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Abstract

Robustness analysis assesses the performance of a particular solution under variation in the input

data. This is distinct from sensitivity analysis, which assesses how variation in the input data changes

a model’s optimal solution. For risk assessment purposes, robustness analysis has more practical value

than sensitivity analysis. This is because sensitivity analysis, when applied to optimization models,

assumes that the solution is able to adapt to changes in the input data with perfect foresight, which

may lead to an overly optimistic assessment. On the other hand, classical robustness analysis, which

is intended for static optimization problems, assumes that the solution is entirely fixed and unable

to adapt to changes in the input data, which may lead to an overly pessimistic assessment. In this

paper we extend robustness analysis to deal with adaptive optimization problems in a more realistic

manner. Furthermore, we propose an intuitive and computationally tractable method for applying

robustness analysis to adaptive optimization problems and apply this method to the optimization of

decarbonization pathways for heavy industry in the Netherlands. Here we find significant differences

between the results obtained via (i) sensitivity analysis, (ii) classical robustness analysis (for static

optimization) and (iii) robustness analysis for adaptive optimization. Our results demonstrate the

importance of the methodology when analyzing the impact of uncertainty.
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1 Introduction

Mathematical optimization models have proven to be valuable for prescriptive analytics in, e.g., logistics,

healthcare, finance and engineering. Due to advances in solution algorithms, computing power and

availability of data, such models have become capable of tackling increasingly large and complex real-

world problems. Yet, when modeling such problems, input data is required in the form of the model’s

“parameters” and this information is not always known with certainty. Parameter uncertainty can arise

from various sources and ignoring this uncertainty may lead to faulty, or even disastrous, decisions to

be made [1, pp. 2-5]. In response, many techniques have been proposed to deal with uncertainty. One

highly popular technique is sensitivity analysis, which the canonical textbook of Hillier and Lieberman

refers to as “the most important of these techniques” [2, p. 225].

Sensitivity analysis (SA), in the context of optimization, analyzes how changes in the parameters of

a model affect its optimal solution [3]. The concept of SA is widely known and its usage is prescribed in

national and international guidelines on uncertainty assessment. For example, in publications from the

U.S. Environmental Protection Agency [4] and the European Commission [5]. As such, SA is considered

by many to be an essential element of due diligence when faced with uncertainty.

Robustness analysis (RA) analyzes how changes in the parameters of a model affect the performance

of a particular solution [6], where “performance” should be interpreted as an estimate of how well a

solution would function if implemented in practice. The key difference with SA being that, in RA, the

solution under analysis is (partially) fixed while the parameter values of the model are varied, whereas

SA implicitly assumes that the solution is flexible and able to adapt to changes in the parameter values

with perfect foresight. As such, when SA is used as a tool for risk assessment, the assessment tends

to be overly optimistic. In most situations, RA more closely mirrors real-world conditions, where the

uncertainty is unresolved at the moment that irreversible decisions must be made.

The methodology for performing RA in a static optimization setting, which refers to the setting where

all decisions must be made “here-and-now” without any knowledge of the uncertain parameters, is well

established [7]. This has been applied in many scientific articles within the field of robust optimization,

see for example [8–10]. A notable example is the seminal work by Ben-Tal and Nemirovski [11], where

they assess the feasibility of the “nominal solutions” (i.e. solutions that are optimal with respect to

specific “nominal” parameter values) to problems from the NETLIB collection.

However, real-world problems often involve long time horizons with multiple time periods, where

decisions can be made sequentially over time as more information becomes known. Such problems are

commonly referred to as “adaptive” optimization problems. In this paper we consider problems of this

nature, where time is discretized into a finite number of “decision stages”. A visual sketch of a problem

with K decision stages is presented in Figure 1. In the first stage, the decisions x0 are made without

any realizations of the uncertain parameter vectors z1, . . . , zK . However, the later stage decisions xk, k ∈
{1, . . . ,K − 1} can adapt to the set of realized parameter vectors {z1, . . . , zk}. Thus, when classical RA

methodology is applied to adaptive optimization problems, the results are likely to be overly pessimistic.

realization:

decision:
time

Figure 1: Visual aid for chronology of events in an uncertain K-stage optimization problem

In this paper, we extend RA to deal with adaptive optimization problems, which enables a more
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realistic assessment than classical RA. While the framework presented in [12] allows the operational

decisions to be adaptive, their analysis is restricted to a two-stage setting, where the second stage decisions

are optimized with full information. Our methodology is applicable to a wider range of problems as it

allows for settings with more than two decision stages and does not require full information. As such,

our extension of RA is a novel addition to the scientific literature.

Solving adaptive optimization problems in a stochastic and/or robust manner can be computationally

challenging [13], we refer to [14] for a review on methods for solving multi-stage adaptive optimization

problems. Given the challenging nature of these problems, a common approach is to simplify the problem

formulation by estimating the uncertain parameter vectors z1, . . . , zK by some nominal parameter vector z̄

and disregarding the uncertainty. This reduces the problem complexity and allows one to simplify the

problem to a deterministic single-level optimization problem:

min
x

f(x, z̄)

s.t. x ∈ X (z̄),
(1)

where x ∈ Rn is a vector consisting of the variables across all decision stages, f represents the objective

function and X the feasible region. Assuming that Problem (1) can be solved efficiently, this approach

enables one to obtain a solution to a simplified version of the “true” adaptive optimization problem

problem. In many cases such a simplification may be perfectly reasonable. In such cases, the effect of

uncertainty may be limited and the resulting solution may be sufficiently robust to deviations from the

nominal parameter vector z̄. However, we argue that one should verify whether this is the case and we

suggest our methodology as the correct methodology for verification.

