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Abstract: We present MUSE-BB, a branch-and-bound (B&B) based decomposition algorithm for the deterministic
global solution of nonconvex two-stage stochastic programming problems. In contrast to three recent decomposition
algorithms, which solve this type of problem in a projected form by nesting an inner B&B in an outer B&B on the
first-stage variables, we branch on all variables within a single B&B tree. This results in a higher convergence order
of the lower bounding scheme, avoids repeated consideration of subdomains, inherent to the nesting of B&B searches,
and enables the use of cheaper subproblems. In particular, when branching on second-stage variables, we employ a
multisection variant of strong-branching, in which we simultaneously consider one candidate variable from each
scenario for branching. By our decomposable lower bounding scheme, the resulting subproblems are independent and
can be solved in parallel. We then use strong-branching scores to filter less promising candidate variables and only
generate child nodes corresponding to a multisection involving the remaining variables by combining the appropriate
subproblem results. We prove finite εf -convergence, and demonstrate that the lower-bounding scheme of MUSE-BB
has at least first-order convergence under the mild assumption of Lipschitz continuous functions and relaxations.
MUSE-BB is implemented and made available open source, as an extension of our deterministic global solver
for mixed-integer nonlinear programs, MAiNGO, with OpenMP-parallelization of the decomposable subroutines.
Numerical results show that MUSE-BB requires less CPU time than solving the deterministic equivalent using the
standard version of MAiNGO; moreover, the parallelized decomposition allows for further reduction in wall time.
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1 Introduction
A standard formulation for optimization under uncertainty is two-stage stochastic programming (Birge and Louveaux,
2011), typically applied when long-term (“here and now”) decisions are taken prior to the realization of uncertain
scenarios, and then recourse (“wait and see”) decisions are taken in response to the realized scenario. This paradigm
may also be applied in situations where future events can be expected to occur with a particular frequency, i.e., the
scenarios do not represent an uncertain, but rather time-variable future, as in design and operation problems in
process engineering (Yunt et al., 2008; Langiu, Dahmen, and Mitsos, 2022). In the following we will not distinguish
between the two cases and treat both via “probabilities”.

1.1 Problem Formulation and Notation
The overall two-stage problem (TSP) takes the form

fX ,Y := min
x∈X

fI(x) +
∑
s∈S

ws f
Ys

II,s(x)

s. t. gI(x) ≤ 0,

TSPX ,Y

where X ⊊ RNx , Ys ⊊ RNy , for each s ∈ S, and Y ⊊ RNsNy , such that X and Y :=×s∈S Ys, are bounded
hyperrectangles, and thus compact sets. The set of considered scenarios S is assumed to have finite cardinality
Ns := |S| ≥ 1, and each element s ∈ S is assigned a probability ws ∈ (0, 1],

∑
s∈S ws = 1. Throughout this work,

we omit variable domains and other parameters in references to optimization problems, if they are irrelevant, e.g.,
as in TSP. The limitation to values in (0, 1] makes the sum in the objective a convex combination, allowing for
more concise definitions and proofs. Other weights can be equivalently used via appropriate scaling and redefinition
of the objective.
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For each scenario s, the value of second-stage optimal value function fYs

II,s, also known as optimal recourse
function corresponds to the optimal objective value of the following recourse problem (RP) for a fixed value of x,
and second-stage domain Ys:

fYs

II,s(x) := min
ys∈Ys

fII,s(x,ys)

s. t. gII,s(x,ys) ≤ 0.
RPYs

s (x)

The decisions that need to be made in the first and second stage are captured by the variable vectors x and ys,
respectively. As a result, the problem TSPX ,Y and its optimal value fX ,Y are parameterized by the domains X and
Y, whereas RPYs

s (x) and its optimal value fYs

II,s(x) are parameterized by fixed first-stage variable values x and the
domain Ys. fI : X 7→ R and fII,s : X × Ys 7→ R denote the scalar-valued first- and second-stage objective functions,
and gI : X 7→ RNI and gII,s : X × Ys 7→ RNII the vector-valued first- and second-stage constraint functions. Note
that we assume the number of second-stage variables Ny, and second-stage constraints NII, to be equal for all
scenarios. This assumption is naturally satisfied in many applications of two stage problems, e.g., system design
and operation. While the generalization to different numbers Ny,s, and NII,s, for each scenario s does not pose
substantial complication, we only consider the simpler case for ease of exposition.

For conciseness, we aggregate the vectors ys into the overall vector of second-stage variables y ∈ Y:

y :=

 y1

...
yNs

 =



y1,1
...

y1,Ny

...
yNs,Ny

 (y)

We denominate any scalar element ys,i of y or ys as a second-stage variable and refer to the collection of elements
at the same position i in ys for different values of s as instances of a second-stage variable. Furthermore, we define
the scenario objective functions fs : X × Ys 7→ R

fs(x,ys) := fI(x) + fII,s(x,ys) (fs)

and the overall objective function f : X × Y 7→ R

f(x,y) := fI(x) +
∑
s∈S

ws fII,s(x,ys) (f)

=
∑
s∈S

ws(fI(x) + fII,s(x,ys))

=
∑
s∈S

ws fs(x,ys),

where the equalities follow from our assumptions on the weights ws.
Using these definitions, TSPX ,Y can be equivalently stated as the following single-stage optimization problem,

also known as the ‘extensive form’ or the ‘deterministic equivalent’ :

fX ,Y = min
x∈X
y∈Y

f(x,y)

s. t. gDE(x,y),

DEX ,Y

where the vector-valued constraint function gDE : X × Y 7→ RNDE
g , groups all NDE

g := NI +NsNII constraints in
DE, and is defined as

gDE(x,y) =

 gDE,1(x,y)
...

gDE,NDE
g

(x,y)

 :=



gI,1(x)
...

gI,NI(x)
gII,1,1(x,y1)

...
gII,Ns,NII(x,yNs)


. (gDE)

2



Manuscript submitted to Journal of Global Optimization Page 3 of 39

The two problems TSPX ,Y and DEX ,Y are equivalent in the sense that their globally and locally optimal
solution points and optimal objective values coincide if they exist, whereas if one of the formulations is infeasible or
unbounded, so is the other, see e.g., (Yunt et al., 2008). We are interested in the case where all functions in DE
may be nonconvex. We limit the theoretical considerations, implementation, and numerical results to continuous
variables. Thus, we do not explicitly address issues pertaining to discrete variables in the following. The presence of
discrete variables would however not pose substantial complication.

1.2 Literature Overview
Solving TSPX ,Y by applying general-purpose branch and bound (B&B) solvers (e.g., Androulakis, Maranas, and
Floudas, 1995; Vigerske and Gleixner, 2017; Bongartz et al., 2018; Belotti, 2019; Sahinidis, 2024) to DEX ,Y is
possible, typically amounting to solution of relaxations of DEXn,Yn

in every B&B node. Here Xn ∈ IX and Yn ∈ IY ,
where IX and IY denote the sets of nonempty, compact interval subsets of X and Y . However, as B&B is intrinsically
exponential in the number of (branched) variables, this approach has worst-case exponential runtime in the number
of scenarios. This has motivated the development of decomposition algorithms capable of exploiting the special
structure of TSP for a more efficient solution. In these algorithms, multiple independent subproblems are solved
instead of instances of DE, which can result in a reduction of computational time required for the solution, as the
subproblems are generally much smaller and thus cheaper to solve. In the best case, such decomposition algorithms
achieve linear scaling with the number of scenarios Ns, i.e., an arithmetic complexity of O(Ns). Furthermore, the
subproblems are independent and may thus be solved in parallel, resulting in significant additional reductions of
wall time.

Historically, decomposition strategies have predominantly been developed for certain subclasses of TSP, e.g.,
those restricted to linear functions and either only continuous (e.g., Dantzig and Wolfe, 1960; Benders, 1962) or
mixed-integer variables (e.g., Laporte and Louveaux, 1993; Carøe and Schultz, 1999), or those restricted to convex
nonlinear functions (e.g., Generalized Benders Decomposition (GBD) Geoffrion, 1972). More recently, algorithms
addressing subclasses of TSP allowing for certain nonconvexities, but imposing additional structural assumptions
have also been proposed (e.g., Li, Tomasgard, and Barton, 2011; Li, Sundaramoorthy, and Barton, 2014; Karuppiah
and Grossmann, 2007; Khajavirad and Michalek, 2009; Li and Cui, 2024). In the most general case, any of the
functions in TSP may be nonconvex, and no additional structural assumptions are imposed. Two algorithm variants
addressing this case are proposed by Ogbe and Li, 2019, however, both variants consider elements of y which
introduce nonconvexity as complicating variables in addition to x. Thus, in the worst case subproblems have a
similar size as the original problem, diminishing the benefits of decomposition.

Three further recent algorithms all employ B&B exclusively on the first-stage variables: (i) Kannan, 2018
propose a modified Lagrangian relaxation in which so called nonancticipativity constraints (cf. Section 2) are
dualized. The resulting Lagrangian problem is thus still a nonconvex two-stage problem but exhibits additional
structure and can thus be solved in a decomposable manner using the algorithm proposed by Li, Tomasgard,
and Barton, 2011; Li, Sundaramoorthy, and Barton, 2014. As a result, only the continuous first-stage variables
need to be branched. (ii) Cao and Zavala, 2019 propose another B&B algorithm that obtains lower bounds in
each node via global solutions to separate, but generally nonconvex scenario subproblems, resulting from simply
dropping the nonanticipativity constraints. (iii) Li and Grossmann, 2019 use mixed integer linear or convex mixed
integer nonlinear relaxations based on DE as lower bounding problems, which are solved via GBD. Cuts from
Lagrangean subproblems are added to a Benders master problem and cutting planes for convexification are added
to the Benders subproblems. All three algorithms (Kannan, 2018; Cao and Zavala, 2019; Li and Grossmann, 2019),
solve Ns independent subproblems on Xn × Ys at each B&B node n, where Xn ∈ IX. While this implies that the
computational work of the bounding operation scales linearly in Ns, and further, that the subproblems can be
solved in parallel, linear scaling of the overall algorithms with Ns would additionally require that the number of
nodes in the outer B&B search is independent of the number of scenarios. Note, however, that within a family of
problems with variable number of scenarios, the quality of the lower bounds can be expected to depend on the
number of scenarios. Thus for a given tolerance, the number of nodes visited by the outer B&B search may well
depend on the number of scenarios, despite branching only on x. Thus while these types of algorithms are typically
much more efficient for solving DE compared to general-purpose B&B, they have not been shown to scale linearly
with the number of scenarios.
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1.3 Challenges of Existing Algorithms
Recently Robertson, Cheng, and Scott, 2020 observed that all three algorithms, addressing general nonconvex
instances of TSP (Kannan, 2018; Cao and Zavala, 2019; Li and Grossmann, 2019) fall into the category of
projection-based decomposition algorithms (PBDAs). Algorithms in this category directly solve TSPX ,Y (which can
be considered a projection of DEX ,Y onto the X space) by considering only the first-stage variables via second-stage
optimal value functions fYs

II,s. Robertson, Cheng, and Scott, 2020 argue that this approach likely suffers from the
cluster effect, a phenomenon of some spatial B&B algorithms, where a large number of nodes may need to be visited
near approximate global minimizers (Kearfott and Du, 1993; Du and Kearfott, 1994; Wechsung, Schaber, and
Barton, 2014). To avoid this effect, the relaxations of both objective and constraints need to have a sufficiently high
convergence order (Kannan and Barton, 2017b). Note that throughout the article we refer to convergence order in
the sense of Hausdorff, unless stated otherwise. The convergence order of relaxations typically used in algorithms
for (mixed-integer) nonlinear programs has been analyzed in a series of articles (cf. Bompadre and Mitsos, 2011;
Najman and Mitsos, 2016; Kannan and Barton, 2017b; Cao, Song, and Khan, 2019). Robertson, Cheng, and Scott,
2020 show that as a result of performing search in the X domain only, PBDAs need to construct relaxations of the
so-called scenario value functions:

fX ,Ys
s (x) :=

{
fI(x) + fYs

II,s(x), x ∈ FX ,Ys
s

+∞, otherwise
,

where FX ,Ys
s are the feasible subsets of X in scenario s:

FX ,Ys
s := {x ∈ X | gI(x) ≤ 0,∃ys ∈ Ys : gII,s(x,ys) ≤ 0}.

Adopting the convention for the minimum of an infeasible problem to be infinite, the weighted sum over the scenario
value functions is equivalent to the objective of TSP. Robertson, Cheng, and Scott, 2020 demonstrate that only
branching on x generally causes fX ,Ys

s to be nonsmooth, which in turn limits the achievable convergence order. In
particular, even the ideal PBDA, which uses the tightest-possible relaxation for each fX ,Ys

s , i.e., the convex envelope,
generally has a convergence order below 1, and only achieves first-order convergence if all fX ,Ys

s are Lipschitz. On
the other hand, they show that this ideal relaxation has second-order convergence if fX ,Ys

s are twice continuously
differentiable, and furthermore, that the algorithm of Li and Grossmann, 2019 is equivalent to using this ideal
relaxation, if optimal dual multipliers λ∗

s are used. Note that in general, generating convex envelopes of arbitrary
fX ,Ys
s (via optimal dual multipliers or otherwise) is prohibitively expensive. Furthermore, even for convex f , gI

and gII,s, and even in the absence of discrete variables, the fX ,Ys
s are not guaranteed to be smooth, but rather

only lower semi-continuous (cf., e.g., Theorem 35, Chapter 3 of Birge and Louveaux, 2011). In summary, using
PBDAs, i.e., branching on x only, limits convergence order to below one in general. As a result Robertson, Cheng,
and Scott, 2020 state that PBDAs are expected to suffer from clustering, and suggest to search for alternative
decomposition approaches, rather than for better relaxations in PBDAs. While a higher convergence order can
certainly be advantageous, we point out that this conclusion might be overly pessimistic, as the occurrence of
clustering is determined by the interplay of both convergence order, and growth order of the objective and constraint
functions (also see Kannan and Barton, 2017b).

Nevertheless, the three aforementioned PBDAs (Kannan, 2018; Cao and Zavala, 2019; Li and Grossmann,
2019) may potentially have further issues. First, for each node n with domain Xn ∈ IX , visited by the outer B&B
algorithm searching on X , an inner algorithm searches on Xn × Ys during the solution of the subproblems. The
consideration of x in both levels will therefore result in repeated consideration of the same domain, constituting
a duplication of work. Second, in the general case, where there are nonconvexities in the second stage (through
nonconvex objectives or constraints, or integer variables), the lower bounding subproblems must at least occasionally
be solved globally to guarantee convergence. In addition, Kannan, 2018 and Cao and Zavala, 2019 also solve their
upper bounding problems globally, while Li and Grossmann, 2019 do not explicitly state whether their solutions
are local or global. Finally, the nesting of these expensive bounding routines in an outer B&B algorithm, bears
resemblance to early ideas for solving general mixed-integer nonlinear programming problems, which considered
branching on the integer variables and globally solving a continuous nonconvex problem in each node. However,
such ideas have been abandoned since nested exponential approaches are considered computationally unfavorable
(Smith and Pantelides, 1997).
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1.4 A new Decomposition Algorithm for TSP

To improve convergence orders of the relaxations, and to avoid duplication of work and the nesting of expensive
search routines, we propose an alternative decomposition algorithm for TSP. Similar to solving DE via a classical
B&B algorithm, we explicitly branch on first- and second-stage variables, however, we still make use of the structure
inherent to TSP to obtain decomposable bounding subproblems for each scenario. We call our proposed algorithm
MUSE-BB, as it combines classical scenario decomposition with multisection (Karmakar, Mahato, and Bhunia,
2009) in a B&B algorithm. Efficient branching on multiple instances of a particular second-stage variable is made
possible by the fact that bounding subproblems for each scenario are independent of second-stage variable instances
from other scenarios: While branching a node on Ns second-stage variables results in 2Ns child nodes, only 2Ns

independent subproblems need to be solved to update their lower bounds. Each child node can then be generated
by combining bounds and variable domains from Ns out of the 2Ns independent subproblems. To limit memory
requirements as well as the number of generated child nodes with poor lower bounds, we filter the Ns candidate
variables based on strong-branching scores, and additionally impose an upper limit on the number of partitions,
used for creating child nodes.

