = ıC (the indicator function of C) with C = R+

m×r × R+
n×r.
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Size
Metrics

Average of all datasets

n, l, u, M AdPG AdaPG( 3
2
, 3
4) PG-LS

(1.1, 0.5)
PG-LS

(1.2, 0.5)
NPG1 NPG2

100, 0.1, 10, 50

Iter. 1661,5 1709,7 2439 2364,5 1259,7 1171,8
Res. 9,58E-07 9,35E-07 8,68E-07 9,16E-07 9,21E-07 8,59E-07
Obj. 4,27E-09 4,78E-09 1,94E-09 2,74E-09 6,45E-09 8,4E-10
Time(s) 60,86365 64,50515 102,6512 105,7513 42,38316 42,36841

100, 0.1, 10, 500

Iter. 133,7 136,2 219,2 197,7 103,5 93,6
Res. 7,15E-07 7,4E-07 6,76E-07 7,42E-07 5,66E-07 6,45E-07
Obj. 2,69E-11 2,18E-11 1,29E-11 2,93E-11 1,7E-11 7,07E-12
Time(s) 5,251226 5,310266 9,504244 8,734855 3,744619 3,415316

100, 0.1, 10, 1000

Iter. 57,9 56,7 103,9 83,8 58 49,7
Res. 5,69E-07 5,34E-07 4,91E-07 4,44E-07 7,56E-07 6,19E-07
Obj. 3,55E-12 2,71E-12 5,88E-12 4,99E-12 9,55E-13 2,19E-12
Time(s) 2,160025 2,011673 4,011467 3,743083 1,986301 1,70523

30, 0.1, 1000, 50

Iter. 5210,2 5355,8 7612,8 7518,9 4684,2 3295,8
Res. 9,69E-07 9,45E-07 2,05E-06 1,86E-06 9,3E-07 9,49E-07
Obj. 4,28E-09 3,88E-09 1,34E-07 1,2E-07 4,69E-09 1,54E-09
Time(s) 7,804621 7,996857 12,49123 12,80073 5,995387 4,278019

50, 0.1, 1000, 100

Iter. 1644,2 1669,7 2589,4 2545,9 1193,8 954,1
Res. 9,4E-07 9,55E-07 8,62E-07 9,01E-07 8,7E-07 8,67E-07
Obj. 8,07E-10 9,69E-10 4,87E-10 3,91E-10 1,35E-09 1,52E-10
Time(s) 12,11536 12,1823 22,13427 23,77569 8,789019 7,06114

Table 4: Average results for Max-likelyhood problem (Nmax = 20000).

illustrated by Figure 5. For this problem, NPG1 and NPG2 alternately are proved to be the most effective methods
compared to the others.

0 200 400 600 800 1000 1200 1400
Iterations

10 5

10 3

10 1

101

Re
sid

ua
l

AdPG
AdaPG[1.5, 0.75]
PG-LS[1.1, 0.5]
PG-LS[1.2, 0.5]
NPG1
NPG2

0 200 400 600 800 1000 1200 1400
Iterations

10 7

10 5

10 3

10 1

101

103

105

107

Ob
je

ct
iv

e

AdPG
AdaPG[1.5, 0.75]
PG-LS[1.1, 0.5]
PG-LS[1.2, 0.5]
NPG1
NPG2

0 50 100 150 200 250
Running time(s)

10 7

10 5

10 3

10 1

101

103

105

107

Ob
je

ct
iv

e

AdPG
AdaPG[1.5, 0.75]
PG-LS[1.1, 0.5]
PG-LS[1.2, 0.5]
NPG1
NPG2

Figure 5: Illustrations for one of randomly generated data of NMF problem with m = 3000, n = 3000, r = 30.

7. Conclusions

In this paper, we propose an efficient explicit stepsize NPG applied for the proximal gradient (PG) scheme. In partic-
ular, Algorithm 3.1 (NPG1) is the combination of proximal gradient scheme with NPG to solve the convex situation
of the problem (P) under the locally Lipschitz gradient condition imposed on f. The iterates is proved to converge to
an optimal solution of (P) with the computational complexity O

(
1
k

)
of F (xk)−F∗ and the Q-linear rate if f has locally

strong convexity property. These convergence results are based on the descent of our proposed method. Moreover,
our stepsize NPG is investigated with a class of nonconvex f satisfying global Lipschitz gradient condition to have
the second version in Algorithm 4.1 (NPG2), where the size of steplength can be bigger. In quadratic case of f, NPG
is improved significantly in length for solving (P) in Algorithm 5.1 (NPG-quad). Our stepsize selection is computed
quickly by a closed formulas without linesearch computation or estimating some constant (like Lipschitz constant of
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Size
Metrics