To apply RA in an adaptive optimization setting, one must specify an “adaptive decision policy”.

The policy we propose in this paper is intuitive and computationally tractable as it involves re-solving

Problem (1) using estimates for the future based on realizations from the past, in a folding horizon

fashion.

We demonstrate our methodology by applying it to a case study on optimizing the decarbonization

pathway for an energy-intensive industry cluster in the Netherlands. This case study was developed in

collaboration with various companies and regional stakeholders as part of the HyChain 4 project, see [15,

pp. 14-17] for more details. For this problem, we model decisions to be made over a long time horizon

(2025 till 2050) and, because of this long term view, many of the model’s parameters (e.g. the natural

gas price and carbon emission tax) rely on forecasts that are highly uncertain. We use this case study to

demonstrate the application of RA and find that the model’s parameter settings can have a large effect on

the outputs of interest, with significant differences between the results obtained via (i) SA, (ii) classical

RA (for static optimization) and (iii) RA for adaptive optimization.

In summary, our contribution is as follows:

• we extend RA to an adaptive optimization setting, where some decisions can be postponed until

one has obtained more information on the uncertain parameters;

• we propose an intuitive and computationally tractable adaptive decision policy for RA in a multi-

stage adaptive setting;

• we demonstrate our method via application to a case study on optimizing decarbonization pathways

for an industry cluster in the Netherlands.

In [6] it is observed that all linear optimization textbooks cover SA extensively, and do not cover RA.

Because RA can provide a more realistic risk assessment than SA, we plea for the inclusion of RA in

these textbooks, both for static and adaptive optimization.
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Additionally, we reiterate two recommendations made by Gorissen et al. [16]. First, that formulating

and solving optimization problems in a stochastic and/or robust manner is not always necessary and that

RA should be used as a screening method to identify cases where the nominal solution may already be

sufficiently robust. Second, solving optimization problems in a stochastic and/or robust manner does not

necessarily lead to preferable solutions and RA should be used to analyze and compare multiple solutions

before deciding which solution to implement.

Lastly, within SA there is a distinction made between “local” and “global” analysis [17]. While

local SA is quite popular due its simplicity and ease of understanding [18], when analyzing the impact

of uncertainty, one is typically more interested in global SA [19]. Within global SA, various methods

have been developed (see [20, Chapter 1.2] for an overview), most of which involve numerical estimation

by analyzing a finite number of model evaluations with respect to a finite sample of input “scenarios”.

As such, this is the type of SA method we apply throughout this paper (see Appendix B for a more

detailed description). Nevertheless, the critique of SA, as a tool for risk assessment within the realm of

optimization, holds irrespective of the specifics of the method.

The structure of this paper is as follows. In Section 2, we extend RA to an adaptive setting and

highlight the difference between SA and RA using an illustrative toy problem. Then, in Section 3, we

apply the methodology to a realistic case study. Finally, we provide concluding remarks in Section 4.

The mathematical model formulation and additional details are relegated to the Appendix.

2 Robustness Analysis

This section extends RA to an adaptive optimization setting. To place this extension in context, we first

describe the methodology of RA for a static optimization setting. After having described the extension,

we highlight the difference using an illustrative toy problem.

In our notation we assume that there is a finite number of “outputs of interest” Y1, . . . , YM in which

one is interested. Furthermore, we assume that each output of interest Yj , j = 1 . . . ,M is a known

function of the decision vector x and uncertain parameter vector z. For example, if one is interested in

the objective value and feasibility of a solution for Problem (1), one would define Y1(x, z) := f(x, z) and

Y2(x, z) :=

1, if x ∈ X (z)

0, otherwise.

Static setting

When applying RA in a static optimization setting, it is assumed that all decisions are irrevocably fixed

and unable to adapt to changes in the model’s input. The situation is depicted in Figure 2, where the

decision vector x is determined before the uncertain parameter vector z is realized.

time

realization:

decision:

Figure 2: Visual aid for chronology of events in an uncertain static optimization problem

When dealing with problems of this nature, RA is rather straightforward. All one needs is a solu-

tion x̄ to analyze and a set of possible scenarios
{
z1, . . . , zN

}
. See Algorithm 1 below for a procedural

description.
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Algorithm 1 Pseudo code for robustness analysis in a static setting

Input: Set of scenarios
{
z1, . . . , zN

}
and a solution x̄.

Output: Evaluation of performance of x̄ w.r.t. each scenario in
{
z1, . . . , zN

}
.