Like classical B&B algorithms, MUSE-BB searches the full variable space. Thus in the worst-case, its runtime is
expected to be exponential in Ns. However, the combination of decomposition with multisection allows for a more
efficient exploration of the search space than with classical algorithms. Moreover, we analyze the convergence order
of the lower bounding scheme used in MUSE-BB. We show that while this convergence order is generally lower than
in classical B&B algorithms, it is at least as high as in PBDAs, and can be strictly larger when the scenario value
functions fX ,Ys

s are not Lipschitz. In particular we show that the lower bounding scheme of MUSE-BB is (at least)
first-order convergent if all functions and convex relaxations are Lipschitz. While our lower bounding scheme is
generally not second-order convergent, we discuss a possible extension of MUSE-BB, whose lower bounding scheme
achieves second-order convergence at unconstrained minimizers by dualizing nonanticipativity constraints instead of
dropping them. Overall, the results indicate that MUSE-BB and its extension at least partially avoid issues with
the cluster effect.

The remainder of the article is structured as follows: Section 2 gives a brief review of the decomposable bounding
subproblems used in scenario decomposition algorithms for TSP. In Section 3 we motivate the use of multisection
branching of second-stage variables to efficiently incorporate such decomposable bounding problems in a B&B
algorithm, branching on both x and y. Section 4 presents the MUSE-BB algorithm, incorporating this multisection
branching. It includes implementation details followed by a formal statement of the MUSE-BB algorithm and
subroutines. In Section 5 we present convergence results for both our lower bounding problems, and the overall
algorithm. We show that under mild conditions MUSE-BB converges to an εf -optimal solution in finite time for any
εf > 0. Section 6 presents the results of computational experiments on a small test problem, highlighting the effect
of different parameters on MUSE-BB, and Section 7 summarizes the results and gives an outlook on future work.

2 Decomposable Bounding Subproblems for TSP
In this section we review how bounds on TSP can be obtained from separate subproblems for each scenario. Since
this approach trivially enables both parallelization and linear scaling of the computational work for bounding with
Ns, its variants are the basis of many existing decomposition algorithms, as well as for MUSE-BB. The principal
idea for decomposable bounding routines is that first-stage variables are complicating, because they appear in
the objectives and constraints of all scenarios. Therefore, the problem can be decoupled by scenario, by either
introducing independent copies of x, or fixing its value. As shown in the following, these two cases result in
subproblems which respectively provide lower and upper bounds on the optimal objective value fX ,Y of TSPX ,Y .

An equivalent representation of DEX ,Y and thus TSPX ,Y is the lifting obtained by introducing a copy xs of x
for each scenario s and enforcing the equality of these copies, resulting in the following nonanticipativity problem.

fX ,Y = min
xs∈X
y∈Y

∑
s∈S

wsfs(xs,ys)

s. t.
∑
s∈S

Hsxs = 0

gI(xs) ≤ 0 ∀s ∈ S
gII,s(xs,ys) ≤ 0 ∀s ∈ S.

DEX ,Y
NAC

In DENAC, the first set of constraints enforces equality of all xs, thus, the coupling is moved to these so called

5
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nonanticipativity constraints (NACs), where Hs are appropriately shaped, sparse matrices. For simplicity, we
assume the following, specific form of the NACs, also used, e.g., in Li and Grossmann, 2019:

x1 − xs = 0 ∀s ∈ S\{1}. (NACs)

Due to the linearity of the NACs, dualizing them with Ns − 1 multiplier vectors πs ∈ RNx , s ∈ S\{1} removes the
coupling, as it allows to define the vector λ := (λ1, · · · ,λNs), consisting of scenario-specific multiplier subvectors

λ1 := −
∑

s∈S\{1}

πs/ws,

λs := πs/ws s ∈ S\{1}.

Note that inherently, ∑
s∈S

wsλs = 0. (1)

The resulting dualization gives rise to the Lagrangian relaxation

fX ,Y
LR (λ) :=min

xs∈X
y∈Y

∑
s∈S

ws

[
fs(xs,ys) + λ⊺

sxs

]
s. t. gI(xs) ≤ 0 ∀s ∈ S

gII,s(xs,ys) ≤ 0 ∀s ∈ S.

LRX ,Y

By weak duality, the value fX ,Y
LR (λ) provides a lower bound to fX ,Y for any λ satisfying Eq. (1) (cf. e.g., Dür and

Horst, 1997). Furthermore, this bound can be obtained by solving the Ns separate Lagrangian subproblems

fX ,Ys

LSP,s(λs) := min
xs∈X
ys∈Ys

fs(xs,ys) + λ⊺
sxs

s. t. gI(xs) ≤ 0

gII,s(xs,ys) ≤ 0,

LSPX ,Ys
s

and calculating the Lagrangian relaxation based lower bound as

fX ,Y
LR (λ) :=

∑
s∈S

ws f
X ,Ys

LSP,s(λs) ≤ fX ,Y . (LRLB)

The best such bound is obtained by solving the Lagrangian dual, which can be written as

fX ,Y
LR (λ∗) := max

λ∈RNsNx∑
s∈S λs=0

fX ,Ys

LSP,s(λs). LX ,Y

It can be shown that if the sets FX ,Ys
s have a nonempty intersection, the resulting bound corresponds to the

minimum of the weighted sum of convex envelopes of scenario value functions, (Robertson, Cheng, and Scott, 2020),
i.e:

fX ,Y
LR (λ∗) = min

x∈X

∑
s∈S

ws convf
X ,Ys
s (x).

In that sense fX ,Y
LR (λ∗) constitutes the best bound obtainable via convex relaxation in the framework of scenario

decomposition. Unfortunately, obtaining optimal dual multipliers λ∗ is both computationally expensive and
numerically challenging (Oliveira et al., 2013). We therefore only consider the implications of updating the dual
multipliers in Section 5, whereas in the remainder of this work, we focus on the simpler case, also considered by Cao
and Zavala, 2019, where all multipliers are fixed to zero. In that case, the scenario relaxation of DEX ,Y consists of
Ns scenario problems of the form

fX ,Ys

SP,s := min
xs∈X
ys∈Ys

fs(xs,ys)

s. t. gI(xs) ≤ 0

gII,s(xs,ys) ≤ 0.

SPX ,Ys
s

6
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In Section 4.1 we will introduce further subproblems, obtained from additional relaxations of SPs. To distinguish
the different optimal objective values, we use corresponding subscripts. The globally optimal objective values fX ,Ys

SP,s

of problems SPX ,Ys
s can be used to obtain a lower bound fX ,Y

SP on the optimal objective value fX ,Y of DEX ,Y , i.e.,

fX ,Y
SP :=

∑
s∈S

ws f
X ,Ys

SP,s ≤ fX ,Y . (SPLB)

While the resulting first-stage solutions obtained for each scenario will generally differ from each other, the bound
can be made arbitrarily tight by exhaustive branching on x. PBDAs like Kannan, 2018; Cao and Zavala, 2019; Li
and Grossmann, 2019 use this fact: while they branch on xs and ys during the global solution of the subproblems
SPs, the outer B&B search only requires branching on x to ensure convergence. As shown by Robertson, Cheng,
and Scott, 2020, however, the convergence order of such lower bounding schemes is inherently limited due to the
nonsmoothness of fYs

II,s(x), incurred by projection, also cf. TSP and Section 1.
Upper bounds on fX ,Y can generally be obtained by evaluating any feasible point. Fixing x to an arbitrary

point x̃ ∈ X that is feasible with respect to gI, gives rise to Ns instances of RPs. If each of these problems has at
least one feasible point ỹs, the function values fII,s(x̃, ỹs) provide an upper bound on fYs

II,s(x̃), and thus the upper
bounding function f , defined as

f (x̃, ỹ) := fI(x̃) +
∑
s∈S

ws fII,s(x̃, ỹs) ≥ fX ,Y (UB)

provides an upper bound on the optimal objective value fX ,Y . Thus, given a candidate for x̃, values for ỹs can
be obtained by local or global solutions of RPYs

s (x̃). Candidates proposed in the literature are commonly based
on the individual solutions x∗

s from the lower bounding subproblems. A common candidate is the (ws-weighted)
average x̃ = xavg =

∑
s∈S ws x

∗
s (Kannan, 2018; Cao and Zavala, 2019; Li and Grossmann, 2019). However, since

the feasible set of TSPX ,Y is generally nonconvex, this point may be infeasible. An alternative candidate that is
at least guaranteed to be feasible with respect to gI, and gII,srep , is x̃ = x∗

srep , such that srep is a representative
scenario for which x∗

srep is closest to xavg with respect to the relative Euclidean distance, i.e,

srep ∈ argmin
s∈S

Nx∑
i=1

(
xavg
i − x∗

s,i

xi − xi

)2

, (srep)

where xi, and xi denote the original lower and upper bounds of xi (Li and Grossmann, 2019). Note that while x∗
srep

is trivially feasible in srep, it is generally not in other scenarios. Furthermore, if a candidate x∗
srep does happen to

be feasible, there is no guarantee that local solutions to the corresponding instances of RPs are found.
As with any spatial B&B method, in the general nonconvex case, a guarantee to find a feasible point allowing for

termination is only given if the feasible set of DEX ,Y has a nonempty interior at a global minimizer, also compare
with the analysis for single-stage programs in Kirst, Stein, and Steuermann, 2015. Even in the case of a nonempty
interior, problems can be constructed such that a particular combination of branching and node selection never
results in the discovery of a feasible lower bounding solution, see Example 3.1 in Kirst, Stein, and Steuermann, 2015.
In such cases, an adaption of the tested candidates, such as the approach proposed by Kirst, Stein, and Steuermann,
2015 may be necessary. Unfortunately such approaches may not address the more general situation of an empty
interior, e.g., due to the presence of equality constraints, although there are approaches that produce upper bounds
without guaranteeing to find feasible points (Füllner, Kirst, and Stein, 2020). On the other hand, feasible, and even
(approximately) globally optimal solutions can often be produced relatively easily for many applications. Because of
this, we neither implement the methods presented in Kirst, Stein, and Steuermann, 2015 in MUSE-BB, nor analyze
this issue further. Instead we follow the common approach to perform upper bounding via local solutions from
candidate points, and concentrate this work on the issues pertaining to lower bounding.

In summary, by solving instances of the separable subproblems SPX ,Ys
s and RPYs

s (x̃), we can bound the desired
optimal solution value of the original problem DEX ,Y from below and above:

fX ,Y
SP ≤ fX ,Y ≤ f (x̃, ỹ).

Assuming that arbitrarily good feasible points are found during the successive partitioning of the variable domains,
the bounds can be tightened until some satisfactory accuracy εf > 0 is reached. The upper bound f then serves
as an εf -optimal solution to problem DEX ,Y . In the following section we present a special branching scheme that
efficiently combines the decomposable subproblems with partitioning of both X and Y.

7
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x

y1

y2

x

y1

x

y2

a) b) c) d) e) f) g)

Fig. 1. Implications of branching in scenario decomposition. We consider nodes from solving an instance of DE with
Nx = Ny = 1, and Ns = 2. In this case, each node corresponds to a 3D domain (bottom) and updating the lower bounds
requires solving two bounding subproblems on a 2D domain (top). These subproblems can be considered projections on the
X ×Y1 and X ×Y2 faces of the node domain (dark and light blue colors, respectively). b): Branching the node from a) on x
affects both subproblem domains. c): Branching the node from b) on a single instance of y, here y1, only affects the associated
subproblem domain, while the subproblem for the second scenario remains unchanged. d) through g): Alternatively to c),
branching on all instances of y simultaneously results in four nodes instead of two. However, out of the eight subproblems
associated with these nodes only four are distinct. When processing two complementary nodes, e.g., node d) (where both y1
and y2 are branched down), and node e) (where both y1 and y2 are branched up), all distinct subproblems are solved. Thus,
explicitly processing the remaining nodes, i.e., f) and g) in our example, is unnecessary. Instead, bounds for these nodes can
be generated by combining the results from the subproblems solved for d) and e).

3 Multisection Branching for Decomposable Bounding Schemes
To avoid several issues associated with the nested branching of PBDAs (cf. Section 1), we propose to combine
decomposable bounding schemes with explicit branching of both first- and second-stage variables. As argued below,
standard branching of individual variables would eliminate some of the benefits of decomposable bounding schemes.
We therefore propose a special branching scheme that either partitions a single first-stage variable or multiple
second-stage variable instances in each iteration. To refer to the partition elements containing the lower/upper part
of a branched variable domain, we say the respective variable was branched down/up.

In a B&B algorithm for TSP using separable lower and upper bounding problems, branching on elements of x
and y has different implications for the resulting nodes: each node n is characterized by the domains Xn ⊂ X and
Yn ⊂ Y, where Yn :=×s∈S Y

n
s ;Yn

s ⊂ Ys. To obtain a lower bound on n, variants of the Ns subproblems SPXn,Yn
s

s

are solved. While branching on an element of x results in partition of Xn into two subdomains, e.g., X d and
X u, and thus generally in changed bound contributions from all subproblems (compare cases a) and b in Fig. 1),
branching on an element of y, e.g., ys,i, only partitions the second-stage variable domain Yn

s of the associated
scenario s (compare cases b) and c in Fig. 1). Thus, if we were to only branch on ys,i, each of the two resulting
child nodes would have Ns − 1 unchanged subproblems with respect to n. An example for this situation is given by
the case c) of Fig. 1. In the parallel setting, where at least two subproblems can be solved simultaneously, this
implies that standard branching on second-stage variables leaves some processing capacity unused. In other words,
we could only exploit the parallelizable solution of subproblems when processing nodes obtained from branching on
first-stage variables.

To enable parallelism when processing nodes produced from second-stage branching, we can branch on all Ns

instances of a particular second-stage variable, instead of a single one. Note that such a multisection is equivalent
to Ns sequential bisections, i.e., it splits the original node into 2Ns child nodes instead of two, also see the cases
d) through g) of Fig. 1. Multisection has previously been used in different B&B algorithms for general nonlinear
problems. Mostly this was in the form of branching the domain of a single variable at multiple points (also called
‘multisplitting’) (Csallner, Csendes, and Markót, 2000; Markót, Csendes, and Csallner, 2000; Kazazakis, 2017),
but there are also examples of using multisection in the present sense, i.e., branching once on multiple variables
(Karmakar, Mahato, and Bhunia, 2009). While these works showed that multisplitting and multisection can result
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in better computational performance than bisection, the considered B&B algorithms used standard bounding
procedures and thus needed to process all of the resulting nodes individually. In contrast, when solving TSP, the use
of separable bounding subproblems such as SPn

s allows us to generate bounds for the exponential number of nodes
resulting from multisection without explicitly processing each one individually: for each scenario s, branching on the
associated second-stage variable instance partitions the domain Yn

s into two subdomains, Yd
s , and Yu

s . Combining
these new domains with the unchanged domain Xn therefore results in two different subproblems (i.e., SPXn,Yd

s
s ,

and SPXn,Yu
s

s ) per scenario, i.e., multisection of second-stage variables only results in 2Ns distinct subproblems.
The subproblems for each of 2Ns child nodes simply correspond to one of the possible combinations of selecting one
of the two subproblems for each scenario. This means that to update lower bounds on all 2Ns child nodes, only the
2Ns distinct subproblems need to be solved. Note that this can be achieved by processing any two of the 2Ns nodes
that contain complementary subproblems. One such choice consists of the pair of nodes resulting from branching all
instances of the selected second-stage variable down, or up. In the following we respectively call these two nodes the
lower and upper sibling nodes.

In summary, if a first-stage variable is selected for branching, we perform standard bisection resulting in two child
nodes, whereas if a second-stage variable is selected, we instead perform multisection branching of all associated
variable instances for different scenarios, resulting in 2Ns nodes. In both cases, only two nodes need to be processed
after branching a given node n: after first-stage branching, these two nodes are simply the child nodes with domains
(X d,Yn) and (X u,Yn). After second-stage branching, we process the sibling nodes, with domains (Xn,Yd) and
(Xn,Yu), where Yd :=×s∈S Y

d
s and Yu :=×s∈S Y

u
s . While theoretically one could generate 2Ns nodes after each

second-stage branching, this poses several issues in an actual implementation. To address this, it is possible to filter
the partitions of each multisection, i.e., to keep only a “promising” subset and thus produce a small number of high
quality nodes. The process we use for this will be presented in Section 4.4.

4 Proposed Algorithm
We now present the spatial multisection B&B algorithm MUSE-BB for the solution of TSPX ,Y . Algorithm 1 presents
a formal statement of MUSE-BB; the relevant subroutines will be presented in the following. For conciseness, we
assume throughout this section that given a node n, we have access to its domains Xn and Yn, and lower bound fn,
as well as the domains Xn

s and Yn
s , and lower bounds fn

s
of the corresponding subproblems. Under this assumption,

it suffices to provide nodes to the subroutines instead of all associated data. If a node n can be fathomed, we set its
lower bound to ∞.

