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Abstract

We consider Benders decomposition algorithms for multistage stochastic mixed-integer
programs (SMIPs) with general mixed-integer decision variables at every node in the scenario
tree. We derive a hierarchy of convex polyhedral lower bounds for the value functions and
expected cost to-go functions in multistage SMIPs using affine parametric cutting planes in
extended spaces for the feasible regions in the problem. We improve this hierarchy of convex
polyhedral lower bounds using so-called scaled cuts, and moreover we construct a scaled-cut
decomposition algorithm that iteratively improves the convex polyhedral lower bounds of
the expected cost to-go functions at every node of the scenario tree in such a way that the
first-stage lower bound converges uniformly to the convex envelope of the first-stage expected
cost to-go function. This is the best convex polyhedral lower bound possible. Our main
convergence result depends on novel results for scaled cuts of expectations over lower semi-
continuous value functions, and on the analysis of so-called δ-exact scaled cuts.

1 Introduction

We consider multistage stochastic mixed-integer programs (SMIPs) with T time stages, where the
uncertainty in the problem can be modelled using a scenario tree T . We use n ∈ N to denote
the nodes of this scenario tree T , and let tn denote the time stage in which node n is located.
Moreover, we let n = 1 denote the root node and L ⊂ N the set of leaf nodes of the scenario
tree, respectively, and we let pn ∈ [0, 1] denote the probability that node n ∈ N of the scenario
tree is reached. Furthermore, for every n ∈ N , we let a(n) denote the unique ancestor node of
n, where we define a(1) = 0 and x0 = 0 for notational convenience, and we let C(n) denote the
set of children nodes of n. Using this notation, the large-scale deterministic formulation of our
multistage SMIP is given by

η∗ = min
xn

{ ∑
n∈N

pnc
>
n xn : xn ∈ Xn, Tnxa(n) +Wnxn = hn, ∀n ∈ N

}
. (1)

Here, cn denotes the unit cost vector of the decisions xn in node n ∈ N , and xn ∈ Xn and
Tnxa(n) + Wnxn = hn represent the constraints in node n ∈ N . We use the set Xn to model
simple bounds, including non-negativity constraints, and integrality constraints on the decisions
xn. Moreover, in what follows we will define Xn(xa(n)) as the set of feasible decisions in node n
for every n ∈ N and xa(n) ∈ Xa(n). That is, for all n ∈ N , we define

Xn(xa(n)) =
{
xn ∈ Xn : Tnxa(n) +Wnxn = hn

}
, xa(n) ∈ Xa(n),
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with the understanding that X0 = {0}.
Equivalently, we can define our multistage SMIP in (1) using the following nested formulation,

in which we define for every n ∈ N a value function vn and an expected cost to-go function Qn as

vn(xa(n)) = min
xn∈Xn(xa(n))

c>n xn +Qn(xn), xa(n) ∈ Xa(n), (2)

where the expected cost to-go function equals Qn ≡ 0 if n ∈ L, and

Qn(xn) =
∑

m∈C(n)

qnmvm(xn), xn ∈ Xn,

if n ∈ N\L, with qnm denoting the conditional probability of moving from node n to node m
in the scenario tree T . Observe that η∗ = v1(x0), that is, the optimal objective value v1(x0) of
the first-stage value function equals the optimal objective value η∗ of the large-scale deterministic
equivalent formulation in (1).

If all decision variables xn in our multistage SMIP are continuous, then all value functions vn
and expected cost to-go functions Qn are convex, see, e.g., [3, 18]. This property has been exploited
to derive convex optimization based algorithms for such continuous multistage stochastic programs
(SPs), including nested Benders decomposition [2], stochastic dual dynamic programming (SDDP)
[10], progressive hedging [13], and variants thereof. The main challenge in solving multistage
SMIPs, however, is that contrary to their continuous counterparts, the value functions vn and
expected cost to-go functions Qn in SMIPs are typically non-convex due to the integer decision
variables involved.

A successful approach to deal with these non-convex function in the special case of two-stage
SMIPs, i.e., when T = 2, is to convexify the second-stage feasible region using cutting planes. In
this way, the integrality restrictions on the decision variables xn can be relaxed, and we obtain a
continuous multistage SP which is convex. See, e.g., Sen and Higle [16] for disjunctive cuts, Gade
et al. [7] for Gomory cuts, Ntaimo [9] for Fenchel cuts, and [12, 14, 17, 19, 21] for other cutting
plane approaches. The challenge, however, with applying cutting planes in a two-stage stochastic
setting compared to deterministic MIPs, is that the second-stage feasible regions depend on the
first-stage decision x1, which means that the cutting planes need to be parametric in x1 to be
able to use them in any practical decomposition algorithm. Additionally, these parametric cutting
planes are typically restricted to be affine in x1, because this leads to affine optimality cuts in
the master problem. As a result, the master problem remains computationally tractable. Affine
parametric cutting planes have proven to be effective when the first-stage decision variables are
pure binary. For general mixed-integer first-stage variables, however, they are generally not strong
enough to obtain tight lower bounds.

Van der Laan and Romeijnders [20] show how to improve upon these affine parametric cutting
planes when the first-stage variables are mixed-integer. They do so by constructing nonlinear
lower bounds for the non-convex second-stage value functions, and by transforming the resulting
nonlinear optimality cut in an affine so-called scaled cut for the master problem. Here, the nonlin-
ear lower bounds for the second-stage value functions depend directly on Q̂1, the current convex
polyhedral outer approximation, i.e., lower bound, of the first-stage expected cost to-go function
Q1. Van der Laan and Romeijnders [20] show that by iteratively improving the current outer
approximation Q̂1 using scaled cuts, the outer approximation converges uniformly to the convex
envelope of Q1, which is the best possible convex polyhedral lower bound.

In this paper, inspired by their success in the two-stage setting, we consider affine parametric
cutting planes and scaled cuts for multistage SMIPs. In particular, we investigate the strength
of the convex polyhedral outer approximations of the value functions vn and expected cost to-go
functions Qn that we may obtain using affine parametric cutting planes for the feasible regions
in the model. A surprisingly subtle, but relevant difference between multistage SMIPs and their
two-stage counterparts, is that in two-stage SMIPs the domain X1(x0) of the second-stage value
functions vn(x1), n ∈ C(1), is fixed, whereas in later time stages of multistage SMIPs, the domain
Xa(n)(xa2(n)) of vn(xa(n)) depends on the previous-stage decision xa2(n). Here, we define a2(n)
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as the ancestor node of a(n), and in general for any r = 1, . . . , tn − 1, we let ar(n) denote the
r-th ancestor node of n, going back r generations. We will show that although vn itself does not
directly depend on xa2(n), the convex polyhedral outer approximation of vn may improve if we
allow the affine parametric cutting planes for its feasible region to depend on xa2(n). In fact, by
constructing affine parametric cutting planes in extended spaces, i.e., depending on increasingly
many previous-stage decisions xa2(n), . . . , x1, we are able to derive a hierarchy of convex polyhedral
outer approximations for the value functions and expected cost to-go functions in the model.

In general, however, using affine parametric cutting planes does not lead to tight outer ap-
proximations, similar as for two-stage SMIPs. That is why, we use scaled cuts to improve these
outer approximations, similar as van der Laan and Romeijnders [20] for two-stage SMIPs, leading
to a hierarchy of scaled cut based convex polyhedral lower bounds for the value functions and
expected cost to-go functions in the model. The main additional challenge for multistage SMIPs
compared to two-stage SMIPs, however, is that in two-stage SMIPS all value functions correspond
to mixed-integer linear programs, whereas for multistage SMIPs, the value function at node n of
the scenario tree depends on the non-convex expected cost to-go function Qn, that in turn is lower
bounded by a convex polyhedral outer approximation. This implies that if the scaled cuts are
applied with the expected cost to-go function Qn replaced by an outer approximation, then the
scaled cuts may become inexact. Nevertheless, we are able to prove that by iteratively applying
scaled cuts at different nodes n ∈ N of the scenario tree to convex polyhedral outer approxima-
tions of Qn, where these scaled cuts depend on the outer approximations corresponding to all
ancestor nodes of n, we obtain a sequence of outer approximations for which the first-stage outer
approximation converges uniformly to the convex envelope of Q1.

To derive our main convergence result, we first extend the scaled cuts results from [20] to
expectations over lower semi-continuous (l.s.c.) value functions. Moreover, we introduce the
concept of so-called δ-exact scaled cuts, and analyze the performance of iteratively applying such
δ-exact scaled cuts. Finally, we derive a direct link between affine parametric cutting planes in
extended spaces and scaled cuts.

Summarizing, our main contributions are as follows.

• We derive a hierarchy of convex polyhedral lower bounds of the value functions and expected
cost functions in multistage SMIPs using affine parametric cutting planes in extended spaces
for the feasible regions in the problem.

• We derive a direct link between affine parametric cutting planes in extended spaces and
scaled cuts from [20].

• We extend the scaled cut results from [20] to expectations over l.s.c. value functions. More-
over, we introduce δ-exact scaled cuts and analyze the performance of applying such cuts
iteratively.

• We use scaled cuts to improve the hierarchy of affine parametric cutting plane based convex
polyhedral lower bounds.

• We construct a scaled-cut decomposition algorithm that maintains a convex polyhedral outer
approximation of Qn in an extended space at each node n ∈ N of the scenario tree. We prove
that by iteratively applying scaled cuts at different nodes n ∈ N , we obtain a sequence of
convex polyhedral outer approximations for which the first-stage outer approximation con-
verges uniformly to the convex envelope of Q1, which is the best possible convex polyhedral
lower bound.

Our scaled cut approach deviates from other work on multistage SMIPs in the following ways.
First of all, compared to the stochastic dual dynamic integer programming (SDDiP) algorithm
[22], we do not require to have binary state variables only, but allow for general mixed-integer
state variables. Moreover, an advantage of our scaled cut approach compared to for example
the stochastic Lipschitz dynamic programming algorithm from [1] and the non-convex Benders
decomposition algorithm from [6] is that the outer approximations in our approach remain convex
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polyhedral. Alternative works on multistage SMIPs include the MIDAS algorithm from [11] which
applies to multistage SMIPs with monotonic value functions, the dual decomposition algorithm
from [4], and Lagrangian dual decision rules from [5]. See also Maggioni and Pflug [8] and Sandikçi
and Özaltin [15] for bounds on the optimal objective value of multistage SMIPs.

The remainder of this paper is organized as follows. In Section 2 we discuss preliminary results
in the context of two-stage SMIPs. Here, we discuss the potential of applying affine parametric
cutting planes in extended spaces, and we derive a link between such cutting planes and scaled
cuts from [20]. In Section 3, we extend scaled cut results from [20] to the expectation over l.s.c.
value functions, and we introduce and analyze so-called δ-exact scaled cuts. In Section 4, we use
affine parametric cutting planes in extended spaces for the feasible region in the problem, to derive
a hierarchy of convex polyhedral outer approximations for the value functions and expected cost
to-go functions in multistage SMIPs, and in Section 5 we improve this hierarchy using scaled cuts,
and we construct a converging scaled-cut decomposition algorithm for SMIPs. We end with a
conclusion and discussion in Section 6. Finally, we note that throughout this paper all proofs are
postponed to the Appendix.

1.1 Notation and assumptions

For any two nodes n,m ∈ N with n = ar(m) for some r = 1, . . . , tn − 1, we define x[n:m]

as x[n:m] = (xn, . . . , xa(m), xm), i.e., as a vector containing all decisions along the path in the
scenario tree T from node n to m. Similarly, we define X[n:m] as X[n:m] = Xn×· · ·×Xa(m)×Xm,
and S[n:m] as

S[n:m] =
{
x[n:m] ∈ X[n:m] :

Tar+1(m)xar+1(m) +War(m)xar(m) = har(m), ∀r = 0, . . . , tm − tn − 1
}
.

Moreover, if n equals the root node, i.e., if n = 1, then we write x[m], X[m], and S[m].
Throughout, we let conv(X) denote the convex hull of a set X. Moreover, we let δX :

conv(X) → R ∪ {+∞} denote the characteristic function of X, defined for all x ∈ conv(X)
as δX(x) = 0, if x ∈ X, and δX(x) = +∞, if x /∈ X. Furthermore, for a function Q : X → R, we
define its closed convex envelope coX(Q) : conv(X) → R as the pointwise maximum of all affine
lower bounds of Q. Instead of coX(Q), we may also write co(Q) if the domain of Q is clear from
the context, or co(Q+ δX). With slight abuse of notation, we also write co(Q+ δΘ) to denote the
closed convex envelope of Q̂ : Θ→ R with Θ ⊂ X × Y and Q̂(x, y) = Q(x) for all (x, y) ∈ Θ.

Throughout this paper we make the following assumptions.

(i) We assume relatively complete recourse. That is, −∞ < vn(xa(n)) < +∞ for all n ∈ N and
xa(n) ∈ Xa(n).

(ii) We assume that all data is rational. That is, cn, Tn,Wn, and hn are rational for all n ∈ N .

(iii) We assume that Xn is bounded for all n ∈ N .

(iv) As a result of (i)–(iii), for every n ∈ N there exists an upper bound Un ∈ R such that
Qn(xn) ≤ Un for all xn ∈ Xn.

2 Preliminaries

In this section we discuss how to obtain convex polyhedral lower bounds for the expectation of
mixed-integer value functions using affine parametric cutting planes, extended spaces, and scaled
cuts in Sections 2.1–2.3, respectively. We use these results extensively in Sections 4 and 5 to derive
our hierarchy of convex polyhedral lower bounds for the expected cost to-go functions Qn. The
results in Sections 2.1 and 2.2 can also be found in, e.g., [19], whereas the results in Section 2.3
are new.
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2.1 Affine parametric cutting planes

Throughout this section we restrict ourselves to a generic expected cost function Q(x), defined on
a bounded mixed-integer polyhedral set X, with Q(x) := Eω[vω(x)], x ∈ X, where

vω(x) := min
z∈Zω(x)

q>ω z, x ∈ X,ω ∈ Ω, (3)

represents a generic mixed-integer value function in which the feasible region Zω(x) = {z ∈ Z :
Tωx+Wωz ≥ hω} is a mixed-integer polyhedral set parametrized by x.

Since vω(x) is the value function of a mixed-integer linear program for every x ∈ X, we can
equivalently solve it by replacing the feasible region Zω(x) by its convex hull conv(Zω(x)). That
is,

vω(x) := min
z∈conv(Zω(x))

q>ω z, x ∈ X,ω ∈ Ω. (4)

The problem with this approach, however, is that the cutting planes with which Zω(x) need
to be strengthened to obtain conv(Zω(x)) differ for every x, and thus cannot be reused. Hence,
instead we may strengthen Zω(x) using parametric cutting planes in x. However, the form of these
parametric cutting planes has significant impact on the computational tractability of the master
problem, since non-linear parametric cutting planes for the feasible region of vω may translate to
non-linear lower bounds for the expected cost functions Q. A sufficient condition to obtain convex
polyhedral lower bounds for Q is to use parametric cuts for Zω(x) that are affine in x.

