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Abstract

We address the problem of identifying a stable linear time-invariant system from a single sample

trajectory. The least squares estimate (LSE) is a commonly used algorithm for this purpose. However,

LSE may exhibit poor identification errors when the number of samples is small. To mitigate the issue,

we introduce the robust LSE, which integrates robust optimization techniques. We demonstrate that

our robust LSE is equivalent to regularizing LSE using general Schatten p-norms. Moreover, we provide

finite-sample analyses for the robust LSE, which can be directly transferred to the regularized LSE due

to their equivalence. We showcase the empirical performance of our method in system identification

tasks. Additionally, we combine our robust LSE with several online adaptive linear quadratic control

algorithms and demonstrate that our method significantly outperforms existing approaches in regret.

Keywords: robust optimization; system identification; finite-sample analysis

1 Introduction

Many real-world engineering problems require learning unknown parameters from sample data. Specifically,

in the control community, the problem of estimating the parameters of a dynamical system is referred to

as system identification. System identification is crucial since accurate estimation of the unknown system is

integral to developing safe and reliable control systems.

In this work, we focus on identifying linear time-invariant (LTI) systems from a single trajectory of

fully observed states. One of the simplest system identification algorithms is the least squares method

or the least squares estimate (LSE), which minimizes the squared prediction errors of the given samples.

Due to the stochastic nature of the data, the performance of LSE cannot be deterministically guaranteed.

Moreover, since the data comprises a single trajectory of states resulting from the evolution of the dynamical

system, the samples are non-i.i.d. Recent works [1, 2] provide a non-asymptotic analysis of the least squares

estimator (LSE), specifically addressing system identification errors with respect to a finite number of non-
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i.i.d. samples. Both works show that the error decays as fast as Õ(1/
√
T ) where T denotes the number of

samples.

Although these theoretical results are satisfactory, the empirical performance of LSE may suffer, especially

when only a few samples are available. This limitation can be critical in applications where data collection

is inherently limited or very expensive. To address this issue, we propose a new approach that combines

robust optimization with LSE by formulating a min-max optimization problem, referred to as the robust LSE

problem. We establish that the robust LSE problem can be formulated as a convex semidefinite program

(SDP), making it tractably solvable. Furthermore, we provide finite-sample analysis for our approach and

show that the robust LSE can achieve the same system identification error rate as LSE. Interestingly, we can

show that our robust LSE problem is equivalent to the LSE problem with an additional regularization term

given by the general Schatten p-norm. A few special cases of the Schatten p-norms have previously been

introduced to regularize the LSE problems [3, 4]. However, to the best of our knowledge, there is no existing

finite-sample analysis for the LSE problem with general Schatten p-norm regularization in the literature.

Therefore, the equivalence provides new insights into the regularized LSE. The contributions of this paper

are summarized as follows:

1. We introduce a novel system identification algorithm by combining robust optimization with the LSE

problem. We further show that our robust LSE problem is equivalent to the LSE problem with the

Schatten p-norm regularization term.

2. We provide finite-sample analyses, showing that our system identification error rate is Õ(1/
√
T ). Due to

the equivalence, our result provides a new finite-sample analysis for the regularized LSE.

3. We conduct numerical experiments to demonstrate the superior performance of our approach compared

to LSE in system identification tasks. Additionally, we evaluate its effectiveness in adaptive control

tasks by integrating our robust LSE with existing adaptive linear quadratic (LQ) control algorithms and

showcasing significantly better performance compared to the existing algorithms.

Futher Literature Review

There has been a recent emergence of interest in deriving the finite-sample identification errors of LTI

systems. Most works focus on analyzing performance of the standard LSE [1, 2, 5, 6, 7, 8, 9, 10]. One

advantage of analyzing the standard LSE is that the system identification error term, which is the main

interest of the analysis, can be analytically obtained using the solution to the LSE problem. This term can

then be broken down in various ways, enabling different approaches to address the resulting components.

While theoretical guarantees for LSE appear promising, it often struggles in small data regimes, resulting

in subpar estimates [4]. We employ robust optimization techniques [11] to enhance the resilience of LSE. The

key idea of robust optimization is to find solutions that perform optimally against the worst-case realizations

of uncertain data. The robust approach is not entirely new in the literature. In [12], a similar approach
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to ours is explored in a general learning context where i.i.d. samples are readily accessible, simplifying the

statistical analysis. The authors in [10] also assume i.i.d. samples and utilize the standard LSE for system

identification. They construct an uncertainty set of system parameters around the resulting estimate. They

then solve a min-max problem, referred to as the robust LQR problem, to determine the best control input

against the worst-case system parameter in the uncertainty set. In contrast, our approach directly formulates

a min-max problem for system identification, seeking the best estimate against the worst-case realizations

of the data. There is no existing work proposing the robust LSE problem formulation in this paper under

the single trajectory assumption.

As stated in our contributions, the finite-sample analysis proposed in this paper is not limited to our

method. It can be extended to the regularized LSE problem, where the regularization term is defined as the

Schatten p-norm of a quadratic function of system parameters multiplied by a user-defined (scalar) tuning

parameter—henceforth referred to as the regularization parameter. Special cases of the Schatten p-norm

regularization are proposed in the literature [3, 4]. In [3], they introduce the squared Frobenius norm of

system parameters with the regularization parameter set to a some small fixed value, hence the convergence

of their estimate to the true system parameter is not guaranteed. In [4], they consider LTI systems with

limited state observations, i.e., states cannot be directly observed. They introduce the nuclear norm of the

Hankel matrix to their LSE problem and derive the finite-sample impulse response estimation errors only

for the MISO (multi-input single-output) system under the assumption that i.i.d. samples are available.

Notation

Bold lower-case letter x and upper-case letter X represent a vector and a matrix, respectively, while regular

font x indicates a scalar. An n × n dimensional identity matrix is denoted as In. For any real-valued

n×m matrix X ∈ Rn×m, ∥X∥p represents the Schatten p-norm of the matrix, which is defined as ∥X∥p =

(tr(X⊤X)p/2)1/p. For several special cases of the Schatten p-norm, we may interchangeably use the following

notations: nuclear norm ∥ · ∥∗ = ∥ · ∥1, Frobenius norm ∥ · ∥F = ∥ · ∥2, and operator norm ∥ · ∥ = ∥ · ∥∞. In the

entire paper, we will not use matrix norms induced by vector norms to prevent any confusion. We may use

∥x∥2 for the Euclidean norm (i.e., ℓ2 norm). In this case, the notation should be still clear since the norm

is taken on a bold lower-case. For any square matrix X ∈ Rn×n, the trace operation is denoted as tr(X).