On a high level, MUSE-BB only differs from a standard B&B algorithm in the use of different processing
subroutines for nodes obtained from branching on first- and second-stage variables. In each iteration we select a
node n from a list of nodes N (Line 4 in Algorithm 1). If n corresponds to the root node or any node obtained
from branching on first-stage variables, it is processed and either fathomed (fn =∞) or branched (Lines 16–17).
If on the other hand n corresponds to a node that was multisected in a previous iteration, i.e., branched on Ns

second-stage variables as presented in Section 3, it has a corresponding entry in the sibling map Msib. When we
detect this (Line 5), we perform a special “sibling iteration” (Lines 6–14). For this we recover the two sibling nodes
d and u from Msib, and process them together (Lines 6 and 7). If this does not result in the fathoming of the
parent node (Line 8), we can use the results to generate processed child nodes whose number is exponential in the
number of branched variables. However, instead of using all Ns partitions of the original multisection, we filter
the partitions and only branch on a subset of variable instances (Line 8, also see Section 4.4). We only consider
branching via the partition of the original domain by hyperplanes, orthogonal to the branched variable dimensions.
Because of this and the related concept of an orthant, i.e., the intersection of k mutually orthogonal half-spaces in
k-dimensional Euclidean space, we refer to the nodes resulting from the filtered multisection as “orthant nodes” in
the following. The list L, and the map M, returned from the filtered multisection, determine the subproblem data
(from p, d, or u) to be used for a particular orthant node o (Lines 9 and 11). The number k of orthant nodes to be
generated is determined by the length of L (Line 10). As the orthant nodes are already in a processed state, we can
immediately branch them, provided they are not fathomed (Line 12).

In the course of the algorithm, each selected node is either fathomed or branched, until the lower and upper
bounds converge to εf optimality. On termination, MUSE-BB provides an incumbent (x†, y†), with an associated
objective value f = f(x†,y†) that is at most εf larger than the global lower bound f .

We implement MUSE-BB as an extension of our deterministic global optimization solver and open-source project
MAiNGO (Bongartz et al., 2018). In Sections 4.1–4.2 we detail how lower bounding and range reduction schemes
available in MAiNGO are adapted to subproblems from Section 2 to obtain the decomposable bounding schemes

9
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Algorithm 1: MUSE-BB

Input : Instance of TSPX ,Y , tolerance εf , effective partition limit kmax, strong-branching threshold η
Output : Incumbent point (x†, y†), incumbent objective value f , certificate f

1 n← X × Y; fn ← −∞;N ← {n}; f ←∞;
2 Msib ← empty Map;
3 while N ̸= ∅ do // there are nodes to be processed
4 n← select a node and remove from N
5 if n ∈Msib then // do a “sibling iteration”
6 p← n; (d, u)←Msib[p];
7 (fn, f

n
,xn,yn)← processSiblings(p, d, u); // see Subroutine 3 in Section 4.3

8 if fp <∞ then
9 (M,L)← filteredMultiSection(p, d, u); // see Subroutine 4 in Section 4.4

10 foreach i ∈ {0, · · · , 2|L| − 1} do
11 o← generateOrthantNode(i, p, d, u,M,L); // see Subroutine 5 in Section 4.4
12 if fo <∞ then branchNode(o); // see Subroutine 1 in Section 4.3
13 end
14 end
15 else // do a “normal iteration”
16 (fn, f

n
,xn,yn)← processNode(n); // see Subroutine 2 in Section 4.3

17 if fn <∞ then branchNode(n); // see Subroutine 1 in Section 4.3
18 end
19 f ← minn∈N fn;
20 if f

n
< f then (x†,y†, f )← (xn,yn, f

n
);

21 if f + εf > f then return (x†, y†, f , f);
22 end
23 return (x†, y†, f , f);

used in the processing subroutines. Since node processing in Subroutines 2 and 3 comprises the main computational
work, these routines are parallelized in our implementation. The main theoretical results we present in Section 5 do
not depend on the presented bounding schemes, i.e., alternative ones may be employed analogously. Next, we discuss
the branching of first- and second-stage variables (Subroutine 1) and detail how the resulting nodes are processed in
“normal” and “sibling iterations” (Subroutines 2 and 3) in Section 4.3. Finally, we present the subroutines for the
filtered multisection and orthant node generation in Section 4.4.

4.1 Lower and Upper Bounding
Our deterministic global solver MAiNGO (Bongartz et al., 2018) employs a general-purpose B&B algorithm with
lower bounding problems obtained via McCormick-based relaxation techniques (McCormick, 1976; Tsoukalas and
Mitsos, 2014; Villanueva, 2015; Chachuat et al., 2015; Najman and Mitsos, 2016; Najman, Bongartz, and Mitsos,
2021). When solving TSP via equivalence to DE, we generate and solve such relaxations based on DEXn,Yn

for
each node n. In the following, we abbreviate DEXn,Yn

as DEn.
PBDAs like Cao and Zavala, 2019, on the other hand, only branch on the first-stage variables and solve Ns

subproblems SPXn,Ys
s (or variants thereof) in each node. To ensure convergence, the three reviewed algorithms

(Kannan, 2018; Cao and Zavala, 2019; Li and Grossmann, 2019) at least occasionally solve these subproblems to
global optimality. This generally also requires branching on xs and ys, albeit not the outer algorithm.

In MUSE-BB we also generate lower bounds based on SPs, however, we partition both the X and Y domains in
the same B&B tree and thus consider subproblems based on SPXn,Yn

s
s (abbreviated as SPn

s in the following) instead
of SPXn,Ys

s . In contrast to PBDAs, the explicit partitioning of the Y domain, renders global solution of subproblems
unnecessary for convergence. We therefore further relax the subproblems SPn

s , resulting in cheaper lower bounding
problems. In particular, we make use of the available relaxation techniques in MAiNGO to construct the following

10
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McCormick based convex relaxations of SPn
s :

fn
MC,s := min

xs∈Xn

ys∈Yn
s

f cv,n
s (xs,ys)

s. t. gcv,n
I (xs) ≤ 0

gcv,n
II,s (xs,ys) ≤ 0,

MCn
s

where f cv,n
s , gcv,n

I , and gcv,n
II,s are the McCormick based convex relaxations of the functions fs, gI, and gII,s, on

Xn×Yn
s , respectively (McCormick, 1976; Tsoukalas and Mitsos, 2014; Najman, Bongartz, and Mitsos, 2021). These

problems are further linearized based on subtangents at one or more linearization points (cf. Najman and Mitsos,
2019). By default (and in all experiments in Section 6) we only linearize at the midpoint of the node domain. The
resulting lower bounding problems take the form:

fn
LP,s := min

xs∈Xn

ys∈Yn
s

v∈R

v

s. t. subnfs(xs,ys) ≤ v

subngI
(xs) ≤ 0

subngII,s
(xs,ys) ≤ 0

LPn
s

Here, subnϕ are subtangents of the convex relaxation of the function ϕ at the center of the domain of node n, i.e.,

subnϕ(•) := ϕcv,n(m•) + ∇̌ϕcv,n(m•)
⊺(• −m•) (subtangent)

where the superscript ‘cv,n’ denotes the corresponding convex relaxation, m• denotes the midpoint of either Xn

or Xn × Yn
s (depending on the passed variables), and ∇̌ denotes a subgradient, i.e., ∇̌ϕcv,n(m•) ∈ ∂ϕcv,n(m•),

where ∂ϕcv,n(m•) is the subdifferential of ϕcv,n at m•. Since fn
LP,s are valid lower bounds on the globally optimal

objective values f
Xn,Yn

s

SP,s of SPn
s , they provide a valid lower bound for node n, i.e:

fn
LP :=

∑
s∈S

ws f
n
LP,s ≤ fn

SP ≤ fXn,Yn

. (LPLBn)

Evidently this bound is generally weaker than the one obtained via global solution (see SPLB), but it is also much
cheaper to compute.

For upper bounding, we solve instances of the form RPYn
s

s (x̃n) (abbreviated as RPn
s in the following), instead

of RPYs
s (x̃n) as in PBDAs. Furthermore, in contrast to Kannan, 2018 and Cao and Zavala, 2019 who solve their

upper bounding problems globally, we again aim to reduce computational cost by solving RPn
s locally. We obtain

x̃n from the lower bounding solution corresponding to srep (see Section 2). If the corresponding local solutions
of RPn

s result in a feasible ỹn = (ỹ1, · · · , ỹNs
), the corresponding objective values fII,s(x̃

n, ỹn
s ) ≥ f

Yn
s

II,s(x̃
n) can be

aggregated to a globally valid upper bound f
n
, via the upper bounding function (UB), i.e:

f
n
:= f (x̃n, ỹn) ≥ fX ,Y (UBn)

If f
n

is smaller than the previously best upper bound f , the incumbent (x†, y†) and f are updated with (x̃n, ỹn)
and f

n
, respectively.

4.2 Range Reduction
In this section we discuss decomposable range reduction routines for tightening variable bounds in B&B algorithms
for TSP. We first consider two general points, namely, how the NACs can enable fathoming by infeasibility after
application of these routines, and how dominance rules give rise to scenario-specific objective cuts. We then present
the specific routines employed in MUSE-BB. While range reduction is not necessary from a theoretical standpoint,
it can improve the efficiency of the algorithm by reducing the search domain.

Based on decomposable bounding problems such as SPn
s or LPn

s , one can obtain decomposable range reduction
routines by applying standard techniques to the subproblems instead of the full problem DEn, allowing for parallel
updates of the bounds for the variables (xs,ys) of each scenario s. After each round of range reduction, the NACs
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can be used to tighten the first-stage variable bounds. More explicitly, if Xn
s denotes the tightened first-stage

variable domain for node n and scenario s after any of the presented decomposable range reduction routines, a valid
reduction of the overall domain Xn is evidently given by the intersection Xn′:

Xn′ :=
⋂
s∈S
Xn

s (Xn
s aggregation)

In particular, if Xn′ is empty, node n can be fathomed by infeasibility.
If an upper bound f is known, dominance rules can be used to derive objective cuts for range reduction routines.

Since in a decomposable bounding scheme objective values obtainable in any particular node n are limited from
below by the local lower bound fn

SP, all nodes for which fn
SP > f holds can be fathomed by dominance. To derive a

scenario-specific cutoff based on a given value of f , we rewrite the dominance condition in terms of scenario-specific
lower bounds. Using (SPLB), a node is dominated if∑

s∈S
ws f

Xn,Yn
s

SP,s > f .

Note that replacing any f
Xn,Yn

s

SP,s by a smaller value (say fn

SP,s
) results in an even stronger condition, that implies

the above. Thus for any particular scenario s, the node is dominated if

fn

SP,s
>

f −
∑

s′∈S\{s}
ws′ f

n

SP,s′

ws
=: f

n

s (s-domination)

The above approach is a slight generalization to the scenario-specific upper bounds proposed by Li and Li, 2015 for
the ‘primal problems’ in their decomposition method. In particular, any valid lower bounds fn

SP,s
can be used. In

MUSE-BB we use the maximum of fn
LP,s and an interval arithmetic based lower bound based on the objective of

SPn
s .
MAiNGO implements three range reduction techniques: constraint propagation (CP, cf. e.g. Schichl and

Neumaier, 2005), optimization-based bounds tightening (OBBT, cf. e.g. Gleixner et al., 2016), duality-based bounds
tightening and probing (both referred to as DBBT in the following, cf. e.g. Ryoo and Sahinidis, 1995).

CP essentially refers to the inverse propagation of feasible intervals of the constraint values, i.e., (−∞, 0] in our
case, to the variables (Schichl and Neumaier, 2005). This allows to determine conservative variable ranges for which
the constraints can be fulfilled and thus enables domain reduction by intersecting the variable domains with these
valid ranges. Thus, applying CP to the subproblems SPn

s instead of DEn directly gives a decomposable routine.
The OBBT procedure consists of minimizing or maximizing a selected variable v subject to the (relaxed)

constraints of the original problem (Gleixner et al., 2016). In our case, we consider scenario-specific OBBT-problems,
based on the lower bounding subproblems LPn

s , i.e., they take the form:

v\v =min \max
xs∈Xn

ys∈Yn
s

v

s. t. subnfs(xs,ys) ≤ f
n

s

subngI
(xs) ≤ 0

subngII,s
(xs,ys) ≤ 0

OBBTn
s,v

While no finite upper bound f is known, the first constraint is dropped. For each iteration, we initially consider all
variables for OBBT, and apply a variant of the trivial filtering heuristic from Gleixner et al., 2016 after each pass.
Similar OBBT based problems have been proposed, e.g., by Li and Li, 2016; Kannan, 2018; Cao and Zavala, 2019
for their respective algorithms.

DBBT uses objective bounds and duality information from the node subproblems that are typically solved in
spatial B&B algorithms (Ryoo and Sahinidis, 1995) to tighten variable domains. In our case, if all subproblems
LPn

s are feasible, the solutions (x̃s, ỹs), associated reduced cost multipliers (rx,s, ry,s), and lower bounds fn
LP,s

are available. If in addition a finite upper bound f is known, we can compute scenario-specific f
n

s values from
s-domination and perform DBBT. For variables v for which the solution value v∗ corresponds to the respective
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Subroutine 1: branchNode(n)
1 v ← select a variable from (x, y) maximizing largest relative domain width × branching priority;
2 if v ∈

{
xi, | i ∈ {1, · · · , Nx}

}
then // v corresponds to some xi

3 (d, u)← bisect n along the domain of v;
4 N ← N ∪ {d, u};
5 else // v corresponds to ys′,i for some s′

6 i← index for which v = ys′,i;
7 d← n; u← n; // Initialize d and u as copies of n
8 foreach s ∈ S do // branch d/u down/up on all instances of v
9 v ← ys,i;

10 d← lower half of bisecting d along the domain of v;
11 u← upper half of bisecting u along the domain of v;
12 end
13 N ← N ∪ {n};
14 Msib[n]← (d, u);
15 end

lower or upper bound, the complementary bound may be tightened:

if v∗ = v, set v = min

(
v, v +

f
n

s − fn
LP,s

r

)

if v∗ = v, set v = max

(
v, v +

f
n

s − fn
LP,s

r

) (DBBT)

where r is the corresponding entry in rx,s or ry,s, which must be positive in the first case and negative in the second
one. For variables for which the solution lies between the bounds, two probing variants of LPn

s can be solved: in
these probing LPs, the variable is temporarily fixed to one of its bounds and DBBT is applied based on the new
reduced cost multipliers and optimal objective values. As probing is relatively expensive, it is deactivated by default
(and in all experiments of Section 6).

Since each subproblem contains only part of the information of DEn, the presented range-reduction routines will
generally be less effective than their full space counterparts. Thus, the use of parallelized range reduction needs
to result in sufficiently large reductions of wall time to warrant the looser variable bounds. In comparison to the
solution time of a lower bounding problem, CP is computationally very cheap, which makes its decomposable variant
less appealing. Nevertheless it must be used when processing sibling nodes obtained from multisection branching
(cf. Section 3), as the resulting domains are needed for the generation of orthant nodes, also see Subroutine 5 in
Section 4. OBBT on the other hand is a relatively expensive procedure. This typically causes OBBT to dominate
the computational work done per iteration and thus makes a decomposable OBBT variant more appealing. Finally,
the use of decomposable lower bounding problems inherently requires the use of decomposable DBBT, as duality
information necessary for a full space variant is not available.

4.3 Branching and Node Processing
In this section, we present the branching and processing routines of Algorithm 1. In Subroutine 1, we first present
how processed nodes are branched, as this determines the kind of iteration that will be performed for the child nodes.
Following this, we present the processing of nodes obtained from first- and second-stage branching in Subroutines 2
and 3.

Any processed node n that is not fathomed is branched on either a first-stage variable or on multiple second-stage
variable instances, as outlined in Subroutine 1. For this, we select some first- or second-stage variable v, maximizing
the product of relative domain width (i.e., current over original interval width) and branching priority (assumed to
be nonzero), to ensure exhaustive partitioning. If v is an element of x, i.e., v = xi, we bisect the associated domain
Xn

i = [xi, xi] at some branching point xb
i , and add the two resulting nodes with the lower and upper part of the

original domain (i.e., [xi, x
b
i ] and [xb

i , xi]) to the list of open nodes (Lines 3 and 4 in Subroutine 1). In MUSE-BB,
xb
i always corresponds to the center of the interval, i.e., 0.5 (xi + xi).
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Subroutine 2: processNode(n)
1 do CP based on DEn; fathom by dominance or infeasibility;
2 do OBBT based on LPn

s ; fathom by dominance; apply Xn
s aggregation, fathom by infeasibility ;

3 solve LPn
s and set fn

s
← fn

LP,s ∀s ∈ S, use LPLBn, set fn ← fn
LP, fathom by dominance or infeasibility ;

4 x̃n ← solution of LPn
s with s = srep;

5 (ỹn
s , f

n

s )← solution and objective value of RPn
s ∀s ∈ S, update (ỹn, f

n
) via UBn, fathom by dominance ;

6 do DBBT based on LPn
s , fathom by dominance;

7 return (fn, f
n
, x̃n, ỹn)

If instead, v is an element of y, i.e., v = ys′,i, for some s′, we perform the proposed multisection branching. As
pointed out in Section 3, the child nodes of this multisection can subsequently be generated from the results of two
complementary nodes. Therefore we only need to generate the lower and upper sibling node at this point. Taking
the example from Fig. 1: multisecting a parent node p, corresponding to node b) in Fig. 1, results in sibling nodes
d, and u, corresponding to nodes d), and e), respectively, which we create by branching all Ns instances of the
selected second-stage variable ys,i down / up (Lines 6–12).