Definition 1. An affine parametric cutting plane π>(x, z) ≥ π0 is valid for the feasible region
Zω(x) with respect to X if and only if for every x̄ ∈ X and z̄ ∈ Zω(x̄) it holds that π>(x̄, z̄) ≥ π0.

An important observation is that any affine parametric cut in x for Zω(x) is also valid for
Pω := {(x, z) ∈ X × Z : Tωx+Wωz ≥ hω}, and since it is an affine cut, also for conv(Pω).

Proposition 1. Let ω ∈ Ω be given and consider the feasible region in (3) for some x ∈ X. Then.
every affine parametric cutting plane for Zω(x) with respect to X is valid for

conv(Pω) = conv
{

(x, z) ∈ X × Z : Tωx+Wωz ≥ hω
}
.

Proposition 1 implies that the best lower bound for vω that we may obtain using affine para-
metric cuts, is to use all of those required to construct conv(Pω). In a practical algorithm, we never
intend to add all those cuts. However, from a theoretical perspective we will use this observation
to analyze the strength of the best possible lower bound that can be obtained using these affine
parametric cuting planes.

Definition 2. Consider the mixed-integer value function vω as defined in (3). Then, we define
νω as the best possible convex polyhedral lower bound of vω that can be obtained using affine
parametric cutting planes, given by

νω(x) := min
z

{
q>ω z : (x, z) ∈ conv(Pω)

}
, x ∈ conv(X). (5)

The function νω, defined on conv(X), is a convex polyhedral lower bound of vω. However,
contrary to the optimization problem in (4), the convexification in νω(x) does not necessarily
yield the exact optimal objective value vω(x) unless x is a vertex of conv(X).

Theorem 1. Consider the mixed-integer value function vω as defined in (3), and the convex
poyhedral lower bound νω from Definition 2. Then,

(i) νω(x) ≤ vω(x) for all x ∈ X, and
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(ii) νω(x) = vω(x) if x is an extreme point of conv(X).

The next example shows that the inequality in Theorem 1 (i) may be strict.

Example 1. Consider the one-dimensional mixed-integer value function

vω(x) = min
z∈Z+

{
z : z ≥ ω − 0.5x

}
,

for x ∈ X := Z+ ∩ [0, 2] and ω = 1. Figure 1 shows the set Pω = {(x, z) ∈ Z+ ∩ [0, 2] × Z+ :
z ≥ ω − 0.5x} for ω = 1, from which it is not hard to derive the feasible regions Zω(x) of vω(x)
for different values of x. In particular, for x = 1 and ω = 1, the feasible region Zω(x) of vω(x)

1

2
x

1

2

z

Figure 1: The regions Pω = {(x, z) ∈ Z+ ∩ [0, 2]×Z+ : z ≥ ω− 0.5x} and conv(Pω) corresponding
to Example 1 for ω = 1. The dots in the figure represent Pω and the shaded region corresponds
to conv(Pω).

equals Zω(x) = {z ∈ Z+ : z ≥ 0.5}. Hence, z∗ = 1 is the optimal solution in vω(x), and thus
vω(x) = 1, for x = 1 and ω = 1. However, for νω(x), as defined in (5), it holds for ω = 1 that
conv(Pω) = {(x, z) ∈ [0, 2] × R+ : z ≥ 1 − 0.5x}, see Figure 1, and thus for x = 1 the optimal
solution in

νω(x) = min
z
{z : (x, z) ∈ conv(Pω)} = min

z∈R+

{z : z ≥ 1− 0.5x},

equals z∗ = 0.5 with corresponding objective value νω(x) = 0.5. Hence, for ω = 1 and x = 1, the
convex polyhedral lower bound νω(x) is strictly smaller than vω(x). Note that indeed in this case

conv
(
Zω(x)

)
= [1,∞) 6= [0.5,∞) =

{
z ∈ R : (x, z) ∈ conv(Pω)

}
.

2.2 Affine parametric cutting planes in extended spaces

Example 1 shows that the lower bound νω is not necessarily tight for all x ∈ X, since affine
parametric cutting planes are not strong enough to yield conv(Zω(x)) for all x ∈ X. A surprising
way to improve this lower bound is to consider vω on an extended (x, y)-space, which we call
Θ. This may seem counterintuitive since y itself does not impact the value of vω(x). However,
Theorem 1 (ii) guarantees us that if (x̄, ȳ) is a vertex of conv(Θ), then we obtain a tight lower
bound of vω(x̄) even when x̄ is not a vertex of conv(X).

Definition 3. Let X be a bounded mixed-integer polyhedral set. Then, we call Θ an extended
space of X if Θ is of the form

Θ =
{

(x, y) ∈ X × Y : (x, y) ∈ F
}
,

where F is a mixed-integer polyhedral set.
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Definition 4. Consider the mixed-integer value function vω as defined in (3), and let Θ be an
extended space of X. Then, we define the best possible convex polyhedral lower bound of vω that
can be obtained using affine parametric cutting planes in the extended space Θ as

ν̂ω(x, y) := min
z

{
q>ω z : (x, y, z) ∈ conv(Eω)

}
, (6)

where Eω := {(x, y, z) ∈ Θ× Z : (x, z) ∈ Pω}.

Note that by interpreting vω as a mixed-integer value function defined on the extended space
Θ instead of X, it follows directly from Theorem 1 (i) that ν̂ω, defined on conv(Θ), is a convex
polyhedral lower bound for vω. Moreover, by Theorem 1 (ii) we have that ν̂ω(x, y) = vω(x) if (x, y)
is a vertex of conv(Θ). Furthermore, it turns out that the lower bound ν̂ω(x, y) in the extended
space Θ is always as least as good as the lower bound νω(x) in the original space X.

Theorem 2. Consider the mixed-integer value function vω as defined in (3), and let Θ be an
extended space of X. Consider the the convex poyhedral lower bounds νω(x) and ν̂ω(x, y) from
Definitions 2 and 4, respectively. Then,

(i) νω(x) ≤ ν̂ω(x, y) for all (x, y) ∈ conv(Θ),

(ii) ν̂ω(x, y) ≤ vω(x) for all (x, y) ∈ Θ, and

(iii) ν̂ω(x, y) = vω(x) if (x, y) is an extreme point of conv(Θ).

Example 2 below shows that the inequality in Theorem 2 (i) may be strict.

Example 2. Consider the mixed-integer value function vω(x) from Example 1, and consider the
extended space

Θ =
{

(x, y) ∈ X × R : y ≥ |1− x|
}
.

Then, the convex polyhedral lower bound from Definition 4 is given by ν̂ω(x, y) := minz

{
z :

(x, y, z) ∈ conv(Eω)
}

, where Eω := {(x, y, z) ∈ Θ×Z+ : z ≥ 1− 0.5x}. Figure 2 shows the sets Eω
and conv(Eω) for ω = 1.

Based on the right figure in Figure 2, we conclude that for (x, y) = (1, 0) and ω = 1, we
have that ν̂ω(x, y) = 1, and thus ν̂ω(x, y) is a tight lower bound for vω(x). Observe that all z-
solutions in [0.5, 1) are cut away by affine parametric cutting planes in the extended (x, y)-space
for (x, y) = (1, 0), whereas this was not possible for x = 1 in the orginal x-space, see Example 1.
Hence, in this case we have νω(x) < ν̂ω(x, y).

2.2.1 Monotone extended spaces

In some cases, extended spaced exhibit a certain special structure, which we refer to as monotone
extended spaces.

Definition 5. We call an extended space Θ =
{

(x, y) ∈ X×Y : (x, y) ∈ F
}

a monotone extended

space of X if and only if

(i) y1 ∈ Y and y2 ≥ y1 ⇒ y2 ∈ Y , and

(ii) for every y1, y2 ∈ Y with y1 ≤ y2, it holds that{
x ∈ X : (x, y1) ∈ F

}
⊆
{
x ∈ X : (x, y2) ∈ F

}
,

with the possibility that one of these two sets, or both, are empty.
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x

z
y

x

z
y

Figure 2: The right figure displays the regions Eω and conv(Eω) corresponding to Example 2 for
ω = 1. The black arrows represent Eω and the entire area above the shaded region represents
conv(Eω). The left figure is added to show that an additional cutting plane x+ y + 2z ≥ 3 in the
(x, y, z)-space is necessary to obtain conv(Eω) compared to the original constraints y ≥ |1−x| and
z ≥ 1− 0.5x. This additional cutting plane is left out in the left figure.

Obviously, the smaller y, the smaller the set {x ∈ X : (x, y) ∈ F}, and the better the
corresponding lower bound ν̂ω(x, y).

Theorem 3. Let Θ be a monotone extended space of X, and consider the convex polyhedral lower
bound v̂ω from Definition 4 for some ω ∈ Ω. Then, for every x ∈ conv(X) and (x, y1), (x, y2) ∈
conv(Θ) with y1 ≤ y2, it holds that

ν̂ω(x, y1) ≥ ν̂ω(x, y2).

An example of a monotone extended space Θ is the extended space

Θ =
{

(x, θ) ∈ X × R : θ ≥ ϕ(x)
}
,

where ϕ : conv(X) → R is a convex polyhedral function. For this extended space it follows from
Theorem 3 that ν̂ω(x, θ1) ≥ ν̂ω(x, θ2) if θ1 ≤ θ2. In other words, the lower bound ν̂ω(x, θ) improves
if θ decreases. Since ν̂ω(x, θ) = +∞ if θ < ϕ(x), we conclude that ν̂ω(x, ϕ(x)) ≥ ν̂ω(x, θ) for all
(x, θ) ∈ conv(Θ). That is, ν̂ω(x, ϕ(x)) is the best lower bound that we may deduce from the lower
bound ν̂ω(x, θ) based on the extended space Θ, since this lower bound is best if θ is small. The
larger θ, however, the worse the lower bound.

Lemma 1. Consider the monotone extended space

Θ =
{

(x, θ) ∈ X × R : θ ≥ ϕ(x)
}

for some convex polyhedral function ϕ : conv(X) → R, and consider the corresponding convex
polyhedral lower bound ν̂ω from Definition 4 for some ω ∈ Ω. Then, there exists θ∗ ∈ R such that
ν̂ω(x, θ) = νω(x) for all x ∈ conv(X) and θ ≥ θ∗.

Lemma 1 shows that the lower bound ν̂ω(x, θ) defined on the extended space conv(Θ) does not
improve the lower bound νω(x) defined on the original space conv(X) if θ is too large. Intuitively,
this makes sense, since if θ ≥ supx∈conv(X) ϕ(x), then knowledge of θ does not restrict the set of
feasible solutions x in any way.

It turns out that there is a direct relation between the type of monotone extended spaces from
Lemma 1 and nonlinear second-stage cuts that depend on ϕ, as Theorem 4 illustrates.
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Definition 6. Consider the mixed-integer value function vω from (3), and let ϕ : conv(X) → R
be a convex polyhedral function. Then, we define Πω(ϕ) as the set of cut coefficients (αω, βω, τω)
with τω ≥ 0 such that the nonlinear function αω − β>ω x − τωϕ(x) is a lower bound for vω on X.
That is,

Πω(ϕ) =
{

(αω, βω, τω) : vω(x) ≥ αω − β>ω x− τωϕ(x) ∀x ∈ X, τω ≥ 0
}
.

Theorem 4. Consider the monotone extended space Θ = {(x, θ) ∈ X × R : θ ≥ ϕ(x)} for some
convex polyhedral function ϕ : conv(X) → R. Then, for (x, θ) ∈ conv(Θ), the convex polyhedral
lower bound from Definition 4 is given by

ν̂ω(x, θ) = sup
(αω,βω,τω)∈Πω(ϕ)

αω − β>ω x− τωθ.

Theorem 4 implies that for monotone extended spaces of the form Θ = {(x, θ) ∈ X × R : θ ≥
ϕ(x)} for some convex polyhedral function ϕ, the convex polyhedral lower bound ν̂ω(x, θ) from
Definition 4, obtained using affine parametric cuts in the extended space Θ, can be equivalently
expressed as the pointwise maximum of affine functions in (x, θ) depending on the cut coefficients
(αω, βω, τω) ∈ Πω(ϕ).

2.3 Scaled cuts

We can use our analysis from the previous sections to derive a lower bound for the expected value
function Q, since for every extended space Θ of X, it holds that

Q(x) ≥ Eω[ν̂ω(x, θ)], ∀(x, θ) ∈ Θ.

This lower bound Q̂, defined as Q̂(x, θ) := Eω[ν̂ω(x, θ)] for (x, θ) ∈ conv(Θ), is convex in (x, θ) on
conv(Θ), but not necessarily in x on conv(X) when we select θ := θ(x) as a function of x. We will
show in this section that for monotone extended spaces of the form

Θ =
{

(x, θ) ∈ X × R : θ ≥ ϕ(x)
}
,

where ϕ : conv(X)→ R is a convex polyhedral function and a lower bound of Q with ϕ(x) ≤ Q(x)
for all x ∈ X, it is possible to select θ(x) such that the resulting function Q̂(x) = Eω[ν̂ω(x, θ(x))]
is convex in x and at least as good a lower bound of Q as ϕ.

The intuition behind the selection of θ(x) is as follows. Theorem 3 implies that the best
possible lower bound of Q(x) is obtained by selecting θ(x) = ϕ(x), x ∈ conv(X), yielding Q̂(x) =
Eω[ν̂ω(x, ϕ(x))]. It can be shown that Eω[ν̂ω(x, ϕ(x))] ≥ ϕ(x) for all x ∈ conv(X). On the
other hand, Lemma 1 shows that selecting θ(x) large enough, i.e., θ(x) constant and equal to
supx̃∈X Q(x̃), yields Q̂(x) = Eω[νω(x)], x ∈ conv(X). The first lower bound is typically nonlinear
and non-convex, whereas the second may not be strong enough, see Examples 1 and 2. However,
these bounds do show that for a given x ∈ conv(X), we have θ < Eω[ν̂ω(x, θ)] when θ = ϕ(x), and
θ > Eω[ν̂ω(x, θ)] for θ large enough. Since Eω[ν̂ω(x, θ)] is non-increasing and continuous in θ, it
follows that there exists ϕ(x) ≤ θ̄ ≤ Q(x) such that θ̄ = Eω[ν̂ω(x, θ̄)]. Thus, selecting θ(x) ≥ ϕ(x)
such that

θ(x) = Eω
[
ν̂ω(x, θ(x))

]
, x ∈ conv(X), (7)

guarantees that Q̂(x) = θ(x) is a lower bound of Q(x). Note that the solution θ(x) (7) can be
determined without knowing Q(x). Surprisingly, this solution θ(x) turns out to be convex in x.