The spectral radius denoted ρ(X) is the largest absolute value of the eigenvalues of X. To denote a n × n

positive (semi)definite matrix X, we may interchangeably use X ∈ Sn++ (X ∈ Sn+) and X ≻ 0 (X ⪰ 0).

2 Problem Statement

In this work, our goal is to identify an unknown discrete-time linear time-invariant (LTI) system

xt+1 =A⋆xt +B⋆ut +wt, t = 0, . . . , T − 1. (1)
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Specifically, we want to recover the system parameter θ⋆ = [A⋆ B⋆] ∈ Rn×(n+m) where A⋆ is the state

transition matrix and B⋆ ∈ Rn×m is the control input matrix. xt ∈ Rn, ut ∈ Rm, and wt ∈ Rn are the

state, the control input, and the noise at time t, respectively.

2.1 Assumptions

We state our assumptions about the unknown system (1).

A1. we consider a strictly stable system, i.e., ρ(A⋆) < 1.

A2. the data, i.e., observed states of the system (1), is collected in a single trajectory of length T+1 denoted

as {xt}Tt=0 ∈ Rn(T+1) with the initial state x0 = 0.

A3. let {Ft}t≥0 be a filtration and {xt}t≥0 be a stochastic process such that xt is Ft−1 measurable.

A4. the noisewt is a martingale difference sequence with respect to Ft with E[wt|Ft−1] = 0 and E[wtw
⊤
t |Ft−1] =

Σw ⪰ σ2
wIn ≻ 0.

A5. Furthermore, we assume that wt is a σ2
w-conditionally sub-Gaussian random vector with respect to

Ft, i.e., for any unit vector v ∈ Rn, the inner-product v⊤wt is a σ2
w-sub-Gaussian random variable

conditionally on Ft.

A6. the control input ut is a σ2
u-sub-Gaussian random vector with E[ut] = 0 and E[utu

⊤
t ] = σ2

uIm. In other

words, we inject sub-Gaussian exploration noise into the system to identify the system parameter θ⋆.

These are standard assumptions in the literature. In particular, (A3.)-(A5.) allow us to make use of tools

from the self-normalized process [13], which appears in our theoretical analysis later. The main challenge in

our theoretical analysis arises from the single trajectory assumption made in (A2.), as the trajectory com-

prises of non-i.i.d. samples. Due to this difficulty, some previous works rely on a more stringent assumption

that T multiple independent trajectories are available, and they take only the last state in each trajectory

to ensure that those T samples are i.i.d. Our main theoretical contribution lies in deriving finite-sample

guarantees of the proposed method from non-i.i.d. samples, as discussed in Section 4.

2.2 Least Squares Estimate

The least squares estimate (LSE) is one of the commonly used algorithms for system identification. Given a

single trajectory {xt}Tt=0, the LSE denoted as θT minimizes the sum of the squares of the residuals:

θT = argmin
θ:=[A B]

1

T

T−1∑
t=0

∥xt+1 −Axt −But∥22 = argmin
θ

1

T

T−1∑
t=0

∥xt+1 − θzt∥22 , (2)

where we define zt := [x⊤
t u⊤

t ]
⊤ ∈ Rn+m as an augmented vector of state and control input. Let us refer

to the minimization in (2) as the LSE problem. Note that the objective function in (2) is quadratic in θ.
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Therefore, we can rewrite the LSE problem as

min
θ

1

T

T−1∑
t=0

xt+1

zt


⊤  In −θ

−θ⊤ θ⊤θ


xt+1

zt

 = min
θ

tr
(
G(θ)Ω̂T

)
, (3)

where G(θ) =

 In −θ

−θ⊤ θ⊤θ

 and Ω̂T = 1
T

∑T−1
t=0

xt+1

zt


xt+1

zt


⊤

.

We can express the true LSE problem by substituting Ω̂T in (3) with its expectation, namely, Ω⋆
T =

E[Ω̂T ]. Then, one can obtain the system parameter by solving the true LSE problem:

θ⋆ = argmin
θ

tr
(
G(θ)Ω⋆

T

)
. (4)

From (4), it is clear that obtaining the true system parameter requires knowledge of Ω⋆
T while an empirical

estimate Ω̂T exhibits some estimation errors which are dependent of the data. In other words, a poor

estimate Ω̂T may lead to inferior performance, which is commonly the case when the sample size T is small

or, in our context, a short trajectory of observations {xt}Tt=0. In fact, statistical analyses regarding the

LSE performance revolve around understanding the sum of the outer product
∑T−1

t=0 xt+1x
⊤
t+1, known as the

Gram matrix. The expected Gram matrix E[
∑T−1

t=0 xt+1x
⊤
t+1], which coincides with the first diagonal block

in Ω⋆
T , can be nicely represented as a matrix-valued function of the unknown system parameter θ⋆:

E

T−1∑
t=0

xt+1x
⊤
t+1

 =

T−1∑
t=0

Γt(θ
⋆) =

T−1∑
t=0

t∑
s=0

(A⋆⊤
)s(σ2

uB
⋆B⋆⊤ +Σw)(A

⋆)s. (5)

Of course, the expected Gram matrix (5) is not accessible to us since it requires θ⋆.

3 Robust Least Squares Estimate

As pointed out earlier, Ω̂T based on T non-i.i.d. samples may fail to accurately estimate Ω⋆
T when T is small.