For a practical algorithm, we need to limit the number of nodes that will be generated in the sibling iterations,
as will be outlined in Section 4.4. This is done via a filtered multisection which requires domain and bound data
from the parent node n as well as the sibling nodes. We therefore return the parent node to the list of open nodes
and create the mapping n 7→ (d, u) in Msib (Lines 13 and 14). When the node n is selected a second time in
Algorithm 1, this is detected via a lookup in Msib and we perform a sibling iteration instead.

For the root node and all nodes resulting from first-stage branching, we do a “normal iteration”, i.e., the respective
node is processed as specified in Subroutine 2, and either fathomed, or branched as specified in Subroutine 1. The
only difference of Subroutine 2 with respect to a standard B&B algorithm is the possible use of decomposable
bounding and range reduction routines from Section 4.1 and Section 4.2. In our implementation, we solve scenario
subproblems for OBBT (Line 2 of Subroutine 2), lower and upper bounding (Lines 3 and 5), and DBBT (Line 6) in
parallel, while the computationally cheap CP (Line 1) is done using the full problem, DEn. To generate a candidate
solution x̃n for upper bounding (Line 4), we use a representative scenario srep as outlined in Section 2.

With sibling nodes, obtained from second-stage branching, we do a “sibling iteration”. Before we give the formal
statement of the combined processing of siblings in Subroutine 3, we recall that child nodes from multisection can
be generated by combining the results from different subproblems of both siblings (cf. Section 3). In contrast to
Subroutine 2, the use of decomposable range reduction and bounding routines is thus mandatory in Subroutine 3.
Moreover, we cannot perform Xn

s aggregation after doing range reduction routines on n ∈ {d, u}, because the
resulting tightening would only be valid for the respective sibling node. However, we can first propagate results
form range reduction of both siblings to the parent node p, whose multi section resulted in d and u, and then back
to the siblings: let X d

s , X u
s and Yd

s , Yu
s denote the tightened variable domains obtained after applying some range

reduction to the subproblems of d and u for scenario s. Then the unions of the first- and second-stage domains are
a valid tightening of the corresponding domains from the parent node p, i.e:

X p
s ← conv

(
X d

s ∪ X u
s

)
Yp
s ← conv

(
Yd
s ∪ Yu

s

) (parent s-domain tightening)

Here, the use of the convex hull of the unions is purely for ease of implementation, as it ensures the resulting
domains are representable as hyperrectangles. Once we have applied parent s-domain tightening for all scenarios,
we can use the resulting X p

s for X p
s aggregation. Intersecting the resulting X p′ with X d

s and X u
s results in a valid

tightening of the sibling domains:

X d
s

′ ← X d
s ∩ X p′

X u
s
′ ← X u

s ∩ X p′
(sibling s-domain tightening)

With this in place we can now review Subroutine 3. For each scenario, we execute the range reduction and
lower bounding routines for the corresponding subproblem of both siblings. Any of these routines may indicate that
either d or u can be fathomed because the subproblem for some scenario s is dominated or infeasible. However,
the results from the remaining subproblems of the fathomable sibling can still be combined with the results of the
subproblem for s from the other sibling to generate child nodes. Thus we continue the sibling iteration as long as
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Subroutine 3: processSiblings(p, d, u)
1 foreach s ∈ S do
2 foreach n ∈ {d, u} do CP based on SPn

s ; fathom by dominance or infeasibility;
3 apply parent s-domain tightening; fathom by infeasibility;
4 end
5 apply X p

s aggregation, apply sibling s-domain tightening ∀s ∈ S, fathom by infeasibility;
6 foreach s ∈ S do
7 foreach n ∈ {d, u} do OBBT based on LPn

s ; fathom by dominance;
8 apply parent s-domain tightening; fathom by infeasibility;
9 end

10 apply X p
s aggregation, apply sibling s-domain tightening ∀s ∈ S, fathom by infeasibility;

11 foreach s ∈ S do
12 foreach n ∈ {d, u} do solve LPn

s , set fn

s
← fn

LP,s, and fathom by infeasibility;
13 check for s-domination; fathom by dominance;
14 end
15 foreach s ∈ S do
16 foreach n ∈ {d, u} do do DBBT based on LPn

s ; fathom by dominance;
17 apply parent s-domain tightening; fathom by infeasibility;
18 end
19 apply X p

s aggregation, apply sibling s-domain tightening ∀s ∈ S, fathom by infeasibility;
20 x̃p ← solution of LPn

s with s from a variant of srep that considers all feasible scenarios for n ∈ {d, u};
21 foreach s ∈ S do
22 (ỹp

s , f
p

s)← solution and objective value of RPp
s , check for s-domination; fathom by dominance;

23 end
24 update (ỹp, f

p
) via UBp;

25 return (fp, f
p
, x̃p, ỹp)

for each scenario there is at least one feasible, undominated subproblem from either sibling. For lower bounding
(Lines 11–14 in Subroutine 3) we solve the subproblems LPn

s , using the associated domains after CP (Lines 1–4) and
OBBT (Lines 6–9). Following this, we perform DBBT (Lines 15–18). We perform all range reduction (Lines 1–4,
Lines 6–9, and Lines 15–18), as well as bounding (Lines 11–14, and Lines 21–23) in parallel. Based on the final
variable domains and objective bounds, we can generate processed orthant nodes as detailed in Section 4.4. In
analogy to Subroutine 2, we could solve one upper bounding problem for each such orthant node, however, this
would result in an exponential number of upper bounding problems. Instead, we choose to solve only a single set of
upper bounding problems RPYp

s
s (x̃p) (Lines 21–23 in Subroutine 3), using the Yp

s domains, resulting from parent
s-domain tightening after DBBT. We select x̃n to be one of the first-stage solutions of the feasible subproblems of
both siblings, based on a representative scenario srep, that takes into account the subproblems of both siblings.

4.4 Filtered Multisection
In this section we present a filtered multisection that addresses issues pertaining to the inherently exponential
number of child nodes resulting from multisection branching, as presented in Section 3. After motivating this filtered
multisection we give a formal statement in Subroutine 4. Following this, we comment on the possibility of adapting
a related approach used in Cao and Zavala, 2019, for branching on first-stage variables. Finally we present the
generation of orthant nodes in Subroutine 5.

The ability to generate 2Ns bounded child nodes by processing and recombining the results from just two sibling
nodes may seem attractive, however, handling an exponential number of nodes for arbitrary Ns can quickly become
an issue in practice. Consider for instance a simple problem with Nx = Ny = 1; simply storing the variable bounds
of child nodes from a single second-stage branching as 8 byte double values requires 16 (1+Ns) 2

Ns bytes, e.g., more
than two terabytes of memory for Ns = 32. At least in principle, we could avoid this memory issue by generating
the nodes on demand in later iterations, however, doing this in an appropriate order, e.g., by increasing lower bound
would require additional computations. More importantly, it is possible that for some of the partitions neither of
the two subproblems improves the lower bound of the parent node significantly. This can result in a large number
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Subroutine 4: filteredMultiSection(p, d, u)
1 M← empty map; // mapping s with single feasible subproblem to the corresponding sibling
2 L ← empty list; // containing s for which both sibling subproblems are feasible
3 foreach s ∈ S do
4 if fd

s
=∞ then // variable corresponding to s will be branched

5 M[s] = u;
6 else if fu

s
=∞ then // variable corresponding to s will be branched

7 M[s] = d;
8 else // variable corresponding to s might be branched (see Lines 14–15)
9 append s to L;

10 end
11 end
12 σmax = maxs∈L σs;
13 if σmax ≤ ε2σ then replace σs and σmax with scores based on relative widths of variable domains;
14 delete all s for which σs ≤ ησmax from L;
15 delete all but the kmax best entries from L;
16 return (M, L);

of nodes with weak objective bounds that all need to be processed separately, slowing down the algorithm.
To address this issue, we can select a subset of the Ns partitions that allows for a significant increase of the

lower bound or reduction of the overall domain size, compared to the parent node. We then revert the original
multisection in favor of a second, filtered multisection, comprising only the variable instances corresponding to the
selected partitions. For this, we use Subroutine 4, which will be presented in the following. Note that each partition
corresponds to a particular scenario s, a branched variable instance ys,i, and two associated sibling subproblems
with complementary domains for ys,i. For each partition we get one of three results:

Case 1) Both subproblems are infeasible, this immediately implies infeasibility of the parent node p.

Case 2) Exactly one subproblem is infeasible, only the domain of the feasible subproblem can contribute to the
generation of feasible orthant nodes, i.e., selecting this partition does not increase their number.

Case 3) Both subproblems are feasible, selecting this partition doubles the resulting number of orthant nodes.

Since Case 1) is already addressed by the fathoming rules in Subroutine 3, Subroutine 4 only needs to address
Cases 2) and 3). We select all partitions from Case 2) (Lines 4–7 in Subroutine 4), as they effectively result in a
domain reduction, without affecting the number of generated nodes. The feasible subproblems associated with these
partitions are stored in the mapM. The remaining partitions, corresponding to Case 3), are collected in L (Line 9).

As the number k ≤ Ns of partitions selected from Case 3) determines the resulting number of child nodes, we
call k the “effective number of partitions”. To determine which partitions should be selected, we use a heuristic
based on strong-branching scores (Applegate et al., 1995; Achterberg, Koch, and Martin, 2005): given sibling nodes
d and u obtained from the parent node p, each partition, i.e., each scenario s, is assigned a strong-branching score
σs. For this, we employ the default scoring function of SCIP, proposed in Achterberg, 2007, which is calculated as

σs := max(fd

s
− fp

s
, εσ)max(fu

s
− fp

s
, εσ) (σs)

Here the constant εσ ensures a nonnegative score for cases where only one sibling improves upon the parent bound.
We select only those partitions in L with a score of at least ησmax, where η ∈ (0, 1] and σmax is the largest of the

scores Lines 12 and 13. Additionally, a maximum number of effective partitions kmax can be imposed to ensure that
the filtered multisection produces at most 2kmax child nodes (Line 15). If all scores are smaller than ε2σ, we instead
rank and select partitions based on relative widths (Lines 12 and 13). This ensures exhaustive partitioning in the
limit, necessary for the convergence of MUSE-BB, also see Lemma 1 and Corollary 3 in Section 5. A visualization
of the proposed multisection branching procedure is given in Fig. 2.

The use of strong-branching scores in Subroutine 4 suggests a relation between filtered multisection and standard
strong-branching, where alternative bisections of a set of Nv variables are considered. While standard strong-
branching requires processing 2Nv full nodes to select a single bisection, i.e., generate 2 child nodes, we only process

16



Manuscript submitted to Journal of Global Optimization Page 17 of 39

p

...

...

d

· · ·

...

...

u

· · ·

branch yNs,i

branch y2,i

branch y1,i

original multisection
p

...

· · ·

... branch ysk,i

branch ys1,i

branch y2,i

filtered multisection

Fig. 2. Example for multisection branching and filtered multisection. In the original multisection (left) the parent node
p is branched on all second stage variable instances ys,i for a given variable index i. Instead of generating all 2Ns nodes,
we only generate the leftmost and rightmost node, corresponding to branching all variable instances down (d) or up (u),
respectively. We process these sibling nodes (blue) by solving the resulting subproblems (squares). In the example, the
subproblem for s = 2 of d is infeasible (red) while all other subproblems are feasible (green). Right: based on the subproblem
results, we perform a second, filtered multisection of p, involving a subset k of the original Ns partitions (right). This can be
interpreted as generating a tree of k sequential bisections: all partitions producing exactly one feasible subproblem (here
only the partition of y2,i) are kept, as they do not increase the total number of child nodes. For the partitions resulting in
two feasible subproblems, we consider the bound improvement w.r.t. the corresponding subproblems of p to compute the
associated strong-branching scores σs. The partitions are filtered based on the values of σs and the algorithm parameters η
and kmax. We reject partitions for which improvement is considered insufficient, i.e., those with σs < ησmax, for a threshold
η ∈ (0, 1]. The remaining ones are sorted by descending strong-branching score, resulting in an ordering of the associated
scenarios (i.e., s1, ..., sk). We keep at most the kmax best partitions, and generate the resulting 2k orthant nodes (green)
using appropriate combinations of domains and bounds from the feasible sibling subproblems.

2Ns subproblems (equivalent to 2 full nodes) and may generate an exponential number of nodes in each filtered
multisection. Nevertheless, standard strong-branching might also be useful in MUSE-BB, as indicated by its use
in the related algorithm of Cao and Zavala, 2019 for the selection of first-stage variables: in each iteration, the
authors consider all elements of x via strong-branching, solving LP relaxations of the associated instances of DEn

for the 2Nx child nodes. For the two nodes of the selected bisection, they then perform the global solution of the
subproblems SPs, required for the convergence of their algorithm. While a similar approach could also be adopted
in MUSE-BB, we do not require expensive global bounding routines for convergence; hence solving full-space LP
relaxations based on DEn is relatively expensive in our case. Alternatively we could solve the decomposable LP
relaxations LPn

s , and aggregate the strong-branching scores σs, e.g., via a ws-weighted sum. As pointed out above,
this would require to process 2Nx nodes instead of just 2. Due to the importance of first-stage branching for TSP
(also see Section 6), this effort may in fact be warranted, however, we do not consider this idea further here, and
instead branch only on individual first-stage variables as indicated in Subroutine 1.

The map M, and list L, returned by Subroutine 4 are used within Subroutine 5 for the generation of individual
orthant nodes. For this, we collect the appropriate variable domains and subproblem objective values for each
orthant from one of the siblings or the parent node (Lines 16–18 in Subroutine 5). For each scenario, the respective
node is determined, based on whether the associated partition was selected (s ∈M or s ∈ L) or not (Lines 4–15).
If s is in the map M, we only use the data from the feasible subproblem of the associated sibling node (Lines 4
and 5). If instead, the scenario is in L, appropriate subproblem data is taken based on the orthant index i (cf.
Lines 10 and 11 of Algorithm 1) to determine the sibling node from which to use data (Lines 6–12 in Subroutine 5).
Otherwise the partition is rejected, i.e., we use the data from the parent (Line 14). Note that the latter case does
not imply that the solution of the associated subproblems was in vain, as it may still result in tightened variable
bounds due to parent s-domain tightening (Lines 3, 8 and 17 in Subroutine 3). Once data for all scenarios has
been collected, we aggregate the overall second-stage domain and scenario-weighted lower bound (Lines 20 and 21).
Finally we test whether the orthant node is infeasible or dominated and return it (Line 22).
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Subroutine 5: generateOrthantNode(i, p, d, u,M,L)
1 b← vector of |L| bits, representing i;
2 X o ← X p;
3 foreach s ∈ S do
4 if s ∈M then // use data from the feasible subproblem of partition s
5 n←M[s];
6 else if s ∈ L then // use data from the sibling subproblem corresponding to orthant id i
7 j ← position of s in L;
8 if bj = 0 then
9 n← d;

10 else
11 n← u
12 end
13 else // use parent data (partition s was filtered in Lines 14–15 of Subroutine 4)
14 n← p;
15 end
16 X o ← X o ∩ Xn

s ;
17 Yo

s ← Yn
s ;

18 fo

s
← fn

s
;

19 end
20 Yo ←×s∈S Y

o
s ;

21 fo ←
∑

s∈S ws f
o

s
;

22 if X o = ∅ or fo > f then fo =∞;
23 return o;

5 Theoretical Results
In this section we present convergence results for the lower bounding schemes used in MUSE-BB, and highlight
the connection to the convergence of the algorithm itself. When applied to the domains of individual B&B nodes,
the lower bounding problems presented in Section 4.1 give rise to different lower bounding schemes (LBSs). Their
quality is determined by their underestimation of the true optimal value, and their capacity to quickly detect
infeasible subdomains. In the following we analyze the asymptotic behavior of these two qualities for LBSs relevant
to MUSE-BB, as the size of B&B nodes diminishes. In particular, we consider the LBSs based on: (i) dropping or
dualizing the NACs, corresponding to the subproblems SPn

s , or LSPn
s , respectively, (ii) the McCormick relaxations

of subproblems from (i), and (iii) the linear programming relaxations, resulting from subtangent relaxation of
subproblems from (ii). Formally, the asymptotic behavior of a LBS for a sequence of descendant nodes is quantified
by the convergence order (Kannan and Barton, 2017a). We first introduce additional notation and definitions
related to this convergence order in Section 5.1, and then present conditions under which different LBSs achieve
first- and second-order convergence, respectively in Sections 5.2 and 5.3. As a result of the first-order convergence,
we show that MUSE-BB guarantees finite termination with an εf -optimal solution in Section 5.2. In Section 5.3 we
analyze an extension of MUSE-BB in which the NACs are dualized instead of dropped. We show that employing
this dualization within MUSE-BB is equivalent to adding the terms λ⊺

sxs, to the objective function relaxations in
the subproblems LPn

s , and performing dual iterations to update the multipliers λs. Provided optimal multipliers
λ∗
s are obtained, we show that this results in stronger convergence properties, with implications for the so-called

cluster effect (Kearfott and Du, 1993; Du and Kearfott, 1994). In particular, while theoretical results of Kannan
and Barton, 2017b indicate that the current implementation of MUSE-BB may mitigate clustering around typical
constrained minimizers, mitigating clustering around typical unconstrained minimizers may require an extension
such as the one presented in Section 5.3.