Average of all datasets

m r n AdPG AdaPG( 3
2
, 3
4) PG-LS

(1.1, 0.5)
PG-LS

(1.2, 0.5)
NPG1 NPG2

500 20 1000

Iter. 537 518 801,4 746,3 302,6 308,5
Res. 9,07E-07 8,3E-07 8,8E-07 8,84E-07 7,93E-07 6,6E-07
Obj. 1,93E-07 1,5E-07 6,04E-08 8,27E-08 1,04E-07 1,37E-08
Time(s) 5,063259 4,854466 8,131989 8,150044 2,640108 2,687595

1000 20 500

Iter. 543,9 526,3 777,7 751,7 300,5 309,9
Res. 8,42E-07 7,99E-07 9,04E-07 8,7E-07 8,57E-07 7,76E-07
Obj. 1,44E-07 1,09E-07 7,8E-08 5,78E-08 2,05E-08 2,85E-08
Time(s) 4,05312 4,435143 7,149508 7,690501 2,394326 2,33219

2000 20 3000

Iter. 506,7 491 731,9 699,9 301 302,6
Res. 8,33E-07 8,48E-07 9,29E-07 9,01E-07 7,56E-07 7,69E-07
Obj. 4,86E-07 3,76E-07 2,13E-07 1,65E-07 1,49E-07 1,44E-07
Time(s) 41,5473 39,88436 68,38917 73,55071 24,66209 24,99118

3000 20 2000

Iter. 509,8 483,8 716,2 672,7 290,1 305
Res. 8,26E-07 8,34E-07 8,26E-07 8,82E-07 8,15E-07 6,7E-07
Obj. 4,56E-07 3,36E-07 1,08E-07 2,11E-07 2,65E-07 6,11E-08
Time(s) 46,16344 43,86382 72,49023 76,1551 26,58725 27,59743

3000 20 3000

Iter. 498,1 476,6 701 671,9 275,3 276,9
Res. 7,95E-07 7,99E-07 8,39E-07 8,97E-07 8,74E-07 8,11E-07
Obj. 4,63E-07 4,28E-07 1,49E-07 2,44E-07 2,08E-07 5,89E-08
Time(s) 62,75717 59,84711 98,75072 104,7538 33,81778 33,39832

500 30 1000

Iter. 982,7 970,4 1493,6 1422,9 633,6 598,5
Res. 9,38E-07 8,39E-07 8,85E-07 9,01E-07 8,37E-07 8,84E-07
Obj. 4,76E-07 3,26E-07 1,85E-07 1,38E-07 4,04E-07 6,43E-08
Time(s) 9,372398 8,894667 14,90402 15,70727 5,521334 5,151777

1000 30 500

Iter. 1026,1 976,6 1502,3 1430,2 603,3 587,3
Res. 9E-07 9,02E-07 8,93E-07 8,57E-07 7,87E-07 8,63E-07
Obj. 4,28E-07 4,08E-07 1,78E-07 1,09E-07 2,44E-07 3,35E-08
Time(s) 7,677596 7,96714 13,22346 13,87682 4,588455 4,575719

2000 30 3000

Iter. 876,2 872,2 1247,9 1200,2 435,5 467,2
Res. 8,75E-07 8,49E-07 8,78E-07 8,77E-07 8,94E-07 7,64E-07
Obj. 1,49E-06 1,02E-06 2,88E-07 3,06E-07 3,27E-07 1,1E-07
Time(s) 74,42385 73,70845 121,1278 128,7483 37,27746 39,75814

3000 30 2000

Iter. 907,4 860,5 1280 1247,7 439,6 469,3
Res. 8,95E-07 8,43E-07 9,1E-07 9,06E-07 7,71E-07 8,06E-07
Obj. 1,47E-06 1,28E-06 5,77E-07 6,12E-07 4,89E-07 1,3E-07
Time(s) 85,76037 85,5649 156,2934 181,0738 51,33857 54,80522

3000 30 3000

Iter. 914,1 902,2 1303,2 1252,5 457,9 504
Res. 8,81E-07 9,33E-07 8,8E-07 8,89E-07 8,74E-07 7,46E-07
Obj. 1,7E-06 1,65E-06 4,86E-07 7,59E-07 1,84E-07 3,96E-07
Time(s) 141,176 139,0688 225,5331 237,0593 66,16939 72,081

Table 5: Average results for NMF problem (Nmax = 5000).

gradient) to ensure the convergence of the PG algorithm. Moreover, the increasing of the sequence of our stepsizes
from some fixed iteration opens the ability to speed up the corresponding PG algorithms. The deep experiments on
a variety of test instances with various sizes show the crucial efficiency of the proposed method compared to the
recent ones. Future research includes deploying our adaptive stepsize for the composite models in the absence of
both convexity and global Lipschitz gradient assumptions on f.
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