Even with sufficiently large T , θT in (2) may perform poorly in practical applications where our assumptions

about the system (1) are not satisfied, e.g., the data can be contaminated by some unmodelled factors such

as non-zero or time-correlated noise processes. To address the issue, we formulate a robust version of the

LSE problem to obtain the robust estimate denoted as θ̂T :

θ̂T = argmin
θ

max
Ω∈Up,ϵ

T

tr
(
G(θ)Ω

)
where Up,ϵ

T =
{
Ω ∈ S2n+m

+ : ∥Ω− Ω̂T ∥p ≤ ϵ
}
. (6)

The proposed approach (6) first constructs the uncertainty set Up,ϵ
T which contains all positive semidefinite

matrices Ω that are within a distance of ϵ ≥ 0 from the estimate Ω̂T in the Schatten p-norm. Then, it

seeks a minimizer θ̂T that performs best under the worst-case matrix Ω in Up,ϵ
T . However, the min-max

problem in (6) is difficult to solve directly since the objective function involves a maximization problem. In

the following, we introduce an equivalent semidefinite program (SDP) for the robust LSE problem.
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Theorem 1. For any given uncertainty set parameters p ≥ 1 (as in the Schatten p-norm) and ϵ ≥ 0, the

robust LSE problem in (6) can be equivalently reformulated as the SDP

min tr(ΓΩ̂T ) + ϵ∥Γ∥q

s.t. θ ∈ Rn×(n+m), Γ ∈ S2n+m
+ , H ∈ Sn+m

+ ,

Γ ⪰

 In −θ

−θ⊤ H

 ,

 In θ

θ⊤ H

 ⪰ 0,

(7)

where ∥ · ∥q is the dual Schatten norm of ∥ · ∥p, that is, q such that 1
p + 1

q = 1.

Proof. Dualizing the inner maximization problem with the constraint ∥Ω−Ω̂T ∥p ≤ ϵ given by our uncertainty

set, we have

max
Ω⪰0

min
λ≥0

tr(G(θ)Ω) + λϵ− λ∥Ω− Ω̂T ∥p

= max
Ω⪰0

min
λ≥0

tr(G(θ)Ω) + λϵ− max
∥Γ∥q≤λ

tr

(
Γ
(
Ω− Ω̂T

))
(8)

= max
Ω⪰0

min
λ≥0

tr(G(θ)Ω) + λϵ+ min
∥Γ∥q≤λ

tr

(
Γ
(
Ω̂T −Ω

))
(9)

= min
λ≥0,

∥Γ∥q≤λ

tr
(
ΓΩ̂T

)
+ λϵ+max

Ω⪰0
tr((G(θ)− Γ)Ω) (10)

= min
λ≥0,

∥Γ∥q≤λ

tr
(
ΓΩ̂T

)
+ λϵ s.t. Γ ⪰

 In −θ

−θ⊤ θ⊤θ

 (11)

= min
λ≥0,

∥Γ∥q≤λ,
H⪰0

tr
(
ΓΩ̂T

)
+ λϵ s.t. Γ ⪰

 In −θ

−θ⊤ H

 ,

 In θ

θ⊤ H

 ⪰ 0. (12)

In the first equality (8), we use the definition of the dual norm for λ∥Ω− Ω̂T ∥p. As in the second equality

(9), we can convert the maximization to a minimization since max f(·) = −min−f(·). The third equality

(10) exploits strong duality by following the standard results of the convex analysis (see Theorem 1, Chapter

8 in [14]). The feasible set of (λ,Γ) defined in (9) is a convex set, and the objective function of the inner

minimization problem is convex in (λ,Γ). Furthermore, we can show the existence of an interior point in

the feasible set, that is, there always exists some Γ such that the following strict inequality holds: ∥Γ∥q < λ

for any λ > 0. Hence, strong duality holds. Then, the maximization over Ω in (10) leads to a restriction

of the feasible set which is given by the constraint in (11). In other words, (G(θ) − Γ) in (10) needs to be

negative semidefinite. In the last equality, we linearize the quadratic term θ⊤θ by following Lemma 4 in

[15]. Then, we can combine the minimization in (12) with the minimization over θ in (7). Finally, reversing

the epigraphic reformulation ∥Γ∥q ≤ λ in the equality (12) yields the problem formulation (7), which is a

semidefinite program.
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Note that the Schatten p-norm defined in (6) corresponds to the Schatten q-norm in the objective function

in (7). For any q ≥ 1, the reformulation (7) is a convex SDP. In particular, for several choices of q such as

q = 1, 2,∞, it is readily solvable by off-the-shelf commercial solvers.

Interestingly, the robust LSE problem exhibits an equivalence to the regularized LSE problem as shown

in the following corollary.

Corollary 1. For any given uncertainty set parameters p ≥ 1 and ϵ ≥ 0, the robust LSE problem (6) is

equivalent to the LSE problem with the Schatten q-norm regularization term as follows:

min
θ

tr
(
G(θ)Ω̂T

)
+ ϵ∥G(θ)∥q. (13)

Proof. By reversing the epigraphic reformulation ∥Γ∥q ≤ λ in (11), we have

min
Γ,θ

tr
(
ΓΩ̂T

)
+ ϵ∥Γ∥q s.t. Γ ⪰

 In −θ

−θ⊤ θ⊤θ


︸ ︷︷ ︸

=G(θ)

. (14)

Suppose that A,B,C ⪰ 0 and A ⪰ B. Then, the following is true: tr(AC) ≥ tr(BC). Recall that positive

semidefinite inequality ⪰ implies ordering on matrices known as Loewner’s ordering. One property of the

Loewner’s ordering is that A ⪰ B ⇒ σi(A) ≥ σi(B) for all i where σi(·) denotes the i-th singular value of

the corresponding matrix (note that the converse is not necessarily true). Also, by definition, the Schatten

q-norm is equivalent to the ℓq-norm of the vector of singular values, i.e., ∥A∥q = ∥[σ1(A), . . . , σn(A)]⊤∥q =

(
∑n

i=1 |σi(A)|q)1/q. Using these facts, we can conclude that Γ = G(θ) holds when Γ and θ are the minimizer

of the problem (14). Hence, the problem (14) is equivalent to (13).

A few remarks are in order. If the nuclear norm (i.e., q = 1) is used in (13), then we have ϵ∥G(θ)∥∗ =

ϵ∥θ∥2F + ϵn. Thus, the regularization term simplifies to a squared Frobenius norm regularization on θ, and

the resulting problem constitutes a tractable quadratic program. Corollary 1 further draws an interesting

connection between the robust LSE and the regularized LSE in [3]. In that work, the regularization parameter

ϵ is set to a small fixed value. However, it lacks a clear explanation of how the regularization impacts

the performance of the LSE since it is introduced merely to ensure the invertibility of the Gram matrix∑T−1
t=0 xt+1x

⊤
t+1. In this case, a convergence rate on the system identification error cannot be established.