1: for i ∈ {1, . . . , N} do
2: Evaluate outputs of interest Yj(x̄, z

i), ∀j = 1, . . . ,M

3: end for

2.1 Adaptive setting

In an adaptive optimization setting the solution under analysis is no longer assumed to be irrevocably

fixed. Consider a generic multistage adaptive problem with K decision stages as depicted in Figure 1.

Only the “first stage” decisions x̄0 are considered fixed, while the later stage decisions x1, . . . ,xK−1 are

able to adapt to the realizations of uncertainty. Thus, when determining the decision vector xk, the

parameter vectors z1, . . . , zk have been realized and are no longer uncertain. A procedural description of

RA for adaptive optimization is presented in Algorithm 2.

Algorithm 2 Pseudo code for robustness analysis for adaptive optimization

Input: Set of scenarios
{
z1, . . . , zN

}
, first stage decisions x̄0 and adaptive decision policy θ̄.

Output: Evaluation of performance of (x̄0, θ̄) w.r.t. each scenario in
{
z1, . . . , zN

}
.

1: Fix first stage decisions x̄0

2: for i ∈ {1, . . . , N} do
3: for k ∈ {1, . . . ,K − 1} do
4: zik is realized

5: Implement θ̄ to determine x̄i
k

6: end for

7: x̄i ← (x̄0, x̄
i
1, . . . , x̄

i
K−1)

8: Evaluate outputs of interest Yj(x̄
i, zi), ∀j = 1, . . . ,M

9: end for

Note that in order to incorporate the ability for later stage decisions to adapt, the analysis requires

additional input in the form of an adaptive decision policy θ̄. We propose an adaptive decision policy

as described in Algorithm 3, where, at each decision stage k, one determines xk by solving an updated

version of Problem (1). This is done in a folding horizon manner, where prior decisions x0, . . . ,xk−1 are

fixed, certain parameter values z1, . . . , zk are known and future values zk+1, . . . , zK are estimated.

Algorithm 3 Pseudo code for folding horizon re-optimization with expectations

Input: Current decision stage k, known realizations zi1, . . . , z
i
k and prior decisions x̄0, . . . , x̄

i
k−1.

Output: Adaptive decision vector x̄i
k.

1: Determine expectations regarding future: ẑip := E[zip|zi1, . . . , zik], ∀p = k + 1, . . . ,K

2: Determine x̄i
k by re-solving the optimization problem with known parameter vectors zi1, . . . , z

i
k, ex-

pected parameter vectors ẑik+1, . . . , ẑ
i
K and fixed prior decisions x̄0, . . . , x̄

i
k−1

3: return x̄i
k
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Our suggestion of Algorithm 3 to be used as θ̄ in Algorithm 2 is motivated by two reasons. First,

assuming that Problem (1) can be solved efficiently and the number of decision stages K is not excep-

tionally large, the policy is computationally tractable, as it involves solving successively smaller versions

of this problem K − 1 times. (In Section 3.3 we show numerical experiments that provide evidence for

the computational tractability of our policy.) Second, we believe that such a policy is commonly utilized

in practice, where optimization models are frequently updated with new information and re-optimized.

As such, using this policy will provide realistic results when emulated in RA.

Determining expectations (Line 1 of Algorithm 3) can be done in a variety of ways. For example, in

Section 2.2 we utilize knowledge of the true probability distribution of z, while in Section 3.3 we utilize

predictive machine learning models that are trained on additional scenario data.

2.2 Illustrative toy problem

Consider the following problem. Product C can be sold at a fixed price per unit and is created by a

process of conversion using either product A or product B as feedstock. However, investments must be

made to enable the transportation and processing of each product. Products A and B are supplied at a

particular price per unit and the price of product A is uncertain. The problem takes place over two time

periods, the demand for product C is 100 units per time period and this demand must be satisfied. The

goal is to determine which products (A and/or B) to use as feedstock, and therefore which investments

to make, in order to maximize profit.

We model the situation as a mixed-integer optimization problem1. The base structure of this model is a

directed graph with five nodes and four arcs, see Figure 3 for a visual aid. Within these five nodes, we have

two source nodes Nsup = {Supply A,Supply B}, two intermediary nodes Nint = {Process A,Process B}
and one sink node Ndem = {Demand C}.

Supply A

Supply B

Demand C

Process A

Process B

Figure 3: Visualization of directed graph used in illustrative toy problem

Each arc has an initial capacity of zero, but this can be increased by investment at a cost of 1 per 20

units. The processing nodes also start with an initial inflow capacity of zero, which can be increased by

investment at a cost of 2 per 20 units. Product C can be sold at a price of 2 per unit

For the uncertain supply costs we assume the following. We assume that the price of product B is

known and fixed at 1.05, while the price of productA is a uniformly distributed random variable. The price

per unit of A in time period 1, csupA,1, is uniformly distributed between 0.50 and 1.50. In time period 2, we

assume that the price is dependent on the price in period 1, where csupA,2 ∼ U(
1
2c

sup
A,1,

3
2c

sup
A,1). We set the nom-

inal values of these two parameters equal to their expected values, thus: z̄ = (c̄supA,1, c̄
sup
A,2) = (1.00, 1.00).