9



Theorem 5. Consider the expected cost function Q(x) := Eω[vω(x)], x ∈ X, with X a bounded
mixed-integer polyhedral set, and vω(x) as defined in (3). Let ϕ : conv(X)→ R denote a convex
polyhedral lower bound of Q. Then, for θ(x), defined as

θ(x) := sup
(αω,βω,τω)

{
Eω[αω]− Eω[βω]>x

1 + Eω[τω]
: (αw, βω, τω) ∈ Πω(ϕ) ∀ω ∈ Ω

}
, (8)

it holds that θ(x) = Eω[ν̂ω(x, θ(x))] for all x ∈ conv(X).

Theorem 5 provides a direct link between affine parametric cutting planes in extended spaces
and scaled cuts from [20], since θ(x) corresponds to the scaled cut closure of ϕ(x) as defined in [20].
This scaled cut closure is the pointwise maximum of affine functions, and hence convex. Moreover,
each such affine function, defined by a set of feasible cut coefficients (αω, βω, τω) ∈ Πω(ϕ) for all
ω ∈ Ω, corresponds to a scaled cut of the form

Eω[αω]− Eω[βω]>x

1 + Eω[τω]
.

In Section 3 we analyze such scaled cuts in detail for the more general setting of the expectation
of l.s.c. value functions. This is a generalization of the setting in this section since every mixed-
integer value function is l.s.c.; this generalization is necessary for us to develop scaled cuts in a
multistage context later.

3 Scaled cuts for the expectation of l.s.c. value functions

Let Q denote the expected value function

Q(x) = Eω
[
vω(x)

]
, x ∈ X, (9)

where vω(·) is an l.s.c. value function defined on a bounded mixed-integer polyhedral set X for
every ω ∈ Ω. We are interested in deriving convex polyhedral lower bounds ϕ(x) of Q(x) using
scaled cuts. In fact, we can derive scaled cuts for Q defined in (9) in a similar fashion as in
Theorem 5 by using cut coefficients (αω, βω, τω) ∈ Πω(ϕ) for all ω ∈ Ω. For all such feasible cut
coefficients, it holds that vω(x) + τωϕ(x) ≥ αω − β>ω x for all x ∈ X and ω ∈ Ω, and thus for all
x ∈ X,(

1 + Eω[τω]
)
Q(x) ≥ Q(x) + Eω[τω]ϕ(x) ≥ Eω[αω]− Eω[βω]>x. (10)

Here, the first inequality holds since τω ≥ 0 for all ω ∈ Ω and ϕ is a lower bound for Q. By
dividing the inequalities in (10) by 1 + Eω[τω], we directly derive a scaled cut as the right-hand
side of the inequality

Q(x) ≥ Eω[αω]− Eω[βω]>x

1 + Eω[τω]
, ∀x ∈ X. (11)

Obviously, selecting different feasible cut coefficients (αω, βω, τω) potentially leads to different
scaled cuts in (11). Van der Laan and Romeijnders [20] define the dominating scaled cut at x̄ ∈ X
as the scaled cut that is as large as possible at x̄. Moreover, they define the scaled cut closure as
the pointwise maximum over all possible scaled cuts.

Definition 7. Let ϕ : conv(X) → R denote a convex polyhedral lower bound of Q. Then, we
define the scaled cut closure SCC(ϕ) of Q with respect to ϕ as

SCC(ϕ)(x) := sup

{
Eω[αω]− Eω[βω]>x

1 + Eω[τω]
: (αω, βω, τω) ∈ Πω(ϕ), ∀ω ∈ Ω

}
for all x ∈ conv(X).
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Van der Laan and Romeijnders [20] analyze this scaled cut closure operator in detail when Q is
the expected value function of a two-stage stochastic mixed-integer program. However, we observe
that their proofs directly apply to the expectation of l.s.c. value functions. Hence, based on their
results we directly conclude that the SCC operator from Definition 7 is monotone non-decreasing
and Lipschitz continuous with Lipschitz constant 1.

Proposition 2. Let ϕ and ϕ′ denote convex polyhedral lower bounds of the expectation Q of
l.s.c. value functions, defined in (9), and consider the scaled cut closure operation defined in Defi-
nition 7. Then,

(i) SCC(ϕ) ≥ ϕ,

(ii) SCC(ϕ) ≥ SCC(ϕ′) if ϕ ≥ ϕ′, and

(iii) ‖SCC(ϕ)− SCC(ϕ′)‖∞ ≤ ‖ϕ− ϕ′‖∞.

Proof. See [20].

Moreover, the main convergence theorem of [20] also holds, which means that iteratively ap-
plying the scaled cut closure operation to any initial convex polyhedral lower bound ϕ0 of Q,
converges uniformly to coX(Q), the convex envelope of Q with respect to X.

Theorem 6. Let Q : X → R be defined as the expectation Q(x) = Eω[vω(x)] of l.s.c. value
functions vω : X → R, and let ϕ0 : conv(X) → R be an initial convex polyhedral lower bound of
Q. Then, the sequence ϕk, k ∈ N, defined as

ϕk := SCC(ϕk−1), k ∈ N,

converges uniformly to coX(Q), i.e., the convex envelope of Q with respect to X.

Proof. See [20].

To be able to apply this convergence result to multistage stochastic mixed-integer programs,
however, we need several additional results regarding the scaled cut closure. The first, i.e., Propo-
sition 3 below, shows that instead of knowing the exact functions vω it suffices to have a sufficiently
good lower bound for vω in an extended space. The remaining results show that even if we use
a lower bound that is close but not sufficiently large, then we obtain inexact scaled cut closures
that are close to the exact one.

Proposition 3. Let ϕ : conv(X)→ R denote a convex polyhedral lower bound of the expectation
Q of l.s.c. value functions, defined in (9), let Θ = {(x, θ) ∈ X × R : θ ≥ ϕ(x)}, and consider the
set of feasible cut coefficients Πω(ϕ) as defined in Definition 6 for some ω ∈ Ω. Then, for all
v̂ω : Θ→ R such that

co(vω + δΘ)(x, θ) ≤ v̂ω(x, θ) ≤ vω(x), ∀(x, θ) ∈ Θ, (12)

it holds that Πω(ϕ) is equivalent to

Πω(ϕ) =
{

(αω, βω, τω) : v̂ω(x, θ) ≥ αω − β>ω x− τωθ, ∀(x, θ) ∈ Θ, τω ≥ 0
}
. (13)

Remark 1. Note that Proposition 3 also holds if inequality (12) is true for all x ∈ X and
ϕ(x) ≤ θ ≤ U , with U := supx∈X ϕ(x) < +∞.

Proposition 3 shows that the scaled cut closure SCC(ϕ) of Q may be computed using value
functions v̂ω(x, θ) in an extended space that are at least as large as the convex envelope of vω+δΘ.
If worse lower bounds v̂ω(x, θ) of vω are used, then the corresponding scaled cut closure operation
becomes inexact.
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Definition 8. Let ϕ : conv(X)→ R denote a convex polyhedral lower bound of the expectation
Q of l.s.c. value functions, defined in (9), and let ṽω(x, θ) be a lower bound of vω on the extended
space Θ = {(x, θ) ∈ X × R : θ ≥ ϕ(x)} for every ω ∈ Ω. Then, we define the corresponding
inexact scaled cut closure ˜SCC(ϕ) as

˜SCC(ϕ) = sup

{
Eω[αω]− Eω[βω]>x

1 + Eω[τω]
: (αω, βω, τω) ∈ Π̃ω(ϕ), ∀ω ∈ Ω

}
,

with

Π̃ω(ϕ) =
{

(αω, βω, τω) : ṽω(x, θ) ≥ αω − β>ω x− τωθ, ∀(x, θ) ∈ Θ, τω ≥ 0
}
. (14)

The scaled cut closure ˜SCC(ϕ) is called δ-exact if ‖SCC(ϕ)− ˜SCC(ϕ)‖∞ ≤ δ.

Remark 2. Note that the inexact scaled cut closure operation ˜SCC depends on the lower bounds
ṽω on the extended space Θ of X. For notational convenience we will suppress this dependence in
our notation.

A sufficient condition for the inexact scaled cut closure operation ˜SCC to be δ-exact is that
every lower bound ṽω, ω ∈ Ω, is close enough to co(vω + δΘ).

Theorem 7. Let ϕ : conv(X)→ R denote a convex polyhedral lower bound of the expectation Q
of l.s.c. value functions, defined in (9), and consider lower bounds ṽω(x, θ) of vω on the extended
space Θ = {(x, θ) ∈ X × R : θ ≥ ϕ(x)}, such that for every ω ∈ Ω,

sup
(x,θ)∈Θ

{
co(vω + δΘ)(x, θ)− ṽω(x, θ)

}
≤ δ. (15)

Then, the corresponding inexact scaled cut operation ˜SCC as defined in Definition 8 is δ-exact.

In the final result of this section, we show how the error of an inexact scaled cut closure
operation propagates when inexact scaled cut closures are computed iteratively.

Corollary 1. Let ϕ : conv(X) → R denote a convex polyhedral lower bound of the expectation
Q of l.s.c. value functions, defined in (9), and consider sequences {ϕ̄k}k∈N and {ϕ̂k}k∈N, obtained
by exact and inexact SCC-operations, respectively, where ϕ̄0 = ϕ̂0 = ϕ, ϕ̄k := SCC(ϕ̄k−1), k ∈ N,
and ϕ̂k := ˜SCC(ϕ̂k−1), k ∈ N. If the k-th inexact SCC operation, with corresponding lower
bounds ṽkω(x, θ), is δk-exact for every k ∈ N, then for every K ∈ N, we have

‖ϕ̄k − ϕ̂k‖∞ ≤
K∑
k=1

δk.

4 Affine parametric cutting planes for multistage SMIPs

In this section we discuss the strength of affine cutting planes for multistage SMIPs. That is,
we construct convex polyhedral lower bounds for the value functions vn, n ∈ N , defined in (2),
using affine parametric cutting planes for the feasible regions involved. By constructing these
cutting planes in increasingly larger extended spaces, we derive a hierarchy of convex polyhedral
lower bounds. We first derive this hierarchy for value functions corresponding to the leaf nodes in
Section 4.1, and next for value functions in general in Section 4.2.
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4.1 Leaf nodes

For leaf nodes m ∈ L of the scenario tree N , the expected cost to-go function Qm equals zero, so
that the value function vm(xn) with n = a(m) is given by

vm(xn) = min
xm∈Xm(xn)

c>mxm,

for every xn ∈ Xn. Thus, vm is the value function of a mixed-integer linear program, and of a
similar form as the value functions vω, ω ∈ Ω, considered in Section 2. Hence, we may strengthen
the feasible region Xm(xn) with affine parametric cutting planes in xn. From Proposition 1 it
follows that any affine parametric cutting plane in xn for Xm(xn) is also valid for conv(S[n:m]),
where S[n:m] is defined as

S[n:m] :=
{

(xn, xm) ∈ Xn ×Xm : xm ∈ Xm(xn)
}
.

We conclude that the best lower bound for vm that we may obtain using affine parametric cutting
planes in Xn is to use all of those required to construct conv(S[n:m]). We do not intend to add
all these cutting planes in a practical algorithm. However, from a theoretical perspective we will
use this observation to analyze the strength of the best possible lower bound that can be obtained
using affine parametric cutting planes. That is, we are interested in the strength of the lower
bound

νm(xn) := min
xm

{
c>mxm : x[n:m] ∈ conv(S[n:m])

}
, xn ∈ conv(Xn). (16)

This lower bound is similar in nature to νω, defined in Definition 2, however, there is a subtle,
yet crucial difference: contrary to its two-stage counterpart vω, the domain of vm, i.e., the set of
possible input values xn, may depend on the decisions xa(n) made in an earlier time stage. Thus,
interestingly, even though knowing xa(n) does not impact the value of vm(xn), it may improve the
quality of the lower bound νm(xn) defined in (16), since the affine parametric cutting planes for
Xm(xn) only need to be valid for Xn ∩ Xn(xa(n)), and not for Xn.

Remark 3. It is even possible to improve the lower bound in (16) without knowledge of xa(n)

if some xn ∈ Xn are never feasible for any xa(n) ∈ Xa(n), i.e., if ∪xa(n)∈Xa(n)
Xn(xa(n)) ⊂ Xn.

Moreover, taking more previous-stage constraints into account may reduce the set of feasible xn,
and thus improve the lower bound in (16). However, for ease of exposition we will assume that
such improvements are not possible, i.e., we assume that

Xn ⊆
⋃

x1∈X1

· · ·
⋃

xa(n)∈Xa(n)(xa2(n))

Xn(xa(n)).

The challenge, however, with using xa(n) to improve the lower bound νm in (16) is that we do
not want to construct affine parametric cutting planes that cannot be reused for different values of
xa(n). That is why instead we use affine parametric cutting planes in (xa(n), xn) that are valid for
all xa(n) ∈ Xa(n). By constructing affine parametric cutting planes involving increasingly many
previous-stage decisions, we derive a hierarchy of lower bounds.

Definition 9. Consider a leaf node m ∈ L of the scenario tree N . Then, for every r = 1, . . . , T−1,
we let n denote n = ar(m), and define ν̄rm for all x[n:a(m)] ∈ conv(S[n:a(m)]) as

ν̄rm(x[n:a(m)]) = min
xm

{
c>mxm : x[n:m] ∈ conv(S[n:m])

}
.

The convex polyhedral lower bounds of Definition 9 have an interpretation in terms of affine
parametric cutting planes defined on extended spaces. In fact, for every r = 1, . . . , T −1, the lower
bound ν̄rm corresponds to the lower bound of Definition 4 using the extended space S[ar(m):a(m)] of
Xa(m). Interestingly, if r1 > r2, then for n1 := ar1(m) and n2 := ar2(m), it holds that S[n1:a(m)]

is an extended space of S[n2:a(m)]. Hence, applying Theorem 2 repeatedly yields the following
hierarchy of lower bounds.
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Theorem 8. Consider a leaf node m ∈ L of the scenario tree N . Then, for every r = 1, . . . , T −1
and for all x[a(m)] ∈ S[a(m)], we have

ν̄rm(x[ar(m):a(m)]) ≤ vm(xa(m)).

Moreover, for every x[a(m)] ∈ conv(S[a(m)]), it holds that

ν̄1
m(xa(m)) ≤ ν̄2

m(x[a2(m):a(m)]) ≤ . . . ≤ ν̄T−1
m (x[a(m)]).

Theorem 8 shows that the strength of the lower bounds ν̄rm improves when affine parametric
cutting planes can be made in extended spaces involving more previous-stage decisions. However,
even for the best lower bound in which we involve all decisions up to and including the root node
of the scenario tree, the resulting lower bound ν̄T−1

m of vm is not necessarily tight.
Proposition 4 provides a sufficient condition for the lower bounds to be tight.