Before we give the formal definition of a LBS and the associated convergence order, we highlight the impact of
the quality of lower bounds via two examples. For this we define the width of an interval.

Definition 1 (width of a multidimensional interval). A measure for the width of a multidimensional interval
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V =×i∈{1,··· ,m} [vi, vi] ⊂ Rm is given by:

W(V) := max
i∈{1,··· ,m}

(vi − vi)

As shown by Kannan and Barton, 2017b, the occurrence of clustering is related to the convergence order of
the LBS, which in turn is defined in terms of the ‘size of B&B nodes’, i.e., the width of the domain of branched
variables, measured by Definition 1 (also see Kannan and Barton, 2017a). In algorithms like PBDAs, this node size
is given by W(Xn), whereas in algorithms like MUSE-BB it is given by the width of the overall variable domain, i.e.,
W(Zn). While MUSE-BB will of course require more frequent branching than PBDAs to reach a given node size,
the LBSs used in MUSE-BB may achieve a higher convergence order than the scheme SPXn,Ys

s , used in PBDAs.
The following example illustrates this situation for LBSs based on SPs, i.e., the simplest scenario relaxation,

corresponding to dropping the NACs from DEX ,Y
NAC: while the scheme SPXn,Ys

s , where only X is partitioned, results
in an absolute optimality gap that diminishes with

√
W(Xn), the gap produced by the scheme SPXn,Yn

s
s , which

additionally partitions Y, diminishes with W(Zn).
Example 1. Consider the following instance of DEX ,Y with Nx = Ny = 1, Ns = 2 and an original domain
with X = Y1 = Y2 = [0, 2]. Take

w1 f1(x1, y1) = −y1; gII,1(x1, y1) = −x1 + y21

w2 f2(x1, y2) = 2 y2; gII,2(x2, y2) = x2 − y22

The objectives imply that at the optimum zDEn

= (xDEn

1 , yDEn

1 , yDEn

2 ) of DEn, yDEn

1 is maximized and yDEn

2

is minimized. For any feasible node n with Zn = [xn, xn]× [yn
1
, yn1 ]× [yn

2
, yn2 ], the bounds and constraints

imply yDEn

1 ≤ min
{√

xDEn
, yn1
}

and yDEn

2 ≥ max
{√

xDEn
, yn

2

}
. We have yDE

1 = yDE
2 =

√
xDE on the original

domain, and thus f(xDE, yDE
1 , yDE

2 ) =
√
xDE, which is minimized at zDE = (xDE, yDE

1 , yDE
2 ) = (0, 0, 0), with

objective value 0.
Now consider the lower bounds generated by lower bounding schemes based on SPs on any nested sequence

of nodes converging to the optimum zDE. Since all nodes in such sequences satisfy xn = yn
s
= 0, the optimal

solutions of the associated instance of SPs satisfy ySP
n

1 = min{
√
xn, yn1} and ySP

n

2 = max{
√
xn, yn

2
} = 0,

and thus from the constraint gII,2, we have xSPn

2 = ySP
n

2 = 0.
In SPXn,Ys

s , only x is branched, and the width of a node n corresponds to Wn = W(Xn) = xn, while
W(Yn

s ) = yns = 2 remains constant. Since xn < 2, we have: ySP
n

1 =
√
Wn, and thus fn

DE − fn
SP =

√
Wn.

In SPXn,Yn
s

s , both x and ys are branched, and the width of a node n corresponds to Wn = W(Zn). For
a given width Wn, the largest value for fn′

DE − fn′

SP over all nodes n′ with W(Zn′
) = Wn will be produced

by the node n with xn = yns = Wn. Once Wn < 1, we have that
√
Wn > Wn, and thus ySP

n

1 = Wn, and
fn
DE − fn

SP = Wn.

While Example 1 shows that for certain problems the scheme SPXn,Ys
s will produce weaker bounds than SPXn,Yn

s
s

for a given node width, the following example demonstrates that this is not always the case, i.e., both LBSs may
produce absolute optimality gaps that diminish linearly (and not better) with the node width.

Example 2. Take Example 1, but change the constraints to

gII,1(x1, y1) = −x1 + y1; gII,2(x2, y2) = x2 − y2.

which implies that yDE
1 = yDE

2 = xDE on the original domain, and thus f(xDE, yDE
1 , yDE

2 ) = xDE. This is
again minimized at zDE = (xDE, yDE

1 , yDE
2 ) = (0, 0, 0), with objective value 0. Now for both SPXn,Ys

s , and
SPXn,Yn

s
s , it is easy to see that xSPn

2 = ySP
n

2 = 0, and xSPn

1 = ySP
n

1 = Wn, resulting in fn
DE − fn

SP = Wn,
i.e., an optimality gap that decreases exactly linearly with the node width.

As we shall see in Section 5.1, β-order convergence of a LBS requires that the optimality gap decreases
proportionally to (Wn)

β , with β > 0, i.e., a higher value of β is associated with a better quality of the LBS.
Robertson, Cheng, and Scott, 2020 showed that the convergence orders below one of LBSs used in PBDAs are
inherent to the projection resulting from running a B&B in the X space only. In particular, even LBSs based on
the ideal relaxation, i.e., on convex envelopes of the scenario value functions fXn,Ys

s may have less than first-order
convergence, unless fXn,Ys

s is Lipschitz, which is not guaranteed in general. In contrast, we show in Section 5.2 that
the scheme SPn

s = SPXn,Yn
s

s , obtained by simply dropping the NACs, has at least first-order convergence under
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the much milder assumption that the objective and constraint functions of DE are Lipschitz. If additionally, the
used convex relaxations are Lipschitz, subsequent convex and linear relaxations used in MUSE-BB preserve this
first-order convergence.

As demonstrated by Examples 1 and 2, the convergence order may still be as low as one, despite branching on
second-stage variables. In Section 5.3 we show that this limitation is inherent to dropping the NACs, and that
dualizing them instead results in a LBS that is as least as strong as the presented one, but additionally guarantees
second-order convergence at unconstrained minimizers.

Despite this promising outlook for MUSE-BB, we need to point out that the seemingly superior convergence
order of LBSs for MUSE-BB compared to that of PBDAs may be relativized by the fact that the occurrence of
clustering is not exclusively determined by convergence order, but also by the local growth order of objective and
constraint functions, see Kannan and Barton, 2017b. Even if for a given problem, a LBS for MUSE-BB has a
higher convergence order than a comparable scheme for a PBDA, the lower order might still be sufficient to mitigate
clustering in PBDAs. This is because by operating in the projected space, the relevant growth order for PBDAs is
that of of the scenario value functions fX ,Ys

s , which may also be reduced compared that of the original objective
functions fs. In Example 1, e.g., we have fX ,Y1

1 (x) =
√
x, and thus a growth order of 1/2, matching the convergence

order of the scheme SPXn,Ys
s , indicating that clustering might still be avoided, despite the reduced convergence

order. Conditions for which PBDAs or algorithms like MUSE-BB will show superior performance are thus not
immediately clear from the present analysis.

5.1 Preliminaries
To avoid the so-called cluster effect (Kearfott and Du, 1993; Du and Kearfott, 1994; Wechsung, Schaber, and Barton,
2014) where a B&B algorithm visits a large number of nodes near approximate global minimizers, LBSs need to
exhibit a sufficiently large convergence order. Early works on clustering (Kearfott and Du, 1993; Du and Kearfott,
1994; Wechsung, Schaber, and Barton, 2014) focused on clustering around unconstrained minimizers, where the
convergence order of LBSs is equivalent to the convergence order of the relaxations used for the objective function.
Around constrained minimizers, on the other hand, one additionally needs to consider the effect of relaxing the
feasible set, leading to an extended notion of convergence order (Kannan and Barton, 2017b; Kannan and Barton,
2017a), which additionally depends on the convergence orders of the relaxations used for the constraint functions. In
B&B for general nonlinear programming problems, relaxations of objective and constraints are typically generated
by convex relaxation methods. In Bompadre and Mitsos, 2011 we therefore analyzed the convergence order of
McCormick (McCormick, 1976), α-BB (Adjiman and Floudas, 2008), and convex hull relaxations. Convergence
orders for (further) relaxation through polyhedral outer approximation were investigated by Rote, 1992; Tawarmalani
and Sahinidis, 2004; Khan, 2018. While Kannan and Barton, 2017b consider a classical LBS for general nonlinear
programming problems based on convex relaxation, their conclusions are not dependent on this type of LBS.
Kannan and Barton, 2017a present a more general definition of a LBS, and give conditions under which convex and
Lagrangian relaxations with appropriate convergence orders result in first- and second-order convergent LBS.

In preparation for Definition 4, where we use an extended notion of convergence order of a LBS in the sense of
Kannan and Barton, 2017a, we introduce additional nomenclature and definitions. For each B&B node n and the
corresponding subproblem domains Zn

s := Xn × Yn
s , we introduce the scenario-specific feasible sets

Fn
s := {(x,ys) ∈ Zn

s : gI(x) ≤ 0, gII,s(x,ys) ≤ 0}.

Similarly, for the overall domains Zn := Xn × Yn, associated with each node n, we express the feasible set of DEn

= DEXn,Yn

as

Fn := {(x,y) ∈ Zn : (x,ys) ∈ Fn
s ∀s ∈ S}.

Furthermore, since we branch on both x and y, the distinction between them becomes irrelevant in many parts of
the following analysis. For conciseness, we therefore aggregate the first- and second-stage variables, i.e., we introduce
the notation (x,y) = (x,y1, · · · ,yNs) =: z ∈ Zn ⊂ RNz , and (x,ys) =: zs ∈ Zn

s ⊂ RNz,s , where, Nz := Nx +NsNy

and Nz,s := Nx +Ny.

Definition 2 (distance between two sets). A measure for the distance of two sets Z1,Z2,⊂ Rm is given by:

d(Z1,Z2) := inf
z1∈Z1
z2∈Z2

∥z1 − z2∥
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Throughout this text, ∥•∥ denotes the Euclidian norm.

Definition 3 (violation measure). A measure for the minimum constraint violation of some optimization problem
D̃E(V) with variable domain V ⊂ RNv and constraints g

D̃E
: RNv → RND̃E

g , on some subdomain Vn ⊂ V is given by:

vion
P̃
:= d

(
{g

D̃E
(v) : v ∈ Vn},RND̃E

g

−

)

= min
v∈Vn

ND̃E
g∑

j=1

max
{
g
D̃E,j

(v), 0
}2


1/2

,

where R− denotes the nonpositive orthant.

Alternative to Definition 3, one may also define the violation in terms of, e.g., the ∞-norm, which would yield
min
v∈Vn

max
j∈{1,···ND̃E

g }
max{0; g

D̃E,j
(v)}. We chose Definition 3, following Kannan and Barton, 2017b; Kannan and Barton,

2017a, who use it, within their definitions of convergence order of LBSs (Definition 8 and 14, respectively). For
clarity, we separate the definition of violation from that of convergence order.

We adapt Definition 14 of Kannan and Barton, 2017a to scenario-based LBSs of TSPX ,Y . All such schemes
effectively lift the deterministic equivalent formulation DEn to the equivalent nonanticipativity formulation DEX ,Y

NAC,
which introduces separate first-stage variables and constraints for each scenario and couples them via the NACs.
Following this, scenario-based LBSs obtain relaxations of TSPX ,Y , by dropping or dualizing the NACs from DEX ,Y

NAC,
potentially followed by further relaxations of the objective and constraints.

Definition 4 (Hausdorff convergence order of scenario-based LBSs). Denote the optimal objective value of DEn as
fn
DE, and let Rn be any relaxation of DEn that decomposes into the Ns scenario relaxations of the form:

fn
R,s := min

zs∈Fn
R,s

fR,s(zs) Rn
s

where fR,s and Fn
R,s are respective relaxations of fs and Fn

s . Therefore, the weighted sum of the optimal objective
values fn

R,s underestimates fn
DE, i.e.,

fn
R :=

∑
s∈S

ws f
n
R,s ≤ fn

DE.

We say that (the LBS based on) Rn
s has:

1. βf -order (Hausdorff) convergence at a feasible point z ∈ Z if there exists Cf > 0 such that for every Zn ⊂ Z
with z ∈ Zn,

fn
DE − fn

R ≤ Cf W(Zn)βf

2. βg-order (Hausdorff) convergence at an infeasible point z ∈ Z if there exists Cg > 0 such that for every
Zn ⊂ Z with z ∈ Zn,

vionDE− vionR ≤ Cg W(Zn)βg

We say that (the LBS based on) Rn
s has (Hausdorff) convergence of order β on Z if is has β-order (Hausdorff)

convergence at each z ∈ Z.

The generic scenario-based relaxation Rn
s encompasses all LBSs we consider: LSPn

s ; SPn
s ; the additional relaxation

of these problems, resulting from replacing all functions by their McCormick relaxations on Zn (i.e., MCn
s in the

case of SPn
s ); and the linear outer approximation of MCn

s through subtangents, LPn
s . In all cases, the convergence

order is with respect to DEn, i.e., feasibility and infeasibility are always to be understood with respect to the
original variables and constraints. As in Definition 14 of Kannan and Barton, 2017a, the convergence order at
feasible [infeasible] points establishes an upper bound on the underestimation of the optimal objective value [minimal
constraint violation] in terms of the node width. Thus, the theoretical results of Kannan and Barton, 2017b are
directly applicable. In particular, assuming sufficiently small prefactors Cf and Cg, and that all minimizers are
strict, the previous analyses indicate that second-order convergence at feasible points mitigates clustering around
unconstrained minimizers located at points of differentiability (Wechsung, Schaber, and Barton, 2014; Kannan and
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Barton, 2017b), while first-order convergence suffices for unconstrained minimizers if they are located at points of
nondifferentiability (Wechsung, 2014; Kannan and Barton, 2017b). At constrained minimizers, on the other hand,
first-order convergence may mitigate clustering if the objective and active constraints grow linearly around the
minimizer Kannan and Barton, 2017b.

Note that according to Definition 3, the constraint violations vionDE and vionR are defined relative to the overall
constraints of the respective problems. In contrast to DEn, all scenario relaxations Rn

s by definition have separate
copies of the first-stage variables x and the first-stage constraints gI (or their relaxations) for each scenario s.
Hence, the total number of variables and constraints of the Ns subproblems Rn

s are Nξ := Ns(Nx + Ny), and
NR

g := Ns(NI +NII), respectively. Similarly to gDE, we define gR by aggregating the constraint functions of Rn
s for

all s; i.e., gR is the vector-valued function gR :×s∈S(Zs) 7→ RNR
g , such that for ξ = (x1,y1, · · · ,xNs

,yNs,Ny
) ∈

×s∈S(Zs) ⊂ RNξ we have:

gR(ξ) :=

 gR,1(ξ)
...

gR,NR
g
(ξ)

 ,

e.g., when using LSPn
s or SPn

s for Rn
s , we define these entries as

gLSP(ξ) = gSP(ξ) =



gI,1(x1)
...

gI,NI(xNs
)

gII,1,1(x1,y1)
...

gII,Ns,NII(xNs
,yNs

)


.

Since the bounds in Definition 4 are relative to the width of the overall variable domain Zn, it is only meaningful
for B&B algorithms for which this width diminishes to 0. MUSE-BB clearly satisfies this condition, as shown for
completeness in the following result.

Lemma 1 (Exhaustive Subdivision). The branching scheme used in MUSE-BB is exhaustive, i.e., in the limit all
infinite sequences of descendant nodes converge to some accumulation point.