1See source code: https://github.com/JustinStarreveld/robustness_analysis_adaptive_opt for the details
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The nominal solution derived from solving the nominal problem is depicted in Figure 4. As you might

expect, our model advises us to solely utilize product A as feedstock in both time periods and only invest

in the arc and processing capacities that are relevant to A. Assuming the nominal values, this is evidently

the most profitable way to satisfy the demand of C, which is possible at an expected total profit of:

2× 100× 2︸ ︷︷ ︸
revenue

− 2× 5× 1︸ ︷︷ ︸
transportation cost

− 5× 2︸ ︷︷ ︸
processing cost

− 100× 1.00︸ ︷︷ ︸
supply cost t = 1

− 100× 1.00︸ ︷︷ ︸
supply cost t = 2

= 180.

Supply A

Demand C

Process A100 ⩽ 5× 20

≤ 5× 20

Process B

≤ 0× 20

0 ⩽ 0× 20
0 ⩽ 0× 20

100 ⩽ 5× 20
csupA,1 = 1.00

Supply B

csupB,1 = 1.05

Supply A

Demand C

Process A100 ⩽ 5× 20

≤ 5× 20

Process B
0 ⩽ 0× 20

100 ⩽ 5× 20
csupA,2 = 1.00

Supply B

csupB,2 = 1.05

0 ⩽ 0× 20

≤ 0× 20

t = 2

t = 1

Figure 4: Depiction of nominal solution for illustrative toy problem

For this illustrative toy problem it is quite obvious that the nominal solution is risky. Investing only in

the arcs and processing capacity related to product A may not be wise given the uncertainty surrounding

the price of A. One could elect to solely utilize product B as feedstock and only invest in the arc and

processing capacities that are relevant to B, which would be possible at a certain profit of 170. However,

for most problems we encounter in real life it is not so obvious whether a solution is risky or robust. In

such situations, robustness analysis should be performed. In the following sections we apply SA and RA

to this problem and illustrate how the results differ.

We can apply this to our toy problem, where the supply costs csupA,1 and csupA,2 per unit of product A are

uncertain. For our toy problem there are no concerns regarding the feasibility of our nominal solution,

as the uncertain supply costs do not affect any of the constraints of our problem. Our only output of

interest is the objective value, which represents the total cost of satisfying the demand for product C.

In this case, we can use our knowledge of the true distribution of csupA,1 and csupA,2 to generate a set

of N = 1,000 randomly generated possible scenarios. In Figure 5a we show the results of SA and in

Figure 5b we analyze the performance of our nominal solution as evaluated by RA.
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(a) Sensitivity analysis
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(b) Robustness analysis in static setting

Figure 5: Comparison of results from applying SA & RA to the illustrative toy problem described in

Section 2.2. The dashed vertical line indicates the nominal objective value.

Note that both analyses use the same set of possible scenarios
{
z1, . . . , zN

}
, yet yield starkly different

results. Because SA assumes fully flexible decisions and perfect foresight, the analysis suggests that the

total profit will never be less than 170. This is because, for adverse scenarios, the optimal solution changes

to provide product C via the supply of product B, for which the price is known and fixed.

On the other hand, RA (in a static setting) assumes that all decisions in our nominal solution are

irrevocably fixed and that there is no ability to adapt to the scenario at hand. Suggesting that the total

profit could range anywhere between 10 and 305. Depending on the situation, this may not be entirely

realistic either and one should apply RA in an adaptive optimization setting.

Recall that we discretize our time horizon into two time periods t ∈ {1, 2}. During each time period t

the (uncertain) price cA,t for product A in period t is revealed. At the start of each time period t,

investment decisions wt are made. Those made in the first period (w1) are considered static, however

the investment decisions made in the second period (w2) are able to adapt to cA,1. During each time

period t, product flow decisions yt are made. We assume that the decision vector y1 is adaptive with

respect to cA,1 and y2 is able to adapt to both cA,1 and cA,2.

Thus, we have a 3-stage problem (see Figure 6 for visual aid), with uncertain parameters z1 = cA,1

and z2 = cA,2, here-and-now decisions x0 = w1, second stage decisions x1 = (y1,w2) and third stage

decisions x2 = y2.

time

realization:

decision:

Figure 6: Visual aid for chronology of events for our 3-stage optimization problem

Applying RA (with 3 decision stages) to our illustrative toy problem, we obtain the results shown

in Figure 7b. We compare this with the results from applying a static analysis (these results are the

same as shown in Figure 5b, but with a different scale of the y-axis). The right-side of the distribution

is similar for both analyses, these correspond with scenarios where the price of A turns out lower than

expected and the original nominal solution remains unchanged. However, the left-side of the distribution

differs as we have introduced the possibility to adapt some of our decisions, which occurs when the price

of product A is higher than expected.
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(a) Robustness analysis in static setting
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(b) Robustness analysis in 3-stage adaptive setting

Figure 7: Comparison of results from static and adaptive RA when applied the illustrative toy problem

described in Section 2.2. The dashed vertical line indicates the nominal objective value.

3 Application

In this section we apply our methodology to a realistic case study. In this case study we focus on

optimizing the decarbonization strategy for an energy-intensive industry cluster in the Netherlands. We

refer to [15, pp. 14-17] for more details regarding the model. Three industrial sites are modeled in detail,

on process unit level. These sites produce fertilizer, oil-products and various other chemical products.