Proposition 4. Consider a leaf node m ∈ L of the scenario tree, and let ν̄rm, r = 1, . . . , T − 1,
denote the convex polyhedral lower bounds of vm from Definition 9. Then, for every x[a(m)] ∈
S[a(m)], we have that

ν̄rm(x[ar(m):a(m)]) = vm(xa(m)) (17)

if x[aρ(m):a(m)] is an exteme point of conv(S[aρ(m):a(m)]) for some ρ = 1, . . . , r.

4.2 Non-leaf nodes

For non-leaf nodes n ∈ N\L of the scenario tree, the expected cost to-go function Qn is typically
non-zero, so that the epi-graph formulation of the value function vn(xa(n)) is given by

vn(xa(n)) = min
xn∈Xn(xa(n)),θn∈R

{
c>n xn + θn : θn ≥ Qn(xn)

}
. (18)

However, in algorithms that only utilize affine parametric cutting planes for the feasible regions of
the mixed-integer value functions involved, we do not know the exact expected cost to-go function
Qn, but only have a convex polyhedral lower bound of it based on convex polyhedral lower bounds
for the value functions vm(xn), m ∈ C(n), derived using affine parametric cutting planes. In
particular, for nodes n ∈ N with tn = T − 1, i.e., if all child nodes of n are leaf nodes, then
the expected cost to-go function Qn can be lower bounded by taking the expectation over convex
polyhedral lower bounds ν̄rm,m ∈ C(n), from Definition 9. That is, for every r = 1, . . . , T − 1,

Q̄rn(x[ar−1(n):n]) :=
∑

m∈C(n)

qnmν̄
r
m(x[ar−1(n):n]),

is a lower bound of Qn(xn) for every x[ar−1(n):n] ∈ S[ar−1(n):n], with the understanding that
a0(n) = n. We define the corresponding lower bound v̂rn of vn as

v̂rn(x[ap(n):a(n)]) = min
xn∈Xn(xa(n)),θn∈R

{
c>n xn + θn : θn ≥ Q̄rn(x[ar−1(n):n])

}
, (19)

for every x[ap(n):a(n)] ∈ S[ap(n):a(n)] with p := max{1, r − 1}. Note that since Q̄rn is convex
polyhedral, we can interpret v̂rn as a mixed-integer value function similar as vω in Section 2,
defined on the extended space S[ap(n):a(n)] of Xa(n). Thus, v̂rn is not necessarily convex since it
involves the minimization over the mixed-integer polyhedral set Xn(xa(n)). However, similar as for
leaf nodes m ∈ L in Section 4.1 we can use affine parametric cutting planes for the feasible region
of v̂rn, possibly in extended spaces of S[ap(n):a(n)], to construct convex polyhedral lower bounds of
v̂rn. In fact, we can derive a similar hierarchy of lower bounds as in Theorem 8 by looking back
q = r− 1, . . . , T − 2 time periods. However, for ease of presentation we focus on affine parametric
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cutting planes in the extended space S[ar(n):a(n)] of S[ap(n):a(n)]. The corresponding lower bound
ν̄rn is for all x[ar(n):a(n)] ∈ conv(S[ar(n):a(n)]) given by

ν̄rn(x[ar(n):a(n)]) := min
xn,θn

{
c>n xn + θn : (x[ar(n):n], θn) ∈ conv(Θr

n)
}
,

where

Θr
n :=

{
(x[ar(n):n], θn) ∈ S[ar(n):n] × R : θn ≥ Q̄rn(x[ar−1(n):n])

}
.

Since ν̄rn is a tighter lower bound of vn for larger values of r, this again yields a hierarchy of convex
polyhedral lower bounds. Moreover, by recursively defining ν̄r for all nodes n ∈ N of the scenario
tree, we obtain the following result.

Definition 10. Let r = 1, . . . , T − 1 be given, and consider the convex polyhedral lower bounds
ν̄rm, m ∈ L, from Definition 9. In backward recursion fashion we define for all n ∈ N\L, the
convex polyhedral lower bound Q̄rn of Qn for all x[ar−1(n):n] ∈ conv(S[ar−1(n):n]) as

Q̄rn(x[ar−1(n):n]) :=
∑

m∈C(n)

qnmν̄
r
m(x[ar−1(n):n]),

and the convex polyhedral lower bound ν̄rn of vn for all x[ar(n):a(n)] ∈ conv(S[ar(n):a(n)]) as

ν̄rn(x[ar(n):a(n)]) := min
xn,θn

{
c>n xn + θn : (x[ar(n):n], θn) ∈ conv(Θr

n)
}
,

where

Θr
n :=

{
(x[ar(n):n], θn) ∈ S[ar(n):n] × R : Q̄rn(x[ar−1(n):n]) ≤ θn ≤ Un

}
.

Note that for all n ∈ N , we define ar(n) as the root node, i.e., ar(n) = 1, if r ≥ tn.

Theorem 9. Consider the convex polyhedral lower bounds ν̄rn from Definitions 9 and 10 for all
n ∈ N and for all r = 1, . . . , T − 1. Then, for all n ∈ N , r = 1, . . . , T − 1, and x[n] ∈ S[n], it holds
that

Q̄rn(x[ar−1(n):n]) ≤ Qn(xn) and ν̄rn(x[ar(n):a(n)]) ≤ vn(x[a(n)]). (20)

Moreover, for all n ∈ N and x[n] ∈ conv(S[n]), it holds that

Q̄1
n(xn) ≤ . . . ≤ Q̄T−1

n (x[n]), (21)

and

ν̄1
n(xa(n)) ≤ . . . ≤ ν̄T−1

n (x[a(n)]). (22)

The lower bounds in Theorem 9 for the value function v1(x0) in the root node of the scenario
tree, define lower bounds on the optimal objective value η∗ of the multistage SMIP, obtained by
iteratively using affine parametric cutting planes involving previous-stage decisions looking back
r stages.

Corollary 2. Consider the convex polyhedral lower bounds from Definition 10 for the root node
n = 1, and define η̄r := ν̄r1(x0) for all r = 1, . . . , T − 1. Then,

η̄1 ≤ . . . ≤ η̄T−1 ≤ η∗.

Proof. Follows directly from Theorem 9.
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We remark that the inequality between η̄T−1 and η∗ may be strict. That is why, in the next
section we will show that we can close this gap using scaled cuts. As a final result in this section,
however, we provide sufficient conditions for the convex polyhedral lower bounds in Theorem 9 to
be tight.

Proposition 5. Consider the convex polyhedral lower bounds ν̄rn from Definitions 9 and 10 for
all n ∈ N and for all r = 1, . . . , T − 1. Then, for all x[n] ∈ S[n], it holds that

(i) Q̄rn(x[ar−1(n):n]) = Qn(xn) if and only if ν̄rm(x[ar−1(n):n]) = vm(xn) for all m ∈ C(n).

(ii) ν̄rn(x[ar(n):a(n)]) = vn(xa(n)) if for some ρ = 1, . . . , r, an optimal solution (x∗n, θ
∗
n) of the mini-

mization problem in v̂ρn(x[aρ(n):a(n)]) satisfies θ∗ = Qn(x∗n), and (x[aρ(n):a(n)], Q̄
ρ
n(x[aρ−1(n):n]))

is an extreme point of conv(Θρ
n).

5 Scaled cuts for multistage SMIPs

In this section, we discuss the intuition behind our scaled-cut decomposition algorithm in Sec-
tion 5.1 and its proof of convergence in Section 5.2. In Section 5.3 we derive a hierarchy of scaled
cut lower bounds that improves the hierarchy of Theorem 9.

5.1 The intuition behind the scaled-cut decomposition algorithm

Consider the first stage of a multistage stochastic mixed-integer programming problem, given by

η∗ := min
x1∈X1

c>1 x1 +Q1(x1).

Here, Q1(x1) :=
∑
n∈C(1) q1nvn(x1), x1 ∈ X1, is the expectation over l.s.c. value functions vn, n ∈

C(1). Hence, it follows directly from Theorem 6 that starting from an initial convex polyhedral
lower bound ϕ0

1 of Q1, iteratively applying the scaled cut closure operation ϕk1 := SCC1(ϕk−1
1 ),

k ∈ N, defined as

SCC1(ϕ1)(x) := sup


∑

n∈C(1)

q1nαn −
∑

n∈C(1)

q1nβ
>
n x

1 +
∑

n∈C(1)

q1nτn
: (αn, βn, τn) ∈ Πn(ϕ)

 ,

with for every n ∈ C(1),

Πn(ϕ1) :=
{

(αn, βn, τn) ∈ R × Rn1 × R+ : vn(x1) ≥ αn − β>n x1 − τnϕ1(x1) ,∀x1 ∈ X1

}
,

yields a sequence {ϕk1}∞k=0 that converges uniformly to coX1
(Q1). That is, the objective value of

min
x1∈conv(X1)

c>1 x1 + ϕk1(x1)

converges to the true optimal objective value η∗.
The challenge in applying the scaled cut closure operation SCC1 is that the value functions

vn, n ∈ C(1), defined as

vn(x1) = min
xn∈Xn(x1)

c>n xn +Qn(xn), x1 ∈ X1,

depend on the expected cost to-go function Qn. Similar as for Q1, we do not know Qn exactly
but intend to approximate Qn by iteratively improving convex polyhedral lower bounds ϕn on
extended spaces. If these lower bounds are not tight enough, then the resulting scaled cut closure
operation becomes inexact.
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Proposition 3 and Remark 1 show that to obtain the exact scaled cut closure SCC1(ϕ1) it
suffices to obtain lower bounds v̂n(x1, θ1), n ∈ C(1), with

co(vn + δΘ̂1(ϕ1))(x1, θ1) ≤ v̂n(x1, θ1) ≤ vn(x1) ∀ (x1, θ1) ∈ Θ̂1(ϕ1), (23)

where Θ̂1(ϕ1) := {(x1, θ1) ∈ X1 × R : ϕ1(x1) ≤ θ1 ≤ U1}. We will show in Lemma 2 in
Section 5.2 that such functions v̂n, n ∈ C(1), can be obtained by replacing Qn in the minimization
problem corresponding to vn by a convex polyhedral lower bound of Qn on the extended space
Θ[n](ϕ1) := {(x[n], θ1) ∈ S[n] × R : ϕ1(x1) ≤ θ1 ≤ U1} of Xn. That is, v̂n defined for all

(x1, θ1) ∈ Θ̂1(ϕ1), and n ∈ C(1), as

v̂n(x1, θ1) = min
xn∈Xn(x1)

c>n xn + ϕn(x[n], θ1), (24)

satisfies (23) if ϕn(x[n], θ1) = co(Qn + δΘ[n](ϕ1))(x[n], θ1) for all (x[n], θ1) ∈ Θ[n](ϕ1).
Thus, to be able to carry out an exact first-stage scaled cut closure operation it suffices to

construct co(Qn + δΘ[n](ϕ1))(x[n], θ1) for all n ∈ C(1). Observe that for every n ∈ C(1), Qn itself
can be interpreted as a first-stage expected cost to-go function of a multistage SMIP consisting of
T − 1 stages with node n as the root node of the scenario tree. Moreover, notice that in this case
Qn is not defined on Xn, but on the extended space Θ[n](ϕ1). Hence, we can apply our scaled cut
closure procedure recursively to obtain co(Qn + δΘ[n](ϕ1)).

Moreover, it turns out that if we do not know co(Qn+δΘ[n](ϕ1)) exactly, but obtain a sufficiently
accurate approximation, i.e., if for all n ∈ C(1),

‖ϕn − co(Qn + δΘ[n](ϕ1))‖∞ ≤ δ,

then the inexact scaled cut closure operation ˜SCC1, defined with Πn(ϕ1) replaced by Π̃n(ϕ1)
defined as

Π̃n(ϕ1) =
{

(αn, βn, τn) : v̂n(x1, θ1) ≥ αn − β>n x1 − τnθ1, ∀ (x1, θ1) ∈ Θ̂1(ϕ1)
}

with v̂n(x1, θ1) given in (24), is δ-exact; see Proposition 7 in Section 5.2.

5.2 A scaled-cut decomposition algorithms for multistage SMIPs

In our scaled-cut decomposition algorithm for multistage SMIPs, we assume that at each node
n ∈ N , we maintain a convex polyhedral outer approximation ϕn of Qn. For the first-stage
expected cost to-go function Q1, this outer approximation is defined on X1. However, following
the discussion in Section 5.1, for nodes n ∈ N in later stages, these outer approximations are
recursively defined on extended spaces Θ[n](ϕ[a(n)]) of Xn, defined as

Θ[n](ϕ[a(n)]) :=
{

(x[n], θ[a(n)]) : x[n] ∈ S[n], ϕ[a(n)](x[a(n)], θ[a2(n)]) ≤ θ[a(n)] ≤ U[a(n)]

}
,

where the latter constraint is shorthand notation for the set of constraints ϕ1(x1) ≤ θ1 ≤
U1, . . . , ϕa(n)(x[a(n)], θ[a2(n)]) ≤ θa(n) ≤ Ua(n). Note that the extended spaces Θ[n](ϕ[a(n)]) de-

pend on all outer approximations of all ancestor nodes [a(n)] of n. Similarly, we define Θ̂[n](ϕ[n])
as

Θ̂[n](ϕ[n]) :=
{

(x[n], θ[n]) : x[n] ∈ S[n], ϕ[n](x[n], θ[a(n)]) ≤ θ[n] ≤ U[n]

}
.

We make sure that at any point in time during the algorithm, it holds that

ϕn(x[n], θ[a(n)]) ≤ Qn(xn) + δΘ[n](ϕ[a(n)])(x[n], θ[a(n)]) (25)

for all (x[n], θ[a(n)]) ∈ Θ[n](ϕ[a(n)]). Since ϕn is convex polyhedral it follows that ϕn is also a lower
bound for the convex envelope of the right-hand side in (25). In our algorithm, we iteratively
improve these outer approximations ϕn using scaled cuts at different nodes n ∈ N .
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Definition 11. Let ϕ define a set of outer approximations {ϕn}n∈N . We call ϕ feasible, denoted
ϕ ∈ Φ, if and only if for all n ∈ N , ϕn is convex polyhedral on conv(Θ[n](ϕ[a(n)])), and moreover
for all (x[n], θ[a(n)]) ∈ conv(Θ[n](ϕ[a(n)])),

ϕn(x[n], θ[a(n)]) ≤ co
(
Qn(xn) + δΘ[n](ϕ[a(n)])

)
(x[n], θ[a(n)]). (26)

Definition 12. Let ϕ = {ϕn}n∈N ∈ Φ denote a feasible set of outer approximations. Then, for
every n ∈ N\L, we define ϕ̂ := SCCn(ϕ) as the result of a scaled cut closure operation at node
n, defined as ϕ̂n(x[n], θ[a(n)]) for every (x[n], θ[a(n)]) ∈ conv(Θ[n](ϕ[a(n)])) as

ϕ̂n(x[n], θ[a(n)]) := sup
(αm,βm,τm)∈Πm(ϕ)

∀m∈C(n)


∑

m∈C(n)

qnm

(
αm − β>m(x[n], θ[a(n)])

)
1 +

∑
m∈C(n)

qnmτm

 ,

where for every m ∈ C(n), we have that (αm, βm, τm) ∈ Πm(ϕ) if and only if

v̂m(x[n], θ[n]) ≥ αm − β>m(x[n], θ[a(n)])− τmθn ∀ (x[n], θ[n]) ∈ Θ̂[n](ϕ[n]), (27)

with v̂m(x[n], θ[n]) = min
xm∈Xm(xn)

c>mxm + ϕm(x[m], θ[n]) for all (x[n], θ[n]) ∈ Θ̂[n](ϕ[n]), and defined

for all (x[m], θ[a(m)]) ∈ conv(Θm(ϕ̂[a(m)])) as

ϕ̂m(x[m], θ[a(m)]) := ϕm(x[m], θ[a(m)])

for m ∈ N with m 6= n, recursively.