Our result, therefore, not only provides a justification for the use of squared Frobenius norm regularization

but also guidance on how to control the parameter as the sample size T increases. The recent work [4]

uses a Hankel nuclear norm regularization to identify low-order linear systems using i.i.d. trajectories.

They recognize that the regularization term yields better performance than the unregularized LSE when the

number of samples is small. However, to the best of our knowledge, there is no finite-sample analysis for

the LSE with general Schatten norm regularization under the single trajectory assumption. In Section 4, we

provide finite-sample analyses for the robust LSE problem, which ultimately results in system identification

errors.
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4 Performance Guarantees

In this section, we discuss the finite-sample guarantees of our robust LSE under the single trajectory as-

sumption. The ultimate goal of our analysis is to achieve the optimal rate of system identification errors

in terms of the number of samples T , which is known to be Õ(1/
√
T ) under the i.i.d. assumption. For the

unregularized LSE (2), henceforth referred to as the standard LSE, there have been many works providing

such an optimal rate. Unlike the regularized LSE, the main advantage of analyzing the standard LSE is that

the system identification error term can be analytically obtained using the solution to the LSE problem in

(2), namely, θT − θ⋆ = (
∑T−1

t=0 wtz
⊤
t )(
∑T−1

t=0 ztz
⊤
t )

−1. Then, the error term can be decomposed in various

ways to facilitate different analyses [1, 2, 5]. However, these decomposition methods do not apply to our

robust LSE since the identification error term for the robust LSE, i.e., θ̂T − θ⋆ is no longer expressed in a

convenient analytical form, hence, requires a different analysis.

We first provide the finite-sample coverage guarantee of our uncertainty set in (6), which is eventually

used as the main ingredient for our system identification error analysis.

Proposition 1. (Finite-sample coverage guarantee). For any significance level δ ∈ (0, 1], we have

P
[
Ω⋆

T ∈ Up
T (δ)

]
≥ 1− δ, (15)

Here, Up
T (δ) is the uncertainty set for the robust LSE problem in (6) defined as follows:

Up
T (δ) =

{
Ω ∈ S2n+m

+ : ∥Ω− Ω̂T ∥p ≤ ϵ(δ)
}

and ϵ(δ) = Õ(1/
√
T ). (16)

Proof. Proving (15) amounts to showing that the distance between Ω⋆
T and Ω̂T is small with high probability

(w.h.p.): ∥Ω⋆
T − Ω̂T ∥p ≤ ϵ(δ) with probability (w.p.) at least 1 − δ. Here, we derive the upper bound ϵ(δ)

for p = ∞, i.e., the case where the norm in (16) defined by the Schatten ∞-norm (equivalently, operator

norm ∥ · ∥ = ∥ · ∥∞). Due to the equivalence of norms, it is easy to show similar bounds for any p ≥ 1 with

different dimensional factors.

Note that Ω̂T can be explicitly expressed as follows:

Ω̂T =
1

T

T−1∑
t=0


xt+1

xt

ut




xt+1

xt

ut


⊤

(17)

=
1

T

T−1∑
t=0


xt+1x

⊤
t+1

(
A⋆xt +B⋆ut +wt

)
x⊤
t

(
A⋆xt +B⋆ut +wt

)
u⊤
t

xt

(
A⋆xt +B⋆ut +wt

)⊤
xtx

⊤
t xtu

⊤
t

ut

(
A⋆xt +B⋆ut +wt

)⊤
utx

⊤
t utu

⊤
t

 . (18)
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Similarly, Ω⋆
T is expectation of (18), i.e., Ω⋆

T = E[Ω̂T ]. Hence, using (18), we can establish the following

inequalities:

∥Ω⋆
T − Ω̂T ∥ ≤ 2

(
1 + ∥A⋆∥

) 1

T

∥∥∥∥∥∥E
T−1∑

t=0

xtx
⊤
t

−
T−1∑
t=0

xtx
⊤
t

∥∥∥∥∥∥︸ ︷︷ ︸
(a)

+ 2
1

T

∥∥∥∥∥∥E
T−1∑

t=0

wtx
⊤
t

−
T−1∑
t=0

wtx
⊤
t

∥∥∥∥∥∥︸ ︷︷ ︸
(b)

+2
(
1 +

∥∥A⋆
∥∥+ ∥∥B⋆

∥∥) 1

T

∥∥∥∥∥∥E
T−1∑

t=0

utx
⊤
t

−
T−1∑
t=0

utx
⊤
t

∥∥∥∥∥∥︸ ︷︷ ︸
(c)

+
(
1 + 2

∥∥B⋆
∥∥) 1

T

∥∥∥∥∥∥E
T−1∑

t=0

utu
⊤
t

−
T−1∑
t=0

utu
⊤
t

∥∥∥∥∥∥︸ ︷︷ ︸
(d)

+2
1

T

∥∥∥∥∥∥E
T−1∑

t=0

wtu
⊤
t

−
T−1∑
t=0

wtu
⊤
t

∥∥∥∥∥∥︸ ︷︷ ︸
(e)

.

Our goal is to bound each of the terms (a)-(e), and then combine the results to complete the proof.

(a):

Notice that we analyze the difference between the Gram matrix and its expectation with factor (1/T ).

Similar results are discussed in [1]. First, we introduce the preparatory result in [1].

Suppose ρ(A) < 1 for a matrix A ∈ Rn×n. Consider a t× t block Toeplitz matrix

Ht =



In 0 0 0

A In 0 0
...

...
. . . 0

At−1 At−2 · · · In


∈ Rnt×nt. (19)

Then, for any t ≥ 1, there exists a finite constant J (A) > 0 that only depends on A such that

∥Ht∥ ≤ J (A) :=

+∞∑
s=0

∥As∥, (20)

where J (A) is specifically the limit of a matrix power series
∑t

s=0 ∥A
s∥.