For the purpose of anonymity we only display aggregate data for the cluster as a whole.

The industry cluster requires large amounts of energy, which is currently primarily provided through

carbon-emitting fossil-fuels. (For reference, approximately 9.5 Mton of CO2 was emitted in 2020.) In

accordance with the Dutch government’s climate goals [21], the carbon emissions from this industry

cluster must be reduced by 55% (relative to 1990 emission levels) by 2030 and entirely eliminated by

2050. These goals are included in the model as hard constraints on the annual aggregate amount of CO2

emitted, where the required reduction is linearized over time. There is additional pressure to reduce

carbon emissions in the form of a carbon emission tax. This is included in the model’s objective function

as a cost parameter and is expected to increase over time. As the future values for the emission tax are

quite uncertain, we consider this input parameter in more detail in Section 3.2.

For the industrial sites, there are three primary options for reducing their carbon emissions, which

are: (i) hydrogen usage, (ii) electrification and (iii) carbon capture and storage (CCS). Additionally, the

model accounts for the surrounding infrastructure in the region. Via investment, the electricity grid can

be expanded, new hydrogen pipelines can be built and existing natural gas pipelines can be retrofitted

to transport hydrogen. The model is used to support long-term strategic decisions in regards to the

decarbonization pathway for each industrial site, as well as the relevant infrastructure for the region.

3.1 Nominal model description and solution

A mathematical formulation of the optimization model is provided in Appendix A. The model determines

when and which investments ought to be made to maximize the total (discounted) sum of margins for the

industry cluster over the time horizon. To represent the relevant aspects of the problem, the model utilizes

31 time periods (representing 2020, 2021, . . . , 2050), 352 nodes, 825 arcs and 76 different “products”

(which includes main energy carriers such as natural gas, electricity and hydrogen, but also includes

subsidiary by-products). Note that the first 4 time periods (2020 − 2023) are included for backward

compatibility of the model, but these time periods do not contain decision variables to be optimized.
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The resulting mixed-integer optimization model consists of 205,029 variables, 142,644 constraints and

753,151 parameters.

Of the 753,151 parameters we consider 6,231 to be uncertain, these are discussed in more detail in

Section 3.2. However, we first assume some nominal/estimated values for these parameters and treat

them as known in order to construct the nominal model, which is solved to obtain the nominal solution.

The investment decisions of this solution are summarized in Table 1.

Table 1: Overview of aggregate capital expenditure (in millions of EUR) for decarbonization pathway of

the nominal solution. Note that, in the model formulation, these costs are annualized (i.e. converted to

yearly payments) over the lifetime of the investments.

2025 2026 2027 2028 2029 2030 · · · 2035 2036 2037 2038 2039 2040 2041 2042 2043 · · · 2049 2050

Hydrogen 1800 307 242 360 360 2817

Electrification 70 30 50

CCS 304 31 25

Infrastructure 42 1 17 3 27 7

3.2 Uncertainty characterization

In characterizing and quantifying the uncertainty present in the input parameters of our optimization

model, we follow the five criteria framework by [22]. Our quantification of uncertainty does deviate from

the approach taken in [22], as we aim to generate scenarios instead of determining relative ranges.

For the analyses presented in Section 3.3 we utilize a set of 1,000 generated scenarios. Note that,

we do not assign probabilities to our scenarios, our analysis is only meant to provide an indication of

the possibility of certain outcomes. However, given that our uncertain parameters are continuous and

(mostly) independent, the number of possible scenarios is astronomical. As such, our choice of utilizing

only 1,000 scenarios is induced by our computational budget.

In our characterization we prioritize the use of historic data and external data sources in an effort to

keep our characterization as objective as possible. However, due to lack of data, this is not possible for

all parameters (such as the hydrogen price) and in such cases we are forced to make certain assumptions

based on consultation with domain experts. When in doubt, we haven taken a conservative approach,

preferring to overestimate rather than underestimate the magnitude of uncertainty. An overview of our

characterization is presented in Table 2 below. In the following paragraphs we go over each of the

uncertain parameters and discuss the characterization in more detail.

Table 2: Overview of uncertainty characterization

Uncertain Parameter Characterization

Natural gas price Historic EIA forecast data

Electricity price Historic EIA forecast data

Hydrogen price Expert opinion

Ammonia price Expert opinion

CO2 emission tax Historic EU ETS data

CO2 CCS tariff Correlated with CO2 emission tax

CapEx electrolyzers Ranges from literature

Discount rate Relative range from literature

Weighted average cost of capital Relative range from literature

Annual OpEx as percentage of CapEx Relative range from literature
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Natural gas and electricity prices

To predict future forecast errors, we can use historic forecast error data. For this we use a data set

provided by the annual energy outlooks (ranging from 1994 to 2022) of the U.S. Energy Information

Administration [23]. This data is available for both the natural gas price and electricity price, the

natural gas data is displayed in Figure 8.

Figure 8: Historic natural gas price forecasts from [23].