Remark 4. Since Qn ≡ 0 for all n ∈ L, we define ϕ̂n for ϕ̂ = SCCn(ϕ) with n ∈ L as
ϕ̂n(x[n], θ[a(n)]) = 0 for all (x[n], θ[a(n)]) ∈ conv(Θ[n](ϕ[a(n)])).

The scaled cut closure operations SCCn satisfy the following monotonicity properties: (i)
applying any SCCn-operator typically increases the lower bounds ϕ = {ϕn}n∈N , and at least
does not reduce them, and (ii) applying any SCCn operator with a set of higher initial lower
bounds typically leads to better lower bounds.

Proposition 6. Let ϕ,ϕ′ ∈ Φ denote sets of feasible convex polyhedral outer approximations.
Then, for every n ∈ N ,

(i) SCCn(ϕ) ∈ Φ,

(ii) SCCn(ϕ) ≥ ϕ, and

(iii) SCCn(ϕ) ≥ SCCn(ϕ′) if ϕ ≥ ϕ′.

Remark 5. When comparing two sets of outer approximations ϕ,ϕ′ ∈ Φ in Proposition 6, we
say that ϕ ≥ ϕ′ if and only if for all n ∈ N , we have (i) Θ[n](ϕ[a(n)]) ⊆ Θ[n](ϕ

′
[a(n)]), and (ii)

ϕn(x[n], θ[a(n)]) ≥ ϕ′(x[n], θ[a(n)]) for all (x[n], θ[n]) ∈ conv(Θ[n](ϕ[a(n)])).

For fixed n ∈ N and ϕ[a(n)], the best possible convex polyhedral lower bound ϕn of Qn that
we may obtain is ϕn satisfying (26) with equality for all (x[n], θ[a(n)]) ∈ Θn](ϕ[a(n)]). Indeed, if we
interpret Qn as the expectation of l.s.c. value functions defined on the extended space Θ[n](ϕ[a(n)])
of Xn, then iteratively applying the exact scaled cut closure from Definition 7 to any initial
convex polyhedral lower bound ϕ0

n, converges uniformly to this best possible convex polyhedral
lower bound. The main difference, however, between the SCC operation from Definition 7 and the
SCCn operator defined in Definition 12 is that the SCC operation in Definition 7 assumes that
the expected cost to-go functions Qm, m ∈ C(n), are known, whereas the SCCn operator from
Definition 12 uses convex polyhedral lower bounds ϕm of Qm. Theorem 10 shows that both scaled
cut closure operators may coincide if for every m ∈ C(n), the lower bound ϕm of Qm is accurate
enough. In this case, we call the SCCn operator exact.
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Definition 13. Let ϕ = {ϕn}n∈N ∈ Φ denote a feasible set of outer approximations and consider
n ∈ N . Interpret Qn as the expectation of l.s.c. value functions defined on the extended space
Θ[n](ϕ[a(n)]) of Xn. Then, we call the SCCn operator from Definition 12 exact if it coincides with
the SCC operator from Definition 7.

Lemma 2. Let ϕ = {ϕn}n∈N ∈ Φ denote a feasible set of outer approximations and consider
n ∈ N\L. Then, for all m ∈ C(n), it holds that v̂m, defined for all (x[n], θ[n]) ∈ Θ̂[n](ϕ[n]) as

v̂m(x[n], θ[n]) := min
xm∈Xm(xn)

c>mxm + co(Qm + δΘ[m](ϕ[n]))(x[m], θ[n]),

satisfies

co(vm + δΘ̂[n](ϕ[n])
)(x[n], θ[n]) ≤ v̂m(x[n], θ[n]) ≤ vm(xn)

for all (x[n], θ[n]) ∈ Θ̂[n](ϕ[n]).

Theorem 10. Let ϕ = {ϕn}n∈N ∈ Φ denote a feasible set of outer approximations and consider
n ∈ N\L. Then, the SCCn operator from Definition 12 is exact if for all m ∈ C(n),

ϕm(x[m], θ[a(m)]) = co(Qm + δΘ[m](ϕ[n]))(x[m], θ[n]) ∀(x[m], θ[n]) ∈ Θ[m](ϕ[n]). (28)

Typically, however, the SCCn operations will be inexact. The next proposition provides a
sufficient condition for the SCCn operations to be δ-exact, conform Definition 8.

Proposition 7. Let ϕ = {ϕn}n∈N ∈ Φ denote a feasible set of outer approximations and consider
n ∈ N\L. Then, the SCCn operation from Definition 12 is δ-exact if for all m ∈ C(n),

‖ϕm − co(Qm + δΘ[m](ϕ[n]))‖∞ ≤ δ. (29)

We are now ready to prove our main convergence result, which shows that iteratively applying
scaled cut closure operations yields a sequence {{ϕkn}n∈N }k∈N for which ϕk1 converges uniformly
to coX1

(Q1). To prove this, we only need mild conditions on the order of nodes nk ∈ N at which
scaled cut closure operations are carried out. Obviously, convergence does not necessarily hold if
no, or only finitely many, SCCn operations are carried out at a particular node n.

Definition 14. Let {nk}k∈N ⊆ N denote a sequence of nodes. We call such a sequence admissable
if and only if there exists a number B ∈ N such that for every k ∈ N and n ∈ N there exists l ∈ N
with k ≤ l ≤ k +B such that nl = n.

Intuitively, a sequence {nk}k∈N is admissable if every node n ∈ N occurs frequently enough,
i.e., at least once after a fixed number B. In practice, this assumption is not very restrictive
since we allow B to be large. For example, an SDDP-like sequence based on moving through the
network with forward and backward passes is admissable.

Theorem 11. Consider a multistage SMIP as defined in (1), and let ϕ0 = {ϕ0
n}n∈N ∈ Φ be an

initial feasible set of outer approximations. Then, for every admissable sequence {nk}k∈N ⊆ N ,
and corresponding sequence of outer approximations, defined as

ϕk := SCCnk(ϕk−1), k ∈ N,

it holds that {ϕk1}k∈N converges uniformly to coX1
(Q1).
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5.3 A hierarchy of scaled cut lower bounds

To obtain a scaled-cut decomposition algorithm satisfying our main convergence result in Theo-
rem 11, we have to keep track of convex polyhedral lower bounds ϕn of Qn, n ∈ N , that depend
on all lower bounds ϕ[a(n)] and decisions x[a(n)] of all ancestor nodes [a(n)] of n. By letting these
lower bounds ϕn depend on fewer previous-stage decisions and lower bounds we may improve the
computational tractability of the scaled cuts at the expense of their strength. We will show in
this section that restricting the dependence of ϕn at node n ∈ N on decisions x[ar−1(n):n] only, for
r = 1, . . . , T − 1, improves the hierarchy of convex polyhedral lower bounds in Theorem 9, leading
to a hierarchy of scaled cut lower bounds.

To understand why scaled cuts may improve the hierarchy of lower bounds in Theorem 9,
consider the convex polyhedral lower bound ν̄rn(x1) from Definition 10 for some n ∈ C(1), r =
1, . . . , T − 1, and x1 ∈ X1, given by

ν̄rn(x1) = min
xn,θn

{
c>n xn + θn : x[ar−1(n):n] ∈ conv(Θr

n)
}
,

where Θr
n := {(x[ar−1(n):n], θn) ∈ S[ar−1(n):n] × R : Q̄rn(x[ar−1(n):n]) ≤ θn ≤ Un}. Observe that

ν̄rn(x1) is a convex polyhedral lower bound of

v̂rn(x1) := min
xn∈Xn(x1)

{
c>n xn + Q̄rn(x[ar−1(n):n])

}
,

where v̂rn is not necessarily convex and can be interpreted as ν̄rn with conv(Θr
n) replaced by

Θr
n. In Definition 10, the convex polyhedral lower bound Q̄r1 of Q1 is defined as Q̄r1(x1) =∑
n∈C(1) q1nν̄

r
n(x1), x1 ∈ X1, which since ν̄rn is convex can be interpreted as

Q̄r1(x1) =
∑

n∈C(1)

q1ncoX1
(ν̄rn)(x1), x1 ∈ X1.

Instead, we may iteratively apply scaled cuts to obtain the lower bound coX1
(Q̂r1)(x1), with

Q̂r1(x1) :=
∑

n∈C(1)

q1nv̂
r
n(x1), x1 ∈ X1.

Since for all x1 ∈ conv(X1), we have

coX1
(Q̂r1)(x1) ≥

∑
n∈C(1)

q1ncoX1
(v̂rn)(x1) ≥

∑
n∈C(1)

q1ncoX1
(ν̄rn)(x1) = Q̄r1(x1),

where the first inequality is typically strict, this shows why scaled cuts may improve the hierarchy
of lower bounds in Theorem 9.

Next, we define for every r = 1, . . . , T − 1, similar scaled cut closure operators SCCrn at each
node n ∈ N , and derive a hierarchy of scaled cut closure lower bounds.

Definition 15. Let r = 1, . . . , T − 1 be given, and let ϕ define a set of outer approximations
{ϕn}n∈N . We call ϕ feasible, denoted ϕ ∈ Φr, if and only if for all n ∈ N , ϕn is convex polyhedral
on conv(S[ar−1(n):n]), and moreover for all x[ar−1(n):n] ∈ conv(S[ar−1(n):n]),

ϕn(x[ar−1(n):n]) ≤ co
(
Qn(xn) + δconv(S[ar−1(n):n])

)
(x[ar−1(n):n]). (30)

Definition 16. Let r = 1, . . . , T −1, be given, and let ϕ = {ϕn}n∈N ∈ Φr denote a feasible set of
outer approximations. Then, for every n ∈ N\L, we define ϕ̂ := SCCrn(ϕ) as the result of a scaled
cut closure operation at node n, defined as ϕ̂n(x[ar−1(n):n]) for every x[ar−1(n):n] ∈ conv(S[ar−1(n):n])
as

ϕ̂n(x[ar−1(n):n]) := sup
(αm,βm,τm)∈Πrm(ϕ)

∀m∈C(n)


∑

m∈C(n)

qnm

(
αm − β>mx[ar−1(n):n]

)
1 +

∑
m∈C(n)

qnmτm

 ,
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where for every m ∈ C(n), we have that (αm, βm, τm) ∈ Πr
m(ϕ) if and only if for all x[ar−1(n):n] ∈

S[ar−1(n):n] we have

v̂rm(x[ar−1(n):n]) ≥ αm − β>mx[ar−1(n):n] − τmϕn(x[ar−1(n):n]),

with v̂rm(x[ar−1(n):n]) := min
xm∈Xm(xn)

c>mxm+ϕm(x[ar−1(m):m]) for all (x[ar−1(n):n]) ∈ S[ar−1(n):n], and

defined for all x[ar−1(m):m] ∈ conv(S[ar−1(m):m]) as

ϕ̂m(x[ar−1(m):m]) := ϕm(x[ar−1(m):m])

for m ∈ N with m 6= n, recursively.

Remark 6. Similar as for SCCn, we define for all n ∈ L, ϕ̂n for ϕ̂ = SCCrn(ϕ) as ϕ̂n(x[ar−1(n):n]) =
0 for all x[ar−1(n):n] ∈ conv(S[ar−1(n):n]).

Theorem 12. For any r = 1, . . . , T − 1, let ϕ̄r := limk→∞ ϕr,k, where ϕr,k := SCCrnk(ϕr,k−1),
k ∈ N, for a feasible set of initial outer approximations ϕr,0 ∈ Φr and any admissable se-
quence {nk}k∈N ⊆ N . Then, for every n ∈ N , r = 1, . . . , T − 1, and x[n] ∈ S[n], it holds
that ϕ̄rn(x[ar−1(n):n]) ≤ Qn(xn). Moreover, for all n ∈ N and x[n] ∈ conv(S[n]), it holds that

ϕ̄1
n(xn) ≤ . . . ≤ ϕ̄T−1

n (x[n]),

with Q̄rn from Definition 10 satisfying Q̄rn(x[ar−1(n):n]) ≤ ϕ̄rn(x[ar−1(n):n]) for every x[ar−1(n):n] ∈
conv(S[ar−1(n):n]) and r = 1, . . . , T − 1.

6 Conclusion and discussion

In this paper, we consider Benders decomposition algorithms for multistage stochastic mixed-
integer programs (SMIPs) with general mixed-integer decision variables. We analyze the strength
of the convex polyhedral lower bounds for the expected cost to-go functions resulting from using
affine parametric cutting planes for the feasible regions in the model. By constructing such affine
parametric cutting planes in increasingly higher dimensional spaces, we derive a hierarchy of
convex polyhedral lower bounds. Moreover, we improve this hierarchy using so-called scaled cuts,
and we derive a scaled-cut decomposition algorithm for which the lower bound of the first-stage
expected cost to-go function converges to its convex envelope.

We note that in this paper we do not discuss how to derive the affine parametric cutting planes
in a practical algorithm, but merely discuss the strength of the lower bounds obtained when adding
all possible affine parametric cuts. In a practical algorithm, however, we do not intend to add all
of these cutting planes, but only those relevant for the direction in which we are optimizing. A
future research direction is to investigate how to do this in a numerically efficient way.