The authors in [1] analyze the sample complexity of the unregularized LSE where an unknown system is

uncontrolled. (i.e., identifying only A⋆). We can derive a similar result to Lemma 2 in [1].

Under an i.i.d. sub-Gaussian exploration noise, our dynamic system can be written as xt+1 = A⋆xt +ηt

where ηt is a zero mean noise with a covariance matrix Ση := E[ηtη
⊤
t ] = σ2

uB
⋆B⋆⊤ +Σw. Then, we can

define vectorized states of the system up to time T :
x1

...

xT

 = HTC
1/2
η ξ ∈ RnT where Cη = E




η0

...

ηT−1




η0

...

ηT−1


⊤
 =


Ση 0 0

0
. . . 0

0 0 Ση

 ∈ SnT+

9



and ξ =


ξ0
...

ξT−1

 ∈ RnT is isotropic, i.e., E[ξξ⊤] = InT (21)

To simplify the notation, let us define the reciprocal of the square root matrix of the expected Gram matrix

as follows:

M :=

T−1∑
t=0

Γt(θ
⋆)

−1/2

=

T−1∑
t=0

t∑
s=0

(A⋆⊤
)s(σ2

uB
⋆B⋆⊤ +Σw)(A

⋆)s

−1/2

.

Then, we can establish the following equalities:

∥M⊤
T−1∑
t=0

xtx
⊤
t M − In∥ = sup

∥u∥2≤1

∣∣∣∣∣∣u⊤

M⊤
T−1∑
t=0

xtx
⊤
t M − In

u

∣∣∣∣∣∣ (22)

= sup
∥u∥2≤1

∣∣∣∣∣∣∥
T−1∑
t=0

x⊤
t Mu∥22 − E

[∥∥∥ΣT−1
t=0 x⊤

t Mu
∥∥∥2
2

]∣∣∣∣∣∣ (23)

= sup
∥u∥2≤1

∣∣∣∣∥Σ⊤
MuHTC

1/2
η ξ∥22 − E

[
∥Σ⊤

MuHTC
1/2
η ξ∥22

]∣∣∣∣ (24)

= sup
∥u∥2≤1

∣∣∣∥Σ⊤
MuHTC

1/2
η ξ∥22 − ∥Σ⊤

MuHTC
1/2
η ∥2F

∣∣∣ , (25)

where ΣMu =


Mu 0 0

0
. . . 0

0 0 Mu

 ∈ RnT×T in (24) is a block diagonal matrix.

The first equality (22) is the variational form of the operator norm. In the last equality (25), we use the

fact that E[∥Dξ∥22] = tr(D⊤DE[ξξ⊤]) = ∥D∥2F for an isotropic vector ξ. The objective function in (25) can

be written as | |ξ⊤Wξ| − |E[ξ⊤Wξ]| | where (ξ⊤Wξ)W∈W indexed by a set of matrices W is referred to as

a chaos process.

We omit the remaining steps since they are identical to the proof of Lemma 2 in [1] once we recognize

that (25) is the supremum of a chaos process. The main idea for the remaining steps is that the Hanson-

Wright inequality [16] provides the concentration bound on (25) when u is fixed. Then, we can use the ϵ-net

argument, i.e., discretizing the feasible region U = {u : ∥u∥2 ≤ 1} and combining the bounds for all u ∈ U(ϵ)

where U(ϵ) is an ϵ-net of U . Following this idea, for δ ∈ (0, 1], we have

Pr

 1

T

∥∥∥∥∥∥E
T−1∑

t=0

xtx
⊤
t

−
T−1∑
t=0

xtx
⊤
t

∥∥∥∥∥∥ ≤ ϵ(a)(δ)

 ≥ 1− δ, where

ϵ(a)(δ) = σ2
w max


√

∥M−1∥∥HT ∥2 ∥Cη∥
(
log

(
2
δ

)
+ c2n

)
√
c1T

,
∥HT ∥2 ∥Cη∥

(
log

(
2
δ

)
+ c2n

)
c1T

 . (26)
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Note that ∥HT ∥ in (26) can be further bounded by some finite constant J (A⋆) due to the preparatory

result (20). However, we have not made the explicit dependence of ϵ(a)(δ) in terms of T yet as ∥M−1∥ in

(26) grows with T . We defer the discussion to where the bounds on (b) and (c) are established since the

same issue arises.

(b) and (c):

The same technique is applied to (b) and (c). Hence, we only show the derivation for (b). Note that

since the noise term wt is independent of xt, the expectation in (b) is a zero matrix. Hence, we only need

to analyze (1/T )∥
∑T−1

t=0 wtx
⊤
t ∥. Assuming

∑T−1
t=0 xtx

⊤
t is invertible (at the moment), we can break (b) into

the product of two terms as follows:

1

T

∥∥∥ T−1∑
t=0

wtx
⊤
t

∥∥∥ =
1

T

∥∥∥∥∥
T−1∑

t=0

wtx
⊤
t

T−1∑
t=0

xtx
⊤
t

−1/2T−1∑
t=0

xtx
⊤
t

1/2 ∥∥∥∥∥
≤ 1

T

∥∥∥∥∥
T−1∑

t=0

wtx
⊤
t

T−1∑
t=0

xtx
⊤
t

−1/2

︸ ︷︷ ︸
self-normalized martingale

∥∥∥∥∥
∥∥∥∥∥
T−1∑

t=0

xtx
⊤
t

1/2 ∥∥∥∥∥︸ ︷︷ ︸
persistent excitation term

. (27)

As denoted, the stochastic process in (27) is referred to as the self-normalized martingale whose finite-sample

bounds are already analyzed in [3]. Hence, we can invoke the following results to obtain the bound on the

self-normalized term.