We use this data to generate future forecast errors by fitting an ARIMA time series model to predict the

log difference between the actual value ct and forecasted value c̄t for the years t ∈ {1993, . . . , 2022}. The
fitting was performed using the default settings of the auto.arima function of [24]. We use log difference

as opposed to relative difference or absolute difference as it has the advantages of being symmetric,

additive and enables use of linear time series models on exponential trends, which are often observed for

economic price data [25]. This has also been observed in recent years (2020-2022) where European energy

prices have been especially volatile.

Let the fitted ARIMA model be denoted by f̂ , we utilize f̂ to generate possible future realizations for

the natural gas and electricity prices by computing:

ct = c̄te
f̂(ln(

c1
c̄1

),...,ln(
ct−1
c̄t−1

))+εt ,

for future years t ∈ {2023, . . . , 2050}, where εt is randomly sampled from N (0, σf̂ ). See Figure 9 for an

overview of 1,000 generated scenarios for these two parameters.
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Figure 9: Visual overview of 1,000 generated scenarios for natural gas and electricity prices.

11



Hydrogen and Ammonia price

Because hydrogen and ammonia have not yet been employed at scale as energy carriers, there is lim-

ited information available regarding their historic or even current price. Therefore, to characterize the

uncertainty around this parameter, we have relied on consultation with domain experts and taken a

conservative approach. See Figure 10 for an overview of the generated price scenarios.
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Figure 10: Visual overview of 1,000 generated scenarios for hydrogen and ammonia prices.

CO2 emission tax and CO2 CCS tariff

Here we make use of historic EU emission trading system (ETS) data [26]. Due to a number of large

policy changes the data pre-2015 is not representative of future volatility. Thus, in our analysis we only

consider the data from 2015 onwards. Additionally, we aggregate the data to obtain yearly averages. Our

scenario generation procedure for the CO2 emission tax is identical to the procedure for the natural gas

and electricity prices, where we fit an ARIMA time series model to the historic data and use the resulting

residual distribution to emulate possible future deviations from our nominal forecast.

Another important CO2-related parameter is the tariff paid for CCS. The forecast for this parameter is

also highly uncertain, as captured CO2 can play an advantageous role in enhanced oil recovery. However,

it is generally expected to correlate with the CO2 emission tax, as CCS is an alternative to emission. Let

eit and c
i
t represent the CO2 emission tax and CCS tariff respectively for time period t in scenario i. We set

cit = eit − γi for t = 2020, 2021, 2022, where γi represents additional processing and transport costs (γi ∼
U(10, 40) EUR/ton). For the later years, t ∈ {2023, . . . , 2050}, we set cit = min{cit−1 + ϵit, e

i
t − γi}, where

ϵit ∼ U
(
−(eit − eit−1), 3(e

i
t − eit−1)

)
. An overview of the generated scenarios for these two parameters can

be seen in Figure 11.
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Figure 11: Visual overview of 1,000 generated scenarios for the CO2 emission tax and CO2 CCS tariff.
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Capital expenditure electrolyzers

The costs of producing hydrogen are dependent on the capital expenditure (CapEx) of electrolyzers. In our

model we include two technology options for the production of electrolytic hydrogen, alkaline (ALK) and

polymer electrolyte membrane (PEM) electrolysis. ALK electrolysis is generally considered to be more

cost-effective than PEM electrolysis, however PEM electrolysis is more efficient in its energy conversion.

While there is still a lot of uncertainty surrounding the development of these technologies, there is

scientific literature available on the topic. We have conservatively applied prediction intervals for 2020,

2025, 2030 and 2050 from [27–29]. Assuming that the realized CapEx for these technologies will be

distributed uniformly within the ranges from the literature, we are able to generate possible scenarios,

see Figure 12 for a visual overview.
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Figure 12: Visual overview of 1,000 generated scenarios for the capital expenditure of electrolyzers.

Other financial parameters

Finally, we consider the discount rate, weighted average cost of capital (WACC) and annual operating

expense (OpEx), which is determined as a fixed percentage of the capital expenditure (CapEx). While the

discount rate and WACC are both related to the time value of money, they are considered independently

in our model to reflect potential differences due to particular capital funding schemes. A nominal value

is chosen by domain experts and for the generated scenarios we assume that these will be situated within

a certain range (see Table 3), which is derived using the relative ranges from [22].

Table 3: Overview for other financial parameters (in %)

nominal min max

Discount rate 7.0 3.8 10.2

Weighted average cost of capital 7.5 4.0 11.0

Annual OpEx as percentage of CapEx 4.0 2.1 5.4

Note that in our optimization model, as described in Appendix A, these three financial parameters are

time-independent (as this simplifies the annualization of costs). However, we still treat these uncertain

parameters as if they are realized over time. We do this, per parameter, by generating scenarios where

the value is varied over time and the value at the end of the time horizon (t = 2050) represents the

actual parameter value. This final/actual value is assumed to be uniformly distributed between the

ranges indicated in Table 3, and the yearly variations are assumed to be uniform within the interval

[−max−min
3 , max−min

3 ]. We do this to mimic the way in which the degree of uncertainty is reduced as a

scenario is realized over time.
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3.3 Robustness and Sensitivity Analysis

Now we will use our generated scenarios, along with sensitivity and robustness analysis, to gain insight into

the potential impact of these uncertain parameters and obtain a more realistic depiction of our outputs of

interest. Our main goal in this section is illustrate how RA can be used to determine whether the nominal

solution (summarized in Table 1) is sufficiently robust with respect to the uncertain parameters (listed

in Table 2).