Another numerical consideration for future research is the order in which to strengthen the
feasible regions and convex polyhedral lower bounds at the various nodes of the scenario tree in
the model. For example, at the leaf nodes first, or at the root node, or in SDDP-fashion. The
same question applies to our scaled-cut decomposition algorithm. Theoretically, we have proven
convergence of the algorithm under very mild conditions, however, the speed of convergence may
significantly depend on the order in which the scaled cut closure operations are applied. Moreover,
in practice it is possible to add only a single scaled cut in each iteration, instead of the entire
scaled cut closure, similar as for two-stage SMIPs, see [20]. Finally, we remark that our affine
parametric cutting planes and scaled cuts, possibly in extended spaces, may also be embedded
in decomposition or B&B schemes, akin to branch-and-cut for deterministic mixed-integer linear
programming.
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Appendix

Proof of Proposition 1. Let π>(x, z) ≥ π0 be an affine cutting plane in x for Zω(x) with respect
to X. Then, by definition, this affine cutting plane is valid for every Pω, which implies that for
every (x̄, z̄) ∈ Pω we have π>(x̄, z̄) ≥ π0. Moreover, observe that the cutting plane π>(x, z) ≥ π0

defines a half-space H = {(x, z) : π>(x, z) ≥ π0}, and thus Pω ⊆ H. Since every half-space
is convex and conv(Pω) is the smallest convex set containing Pw, it now follows directly that
conv(Pω) ⊆ H, and thus the affine parametric cutting plane is valid for conv(Pω).

Proof of Theorem 1. Let x ∈ X be given and observe that we can rewrite vω(x) as

vω(x) = min
z
{q>ω z : (x, z) ∈ Pω}.

The feasible region corresponding to the minimization problem in νω(x) is at least as large as that
of vω(x), since conv(Pω) ⊇ Pw, and thus (i) holds.

To prove (ii), let x̄ ∈ X be an extreme point of conv(X), and suppose for contradiction that
νω(x) < vω(x). This would mean that there exists z̄ ∈ Z such that (x̄, z̄) ∈ conv(Pω) and
q>ω z̄ = νω(x) < vω(x̄). Since (x̄, z̄) ∈ conv(Pω), it follows from Caratheodory’s theorem that there
exist finitely many extreme points (xk, zk) ∈ conv(Pω) with (xk, zk) ∈ Pω such that

(x̄, z̄) =

K∑
k=1

λk(xk, zk),

for some λk ∈ [0, 1], k = 1, . . . ,K, with
∑K
k=1 λ

k = 1. However, by definition of conv(Pω) we need
to have xk ∈ conv(X) for all k = 1, . . . ,K, and since x̄ is an extreme point of conv(X), it follows
that xk = x̄ for all k = 1, . . . ,K. Hence, (x̄, zk) ∈ Pω for all k = 1, . . . ,K, and thus zk ∈ Zω(x̄) for
all k = 1, . . . ,K, from which it follows that z̄ ∈ conv(Zω(x̄)). Hence, z̄ is feasible in (4), implying
that vω(x̄) ≤ q>ω z̄, contradicting that νω(x̄) < vω(x̄). We conlclude that νω(x̄) = vω(x̄), and thus
(ii) holds.

Proof of Theorem 2. As already discussed, (ii) and (iii) follow directly from Theorem 1 applied
to v̂ω(x, y) := vω(x) defined on the extended space Θ of X. To prove the inequality in (i), let
(x, y) ∈ conv(Θ) be given, and consider z such that (x, y, z) ∈ conv(Eω). Then, by Caratheodory’s

theorem, there exist λk ≥ 0, k = 1, . . . ,K, with
∑K
k=1 λk = 1, and (xk, yk, zk) ∈ Eω, k = 1, . . . ,K,

such that (x, y, z) =
∑K
k=1 λk(xk, yk, zk). Moreover, since (xk, yk, zk) ∈ Eω, it holds that for all

k = 1, . . . ,K, that xk ∈ X, zk ∈ Z, and (xk, zk) ∈ Pω. Hence,

(x, z) =

K∑
k=1

λk(xk, zk) ∈ conv(Pω),

and thus (x, y, z) ∈ conv(Eω) implies that (x, z) ∈ conv(Pω). We conclude that the feasible region
of the minimization problem corresponding to the first problem is at least as large as that of the
second problem. Hence, the desired result follows.

Proof of Theorem 3. Let (x, y1) ∈ conv(Θ) be given. Then, for every z such that (x, y1, z) ∈
conv(Eω), it holds that there exists λk ≥ 0, k = 1, . . . ,K, with

∑K
k=1 λ

k = 1, and (xk, yk, zk) ∈ Eω
such that (x, y1, z) =

∑K
k=1 λk(xk, yk, zk). Observe that since (xk, yk, zk) ∈ Eω, it holds that

(xk, yk) ∈ F . Now define ỹk := yk + (y2 − y1). By definition of a monotone extended space, it
holds that ỹk ∈ Y and (xk, ỹk) ∈ F for all k = 1, . . . ,K, and thus, (xk, ỹk, zk) ∈ Eω. We conclude
that

(x, y2, z) =

K∑
k=1

λk(xk, ỹk, zk) ∈ conv(Eω).

Hence, (x, y1, z) ∈ conv(Eω) implies that (x, y2, z) ∈ conv(Eω), and thus the second feasible region
is larger.
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Proof of Lemma 1. Since X is compact, conv(X) is compact, and since ϕ is convex polyhedral
it is continuous on conv(X). Hence, by Weierstrass’ theorem ϕ has a finite supremum on conv(X),
which we denote by θ∗ = supx∈convX ϕ(x). We will show that ν̂ω(x, θ) ≤ νω(x) for all x ∈ conv(X)
and θ ≥ θ∗. The claim then follows since the reverse inequality holds by Theorem 2 (i).

Let x ∈ conv(X) and θ ≥ θ∗ be given. Then, for any feasible z in the optimization problem
of νω(x), i.e. for any z ∈ Z such that (x, z) ∈ conv(Pω), there exists λk ≥ 0, k = 1, . . . ,K,

with
∑K
k=1 λk = 1, and (xk, zk) ∈ P , k = 1, . . . ,K, such that (x, z) =

∑K
k=1 λk(xk, zk). By

definition of Θ and since θ ≥ θ∗, if holds for all k = 1, . . . ,K, that (xk, θ, zk) ∈ Eω, so that

(x, θ, z) =
∑K
k=1 λk(xk, θ, zk) ∈ conv(Eω). Thus, the feasible region in the optimization problem

of ν̂ω(x, θ) is at least as large as that of νω(x), and thus νω(x) ≥ ν̂ω(x, θ). We conclude that
νω(x) = ν̂ω(x, θ) if θ ≥ θ∗.

Proof of Theorem 4. By Definition 4 it holds that for all (x, θ) ∈ conv(Θ),

ν̂ω(x, θ) := min
z

{
q>ω z : (x, θ, z) ∈ conv(Eω)

}
, (31)

where Eω := {(x, θ, z) ∈ Θ × Z : (x, z) ∈ Pω}. Since ν̂ω(x, θ) is convex in (x, θ), it follows that
ν̂ω = co(ν̂ω), and thus ν̂ω can be expressed as the supremum of all its affine lower bounds, i.e.,

ν̂ω(x, θ) = sup
(αω,βω,τω)∈Π̃ω(ϕ)

αω − β>ω x− τωθ,

where (αω, βω, τω) represents the coefficients of an affine function in (x, θ), and this function is a
lower bound of ν̂ω if (αω, βω, τω) ∈ Π̃ω(ϕ) with

Π̃ω(ϕ) :=
{

(αω, βω, τω) : ν̂ω(x, θ) ≥ αω − β>ω x− τωθ ∀(x, θ) ∈ Θ
}
.

To prove the desired result we will show that Π̃ω(ϕ) = Πω(ϕ). We have by Definition 6 that

Πω(ϕ) =
{

(αω, βω, τω) : vω(x) ≥ αω − β>ω x− τωθ for all (x, θ) ∈ Θ
}

=
{

(αω, βω, τω) : q>ω z ≥ αω − β>ω x− τωθ for all (x, θ) ∈ Θ, (x, z) ∈ Pω
}

=
{

(αω, βω, τω) : q>ω z ≥ αω − β>ω x− τωθ for all (x, θ, z) ∈ Eω
}
.

Since the constraint q>ω z ≥ αω − β>ω x − τωθ is affine in (x, θ, z), we may replace Eω in the last
equation by conv(Eω). Moreover, it follows from (31) that q>ω z ≥ αω−β>ω x− τωθ for all (x, θ, z) ∈
conv(Eω) is equivalent to ν̂ω(x, θ) ≥ αω − β>ω x− τωθ for all (x, θ) ∈ Θ. Hence,

Πω(ϕ) =
{

(αω, βω, τω) : ν̂ω(x, θ) ≥ αω − β>ω x− τωθ for all (x, θ) ∈ Θ
}

= Π̃ω(ϕ).

Proof of Theorem 5. Let x ∈ conv(X) be given and consider θ(x) as defined in (8). We define
(α∗ω, β

∗
w, τ

∗
ω) ∈ Πω(ϕ) for all ω ∈ Ω as the maximizers of the supremum in (8), so that

θ(x) =
Eω[α∗ω]− Eω[β∗ω]>x

1 + Eω[τ∗ω]
.

Rewriting this expression yields

θ(x) = Eω[α∗ω]− Eω[β∗ω]>x− Eω[τ∗ω]θ(x). (32)

Recall that by Theorem 4,

ν̂ω(x, θ(x)) = sup
(αω,βω,τω)∈Πω(ϕ)

αω − β>ω x− τωθ(x).
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Since (α∗ω, β
∗
ω, τ
∗
ω) is feasible but not necessarily optimal for the supremization in ν̂ω(x, θ(x)) for

every ω ∈ Ω, it follows that

Eω[v̂ω(x, θ(x))] ≥ Eω[α∗ω]− Eω[β∗ω]>x− Eω[τ∗ω]θ(x)

= θ(x),

where we used (32) for the final equality. Similarly, it holds that

θ(x) ≥ Eω[α̃ω]− Eω[β̃ω]>x

1 + Eω[τ̃ω]
, (33)

where (α̃ω, β̃ω, τ̃ω) ∈ Πω(ϕ) are optimal solutions to the supremization problems in ν̂ω(x, θ(x)) for
all ω ∈ Ω. Since Eω[τ̃ω] ≥ 0, we can multiply both sides of the inequality in (33) by 1 + Eω[τ̃ω] to
obtain (1 + Eω[τ̃ω])θ(x) ≥ Eω[α̃ω]− Eω[β̃ω]>x, and thus

θ(x) ≥ Eω[α̃ω]− Eω[β̃ω]>x− Eω[τ̃ω]θ(x) = Eω[ν̂ω(x, θ(x))].

Hence, θ(x) = Eω[ν̂ω(x, θ(x))] for all x ∈ conv(X).

Proof of Proposition 3. We first rewrite Πω(ϕ) as given in Definition 6. Since τω ≥ 0, this set
equals

Πω(ϕ) =
{

(αω, βω, τω) : vω(x) ≥ αω − β>ω x− τωθ, ∀ (x, θ) ∈ Θ
}
.

By adding δΘ(x, θ) to the left-hand side of the inequality we make sure that the inequality holds
for all (x, θ) ∈ conv(Θ), that is,

Πω(ϕ) =
{

(αω, βω, τω) : vω(x) + δΘ(x, θ) ≥ αω − β>ω x− τωθ, ∀(x, θ) ∈ conv(Θ)
}
.

Moreover, since the right-hand side of the inequality is affine in (x, θ), we may replace the left-hand
side of the inequality by co(vω + δΘ)(x, θ).

Now let v̂ω be given such that (12) holds. Then, for every (αω, βω, τω) ∈ Πω(ϕ), we have
co(vω + δΘ)(x, θ) ≥ αω − β>ω x− τωθ for all (x, θ) ∈ Θ, and thus

(αω, βω, τω) ∈
{

(αω, βω, τω) : v̂ω(x, θ) ≥ αω − β>ω x− τωθ, ∀(x, θ) ∈ Θ
}
,

since v̂ω(x, θ) ≥ co(vω + δΘ)(x, θ) ≥ αω − β>ω x − τωθ for all (x, θ) ∈ Θ. On the other hand, for
every (αω, βω, τω) with τω ≥ 0 satisfying v̂ω(x, θ) ≥ αω−β>ω x− τωθ for all (x, θ) ∈ Θ, it holds that
(αω, βω, τω) ∈ Πω(ϕ), since vω(x) ≥ v̂ω(x, θ) ≥ αω − β>ω x − τωθ for all (x, θ) ∈ Θ. We conclude
that (13) holds.

Proof of Theorem 7. Since the lower bounds ṽω of vω satisfy (15), it follows that for every
ω ∈ Ω there exists v̂ω(x, θ) with co(vω + δΘ)(x, θ) ≤ v̂ω(x, θ) ≤ vω(x) for all (x, θ) ∈ Θ such that
‖v̂ω − ṽω‖∞ ≤ δ. Comparing Π̃ω(ϕ) as defined in (14) and Πω(ϕ), which by Proposition 3 equals

Πω(ϕ) =
{

(αω, βω, τω) : v̂ω(x, θ) ≥ αω − β>ω x− τωθ, ∀(x, θ) ∈ Θ, τω ≥ 0
}
,

for every ω ∈ Ω, we observe that if (αω, βω, τω) ∈ Πω(ϕ), then (αω − δ, βω, τω) ∈ Π̃ω(ϕ), and vice
versa, if (α̃ω, β̃ω, τ̃ω) ∈ Π̃ω(ϕ), then (α̃ω − δ, β̃ω, τ̃ω) ∈ Πω(ϕ). Hence, for every x ∈ conv(X), we
have

˜SCC(ϕ)(x) = sup

{
Eω[α̃ω]− Eω[β̃ω]>x

1 + Eω[τ̃ω]
: (α̃ω, β̃ω, τ̃ω) ∈ Π̃ω(ϕ)

}

≥ sup

{
Eω[αω − δ]− Eω[βω]>x

1 + Eω[τω]
: (αω, βω, τω) ∈ Πω(ϕ)

}
≥ SCC(ϕ)(x)− δ,
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where the second inequality holds since τω ≥ 0 for all ω ∈ Ω, and thus −δ/(1 + Eω[τω]) ≥ −δ.
Similarly, it holds that

SCC(ϕ)(x) = ≥ sup

{
Eω[αω]− Eω[βω]>x

1 + Eω[τω]
: (αω, βω, τω) ∈ Πω(ϕ)

}
≥ sup

{
Eω[α̃ω − δ]− Eω[β̃ω]>x

1 + Eω[τ̃ω]
: (α̃ω, β̃ω, τ̃ω) ∈ Π̃ω(ϕ)

}
≥ ˜SCC(ϕ)(x)− δ.

We conclude that ‖SCC(ϕ)− ˜SCC(ϕ)‖∞ ≤ δ.

Proof of Corollary 1. We will prove the claim by mathematical induction. For K = 1, it holds
by definition of a δ-exact scaled cut closure operation. Next, we assume that the claim holds for
some K ∈ N, i.e.,

‖ϕ̄K − ϕ̂K‖∞ ≤
K∑
k=1

δk.