Suppose that V T =
∑T−1

t=0 xtx
⊤
t + V where V = c

⌊
T/2

⌋
Γ1(θ

⋆) is a positive definite matrix with a

universal constant c > 0, ensuring the invertibility of V T . Then, for δ ∈ (0, 1], we have

P


∥∥∥∥∥∥∥
T−1∑

t=0

wtx
⊤
t

T−1∑
t=0

xtx
⊤
t

−1/2
∥∥∥∥∥∥∥ ≤ 4

√√√√√∥Σw∥ log

√det (V T )

det(V )
· 5

n

δ


 ≥ 1− δ (28)

as long as T ≥ O

(
n log

(
n

δ

)
+ log

(
detΓT (θ

⋆)

detΓ1(θ
⋆)

))
. (29)

Note that V T in (28) is the only term that has dependence on T and it increases at most logarithmically

as T grows. We make a few comments before proceeding: i) the bound (28) has to be probabilistic since

the invertibility (i.e., positive definiteness) of
∑T−1

t=0 xtx
⊤
t cannot be guaranteed deterministically; ii) the

lower bound on T in (29), i.e., the minimum number of samples that ensures the invertibility of
∑T−1

t=0 xtx
⊤
t

w.h.p., is called the burn-in time. Here, we use the big-O notation for the burn-in time only because we

want to streamline the exposition. We make the quantity explicit in the proof of Theorem 2 under sufficient

conditions.

Subsequently, we derive an upper bound on the persistent excitation term in (27). Note that the term is

similar to one in (26). Hence, we can establish the following inequalities:∥∥∥∥∥∥∥E
T−1∑

t=0

xtx
⊤
t

1/2

−

T−1∑
t=0

xtx
⊤
t

1/2
∥∥∥∥∥∥∥ ≤ n

1
4

√√√√√
∥∥∥∥∥∥E
T−1∑

t=0

xtx⊤
t

−
T−1∑
t=0

xtx⊤
t

∥∥∥∥∥∥ ≤ n
1
4

√
ϵ(a)(δ) (30)
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w.p. at least 1− δ.

In the first inequality, we use the following fact: ∥A1/2 − B1/2∥ ≤
√

∥A−B∥F ≤ n
1
4

√
∥A−B∥ for

any A,B ∈ Sn+. The second inequality follows from (26). By the reverse triangle inequality, we can further

derive the following upper bound on the persistent excitation term:

∥∥∥∥∥
T−1∑

t=0

xtx
⊤
t

1/2 ∥∥∥∥∥ ≤

∥∥∥∥∥E
T−1∑

t=0

xtx
⊤
t

1/2

︸ ︷︷ ︸
=M−1

∥∥∥∥∥+ n
1
4

√
ϵ(a)(δ). (31)

Recall that we have not addressed the term ∥M−1∥ in ϵ(a)(δ). In fact, the term ∥E[
∑T−1

t=0 xtx
⊤
t ]

1/2∥ in (31)

is equivalent to ∥M−1∥ as denoted above. Using the definition of the expected Gram matrix (5), we obtain

the following inequalities:∥∥∥∥∥∥∥E
T−1∑

t=0

xtx
⊤
t

1/2
∥∥∥∥∥∥∥ =

∥∥∥∥∥∥E
T−1∑

t=0

xtx
⊤
t

∥∥∥∥∥∥
1/2

=

∥∥∥∥∥∥
T∑

t=0

Γt (θ
⋆)

∥∥∥∥∥∥
1/2

=

∥∥∥∥∥∥
T∑

t=0

t∑
s=0

(
A⋆
)s (

σ2
uB

⋆B⋆⊤ +Σw

)(
A⋆⊤

)s∥∥∥∥∥∥
1/2

≤

∥∥∥∥∥∥T
+∞∑
s=0

(
A⋆
)s (

σ2
uB

⋆B⋆⊤ +Σw

)(
A⋆⊤

)s∥∥∥∥∥∥
1/2

≤
√
T
∥∥∥σ2

uB
⋆B⋆⊤ +Σw

∥∥∥1/2
∥∥∥∥∥∥
+∞∑
s=0

(
A⋆
)s∥∥∥∥∥∥

=
√
T
∥∥∥σ2

uB
⋆B⋆⊤ +Σw

∥∥∥1/2 J (A⋆
)

(32)

=O(
√
T ).

The first equality holds since the expected Gram matrix is positive semidefinite and (32) follows from the

preparatory result (20). Here, we emphasize ∥M−1∥ grows at the rate of O(
√
T ). Hence, combining (28) and

(31) with the factor 1/T yields that (b) is upper-bounded by Õ(1/
√
T ). Moreover, since ∥M−1∥ = O(

√
T ),

we can claim that ϵ(a)(δ) in (26) is O(1/T 1/4).

(d) and (e):

They can be addressed by the standard concentration inequality for a covariance matrix (see Theorem

6.5 in [17]). For (d), under i.i.d. sub-Gaussian exploration noise, we can claim that there exist universal

constants c1, c2, c3 > 0 such that

P

[∥∥∥∥E [∑T
t=1 utu

⊤
t

]
−
∑T

t=1 utu
⊤
t

∥∥∥∥ ≤ ϵ(c)(δ)

]
≥ 1− δ, (33)

where ϵ(c)(δ) = σ2
u · c1

(√
m
T + m

T

)
+ σ2

u

(√
log( c2

δ )
Tc3

+
log( c2

δ )
Tc3

)
= O(1/

√
T ). For (e), we can apply the same

12



concentration inequality by defining an augmented random vector vt = [u⊤
t w⊤

t ]
⊤ since

1

T

∥∥∥∥∥∥E
 T∑

t=1

wtu
⊤
t

−
T∑

t=1

wtu
⊤
t

∥∥∥∥∥∥ ≤ 1

T

∥∥∥∥∥∥E
 T∑

t=1

vtv
⊤
t

−
T∑

t=1

vtv
⊤
t

∥∥∥∥∥∥ .
Therefore, there exists universal constants c̄1, c̄2, c̄3 > 0 such that

P


∥∥∥∥∥∥E
 T∑

t=1

wtu
⊤
t

−
T∑

t=1

wtu
⊤
t

∥∥∥∥∥∥ ≤ ϵ(d)(δ)

 ≥ 1− δ, (34)

where ϵ(d)(δ) = max
(
σ2
u, σ

2
w

)
· c̄1
(√

n+m
T + n+m

T

)
+max

(
σ2
u, σ

2
w

)(√ log( c̄2
δ )

T c̄3
+

log( c̄2
δ )

T c̄3

)
= O(1/

√
T ).

Finally, combining (a)-(e) yields the claim.