We conduct three methods of analysis: (i) SA, (ii) RA for static optimization and (iii) RA for adaptive

optimization. Note that for each analysis we utilize an identical set of 1,000 randomly generated scenarios.

As such, the differences between the results arise purely from differences in methodology.

For the third method of analysis, RA for adaptive optimization, we assume that there are five decision

stages, which occur at the start of time periods t ∈ {2020, 2031, 2036, 2041, 2046}. We further assume

there to be two years between the realization of uncertainty and the implementation of adaptive decisions

(e.g., for the decision stage at t = 2031, we have access to realizations of z2020, . . . , z2028). Finally, in

order to implement the adaptive decision policy described in Algorithm 3, we use neural networks (one

per adaptive decision stage). These are trained, using 10,000 additional scenarios, to predict future

parameter values based on the set of known realizations.

All computations are conducted on a 64-bit Windows machine equipped with a 2.80 GHz Intel Core i7

processor with 32 GB of RAM. All mathematical programs are solved to a proven optimality gap of 1%

using Gurobi 10.0.1. As the total computation time for each method depends on the degree of paralleliza-

tion and other implementation details, we report the average accumulated solving time in seconds per

scenario. These are: (i) 128, (ii) 0 and (iii) 20 for each method respectively. Interestingly, we find that

solving smaller versions of the model 4 times (as we do in RA for adaptive optimization) is, on average,

faster than solving the original model once (as we do in SA).

The first output of interest we consider is the objective value (recall that our objective is to maximize

the total discounted sum or margins for the industry cluster). In Figure 13 we display the resulting

histograms from our three methods of analysis. To further examine the differences between the his-

tograms displayed in Figure 13, we plot the empirical cumulative distribution function for each method

in Figure 14.
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Figure 13: Evaluations of the objective value from applying SA and RA. The dashed vertical line indicates

the optimal objective value for the nominal model.

We cannot make valid probabilistic conclusions from these analyses. However, for the sake of expo-

sition, assume that each scenario is equally likely and that we use the empirical frequency to estimate

the true probability of an event occurring. Imagine that we would like to estimate the probability that

our objective value will turn out to be lower than expected (our nominal model suggests an objective

value of 21.4 billion EUR). For SA, the observed frequency with which this occurs is 43%. If we had

instead chosen to apply RA for static optimization, we would observe a frequency of 72%. The former
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analysis is inclined to underestimate the true probability of this event occurring, while the latter analysis

is inclined to overestimate this probability. Performing RA for adaptive optimization provides a more

realistic assessment than either extreme, for which we observe a frequency of 57%.
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Figure 14: Empirical cumulative distribution function for objective value for each method of analysis.

The dashed vertical line indicates the optimal objective value for the nominal model.

To highlight the importance of such differences, consider the following example. If one were to perform

only SA, one may incorrectly conclude that the risk of obtaining an objective value of less than 15 billion

EUR is negligible (only 2.2%) and thus no action is required in order to mitigate this risk. However, if

one were to perform RA for adaptive optimization, one would obtain a more accurate estimate of the

risk (5.6%) and may instead conclude that a more robust solution is required.

Using SA in combination with RA to derive regret

Combining the results from SA and RA can provide valuable insight as it allows one to compute the

possible regret associated with making specific decisions. In this context “regret” is defined as the ex-

post difference between the achieved value and the best value that could have been obtained if the

information had been known before making the decision. For each scenario we can compute the regret by

taking the difference between the results from RA (which provides the “achieved value”) and the results

from SA (which provides the “best value that could have been obtained”). Knowing the potential regret

of a decision is more informative than only knowing the achieved value as it provides evidence of the

existence of alternative decisions that are preferable (for certain scenarios).

In Figure 15 we examine the potential regret of our nominal solution with respect to each scenario in

our set. The empirical average regret (in billion EUR) for the static analysis is 3.1, while only 1.5 for the

adaptive analysis. Again, we find a significant difference between the results due to the ability to adapt

the later stage decisions when more information is realized.

Additional outputs of interest

So far, we have focused on the objective value as an output of interest. However, for real-world problems

there may be multiple “key performance indicators” to consider in the analysis. For our case study, we

are also interested in the following two metrics. First, the average CO2 abatement costs, which is defined

as the additionally incurred costs (calculated with respect to the corresponding scenario case without

CO2 emission penalties) divided by the avoided CO2 emissions. Second, the average levelized cost of

hydrogen (LCoH), which is defined as the net present value of the total cost of producing or importing

hydrogen divided by the quantity. This metric is computed per source of hydrogen, which can either be
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Figure 15: Comparison of potential regret with respect to the objective value. Obtained by comparing

the results from SA with the results from RA (for static and adaptive optimization).

imported, produced using steam methane reforming (SMR), autothermal reforming (ATR) or electrolysis

(ALK and PEM). Note that this metric is computed over the time periods from 2025 up to 2050 and

does not incorporate costs related to the CO2 emission tax or CCS tariff. In Figure 16 we use RA (for

adaptive optimization) to obtain an evaluation of these two outputs of interest.
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Figure 16: Two additional outputs of interest, evaluated using RA for adaptive optimization. The dashed

vertical line in Figure 16a represents the abatement costs under the nominal scenario. Figure 16b displays

a “box and whisker plot”, where the whiskers extend to the farthest data point lying within 1.5x the

inter-quartile range (represented by the box) and observations beyond the whiskers are omitted. The

numbers reported at the top of the graph to the right of “N” represent the number of scenarios for which

the quantity of hydrogen produced/imported is greater than zero.