By Proposition 2 (ii), it holds that ‖SCC(ϕ̄K) − SCC(ϕ̂K)‖∞ ≤ ‖ϕ̄K − ϕ̂K‖∞, and thus using
that ϕ̄K+1 = SCC(ϕ̄K), it holds that

‖ϕ̄K+1 − SCC(ϕ̂K)‖∞ ≤
K∑
k=1

δk.

At the same time, since the (K + 1)-th inexact ˜SCC is δK+1-exact, we have that ‖SCC(ϕ̂K) −
ϕ̂K+1‖∞ ≤ δK+1, and hence

‖ϕ̄K+1 − ϕ̂K+1‖∞ ≤ ‖ϕ̄K+1 − SCC(ϕ̂K)‖∞ + ‖SCC(ϕ̂K)− ϕ̂K+1‖∞ ≤
K+1∑
k=1

δk.

Proof of Theorem 8. Let m ∈ L be a leaf node of the scenario tree N and consider ν̄rm as
defined in Definition 9 for r = 1. Observe that vm(xa(m)) can be interpreted as a mixed-integer
value function vω(x) defined in (3) and that ν̄1

m(xa(m)) corresponds to the lower bound νω from
Definition 2. Hence, by Theorem 1 (i) it holds that ν̄1

m(xa(m)) ≤ vm(xa(m)) for all xa(m) ∈ Xa(m).
Moreover, for any r = 2, . . . , T − 1, we have that S[n:a(m)] with n = ar(m) is an extended space
of Xa(m), see Definition 3, so that ν̄rm corresponds to the lower bound ν̄ω from Definition 4. By
Theorem 2 (ii), it holds that

ν̄rm(x[n:a(m)]) ≤ vm(xa(m))

for all x[a(m)] ∈ S[a(m)]. Finally, let r1, r2 ∈ {1, . . . , T − 1} with r1 > r2 be given and define n1 =
ar1(m) and n2 = ar2(m). Note that it is possible to define vm on the extended space S[n2:a(m)] as
vr2m (x[n2:a(m)]) = vm(xa(m)) for all x[n2:a(m)] ∈ S[n2:a(m)]. Hence, vr2m can be interpreted as a mixed-
integer value function vω from (3) with ν̄r2m corresponding to the lower bound from Definition 2,
and since S[n1:a(m)] is an extended space of S[n2:a(m)], with ν̄r1m corresponding to the lower bound
from Definition 4. It follows directly from Theorem 2 (i) that for all x[a(m)] ∈ conv(S[a(m)]),

ν̄r2m (x[n2:a(m)]) ≤ ν̄r1m (x[n1:a(m)]).

This proves our hierarchy of lower bounds since r1 > r2 are arbitrarily given.
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Proof of Proposition 4. Let x[a(m)] ∈ S[a(m)] be given. If x[aρ(m):a(m)] is an extreme point of
conv(S[aρ(m):a(m)]) for some ρ = 1, . . . , r, then it follows from Theorem 2 (iii) that ν̄ρm(x[aρ(m):a(m)]) =
vm(xa(m)), and thus by Theorem 8, it holds that

ν̄ρm(x[aρ(m):a(m)]) = ν̄rm(x[ar(m):a(m)]) = vm(xa(m)).

Hence, if there exists ρ ∈ {1, . . . , r} such that x[aρ(m):a(m)] is an extreme point of conv(S[aρ(m):a(m)]),
then (17) holds.

Proof of Theorem 9. We will prove the result by mathematical induction on the time stage
t = 1, . . . , T , starting at t = T and moving back to t = 1. For t = T and all nodes n ∈ N , the
inequalities in (20)–(22) hold by Theorem 8 and since Q̄1

n(xn) = . . . = Q̄T−1
n (x[n]) = Qn(xn) = 0

for all x[n] ∈ S[n]. Next, assume that (20)–(22) hold for all n ∈ N with tn > t̄ for some 1 ≤
t̄ ≤ T − 1. Then, for n ∈ N with tn = t̄, we have Qn(xn) =

∑
m∈C(n) qnmvm(xn), xn ∈ Xn, and

Q̄rn(x[ar−1(n):n]) =
∑
m∈C(n) qnmν̄

r
m(x[ar−1(n):n]), x[ar−1(n):n] ∈ S[ar−1(n):n], so that (21) holds for n

by (22) and the induction hypothesis. Similarly, the first inequality in (20) holds.
Next, it follows from (21) that v̂rn(x[ap(n):a(n)]) as defined in (19) is a lower bound for vn(xa(n))

for every r = 1, . . . , T −1. We can interpret v̂rn as a mixed-integer value function vω from Section 2
with ν̄rn(x[ar(n):a(n)]) corresponding to the lower bound ν̄ω from Definition 4. By Theorem 2 (ii)
it holds that ν̄rn(x[ar(n):a(n)]) ≤ v̂rn(x[ap(n):a(n)]), and thus ν̄rn(x[ar(n):a(n)]) ≤ vn(xa(n)) for all
x[n] ∈ S[n].

Finally, let r1, r2 ∈ {1, . . . , T − 1} with r1 > r2 be given. We define the auxiliary lower bound
ν̄r1,r2n (x[ar1 (n):a(n)]) as

ν̄r1,r2n (x[ar1 (n):a(n)]) := min
xn,θn

{
c>n xn + θn : (x[ar1 (n):a(m)], θn) ∈ conv(Θr1,r2

n )
}
,

where

Θr1,r2
n :=

{
(x[ar1 (n):n], θn) ∈ S[ar1 (n):n] × R : θn ≥ Q̄r2n (x[ar2−1(n):n])

}
.

Since Q̄r1n (x[ar1−1(n):n]) ≥ Q̄r2n (x[ar2−1(n):n]) by (21), it follows immediately that Θr1
n ⊆ Θr1,r2

n , and
thus ν̄r1n (x[ar1 (n):a(n)]) ≥ ν̄r1,r2n (x[ar1 (n):a(n)]). On the other hand, since S[ar1 (n):a(n)] is an extended
space of S[ar2 (n):a(n)], we can consider

vr2n (x[ar2 (n):a(n)]) := min
xn,θn

{
c>n xn + θn : (x[ar2 (n):n], θn) ∈ Θr2

n

}
,

as a mixed-integer value function vω from Section 2, where ν̄r2n corresponds to the convex lower
bound νω from Definition 2, and ν̄r1,r2n corresponds to the convex lower bound ν̄ω from Defini-
tion 4. Hence, by Theorem 2 (i) it follows that ν̄r2n (x[ar2 (n):a(n)]) ≤ ν̄r1,r2n (x[ar1 (n):a(n)]), and thus
it holds that ν̄r2n (x[ar2 (n):a(n)]) ≤ ν̄r1n (x[ar1 (n):a(n)]) for all x[n] ∈ conv(S[n]). Since r1 > r2 are
arbitrarily given, we conclude that (22) holds for all n ∈ N with tn = t̄. The proof now follows
by mathematical induction.

Proof of Proposition 5. Since by definitionQn(xn) =
∑
m∈C(n) qnmvm(xn) and Q̄rn(x[ar−1(n):n]) =∑

m∈C(n) qnmν̄
r
m(x[ar−1(n):n]), and ν̄rm, m ∈ C(n), are lower bounds for vm, it follows directly that

(i) holds.
To prove (ii), suppose that for some ρ = 1, . . . , T −1, it holds that an optimal solution (x∗n, θ

∗
n)

of the minimization problem in v̂ρn(x[aρ(n):a(n)]) satisfies θ∗ = Qn(x∗n). Then, v̂ρn(x[aρ(n):a(n)]) =
vn(xa(n)). Moreover, if (x[aρ(n):a(n)], Q̄

ρ
n(x[aρ−1(n):n])) is an extreme point of conv(Θρ

n), then it
follows by Theorem 2 (iii) that ν̄ρn(x[aρ(n):a(n)]) = v̂ρn(x[aρ(n):a(n)]). The result in (ii) follows by
Theorem 9 since if the lower bound is tight for ρ, then it will be tight for all r = 1, . . . , T − 1 with
r ≥ ρ.
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Proof of Proposition 6. We first prove (ii) before proving (i). To do so, it suffices to prove
that for ϕ ∈ Φ and n ∈ N , we have ϕ̂n ≥ ϕn for ϕ̂ := SCCn(ϕ). Indeed, then for m ∈ N with
m 6= m, it holds that ϕ̂m(x[m], θ[a(m)]) = ϕm(x[m], θ[a(m)]) for all (x[m], θ[a(m)]) ∈ Θ[m](ϕ̂[a(m)]) ⊆
Θ[m](ϕ[a(m)]).

To prove that ϕ̂n ≥ ϕn, observe that Θ[n](ϕ̂a(n)]) = Θ[n](ϕ[a(n)]). Moreover, if n ∈ L, thenϕ̂n ≥
ϕn by definition. On the other hand, if n ∈ N\L, then byDefinition 12 it holds for all (x[n], θa(n)]) ∈
conv(Θ[n](ϕ[a(n)])) that

ϕ̂n(x[n], θ[a(n)]) ≥ sup
τm≥0

sup
(αm,βm):

(αm,βm,τm)∈Πm(ϕ[n])


∑

m∈C(n)

qnm

(
αm − β>m(x[n], θ[a(n)])

)
1 +

∑
m∈C(n)

qnmτm

 .

For all m ∈ C(n), we have that (αm, βm, τm) ∈ Πm(ϕ[n]) if and only if

v̂m(x[n], θ[a(n)]) + τmθn ≥ αm − β>m(x[n], θ[a(n)]), ∀(x[n], θ[n]) ∈ Θ̂[n](ϕ[n]).

Since Θ̂[n](ϕ[n]) is bounded, there exists L ∈ R such that for all m ∈ C(n),

L ≤ min
(x[n],θ[n])∈Θ̂[n](ϕ[n])

v̂m(x[n], θ[n])

= min
(x[n],θ[n])∈Θ̂[n](ϕ[n])

min
xm∈Xm(xn)

c>mxm + ϕm(x[m], θ[n]).

Here, we use that ϕ ∈ Φ, and thus c>mxm+ϕm(x[m], θ[n]) is a convex polyhedral function minimized
over a compact set. Using this lower bound L, we conclude for all m ∈ C(n) that if (αm, βm, τm)
satisfies

L+ τmθn ≥ αm − β>m(x[n], θ[a(n)]), ∀(x[n], θ[n]) ∈ Θ̂[n](ϕ[n]),

then (am, βm, τm) ∈ Πm(ϕ[n]). Hence, for every m ∈ C(n), τm > 0, and (x[n], θ[a(n)]) ∈
conv(Θ[n](ϕ[a(n)])), we have

sup
(αm,βm):

(αm,βm,τm)∈Πm(ϕ[n])

{
αm − β>m(x[n], θ[a(n)])

}
≥ co

(
L+ τmϕn + δΘ[n](ϕ[a(n)])

)
(x[n], θ[a(n)]).

Applying this inequality and letting τm → +∞ for every m ∈ C(n), yields for all (x[n], θ[a(n)]) ∈
conv(Θ[n](ϕ[a(n)])) that

ϕ̂n(x[n], θ[a(n)]) ≥ sup
τm≥0


∑

m∈C(n)

qnm co
(
L+ τmϕn + δΘ[n](ϕ[a(n)])

)
(x[n], θ[a(n)])

1 +
∑

m∈C(n)

qnmτm


≥ lim
τm→+∞


∑

m∈C(n)

qnm co
(
L+ τmϕn + δΘ[n](ϕ[a(n)])

)
(x[n], θ[a(n)])

1 +
∑

m∈C(n)

qnmτm


= co

(
ϕn + δΘ[n](ϕ[a(n)])

)
(x[n], θ[a(n)])

= ϕn(x[n], θ[a(n)]),

where the last equality holds since ϕ ∈ Φ, and thus ϕn is convex. We conclude that (ii) holds.
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To prove (i), observe that ϕ̂m = ϕm for all m ∈ N with m 6= n, and thus ϕ̂m is convex
polyhedral, since ϕ ∈ Φ. Moreover, by definition of the SCCn operator, ϕ̂n is the pointwise
maximum of affine functions, and hence convex. Similar to Proposition 1 in van der Laan and
Romeijnders [20], we can show that ϕ̂n is also polyhedral. Hence, it remains to show that (26)
holds for ϕ̂ for all n ∈ N and (x[n], θ[a(n)]) ∈ Θ[n](ϕ[a(n)]). Since ϕ̂ ≥ ϕ by (ii), and ϕ ∈ Φ, we
conclude that (26) holds for all m ∈ N with m 6= n. Indeed, since ϕ̂m = ϕm, only the right-hand
side in (26) may increase by applying the scaled cut closure procedure at node n, and inaddition
the inequality is require to hold for a potentially smaller set Θ[m](ϕ̂[a(m)]). To show that (26)
holds for ϕ̂n and all (x[n], θ[a(n)]) ∈ Θ[n](ϕ[a(n)]), observe that Θ[n](ϕ̂[a(n)]) = Θ[n](ϕ[a(n)]), and
moreover since ϕ ∈ Φ, the functions ϕm(x[m], θ[n]) used in the definition of v̂m in Definition 12 to
apply the SCCn operator satisfy (26), and thus the result of applying the inexact SCCn operator
is upper bounded by applying the exact SCC operator, cf. Definition 7, to ϕn, which is upper
bounded by the right-hand side in (26). Hence, ϕ̂ ∈ Φ.

Finally, to prove (iii), let ϕ,ϕ′ ∈ Φ with ϕ ≥ ϕ′ and n ∈ N\L be given. We will show that
for m ∈ C(n), we have Πm(ϕ[n]) ⊇ Πm(ϕ′[n]), implying that SCCn(ϕ) ≥ SCCn(ϕ′). Hence, let

(αm, βmτm) ∈ Πm(ϕ′[n]) be given for some m ∈ C(n). Then, for all (x[n], θ[n]) ∈ Θ̂[n](ϕ
′
[n]) it holds

that

v̂′m(x[n], θn]) ≥ αm − β>m(x[n], θ[a(n)])− τmθn, (34)

where v̂′m(x[n], θn]) := minxm∈Xm(xn) c
>
mxm+ϕ′m(x[m], θ[n]). Since ϕ ≥ ϕ′, it holds that Θ̂[n](ϕ[n]) ⊆

Θ̂[n](ϕ
′
[n]) and ϕm ≥ ϕ′m, so that (34) implies that

v̂m(x[n], θn]) ≥ αm − β>m(x[n], θ[a(n)])− τmθn,

for all (x[n], θ[n]) ∈ Θ̂[n](ϕ[n]), and thus (αm, βm, τm) ∈ Πm(ϕ[n]). We conclude that Πm(ϕ[n]) ⊇
Πm(ϕ′[n]) for all m ∈ C(n), and thus (iii) holds.