We make several comments about Proposition 1 before discussing the system identification errors. Al-

though the upper bound ϵ(δ) in (16) can be made more explicit by identifying upper bounds on the universal

constants, it would be too conservative and thus lack practical usage by itself. However, the rate Õ(1/
√
T )

provides guidance on how to adjust the regularization parameter of our robust LSE as more samples are

available. In our numerical experiment, we utilize the cross-validation procedure to determine the initial

regularization parameter which provides good performance in various applications.

Subsequently, leveraging the results in Proposition 1, we present finite-sample system identification errors

for both the robust LSE and the regularized LSE, given their equivalence.

Theorem 2. (System identification errors). Suppose that ϵ(δ) is the upper bound in (16). Then, for any

significance level δ ∈ (0, 1], as long as

T ≥ T (δ) =

(
400

3

)(
log

(
1

δ

)
+ 2(n+m) log

(
200

3

)
+ logdet

(
Γ̃1Γ1

−1
))

where

Γ̃1 =

 Γ1(θ
⋆) 0

0 σ2
uIm

 and Γ1 =
n+m

δ
E
[
z1z1

⊤
]
,

we have the following system identification errors

P

[
∥θ⋆ − θ̂T ∥ ≤

ϵ(δ)
√

min{n,m}
α̂

(2 + 2∥θ⋆∥+
∥∥∇θ∥A(θ⋆)∥q

∥∥)] ≥ 1− δ, (35)

where α̂ = 1
24

(
3
20

)2
min

{
σ2
w, σ

2
u

}
.

Proof. The guarantee (15) in Proposition 1 implies that the following holds:

P
[
min
θ

tr
(
G(θ)Ω⋆

T

)︸ ︷︷ ︸
=f(θ)

≤ min
θ

tr
(
G(θ)Ω̂T

)
+ ϵ(δ)∥G(θ)∥q︸ ︷︷ ︸

=g(θ)

]
≥ 1− δ.

Let f(θ) and g(θ) be the objective function of the true and robust LSE problems, respectively. First,

we show that g(θ) is an α-strongly convex function w.h.p. Following the definition of strong convexity,
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showing strong convexity amounts to showing that g(θ) can be rewritten as g(θ) = g′(θ) + α∥θ∥2F where

g′(θ) is a convex function and α > 0. Note that tr(G(θ)Ω̂T ) contains the convex quadratic function,

i.e., tr(1/T
∑T

t=0 ztz
⊤
t θ

⊤θ). As shown in [18], under i.i.d. exploration noise, the stochastic process of

zt = [x⊤
t u⊤

t ]
⊤ satisfies the block martingale small ball (BMSB) condition with parameters (k, Γ̃⌊k/2⌋, 3/20)

where parameter k can be set to a positive integer and

Γ̃⌊k/2⌋ =

 Γ⌊k/2⌋(θ
⋆) 0

0 σ2
uIm

 is the covariance matrix of z⌊k/2⌋.

It can be shown that the BMSB condition can guarantee the persistent excitation w.h.p. (see Proposition

2.5 in [2]). Therefore, by setting k = 2, we can establish the following persistent excitation of the stochastic

process zt for T ≥ T (δ) (defined earlier):

P

 1

T

T∑
t=0

ztz
⊤
t ⪰ α̂I(n+m)

 ≥ 1− δ, where α̂ =
1

16

(
3

20

)2(
2

3

)
min

{
σ2
w, σ

2
u

}
. (36)

Hence, we can claim that, for any significance level δ ∈ (0, 1], g(θ) is α̂-strongly convex w.p. at least 1−δ when

T is sufficiently large. Suppose g(θ) is indeed an α̂-strongly convex function. Then, we can upper-bound

the system identification errors as follows:

∥θ⋆ − θ̂T ∥F ≤ 2

α̂

∥∥∥∇θg
(
θ⋆
)∥∥∥

F
≤

2
√
min{n,m}

α̂

∥∥∥∇θg
(
θ⋆
)∥∥∥ . (37)

The first inequality follows from the properties of strong convexity. The second inequality holds due to the

equivalence of norms. To ease the notation, we define the following block matrix notations for Ω⋆
T and Ω̂T :

Ω⋆
T =

 Q⋆ W ⋆

W ⋆⊤ E⋆

 and Ω̂T =

 Q̂ Ŵ

Ŵ
⊤

Ê

 . (38)

Then, we can write the gradient in (37) as ∇θg
(
θ⋆
)
= −2Ŵ +2θ⋆Ê

⊤
+ ϵ(δ)∇θ∥G(θ⋆)∥q. Subsequently, we

can establish the following inequalities:∥∥∥∇θg
(
θ⋆
)∥∥∥ =

∥∥∥∥−2Ŵ + 2θ⋆Ê
⊤
+ ϵ(δ)∇θ∥G(θ⋆)∥q

∥∥∥∥
≤ sup∥∥∥∥∥∥

[
∆Q ∆W

∆W⊤ ∆E

]∥∥∥∥∥∥≤ϵ(δ)

∥∥∥−2
(
W ⋆ −∆W

)
+ 2θ⋆

(
E⋆ −∆E

)⊤
+ ϵ(δ)∇θ∥G(θ⋆)∥q

∥∥∥ (39)

= sup∥∥∥∥∥∥
[

∆Q ∆W

∆W⊤ ∆E

]∥∥∥∥∥∥≤ϵ(δ)

∥∥∥2∆W − 2θ⋆∆E⊤ + ϵ(δ)∇θ∥G(θ⋆)∥q
∥∥∥ (40)

≤ sup∥∥∥∥∥∥
[

∆Q ∆W

∆W⊤ ∆E

]∥∥∥∥∥∥≤ϵ(δ)

2
∥∥∆W ∥+ 2∥θ⋆∥∥∆E∥+ ϵ(δ)∥∇θ∥G(θ⋆)∥q

∥∥

≤ 2ϵ(δ) + 2∥θ⋆∥ϵ(δ) + ϵ(δ)∥∇θ∥G(θ⋆)∥q∥
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= ϵ(δ)(2 + 2∥θ⋆∥+
∥∥∇θ∥G(θ⋆)∥q

∥∥) (41)

The first inequality (39) holds due to our guarantee in Proposition 1. In the next equality (40), we cancel

out the terms W ⋆ and E⋆ using the optimality condition for the true LSE problem, namely, ∇θf
(
θ⋆
)
=

0 ⇒ W ⋆ = θ⋆E⋆⊤. Combining (36) and (37) (∥∇θg(θ
⋆)∥ in (37) replaced by (41)) using union bound yields

the claim.