Proof. In Line 1 of Subroutine 1 we eventually select the variable corresponding to the dimension of Zn with
largest relative domain width (since the effect of different branching priorities is canceled after a finite number
of iterations). While the partition of the selected variable can still be rejected during variable filtering (Lines 14
and 15 in Subroutine 4), this can only happen a finite number of times, as the strong-branching scores are based on
lower bound improvements which inherently tend to zero. Thus, the width of all variable domains tends to zero.

Note that since PBDAs only partition X , W(Zn) would need to be substituted with W(Xn) in the bounds
of Definition 4 to obtain an appropriate alternative definition for PBDAs, also see the related Definition 14 and
Section 5 of Kannan and Barton, 2017a.

5.2 First-Order Convergence
As we shall see in Lemma 2, branching on second-stage variables y in addition to first-stage variables x, resolves the
possibility of convergence orders below one, i.e., SPn

s can be guaranteed to have (at least) first-order convergence under
the weak assumption of Lipschitz continuity of the objective and constraint functions. Furthermore, Corollaries 1
and 2 show that the additional relaxations used in MUSE-BB preserve first-order convergence.

Assumption 1 (Lipschitz, factorable functions with second order pointwise convergent relaxations). All constraint
and objective functions are Lipschitz, i.e., there exist constants Lg,I,i > 0; i = 1, · · · , NI, and for all s ∈ S there
exist constants Lg,II,s,j > 0, j = 1, · · · , NII; Lf,s > 0, such that:

|gI,i(x)− gI,i(x
′)| ≤ Lg,I,i ∥x− x′∥ ∀x,x′ ∈ X , i = 1, · · · , NI,

|gII,s,j(zs)− gII,s,j(z
′
s)| ≤ Lg,II,s,j ∥zs − z′

s∥ ∀zs, z′
s ∈ Zs, j = 1, · · · , NII,

|fs(zs)− fs(z
′
s)| ≤ Lf,s ∥zs − z′

s∥ ∀zs, z′
s ∈ Zs.
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The following Lemma shows first-order convergence of the LBS based on SPn
s . Its proof relies on the fact that in

any given node n, points from the domains Zn
s = Xn × Yn

s of scenario subproblems are at most
√
Nx +Ny W(Zn

s )
apart. Furthermore, the overall node domain is Zn = Xn×Yn and thus W(Zn

s ) ≤W(Zn). We point out that all of
the algebraic steps in the following proof would also hold when replacing SPn

s with the LBS SPXn,Ys
s used in PBDA.

Thus in fact, both LBS have first-order convergence in the Z space. However, while for MUSE-BB W(Zn) tends to
zero by Lemma 1, it does not for PBDAs, where Yn = Y for all nodes n, and hence only W(Xn) tends to zero. A
meaningful convergence order for SPXn,Ys

s would therefore require bounds in terms of W(Xn) instead of W(Zn),
also see the note before Lemma 1 and the related Definition 14 and Section 5 of Kannan and Barton, 2017a.

Lemma 2 (first-order convergence of SPn
s ). Under Assumption 1, SPn

s has a convergence order of β ≥ 1.

Proof. Recall that Definition 4 considers convergence orders at feasible and infeasible points with respect to DEn,
leading to a natural proof outline.

Convergence Order at Feasible Points: First consider some nested sequence of nodes converging to a point
z̃ that is feasible in DE. Since z̃ is contained in all nodes n of such sequences, DEn (and thus SPn

s ) have optimal
solutions for each n. Let zDEn

= (xDEn

,yDEn

) = (xDEn

,yDEn

1 , · · · ,yDEn

Ns
) ∈ Zn be an optimal solution to DEn,

and define zDEn

s = (xDEn

,yDEn

s ) ∈ Zn
s . Similarly, let zSPn

s = (xSPn

s ,ySPn

s ) ∈ Zn
s be an optimal solution to SPn

s .
Using the Lipschitz property of fs, we can immediately express the difference in optimal objective values as:

fn
DE − fn

SP =
∑
s∈S

ws

(
fs(z

DEn

s )− fs(z
SPn

s )
)

≤
∑
s∈S

wsC
SP
f,s W(Zn)

where CSP
f,s := Lf,s

√
Nx +Ny. Thus SPn

s has at least first-order convergence at all feasible points with Cf =∑
s∈S wsC

SP
f,s.

Convergence Order at Infeasible Points: Now consider some nested sequence of nodes converging to a
point z̃ that is infeasible in DE, i.e., z̃ /∈ F . By compactness of F , all such sequences eventually reach a node n
that does not contain any feasible point, i.e., vionDE > 0. Let z̃DEn

= (x̃DEn

, ỹDEn

) = (x̃DEn

, ỹDEn

1 , · · · , ỹDEn

Ns
) ∈

Zn and ζDEn ∈ RNDE
g

− be points at which the minimum constraint violation vionDE is attained, i.e., vionDE =∥∥g(z̃DEn

)− ζDEn∥∥. Similarly, let ξ̃SP
n

= (x̃SPn

1 , ỹSPn

1 , · · · , x̃SPn

Ns
, ỹSPn

Ns
) ∈×s∈S(Z

n
s ) and ζ̃SPn ∈ RNSP

g

− be points at

which the minimum constraint violation vionSP is attained, i.e., vionSP =
∥∥∥gSP(ξ̃SPn

)− ζ̃SPn
∥∥∥. Furthermore, define

z̃DEn

s = (x̃DEn

, ỹDEn

s ) ∈ Zn
s and z̃SPn

s = (x̃SPn

s , ỹSPn

s ) ∈ Zn
s .

To derive an upper bound on vionDE− vionSP, we first give a lower bound on the minimum constraint violation
vionSP. For this we drop positive terms in the definition of vionSP, corresponding to the first-stage constraints of all
but the first scenario:

vionSP =
∥∥∥gSP(ξ̃SPn

)− ζ̃SPn
∥∥∥

=

NSP
g∑
j

∣∣∣gSP,j(ξ̃
SPn

)− ζ̃SP
n

j

∣∣∣2
1/2

=
(∣∣∣gI,1(x̃

SPn

1 )− ζ̃SP
n

1

∣∣∣2 + · · ·+ ∣∣∣gI,NI(x̃
SPn

1 )− ζ̃SP
n

NI

∣∣∣2 + · · ·+ ∣∣∣gI,NI(x̃
SPn

Ns
)− ζ̃SP

n

NsNI

∣∣∣2
+
∣∣∣gII,1,1(z̃

SPn

1 )− ζ̃SP
n

NsNI+1

∣∣∣2 + · · ·+ ∣∣∣gII,Ns,NII(z̃
SPn

Ns
)− ζ̃SP

n

NSP
g

∣∣∣2)1/2
≥
(∣∣∣gI,1(x̃

SPn

1 )− ζ̃SP
n

1

∣∣∣2 + · · ·+ ∣∣∣gI,NI(x̃
SPn

1 )− ζ̃SP
n

NI

∣∣∣2
+
∣∣∣gII,1,1(z̃

SPn

1 )− ζ̃SP
n

NsNI+1

∣∣∣2 + · · ·+ ∣∣∣gII,Ns,NII(z̃
SPn

Ns
)− ζ̃SP

n

NSP
g

∣∣∣2)1/2
=:
∥∥∥g̃SPn

− ζSPn
∥∥∥

(2)

Note that this corresponds to a projection of the associated points from RNSP
g onto RNDE

g , i.e., g̃SPn

, ζSPn ∈ RNDE
g .
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We can now derive the desired upper bound on vionDE− vionSP. By Definition 3, we have

vionDE− vionSP =
∥∥∥g(z̃DEn

)− ζDEn
∥∥∥− ∥∥∥gSP(ξ̃SPn

)− ζ̃SPn
∥∥∥,

and underestimation of the subtracted part by the projection from Eq. (2) gives

vionDE− vionSP ≤
∥∥∥g(z̃DEn

)− ζDEn
∥∥∥− ∥∥∥g̃SPn

− ζSPn
∥∥∥,

By definition of the infimum in vionDE, we have
∥∥g(z̃DEn

)− ζDEn∥∥ ≤ ∥∥g(z̃DEn

)− ζ
∥∥ for all ζ ∈ RNDE

g

− , in particular,
choosing ζSPn

results in

vionDE− vionSP ≤
∥∥∥g(z̃DEn

)− ζSPn
∥∥∥− ∥∥∥g̃SPn

− ζSPn
∥∥∥.

Applying the reverse triangle inequality gives

vionDE− vionSP ≤
∥∥∥g(z̃DEn

)− g̃SPn
∥∥∥,

and thus by definition of the Euclidian norm and g̃SPn

:

vionDE− vionSP ≤
(∣∣∣gI,1(x̃

DEn

)− gI,1(x̃
SPn

1 )
∣∣∣2 + · · ·+ ∣∣∣gI,NI(x̃

DEn

)− gI,NI(x̃
SPn

1 )
∣∣∣2

+
∣∣∣gII,1,1(z̃

DEn

1 )− gII,1,1(z̃
SPn

1 )
∣∣∣2 + · · ·+ ∣∣∣gII,Ns,NII(z̃

DEn

Ns
)− gII,Ns,NII(z̃

SPn

Ns
)
∣∣∣2)1/2.

By Lipschitz continuity of each individual constraint function, all differences can be bounded by the respective
Lipschitz constants

vionDE− vionSP ≤

((
LgI,1

∥∥∥x̃DEn

− x̃SPn

1

∥∥∥)2 + · · ·+ (LgI,NI

∥∥∥x̃DEn

− x̃SPn

1

∥∥∥)2
+
(
LgII,1,1

∥∥∥z̃DEn

1 − z̃SPn

1

∥∥∥)2 + · · ·+ (LgII,Ns,NII

∥∥∥z̃DEn

Ns
− z̃SPn

Ns

∥∥∥)2)1/2

.

Finally, since the maximum distances of points in Xn and Zn are
√
Nx W(Xn) and

√
Nx +Ny W(Zn

s ), respectively,
and since both W(Xn) and W(Zn

s ) can be overestimated by W(Zn) we have:

vionDE− vionSP ≤

((
LgI,1

√
Nx W(Xn)

)2
+ · · ·+

(
LgI,NI

√
Nx W(Xn)

)2
+
(
LgII,1,1

√
Nx +Ny W(Zn

s )
)2

+ · · ·+
(
LgII,Ns,NII

√
Nx +Ny W(Zn

s )
)2)1/2

≤ Cg W(Zn)

Thus SPn
s has at least first-order convergence at all infeasible points with

Cg =

√√√√Nx

NI∑
i=1

L2
g,I,i + (Nx +Ny)

∑
s∈S

NII∑
j=1

L2
gII,s,j

.

Conclusion: As the LBS based on SPn
s has convergence orders of β ≥ 1 at both feasible and infeasible points,

it has convergence order of β ≥ 1.

Unsurprisingly, when the Assumption 1 is not satisfied, the convergence order of MUSE-BB can also be below 1.
For instance, take Example 1 but use w1f1 = −√y1; this gives a convergence order of 0.5.

Next we show that both the McCormick based LBS, MCn
s , as well as its linearization via subtangents, LPn

s ,
inherit the first-order convergence of SPn

s under mild additional assumptions. For both of these convergence results,
we require the following assumption:
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Assumption 2 (first-order pointwise convergent relaxations). The objective function fs and all elements of
the constraint functions gI and gII,s have first-order pointwise convergent relaxations, i.e., there exist constants
CMC

f,s > 0, s ∈ S, CMC
g,I,i > 0, i = 1, · · · , NI, and CMC

g,II,s,j > 0, s ∈ S, j = 1, · · · , NII, such that for all Zn ⊂ Z and any
s, the convex relaxations f cv,n

s , gcv,n
I and gcv,n

II,s in MCn
s satisfy

fs(zs)− f cv,n
s (zs) ≤ CMC

f,s W(Zn
s ), ∀zs ∈ Zn

s ,

gI,i(x)− gcv,n
I,i (x) ≤ CMC

g,I,i W(Xn), ∀x ∈ Xn, i = 1, · · ·NI,

gII,s,j(zs)− gcv,n
II,s,j(zs) ≤ CMC

g,II,s,j W(Zn
s ), ∀zs ∈ Zn

s , j = 1, · · ·NII.

In fact, for many functions McCormick relaxations satisfying an even stronger variant of Assumption 2, with
second- instead of just first-order pointwise convergence are known (also see Bompadre and Mitsos, 2011). For our
purposes, however, Assumption 2 is sufficient.

Corollary 1 (first-order convergence of MCn
s ). Under Assumptions 1 and 2, MCn

s has a convergence order of
β ≥ 1.

Proof. By Lemma 2, the scheme SPn
s has first-order convergence with respect to the original problem DEn.

Furthermore, under Assumption 2, the LBS MCn
s has at least first-order convergence with respect to SPn

s by
Theorem 1 of Kannan and Barton, 2017a. Combining these results implies first-order convergence of MCn

s with
respect to DEn.

For the first-order convergence of LPn
s , we additionally require the following assumption:

Assumption 3 (Lipschitz convex relaxations). For any node n the convex relaxations f cv,n
s , gcv,n

I , and gcv,n
II,s in

MCn
s are Lipschitz, i.e., there exist constants LMC

f,s > 0, LMC
g,I,i > 0; i = 1, · · · , NI, and LMC

g,II,s,j , j = 1, · · · , NII, that
constitute upper bounds on the norm of the respective subgradients. In particular, this implies:

∥∇̌f cv,n
s (zs)

⊺(z′
s − zs)∥ ≤ LMC

f,s

√
Nx +Ny W(Zn

s ), ∀zs, z′
s ∈ Zn

s

∥∇̌gcv,n
I,i (x)⊺(x′ − x)∥ ≤ LMC

g,I,i

√
Nx W(Xn), ∀x,x′ ∈ Xn, i = 1, · · ·NI,

∥∇̌gcv,n
II,s,j(zs)

⊺(z′
s − zs)∥ ≤ LMC

g,II,s,j
√
Nx +Ny W(Zn

s ), ∀zs, z′
s ∈ Zn

s , j = 1, · · ·NII.

Assumption 3 is satisfied if the relaxations used for all intrinsic functions are Lipschitz (cf. Scott, Stuber, and
Barton, 2011). This in turn is the case for standard relaxations of a wide class of functions, provided they are
Lipschitz themselves.

Corollary 2 (first-order convergence of LPn
s ). Under Assumptions 1–3, LPn

s has a convergence order of β ≥ 1.

Proof. We structure the proof as in Lemma 2.
Convergence Order at Feasible Points: First consider some nested sequence of nodes converging to a

point z̃ that is feasible in DE. For all nodes n of such sequences let zDEn

s and zLPn

s be solutions of DEn, and LPn
s ,

respectively, and note that

fn
LP,s = subnfs(z

LPn

s ) = f cv,n
s (mn

zs
) + ∇̌f cv,n

s (mn
zs
)⊺(zLPn

s −mn
zs
),

where mn
zs

is the midpoint of Zn
s , see subtangent. We can bound the difference of optimal values of DEn, and LPn

s

by subtracting and adding the terms fs(m
n
zs
) and applying Assumptions 1–3:

fn
DE − fn

LP =
∑
s∈S

ws

(
fn
DE,s − fn

LP,s

)
=
∑
s∈S

ws

(
fs(z

DEn

s )− subnfs(z
LPn

s )
)

=
∑
s∈S

ws

(
fs(z

DEn

s )− fs(m
n
zs
) + fs(m

n
zs
)− f cv,n

s (mn
zs
)− ∇̌f cv,n

s (mn
zs
)⊺(zLPn

s −mn
zs
)
)

≤
∑
s∈S

wsC
LP
f,s W(Zn)

where CLP
f,s :=

(
(Lf,s + LMC

f,s )
√
Nx +Ny + CMC

f,s

)
. Thus LPn

s has first-order convergence at feasible points with

Cf =
∑

s∈S wsC
LP
f,s .
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Convergence Order at Infeasible Points: Now consider some sequence of nodes converging to an infeasible

point. As in the proof of Lemma 2, let z̃DEn

= (x̃DEn

, ỹDEn

) = (x̃DEn

, ỹDEn

1 , · · · , ỹDEn

Ns
) ∈ Zn, and ζDEn ∈ RNDE

g

−
be points at which the minimum constraint violation vionDE is attained, i.e., vionDE =

∥∥g(z̃DEn

)− ζDEn∥∥, and, let

ξ̃LP
n

= (x̃LPn

1 , ỹLPn

1 , · · · , x̃LPn

Ns
, ỹLPn

Ns
) ∈×s∈S(Z

n
s ) and ζ̃LPn ∈ RNLP

g

− be points at which the minimum constraint

violation vionLP is attained, i.e., vionLP =
∥∥∥gLP(ξ̃LPn

)− ζ̃LPn
∥∥∥, where gLP is the vector-valued function containing

the constraints of all LPn
s , i.e., the subtangents of the entries in gSP, see subtangent.