Proof of Lemma 2. The second inequality holds since for every (x[m], θ[n]) ∈ Θ[m](ϕ[n]) we
have that co(Qm + δΘ[m](ϕ[n]))(x[m], θ[n]) ≤ Qm(xm). To prove the first inequality we use that by
definition of the closed convex envelope, we have

co(vm + δΘ[n](ϕ[n]))(x[n], θ[n]) = sup
(αn,βn)∈Π̂n(ϕ[n])

{
αn − β>n (x[n], θ[n])

}
,

where Π̂n(ϕ[n]) := {(αn, βn) : vm(xn) ≥ αn − β>n (x[n], θ[n]) ∀(x[n], θ[n]) ∈ Θ̂[n](ϕ[n])}. Since

vm(xn) is a minimization over xm, it holds for all (αn, βn) ∈ Π̂n(ϕ[n]) that

c>mxm +Qm(xm) ≥ αn − β>n (x[n], θ[n]) ∀(x[m], θ[n]) ∈ Θ[m](ϕ[n]),

and since the right-hand side is affine in (x[n], θ[n]), it also holds that

c>mxm + co(Qm + δΘ[m](ϕ[n]))(x[m], θ[n]) ≥ αn − β>n (x[n], θ[n]) ∀(x[m], θ[n]) ∈ Θ[m](ϕ[n]).

Since for all (x[n], θ[n]) ∈ Θ̂[n](ϕ[n]) this inequality holds for all xm ∈ Xm(xn), we can minimize

the left-hand side over xm ∈ Xm(xn), yielding for all (x[n], θ[n]) ∈ Θ̂[n](ϕ[n]) that

min
xm∈Xm(xn)

c>mxm + co(Qm + δΘ[m](ϕ[n]))(x[m], θ[n]) ≥ αn − β>n (x[n], θ[n]),

which is equivalent to

v̂m(x[n], θ[n]) ≥ αn − β>n (x[n], θ[n]) ∀(x[n], θ[n]) ∈ Θ̂[n](ϕ[n]). (35)
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Since the inequality in (35) holds for all (αn, βn) ∈ Π̂n(ϕ[n]), we conclude that for all (x[n], θ[n]) ∈
Θ̂[n](ϕ[n]), we have

v̂m(x[n], θ[n]) ≥ sup
(αn,βn)∈Π̂n(ϕ[n])

{
αn − β>n (x[n], θ[n])

}
= co(vm + δΘ[n](ϕ[n]))(x[n], θ[n]),

which implies that also the first inequality holds.

Proof of Theorem 10. Interpret Qn as the expectation of l.s.c. value functions defined on the
extended space Θ[n](ϕ[a(n)]) of Xn. Then, it follows from Definition 13 that the SCCn operator
from Definition 12 is exact if it coincides with the SCC operator from Definition 7. This is true
if (28) holds for all m ∈ C(n), since then Lemma 2 implies that for every m ∈ C(n), the function
v̂m from Definition 13 satisfies

co(vm + δΘ̂[n](ϕ[n])
)(x[n], θ[n]) ≤ v̂m(x[n], θ[n]) ≤ vm(xn)

for all (x[n], θ[n]) ∈ Θ̂[n](ϕ[n]), which by Proposition 3 is a sufficient condition for the SCCn
operator to be exact cf. Definition 7.

Proof of Proposition 7. Observe that if (29) holds for all m ∈ C(n), that then v̂m, defined for
all (x[n], θ[n]) ∈ Θ̂[n](ϕ[n]) as

v̂m(x[n], θ[n]) = min
xm∈Xm(xn)

c>mxm + ϕm(x[m], θ[n]),

satisfies for all (x[n], θ[n]) ∈ Θ̂[n](ϕ[n]) that

v̂m(x[n], θ[n]) ≥ min
xm∈Xm(xn)

c>mxm + co(Qm + δΘ[m](ϕ[n])(x[m], θ[n])− δ

≥ co(vm + δΘ̂[n](ϕ[n])
)(x[n], θ[n])− δ,

where the last inequality follows from Lemma 2. Hence, applying Theorem 7 yields that the SCCn
operator is δ-exact.

Proof of Theorem 11. Consider any subsequence {n̂kl}l∈N of {nk}k∈N, and let {ϕ̂l}l∈N denote
the corresponding sequence of outer approximations, defined as

ϕ̂l := SCCnkl (ϕ̂
l−1), l ∈ N,

with ϕ̂0 := ϕ0. By monotonicity of the scaled cut closure operator, see Proposition 6, it holds
that for every l ∈ N,

ϕkl ≥ ϕ̂l.

Hence, ϕk1 converges uniformly to coX1
(Q1) if ϕ̂l1 does, since ϕk1 ≤ coX1

(Q1) for all k ∈ N. Thus,
it suffices to prove that there exists a subsequence {n̂kl}l∈N of {nk}k∈N such that ϕ̂l1 converges
uniformly to coX1(Q1).

Next, we prove the existence of such a subsequence {n̂kl}l∈N. Observe that by definition of
an admissable sequence, any sequence {n̂l}l∈N ⊆ N is a subsequence of {nk}k∈N. To prove the
result, we will prove the stronger claim that for any feasible initial set of outer approximations
ϕ0 = {ϕ0

n}n∈N ∈ Φ, for every n ∈ N , and for every ε > 0, there exists a finite sequence {nk}Nk=1 ⊆
C(n) for some N ∈ N such that

‖ϕNn − co(Qn + δΘ[n](ϕ
0
[a(n)]

))‖∞ < ε,
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for ϕN iteratively defined by ϕk := SCCnk(ϕk−1), k = 1, . . . , N . The result for n = 1 then
implies that ϕk1 converges uniformly to coX1(Q1) as desired. Here, we let C(n) denote te set of all
descendant nodes of n including n itself, for all n ∈ N .

We will prove the claim by mathematical induction on the time t = 1, . . . , T , starting at t = T
and moving backward to t = 1. For all leaf nodes n ∈ L, i.e., for all nodes n in time stage T , it
holds that Qn ≡ 0, so that after a single SCCn-operation it holds that

‖ϕ1
n − co(Qn + δΘ[n](ϕ

0
[a(n)]

))‖∞ = 0.

Hence, the claim holds for all n ∈ L. Next, assume that the claim holds for all nodes n ∈ N
with tn ≥ t̄ for some arbitrary 1 < t̄ ≤ T . We will prove that under this assumption the claim
also holds for all nodes n ∈ N with tn = t̄ − 1. To do so, let n ∈ N with tn = t̄ − 1 and ε > 0
be given. Define {ϕ̄κ}κ∈N as the sequence of lower bounds obtained by iteratively applying exact
scaled cut closure operators at node n. It follows from Theorem 6 that the sequence {ϕ̄κn}κ∈N
converges uniformly to co(Qm + δΘ[n](ϕ

0
[a(n)]

)). Hence, there exists K ∈ N such that for all κ ∈ N
with κ ≥ K,

‖ϕ̄κn − co(Qn + δΘ[n](ϕ
0
[a(n)]

))‖∞ <
ε

2
.

The exact scaled closure operations differ from the inexact scaled cut closure operations SCCn
that we intend to apply at node n. However, Corollary 1 shows that if we apply K times a δ-exact
scaled cut closure operations with δ := ε/(2K), leading to the sequence {ϕ̂κ}Kκ=0, with ϕ̂0 = ϕ0,
then ‖ϕ̄K − ϕ̂K‖∞ ≤ ε/(2K)×K = ε/2, and thus

‖ϕ̂Kn − co(Qn + δΘ[n](ϕ
0
a(n)]

))‖∞ ≤ ‖ϕ̂Kn − ϕ̄Kn ‖∞ + ‖ϕ̄Kn − co(Qn + δΘ[n](ϕ
0
[a(n)]

))‖∞

<
ε

2
+
ε

2
= ε.

Thus, to prove our claim it suffices to prove that before the κ-th SCCn operation, κ = 1, . . . ,K,
there exists a finite sequence of SCCnκl operations with {nκl }

Nκ
l=1 ⊆ C(n), such that the κ-th SCCn

operation becomes (ε/(2N))-exact when first these SCCnκl operations are iteratively carried out.
By Proposition 7 a sufficient condition to achieve this is that for every κ = 1, . . . ,K, and

m ∈ C(n), there exists a finite sequence {nκl }
Nκ,m
l=1 ⊆ C(m) for some Nκ,m ∈ N such that

‖ ˆ̂ϕNκ,mm − co(Qm + δΘ[m](ϕ̂
κ−1
[n]

))‖∞ ≤
ε

2N

for ˆ̂ϕl iteratively defined by ˆ̂ϕl := SCCnκl ( ˆ̂ϕl−1), l = 1, . . . , Nκ,m, with ˆ̂ϕ0 := ϕ̂κ−1. By the

induction hypothesis, such sequences {nκl }
Nκ,m
l=1 do indeed exist for every κ = 1, . . . ,K, and m ∈

C(n). Hence, carrying out all scaled cut closure operations in the correct order, there exists a

finite sequence {nk}Nk=1 ⊆ C(n) of length N = K+
∑K
κ=1

∑
m∈C(n)Nκ,m such that ‖ϕNn −co(Qn+

δΘ[n](ϕ
0
a(n)]

))‖∞ < ε for ϕN iteratively defined by ϕk := SCCnk(ϕk−1), k = 1, . . . , N .

Proof of Theorem 12. To prove the theorem, we will first show by mathematical induction that
the following claim holds.

Claim: Let r = 1, . . . , T − 1, be given. Then, for all n ∈ N , and x[ar−1(n):n] ∈ conv(S[ar−1:n]), it
holds that

ϕ̄rn(x[ar−1(n):n]) = co
( ∑
m∈C(n)

qnmv̂
r
m + δS[ar−1(n):n]

)
(x[ar−1(n):n]), (36)

where v̂rm(x[ar−1(n):n]) = minxm∈Xm(xn) c
>
mxm+ϕ̄rm(x[ar−1(m):m]) for allm ∈ C(n) and x[ar−1(n):n] ∈

S[ar−1(n):n]. Moreover, Q̄rn(x[ar−1(n):n]) ≤ ϕ̄rn(x[ar−1(n):n]) for all x[ar−1(n):n] ∈ conv(S[ar−1(n):n]),
and ϕ̄rn(x[ar−1(n):n]) ≤ Qn(xn) for all x[ar−1(n):n] ∈ S[ar−1(n):n].
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For n ∈ L, the claim holds since Qn ≡ 0, and ϕ̄rn(x[ar−1(n):n]) = Q̄rn(x[ar−1(n):n]) = 0 for all
x[ar−1(n):n] ∈ conv(S[ar−1(n):n]). Next, assume that the claim holds for all n ∈ N with tn ≥ t̄
for some 1 < t̄ ≤ T . Then, for n ∈ N with tn = t̄ − 1, observe that the scaled cut closure
operator SCCrn does not depend on previous-stage lower bounds ϕ[a(n)]. Hence, in the limit, ϕ̄rn
will be equivalent to applying the exact scaled cut closure operator SCC from Definition 7 itera-
tively with respect to the expected value function Qrn(x[ar−1(n):n]) =

∑
m∈C(n) qnmv̂

r
m(x[ar−1(n):n]),

with v̂rm as in the claim. Hence, it follows directly from Theorem 6 that (36) holds. More-
over, by the induction hypothesis ϕ̄rm(x[ar−1(m):m]) ≤ Qm(xm) for all x[ar−1(m):m] ∈ S[ar−1(m):m],
and thus v̂rm(x[ar−1(n):n]) ≤ vm(xn) for all x[ar−1(n):n] ∈ S[ar−1(n):n], which implies via (36) that
ϕ̄rn(x[ar−1(n):n]) ≤ Qn(xn) for all x[ar−1(n):n] ∈ S[ar−1(n):n]. Furthermore, since by the induction hy-
pothesis ϕ̄rm(x[ar−1(m):m]) ≥ Q̄rm(x[ar−1(m):m]) for all x[ar−1(m):m] ∈ conv(S[ar−1(m):m]), m ∈ C(n),
it holds that for all m ∈ C(n) and x[ar−1(n):n] ∈ S[ar−1(n):n], that

v̂rm(x[ar−1(n):n]) min
xm∈Xm(xn)

c>mxm + Q̄rm(x[ar−1(m):m]) ≥ ν̄rm(x[ar−1(n):n]), (37)

where the convex lower bound ν̄rm(x[ar−1(n):n]) is defined in Definition 10. Hence, for all x[ar−1(n):n] ∈
conv(S[ar−1(n):n]), we have

ϕ̄rn(x[ar−1(n):n]) = co
( ∑
m∈C(n)

qnmv̂
r
m + δS[ar−1(n):n]

)
(x[ar−1(n):n])

≥
∑

m∈C(n)

qnmco
(
v̂rm + δS[ar−1(n):n]

)
(x[ar−1(n):n])

≥
∑

m∈C(n)

qnmν̄
r
m(x[ar−1(n):n])

= Q̄rn(x[ar−1(n):n]),

where the second inequality holds since ν̄rm is a convex polyhedral lower bound of v̂rm, see (37).
It remains to show that for all n ∈ N and x[n] ∈ conv(S[n]), it holds that

ϕ̄1
n(xn) ≤ . . . ≤ ϕ̄T−1

n (x[n]). (38)

To do so, let r1, r2 ∈ {1, . . . , T − 1} with r1 > r2 be given. We will prove that ϕ̄r1n (x[ar1−1(n):n]) ≥
ϕ̄r2n (x[ar2−1(n):n] for all x[n] ∈ conv(S[n]) by mathematical induction, so that (38) holds. Observe
that for n ∈ L, we have ϕ̄r1n (x[ar1−1(n):n]) = ϕ̄r2n (x[ar2−1(n):n]) = 0 for all x[n] ∈ conv(S[n]). Next,
assume that ϕ̄r1n (x[ar1−1(n):n]) ≥ ϕ̄r2n (x[ar2−1(n):n]) for all x[n] ∈ conv(S[n]) for all n ∈ N with tn ≥ t̄
for some 1 < t̄ ≤ T . Then, for n ∈ N with tn = t̄− 1, we have that

ϕ̄r1n (x[ar1−1(n):n]) = co
( ∑
m∈C(n)

qnmv̂
r1
m + δS

[ar1−1(n):n]

)
(x[ar1−1(n):n]).

By the induction hypothesis, it holds that∑
m∈C(n)

qnmv̂
r1
m (x[ar1−1(n):n]) ≥

∑
m∈C(n)

qnmv̂
r2
m (x[ar2−1(n):n])

for all x[n] ∈ S[n]. Hence, ϕ̄r2n is a convex polyhedral lower bound of the first function when defined
on the extended space conv(S[ar1−1(n):n]). Since it is not necessarily the best convex polyhedral
lower bound, we conclude that

ϕ̄r1n (x[ar1−1(n):n]) ≥ ϕ̄r2n (x[ar2−1(n):n]) ∀x[n] ∈ conv(S[n]).
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