5 Numerical Experiments

In this section, we conduct numerical experiments to assess the performance of our proposed method. The

proposed method and the benchmarks presented are implemented in Python 3.7. Specifically, the optimiza-

tion problem (7) is modeled using the CVXPY [19] interface and solved with the commercial solver MOSEK

[20] on a laptop with a 6-core, 2.3 GHz Intel Core i7 CPU and 16 GB of RAM

We compare our robust LSE with the standard (i.e., unregularized) LSE for system identification tasks.

Additionally, we consider an adaptive control task where we combine our robust LSE with the existing

adaptive linear quadratic (LQ) control algorithms. We then compare the regret of different algorithms to

demonstrate how improved performance in system identification can be translated into better regret.

Instead of focusing on a system from a particular example, we randomly generated four different sets

of 500 synthetic stable systems θ⋆ = [A⋆ B⋆] ∈ R5×10, each set having the same spectral radius ρ(A⋆)

ranging from 0.1 to 0.8. We compared the system identification errors of the robust LSE and the standard

LSE as we collected more samples over time. We observed that the robust LSE showed greater performance

improvement with smaller ρ(A⋆). Figure 1 shows the mean system identification errors in view of the

operator norm for the set of 500 synthetic systems with ρ(A⋆) = 0.8.

Figure 1. Mean system identification errors over 500 synthetic systems with ρ(A⋆) = 0.8:

mean errors in the operator norm, with the first and third quartiles represented by a bar (left)

and percentage improvement of the robust LSE over the standard LSE (right).
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As commented earlier, while the rate Õ(1/
√
T ) derived in Proposition 1 is still useful, choosing the

regularization parameter directly from the theoretical upper bound ϵ(δ) leads to a too conservative estimate

θ̂T . In fact, a similar argument is made in [10]. Instead of adopting the theoretical guarantee, the authors

use the standard bootstrap method to obtain an empirical upper bound ϵ(δ) on the system identification

errors of the standard LSE, i.e., ∥θ⋆ − θT ∥ ≤ ϵ(δ). For the robust LSE, we use a 3-fold cross-validation

procedure to determine the regularization parameter, as follows. We split the samples into three equal-sized

subsets where two of the three subsets are put together to learn the robust estimate. The resulting estimate

is then tested on the remaining set for all ϵ = (a · 10b)/
√
T where a ∈ {1, 3, 5, 7, 9} and b ∈ {−3, . . . , 3}.

This process is repeated three times for different partitions of the samples to choose the ϵ that performs best

overall.

To showcase how our robust LSE can be used in practice, we performed adaptive LQ control tasks using

standard examples in the literature: i) a marginally unstable Laplacian system from [10], ii) the longitudinal

flight control of Boeing 747 from [21], and iii) UAV in a 2D plane from [22]. We consider several adaptive LQ

algorithms proposed in recent years: 1) OFULQ from [3], 2) STABL from [23], 3) ARBMLE from [24].

Broadly speaking, these algorithms conduct two main tasks: identifying the system and deriving the best

control input. In particular, OFULQ and STABL utilize the standard LSE for their system identification

task. Hence, we can replace the standard LSE with the robust LSE which we referred to as 4) R-OFULQ

and 5) R-STABL. Moreover, we can vary our adaptive control algorithms by choosing different values of

parameter q as in Schatten q-norm of the SDP (7).

For each of the algorithms 1)-5), we ran 500 simulations over time horizon T = 1000 and recorded

the mean regrets in Figure 2. Every algorithm presented in our experiments requires several parameters.

We adopted the parameter setups suggested by the corresponding papers. However, we acknowledge that

their setups are not identical to each other. For example, some papers start recording regret after t = 50,

while others assume a tight upper bound on ∥θ⋆ − θt∥ is available at each time step t. Irrespective of the

choice of the Schatten norm parameter q, our algorithms offer significant advantages over other benchmark

algorithms. The results demonstrate not only that the robust LSE can be utilized for various adaptive

control algorithms, but also that optimizing the regularization parameter in real-time (i.e., with respect to

T ) for both the robust LSE and the regularized LSE is indeed advantageous.

6 Concluding Remarks

We have presented a general framework for robust system identification by leveraging robust optimization

methodology to immunize the standard LSE against small sample estimation errors. We derive finite-sample

guarantees on the system identification errors by analyzing the concentration of a single sample trajectory

of states. Surprisingly, robustifying the estimation comes at no cost as the error rate matches the best one

from non-robust LSE. While our analysis is based on a single trajectory of states, we emphasize that our
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(a) Marginally unstable Laplacian system
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Figure 2. Mean regret over 500 replications
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framework can be applied straightforwardly to the simpler setting where multiple trajectories are available.

Our proposed formulation constitutes a simple semidefinite program, which is easy to implement using

standard off-the-shelf solvers. In the special case when the ∞-norm is used in the uncertainty set, the

formulation reduces to an efficiently solvable quadratic program. The experimental results on standard

examples showcase the significant advantage of our robust model as it achieved unprecedented performance,

particularly when the sample size is small. When further deployed in adaptive LQ control algorithms, the

robust system estimates yield substantially lower regret than the non-robust estimates, demonstrating the

practical advantage of our scheme.

In terms of limitations, our current work focuses on fully observable systems. So, future work will concen-

trate on developing a robust optimization framework to identify non-observable systems with performance

guarantees. Another important future direction is to extend the framework to identify nonlinear systems,

e.g., bilinear systems, nonlinear systems with linear parametrization, etc.

References

[1] Yassir Jedra and Alexandre Proutiere. Finite-time identification of stable linear systems: Optimality of

the least-squares estimator. arXiv preprint arXiv:2003.07937, 2020.

[2] Max Simchowitz, Horia Mania, Stephen Tu, Michael I Jordan, and Benjamin Recht. Learning without

mixing: Towards a sharp analysis of linear system identification. In Conference On Learning Theory,

pages 439–473. PMLR, 2018.
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