Using the same arguments as in the proof of Lemma 2 with gLP(ξ̃
LPn

) instead of gSP(ξ̃SP
n

) we can bound the
difference in violation measures of DEn and LPn

s , resulting in:

vionDE− vionLP ≤
(∣∣∣gI,1(x̃

DEn

)− subngI,1
(x̃LPn

1 )
∣∣∣2 + · · ·+ ∣∣∣gI,NI(x̃

DEn

)− subngI,NI
(x̃SPn

1 )
∣∣∣2

+
∣∣∣gII,1,1(z̃

DEn

1 )− subngII,1,1
(z̃SPn

1 )
∣∣∣2 + · · ·+ ∣∣∣gII,Ns,NII(z̃

DEn

Ns
)− subngII,Ns,NII

(z̃SPn

Ns
)
∣∣∣2)1/2

as with the objective function, we can bound the differences between each constraint function and the respective
subgradient, using Assumptions 1–3, which results in

vionDE− vionLP ≤ CLP
g W(Zn),

where

CLP
g :=

√√√√ NI∑
i=1

(
(Lg,I,i + LMC

g,I,i)
√

Nx + CMC
g,I,i

)2
+
∑
s∈S

NII∑
j=1

(
(Lg,II,s,j + LMC

g,II,s,j)
√
Nx +Ny + CMC

g,II,s,j

)2
.

Thus LPn
s has first-order convergence at any infeasible point with Cg = CLP

g .
Conclusion: As the LBS based on LPn

s has convergence orders of β ≥ 1 at both feasible and infeasible points,
it has convergence order of β ≥ 1.

We are now in the position to prove finite εf -convergence of MUSE-BB.

Corollary 3 (finite termination of MUSE-BB). Under Assumptions 1–3, MUSE-BB terminates finitely for any
optimality tolerance εf > 0, either providing an εf -optimal solution or a certificate that the problem is infeasibile.

Proof. By Lemma 1, each sequence of descendant nodes converges to some accumulation point z̃. We show that the
use of any LBS Rn

s with convergence order of β > 0 implies that all such sequences finitely reach a node that can be
fathomed by value dominance or infeasibility.

Convergence at Feasible Points: First consider sequences for which z̃ is feasible. After a finite number of

iterations, any such sequence will produce a node n, for which W(Zn) ≤
(

εf
Cf

)1/β
, which implies that fn

DE−fn
R ≤ εf ,

i.e., that n is fathomed by value dominance.
Convergence at Infeasible Points: Next consider sequences for which z̃ is infeasible, and which are not

terminated finitely because some descendant node can be fathomed by value dominance. By compactness of the
feasible set, any such sequence will eventually produce a node ñ that contains no feasible point, and thus has a
positive violation measure vioñDE. Since the violation measure increases monotonically for descendants of node ñ,

the sequence is terminated when or before the descendant node n is produced, for which W(Zn) ≤
(

vioñDE

Cg

)1/β
, as

this implies 0 ≤ vionDE− vioñDE ≤ vionR, i.e., infeasibility is detected by the scheme Rn
s , and node n is fathomed by

infeasibility.
Conclusion: In summary, each node sequence terminates finitely and since the original domain is compact, the

total number of sequences must be finite. By Corollary 2, the assumptions imply that the LBS Rn
s = LPn

s , used in
MUSE-BB has a convergence order of β > 1, thus MUSE-BB terminates finitely, once all sequences of descendant
nodes are terminated.

After demonstrating first-order convergence of the LBS employed by MUSE-BB and the resulting εf -convergence,
we now consider in which cases these convergence properties may be sufficient to mitigate clustering. As indicated
by Kannan and Barton, 2017b, clustering may be mitigated around individual minimizers of DE, if the convergence
order of the LBS is larger or equal to the order at which objective and constraint functions grow around this
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minimizer. While Example 2 demonstrates that SPn
s (and by extension, also LPn

s ) may have a convergence order as
low as one at constrained minimizers, objective and constraint functions typically grow at a linear rate around such
points (Kannan and Barton, 2017b). Therefore LPn

s may mitigate clustering around typical constrained minimizers,
provided the respective coefficients Cf and Cg are sufficiently small (Kannan and Barton, 2017b). On the other
hand, at unconstrained minimizers, where f is differentiable, f grows quadratically or faster. As a result, a LBS
needs to have at least second-order convergence at unconstrained minimizers to to mitigate clustering (Du and
Kearfott, 1994; Wechsung, Schaber, and Barton, 2014; Kannan and Barton, 2017b). Unfortunately, the convergence
order of SPn

s may also be as low as one at unconstrained minimizers, as shown by the following example.
Example 3. Consider an instance of DE with Nx = 1, Ny = 0, Ns = 2 and an original domain X = [−1, 1].
Take

w1 f1(x1) = 0.5(x1 − 1)2; w2 f2(x2) = 0.5(x2 + 1)2

such that f(x) = x2 + 1, and thus the optimal solution and objective value are xDE = 0, and f(xDE) = 1,
respectively. For any nested sequence of nodes converging to this optimum, the solutions xDEn

of the node
problem DEn lie in Xn = [xn, xn], and thus xn ≤ 0, xn ≥ 0. For such nodes, the solutions of SPn

s are
xSPn

1 = xn, and xSPn

2 = xn, respectively. Hence the difference in objective values is:

fn
DE − fn

SP = 1− 0.5
(
(xn − 1)2 + (xn + 1)2

)
= −0.5 (xn)2 + xn − xn − 0.5 (xn)2

Now consider a sequence for which xn = Wn, xn = 0; for this sequence the above expression simplifies to

fn
DE − fn

SP = Wn − 0.5(Wn)
2
.

Now for any Cf > 0 this expression becomes larger than Cf (W
n)

2 for the node n0, for which

Wn0 <
1

Cf + 0.5
,

i.e., SPn
s is at best first-order convergent at the unconstrained minimizer xDEn

.
In summary, the present implementation of MUSE-BB may suffer from clustering around unconstrained

minimizers. To address this, an alternative LBS with at least quadratic convergence order is required. In the
following section we analyze an extension of MUSE-BB whose LBS has this property.

5.3 Second-Order Convergence
In this section we show that using LSPn

s instead of SPn
s , i.e., dualizing the NACs instead of dropping them, enables

at least second-order convergence at unconstrained minimizers. Additionally, we consider the resulting effect on the
implementation, i.e., how the LBS LPn

s needs to be adapted when using LSPn
s .

A necessary condition for a LBS to have β-order convergence is that the relaxations used for its construction
have β-order convergence, also see Kannan and Barton, 2017a. While this condition is generally not sufficient
for β-order convergence of the resulting LBS, it is sufficient for β-order convergence around Slater points, i.e.,
unconstrained feasible points (Corollaries 2, 3 of Kannan and Barton, 2017a).

The analysis of Robertson, Cheng, and Scott, 2020 for PBDA shows that the optimal objective value fXn,Y
LR (λ∗),

obtained from the subproblems LSPXn,Ys
s , where the NACs are dualized instead of dropped, is equivalent to

minimizing the ws-weighted sum of convex envelopes of fXn,Y
s . As a result, fXn,Y

LR (λ∗) constitutes a (constant
valued) relaxation of the objective function f on the domain Xn × Y . Furthermore, they show that this relaxation
is at least second-order convergent with respect to W(Xn), i.e.,

min
x∈Xn

∑
s∈S

fXn,Ys
s (x)− fXn,Y

LR (λ∗) ≤ τ W(Xn)β

with β ≥ 2, provided the scenario value functions fXn,Ys
s are C2, i.e., twice continuously differentiable. We point

out that in fact, the slightly weaker assumption that f merely has bounded second-order directional derivatives, i.e.,
that it is C1,1, is also sufficient for second-order convergence of fXn,Y

LR (λ∗), also see Zlobec, 2005. In the special
case where the fXn,Ys

s are convex, β above may take any positive value, i.e., the convergence is arbitrarily high.
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Note that β-order convergence of fXn,Y
LR (λ∗) immediately implies β-order convergence of the LBS LSPXn,Ys

s at
unconstrained feasible points (and in particular at unconstrained minimizers), because around such points fn

DE,
i.e., the optimal value of DEn, is equivalent to min

x∈Xn

∑
s∈S fXn,Ys

s (x), also see Corollaries 2 and 3 of Kannan and

Barton, 2017a. Furthermore, β-order convergence with respect to W(Xn) implies β-order convergence with respect
to W(Zn), since W(Xn) ≤ W(Zn). As a result, the same line of argument naturally also holds for the scheme
LSPn

s := LSPXn,Yn
s

s , which for any Xn produces stronger bounds than LSPXn,Ys
s . Hence, the relaxations fXn,Yn

LR (λ∗)
are at least second-order convergent, and Corollaries 2 and 3 of Kannan and Barton, 2017a ensure second-order
convergence of LSPn

s at unconstrained feasible points. The following example demonstrates the improvement of
convergence order of LSPn

s over SPn
s .

Example 4. Take the problem from Example 3. The optimal dual values for this problem are λ∗
s = (2,−2),

such that the objectives of LSPn
s are fs(xs) + λsxs = (xs ∓ 1)2 ± 2xs = x2

s + 1. Hence, both subproblems
are solved at xLSPn

1 = xLSPn

2 = xDEn

= 0, and the difference in objective values is:

fn
DE − fn

LSP = 1− 0.5
(
(0 + 1)2 + (0 + 1)2

)
= 0,

i.e., LSPn
s is exact and as such has arbitrarily high convergence order at the unconstrained minimizer xDEn

.
Note that the arbitrarily high convergence order in Example 4 results from the fact that the scenario value

functions fX ,Ys
s are convex. If fX ,Ys

s are not convex, at least second-order convergence is guaranteed by the previous
arguments.

Several results from nonlinear parametric programming provide different regularity conditions under which
fXn,Ys
s are C2. In particular, if we assume f is C2, and that the second-order sufficient condition (SOSC):

∇f(zDE) = 0

∇2f(zDE) ≻ 0
(SOSC(zDE))

holds at an unconstrained minimizer zDE = (xDE,yDE) of DE, the fact that fXn,Ys
s are C2 follows from the Implicit

Function Theorem (Fiacco, 1983, cf., e.g., Corollary 3.2.3).
Other variants of the Implicit Function Theorem provide similar results for unconstrained minimizers that do

not satisfy SOSC(zDE), e.g., Theorem 3.3 of Ginchev, Torre, and Rocca, 2009, or even for constrained minimizers,
satisfying certain regularity conditions, related to the growth of the Lagrangian of f , e.g., Fiacco, 1983 and
Stechlinski, Khan, and Barton, 2018.

We next show how the stronger convergence properties of the LBS LSPn
s can be incorporated into MUSE-BB via

an adaption of the lower bounding problems subproblems LPn
s . Recall that LPn

s result from three subsequent levels
of relaxation: after dropping the NACs from DEX ,Y

NAC (i), the resulting subproblems SPn
s are further relaxing the

via McCormick’s method (ii) and outer approximation (iii), resulting in the linear lower bounding problems LPn
s .

In this context, dualizing the NACs, corresponds to replacing the subproblems SPn
s with LSPn

s , and performing
the subsequent relaxations. Note that the only difference between SPn

s and LSPn
s are the additional terms λ⊺

sxs.
The McCormick relaxation of the sum of the original, nonlinear objective fs(xs,ys), and the linear term λ⊺

sxs is
simply f cv,n

s (xs,ys) +λ⊺
sxs (cf. Proposition 2 of Bompadre and Mitsos, 2011). Next we consider the subtangents of

these terms: if ∇̌f cv,n
s is the subgradient of f cv,n

s , used in the original instance of LPn
s , then ∇̌f cv,n

s + λs is a valid
subgradient of f cv,n

s (xs,ys) +λ⊺
sxs (cf. Proposition 2.3.3 of Clarke, 1990). As a result, replacing SPn

s with LSPn
s in

MUSE-BB is equivalent to adding λs to the coefficients of xs in the first set of constraints, of the subproblems
LPn

s . Furthermore, the multipliers can be updated by performing dual iterations with these modified linear lower
bounding subproblem.

Thus similar to PBDAs, the LBS used in MUSE-BB can be made second-order convergent at certain minimizers
by dualizing the NACs instead of dropping them. However, the use of optimal dual multipliers λ∗ appears to be a
requirement for second-order convergence, and, as already pointed out in Section 4.1, obtaining such multipliers
is generally very challenging. The fact that SPn

s can be interpreted as an instance of LSPn
s with the suboptimal

multipliers λ = 0, indicates that even suboptimal multipliers may result in a first-order convergent LBS, also see
the related result on a Lagrangian dual-based LBS for general nonlinear programming problems in Theorem 6 of
Kannan and Barton, 2017a. Therefore it may be sufficient to limit multiplier updates to small nodes suspected to
contain the neighborhoods of critical minimizers. However, we leave the investigation of such approaches for future
work.
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6 Computational Results
We now present computational results obtained with the parallelized decomposition algorithm MUSE-BB, and
outline how it compares against solving the deterministic equivalent formulation DEX ,Y with the standard version
of MAiNGO. We do not compare with other deterministic global solvers as these generally employ different routines
for management of the B&B tree, generating relaxations of individual functions, and solving individual lower and
upper bounding problems, distorting the effect of the decomposition. MUSE-BB performs upper bounding based
on the subproblems SPn

s , and OBBT, lower bounding, and DBBT, based on the separable subproblems LPn
s . All

scenario subproblems are solved simultaneously, using one thread per scenario. MAiNGO performs upper bounding
based on DEn and all other routines based on a linearization of DEn, using a single thread.

We consider variants of a simple test problem with Nx = Ny = 1 and Ns = 4, 8, and 16, i.e., with different size
based on the number of scenarios. The test problem is a simplified design and operation problem for a combined
heat and power (CHP) system, based on stochastic heat and power demands. Scenarios for demand data are
generated from a seeded pseudorandom sampling, ensuring identical instances upon repetition for a given Ns

value. The problem involves nonlinearities related to economies of scale, thermal and electrical efficiencies, and the
implementation of a minimal part-load constraint. A detailed description of the problem is given in Appendix A.

We focus on the performance difference of the lower bounding routines, hence all experiments are performed
with initial points based on dense uniform sampling of 1000 values in each of the x and ys domains, which always
results in εf -optimal initial points, that are never improved during the course of the algorithm. We use the default
settings of MAiNGO, including a relative optimality tolerance of 1%. All computational experiments are performed
on the RWTH Compute Cluster “CLAIX-2018”. Each compute node has 2 Intel Xeon Platinum 8160 Processors
with 2.1GHz, 24 cores each, i.e., there is a total of 48 cores per compute node, and 4GB of main memory per
core. In initial tests we observed significant variation of run times, both for MAiNGO and MUSE-BB. We attribute
this variation to execution on particular – likely overloaded – compute nodes which consistently require longer
solution times compared to other compute nodes. To reduce the effect of this variation, we repeat the solution of
each considered instance 20 times and report median values of the resulting solution times and optimality gaps.

6.1 Importance of Branching Priority
Initially we will focus on the case kmax = 1, i.e., we branch only on second-stage variable instances that either
produce infeasible subproblems or produce the highest strong-branching score. This means each multisection of
second stage variables results in at most 2 child nodes being created, i.e., as in a standard B&B algorithm like
MAiNGO.

In problems like DE, exhibiting two-stage structure, the first-stage variables appear in all of the scenario
subproblems, while the second-stage variable instances only appear in one, each. This suggests a higher importance
of branching on first-stage vs. second-stage variables, especially with increasing Ns. In B&B algorithms, the priority
with which variables are branched is typically controlled via branching priorities for individual variables, which
are multiplied with the relative interval width before selecting a variable to branch on, also cf. the description of
Subroutine 1. As a result, it seems intuitive that B&B algorithms solving DE may generally benefit from relatively
high branching priorities for the first-stage variables compared to the second-stage variables, independent of whether
decomposition is used or not. For this reason, we compare how MAiNGO and MUSE-BB perform with different
branching priority ratios

ρ =
first-stage branching priority

second-stage branching priority
,

which in the present case (Nx = Ny = 1) correspond to the branching priority of x (the priority for ys being 1).
Fig. 3 shows the wall times spent in B&B when using MAiNGO and MUSE-BB on problem instances with

Ns ∈ {4, 8, 16}. Both individual times (colored dots), as well as the median times (horizontal lines) are depicted.
Tab. 1 lists the median wall times and relative gaps for instances which do not terminate within the time-limit of
one hour. In general, the ρ values minimizing average wall time for each scenario are much lower for MAiNGO than
for MUSE-BB. However, low ρ values lead to significantly worse performance for MUSE-BB than for MAiNGO, e.g.,
all runs for (Ns, ρ) = (8, 1) time out after one hour with a median remaining gap of 2.4%. For Ns = 16, all instances
solved with MAiNGO time out, while for MUSE-BB almost all instances with ρ values above 4 terminate (with the
exception of two outliers for ρ = 16). This indicates the importance of appropriate branching priorities when solving
stochastic problems in general, and when using MUSE-BB in particular. When comparing the best ρ values for
each scenario (bold in Tab. 1), MUSE-BB outperforms MAiNGO in terms of wall time by a factor of 3.5 and 15 for
Ns = 4 and Ns = 8, respectively. For Ns = 16 the value is expected to be significantly larger than 3600/295.3 ≈ 12.
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Fig. 3. Variation of solution time for deterministic equiv-
alent (MAiNGO) and parallel decomposition (MUSE-BB)
with ρ for Ns ∈ {4, 8, 16} over 20 runs each. Parame-
ter combinations without data points did not terminate
within 3600s, also see Tab. 1.

Tab. 1. Median B&B wall times in seconds over 20 runs,
or remaining relative optimality gaps in % (computed as 1 -
ratio of lower to upper bound) after 3600 s for solving the CHP
sizing model with different number of scenarios and branching
priorities, using MAiNGO and MUSE-BB. Two out of the
20 runs for the instance Ns = ρ = 16, solved with MUSE-
BB, timed out. The median is computed with respect to the
remaining 18 runs. Minima for each column (highlighted in
bold) indicate that the performance of MUSE-BB relatively
to MAiNGO improves with an increase of scenarios, and thus
problem size.

algor. MAiNGO MUSE-BB

ρ\Ns 4 8 16 4 8 16

1 1.7 145 17% 2.6 2.4% 20%
2 1.1 77 8.8% 0.82 62 7.6%
4 1.1 59 4.6% 0.42 12 2.8%
8 1.4 55 3.7% 0.33 4.3 1292

16 2.2 98 3.8% 0.43 3.5 765
32 3.9 142 4.3% 0.75 5.2 329
64 8.2 342 5.0% 1.6 7.8 295

128 16 550 5.7% 3.0 14 436

Note that already for these relatively small problem sizes outperformance is close to or even larger than the
number of scenarios and thus the number of used threads. This implies that MUSE-BB can be more favorable than
more general parallelization approaches such as, e.g., the MPI parallelization of MAiNGO, where open nodes are
processed by different CPUs (not used in this work). While such general parallelization approaches are more widely
applicable, they do not exploit the special problem structure of DE. Consequently they may be used in conjunction
with the parallel processing of individual B&B nodes presented in this work to optimally use computational
infrastructure.

The results indicate that optimal branching priority ratios (i.e., ρ values resulting in minimal median wall time)
may increase with the number of scenarios considered. Nevertheless, a projection-based approach, where only the
first-stage variables are branched (corresponding to ρ→∞) appears unfavorable, as wall times increase significantly
for large ρ-values.

6.2 Effect of Multisection
We next consider the effect of the multisection parameters kmax, and η. Recall that every time a second-stage variable
is selected for branching, we solve the 2Ns independent subproblems, resulting from the multisection involving the
corresponding Ns variable instances for different scenarios. We then use the results to compute strong-branching
scores σs for each partitioned variable, and create up to 2kmax child nodes, with the actual number being controlled
by the value of the strong-branching threshold η ∈ (0, 1], i.e., we reject partitions with a strong-branching score
below ησs, see Section 4.4.

For each Ns value, we take the three ρ values for which MUSE-BB performed best at kmax = 1, and perform
further experiments for kmax ∈ {2, 4, 8}, and η ∈ {0.1, 0.2, 0.5, 0.8, 1}. Increasing values of kmax, and decreasing
values of η allow a larger number of child nodes to be created from each multisection, i.e., the maximum is 28 = 256
for (kmax, η) = (8, 1). We point out that multiple variables may achieve the maximum strong-branching score.
Hence, even for η = 1, the settings kmax = 1, and kmax > 1, may produce different B&B trees (and thus wall times)
for a given problem instance, as the latter setting allows multiple variables to be branched, while the former does
not.
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Fig. 4. Variation of solution times for solving the CHP sizing problem using MUSE-BB with kmax ∈ {1, 2, 4, 8}, and
η ∈ {0.1, 0.2, 0.5, 0.8, 1} for the three ρ values resulting in the lowest median wall times for (kmax, Ns) = (1, 16). For each
parameter combination, a set of 20 runs is performed. For (kmax, ρ, η) = (8, 32, 0.1), (8, 32, 0.2), and (8, 64, 0.1), 8, 2, and 3
runs timed out after 3600 s, respectively. Medians with respect to the remaining runs are depicted as horizontal black lines
and the lowest median time for kmax = 1 is depicted as a dashed red line for reference. Increasing kmax generally results in
larger wall times, and for kmax = 4 and 8, increasing η results in smaller wall times.

As before, we repeat the solution for each parameter combination 20 times. Since combinations with Ns = 4,
and Ns = 8, show no clear trend for the effect of kmax, or η, we only focus on combinations with Ns = 16, the
results of which are depicted in Fig. 4. The B&B wall times of all investigated combinations are visualized in Fig. 6
in Appendix B . Only a small set of parameter combinations results in improvements over the best median wall
time for kmax = 1, (i.e., 295 s for ρ = 64). However, these improvements are mostly insignificant, with the best
median wall time of 272 s (achieved for (kmax, ρ, η) = (4, 32, 1)) corresponding to an improvement of less than 8%.
For the remaining parameter combinations median wall times remain the same or increase. While combinations
with (Ns, kmax) = (16, 2) show no clear trend for the effect of η, for (Ns, kmax) = (16, 4), and (16, 8), an increase of
η results in reductions of wall time. In general, an increase of kmax results in an increase of median wall times.

In summary, the results suggest that the setting kmax = 1 is preferable for the majority of considered problem
instances. Note that partitions which produce a single infeasible subproblem may always be used, as they effectively
result in domain reduction, and do not increase the number of child nodes. Thus, for kmax = 1, only a single pair of
child nodes is generated, and the process of node generation is very similar to that of classical strong-branching in
standard B&B. However, MUSE-BB solves smaller subproblems, which contain a subset of all problem variables
and may reuse domain information from the rejected partitions to tighten the domain of the produced child nodes.

7 Summary and Outlook
We present MUSE-BB, a multisection B&B-based decomposition algorithm for the deterministic global optimization
of general nonconvex nonlinear two-stage problems. We prove finite εf -convergence, show favorable convergence
order of our lower bounding scheme, compared to existing algorithms, and provide initial computational results
indicating good scalability of MUSE-BB with the number of scenarios.

Existing decomposition algorithms for two-stage nonconvex MINLP problems (Kannan, 2018; Cao and Zavala,
2019; Li and Grossmann, 2019) have been classified as PBDAs (Robertson, Cheng, and Scott, 2020), since they
all employ spatial B&B in the first-stage variables. PBDAs achieve this by solving decomposable subproblems of
both first- and second-stage variables in each node. To obtain good lower bounds, these subproblems are solved
globally via a nested spatial B&B. Instead, we propose to branch on both first- and second-stage variables within a
single B&B tree, and to further relax subproblems, avoiding duplicate branching on first-stage variables, and the
nesting of spatial B&B procedures. We either branch normally on a single first-stage variable, or we simultaneously
branch on multiple second-stage variables from different scenarios. While such multisection produces an exponential
number of child nodes, the total number of distinct subproblems is only linear in the number of scenarios, by virtue
of the decomposition. Thus, we only need to process the distinct subproblems and can generate child nodes by
appropriately combining the subproblem results. To avoid an excessive number of child nodes with poor lower
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bounds, we select a subset of variable partitions, using the associated strong-branching scores, which are readily
available after processing. This allows to only generate child nodes corresponding to promising partitions with high
strong-branching score.

Our theoretical results show that by branching on all variables, the lower bounding scheme of MUSE-BB
generally has a convergence order of one, if all functions are Lipschitz. This is in contrast to lower bounding schemes
of existing decomposition algorithms, which may have convergence orders below one, in general (Robertson, Cheng,
and Scott, 2020). Whether or not this improved convergence order actually translates into an advantage with
respect to the occurrence of clustering is however not clear at this point, and requires further investigation.

We perform initial computational experiments with a small test problem, which despite its size still incorporates
relevant nonlinearities found in applications. Our results highlight the importance of choosing appropriate branching
priorities for both general B&B and decomposition algorithms. Moreover, the results show that even for this
small problem and small numbers of scenarios, MUSE-BB can significantly outperform the standard version of
our open-source deterministic global solver MAiNGO, applied to the deterministic equivalent formulation. For the
considered problem instances, the best wall times of MUSE-BB are achieved when limiting the number of child
nodes resulting from multisection to two.

Future work includes theoretical and computational comparison of MUSE-BB with other decomposition algo-
rithms; in particular, determining which method is preferable in different situations, e.g., depending on the number
of first- and second-stage variables, and scenarios.

As with existing decomposition algorithms, the lower bounding scheme of MUSE-BB may be improved by
dualizing the coupling (nonanticipativity) constraints instead of dropping them. The resulting lower bounding
scheme can be shown to have second-order convergence at minimizers satisfying certain regularity conditions.
However, this extension requires optimal dual multipliers, which are expensive to compute in general. The details of
how such an extension can be implemented need to be clarified.

We aim to investigate the effect of combining the parallel bounding routines of MUSE-BB with more general B&B
parallelization as implemented in MAiNGO, as this is expected to make MUSE-BB applicable to much larger, more
realistic case studies. Furthermore, it may be interesting to generalize the presented implementation to problems
with different numbers of second-stage variables and constraints. A related extension would allow branching on
arbitrary combinations of second-stage variables from different scenarios, instead of limiting multisection to scenario
instances of a particular second-stage variable. Finally, the decomposable bounding routines of MUSE-BB may
enable efficient strong-branching in problems that do not fall into the category of two-stage programming problems,
but still exhibit block structures, coupled by complicating constraints.
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A Test Problem
We consider the design of a combined heat and power (CHP) unit, i.e., an equipment sizing problem whose aim
is to satisfy given heat and power demands at minimum cost, see Fig. 5. The size of the CHP is expressed as a

CHP

ηel

ηth

∑
= 0

∑
= 0

Grid

Ėgas

Q̇out

Pout Pdem

Q̇dem

Pbuy Psell

Q̇diss

Fig. 5. Conceptual CHP operation

nominal heat output Q̇nom, which corresponds to the maximum thermal output Q̇out. The actual output at any
given point is determined by a relative heat output Q̇rel:

Q̇out := Q̇nom Q̇rel (3)

The energy input to the CHP in terms of lower heating value of natural gas, Ėgas, can be calculated via the thermal
efficiency ηth, which is a function of Q̇nom and Q̇rel:

Ėgas :=
Q̇out

ηth(Q̇nom, Q̇rel)
(4)

Following this the power output Pout can be computed via the electrical efficiency ηth, which is also a function of
Q̇nom and Q̇rel:

Pout := Ėgas ηel(Q̇nom, Q̇rel) (5)

The functional form of the efficiencies ηth and ηel is given by:

ηth(Q̇nom, Q̇rel) := ηth,nom(Q̇nom) ηth,rel(Q̇rel) (6)

ηth,nom(Q̇nom) := 0.498− Q̇nom

21.17MW
(7)

ηth,rel(Q̇rel) := 1.10− 0.0768 (Q̇rel + 0.130)2 (8)

ηel(Q̇nom Q̇rel) := ηel,nom(Q̇nom) ηel,rel(Q̇rel) (9)

ηel,nom(Q̇nom) := 0.372 +
Q̇nom

21.17MW
(10)

ηel,rel(Q̇rel) := 1.02− 0.435 (0.774 Q̇rel − 1)2 (11)

A heat shortage, defined as
Q̇short := Q̇dem − Q̇out (12)

must be avoided (i.e., Q̇short must be negative). Correspondingly, the power shortage can be defined as:

Pshort := Pdem − Pout (13)

A power shortage can be adressed by purchasing power from the grid, i.e.:

Pbuy := max(0, Pshort) (14)
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If Pshort or Q̇short are negative, the excess power can be sold to the grid at a reduced price, while the excess heat
can be dissipated into the environment:

Ṗsell := max(0,−Pshort) (15)

Q̇diss := max(0,−Q̇short). (16)

With these definitions we can formulate a reduced-space problem that contains the nominal heat output as
the only first-stage variable, i.e: x = (Q̇nom) ∈ [1.4MW, 2.3MW], and the part-load in each scenario as the only
second-stage variable, i.e: ys = (Q̇rel,s) ∈ [0, 1].

We choose total annualized costs (TAC) in million € as the objective function. The first-stage objective function
describes the annualized investment costs (according to an economy of scales approach) and the second-stage
objectives correspond to the annual operating costs in each scenario:

fI(x) = 149 567€/a

(
Q̇nom

1MW

)0.9

× 10−6 (17)

fII,s(x,ys) = Top( pgas Ėgas,s

+ pel,buy Pbuy,s

− pel,sell Psell,s)× 10−6 (18)

Where Top = 6000 h/a, pgas = 80€/(MWh), pel,buy = 250€/(MWh), pel,sell = 100€/(MWh)
We approximate the requirement that the CHP unit must either be inactive or operate above a minimal part-load

threshold of 50% with quadratic second-stage constraints of the form

0.0619263− (Q̇rel,s − 0.25115)2 ≤ 0 (19)

which restrict the relative outputs Q̇rel,s to less than 0.1%, or more than 50% part-load. An additional constraint is
that

Q̇short,s ≤ 0, (20)

also see Eq. (12). Note that Eq. (19) implies that heat demands corresponding to part-loads between 0.1% and
50% cannot be satisfied. To ensure the considered instances have a feasible solution, the randomly generated heat
demands are set to 0 if they fall into this range. Similarly, the generated power and heat demands are capped to
the highest possible production.
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B Parameter Study for kmax and η

Fig. 6. Variation of solution times for solving the CHP sizing problem using MUSE-BB with kmax ∈ {1, 2, 4, 8}, and
η ∈ {0.1, 0.2, 0.5, 0.8, 1} for the three ρ values resulting in the lowest median wall times for Ns = 4, 8, and 16, with kmax = 1.
For each parameter combination, a set of 20 runs is performed. For (kmax, ρ, η) = (8, 32, 0.1), (8, 32, 0.2), and (8, 64, 0.1), 8, 2,
and 3 runs timed out after 3600 s, respectively. Medians with respect to the remaining runs are depicted as horizontal black
lines and the lowest median time for kmax = 1 is depicted as a dashed red line for reference. Whereas for Ns = 4, and 8,
no clear trend is discernible, for Ns = 16, increasing kmax generally results in larger wall times, and for kmax = 4, and 8,
increasing η results in smaller wall times.

C Overview of Functions and Optimization Problems

Function explanation

f overall objective function
fI first-stage objective function
fII,s second-stage objective function
fYs

II,s second-stage optimal value function
fs scenario objective function
fX ,Ys
s scenario optimal value function
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Problem explanation

TSP two-stage (stochastic programming) problem
DE (DEn) deterministic equivalent form of TSP (restricted to the domain of node n)
DENAC NAC formulation, equivalent to DE and TSP
RPn

s recourse problems for a given value of x for node n (providing upper bounds)
LSPn

s relaxations of DENAC for node n by dualizing NACs with multipliers λs

SPn
s relaxations of DENAC for node n by dropping NACs

MCn
s McCormick relaxation of SPn

s for node n
LPn

s linear relaxation of MCn
s for node n (providing lower bounds)

OBBTn
s,v OBBT problems for variable v and node n

Rn
s generic scenario relaxation for node n

Nomenclature
Symbols

F feasible set of an optimization problem

f objective function

g generic constraint function vector

h nonanticipativity constraints

L list of k scenarios for which both sibling subproblems are feasible, the associated second-stage variable
instances will be branched, producing 2k orthant nodes

M map from scenarios producing exactly one infeasible sibling subproblem to the sibling n with a feasible
subproblem, the associated second-stage variable instances will be branched, but do not add to the number
of orthant nodes generated

N Number, e.g., of first-stage variables (subscript x) or second-stage constraints (subscript II)

n node of the B&B tree

N Set of open nodes of the B&B tree

s Scenario

∇̌ subgradient

X domain of x

x first-stage variables

Y domain of y

y second-stage variables

Subscripts

• related to lower bound

I related to first-stage

II related to second-stage

Superscripts

• related to upper bound

cv convex relaxation

† related to incumbent

∗ related to optimal solution
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