Effect of altering the number of decision stages

While allowing for more decision stages may generate more realistic results (depending on how often de-

cisions are re-evaluated in the real-world problem at hand), it comes at the cost of increased computation

time. For RA in an adaptive setting, the number of decision stages K was set to 5. Here we consider

alternative setups where we alter the number of decision stages to occur after 2031. All setups involve

first and second stages at t = 2020 and t = 2031 respectively.

In Figure 17 we display the average accumulated solve time (per scenario) as a function of K. We
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find that this function is approximately linear in the number of decision stages, which provides empirical

evidence that using our proposed adaptive decision policy (as described in Algorithm 3) is computationally

tractable, even for a large number of decision stages.
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Figure 17: Average accumulated solve time of RA (in seconds per scenario) as a function of the number

of decision stages

Using RA to compare solutions

From the results presented in Figures 13c, 15b and 16 one may conclude that the nominal solution

is insufficiently robust w.r.t. uncertainty regarding the parameter values of our model. Furthermore,

Figure 15b suggests that there exist alternative solutions which perform better under certain scenarios.

As such, one may look to apply techniques from stochastic programming and/or robust optimization in

the hopes of obtaining a solution that is more robust in the presence of uncertainty. In order to test

whether this is the case, one can apply robustness analysis to compare two (or more) solutions.

In this subsection we compare our nominal solution (as presented in Table 1), with an alternative

solution obtained via application of the “ROBIST” algorithm [30]. The difference in first stage investment

decisions is summarized in Table 4 below. The most striking difference we find is that the first stage

decisions of the solution obtained via ROBIST involve more investment in infrastructure.

Table 4: Overview of aggregate capital expenditure (in millions of EUR) for the first decision stage.

Nominal solution is summarized on the left, the solution obtained via ROBIST is depicted on the right,

where the differences are highlighted in bold. Note that, in the model formulation, these costs are

annualized (i.e. converted to yearly payments) over the lifetime of the investments.

2025 2026 2027 2028 2029 2030

Hydrogen 1800

Electrification 70 30 50

CCS

Infrastructure 42 1

2025 2026 2027 2028 2029 2030

Hydrogen 1800

Electrification 70 70 70

CCS 25

Infrastructure 50 38 70 26 11 11

In Figure 18 we analyze and compare the performance of the first stage decisions of the two solutions

using RA (in an adaptive setting) in terms of objective value and expected shortfall for the lower quantiles

of their respective empirical distributions. Expected shortfall is a risk measure commonly used in the

field of financial risk measurement, which reflects the expected objective value in the worst q% of cases,

where q represents a certain quantile of the empirical distribution.
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We find that the ROBIST solution performs better, on average, than our nominal solution. Addition-

ally, we find that the expected regret for the nominal solution is 1.5 billion EUR and 1.4 billion EUR for

the ROBIST solution. In relative terms, the difference in results between the two solutions is not very

large. However, in absolute terms, the improvement is considerable. As such, the ROBIST solution is

deemed to be preferable to the nominal solution. This example demonstrates how RA can also be used

to compare the performance of multiple solutions and assist in determining which solution is more robust

to parametric uncertainty.
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Figure 18: Comparison of results from applying RA to two different solutions.

4 Conclusion

In this paper, we extend robustness analysis (RA) to deal with adaptive optimization problems, where

decisions are made sequentially over time. By incorporating the ability for part of the solution to adapt

once more information is known, the analysis can be made more realistic, which can ultimately lead to

better decision-making in practice. Our proposed method is intuitive, computationally tractable and can

be applied to a broad range of problems.

RA can be used to determine whether a particular solution is (or is not) sufficiently robust. Being

able to properly verify such a conclusion is especially valuable when dealing with adaptive optimization

problems, which are commonly encountered in practice, yet notoriously difficult to model and solve in a

stochastic and/or robust manner.

While sensitivity analysis (SA) is often used to analyze the effect of uncertainty on optimization

models, it does not allow for such verification (except in the atypical case where the optimal solution is

insensitive to changes in the uncertain parameters of a model). However, performing SA in addition to

RA can provide valuable insight into the amount of potential regret associated with particular decisions.

Such information can be used to estimate the value of information and motivate further action.

We demonstrate our method by applying it to the optimization of decarbonization pathways for an

industry cluster in the Netherlands. Here, we find that parametric uncertainty can have a large impact

on the performance of a solution and that adverse outcomes can be mitigated via increased early stage

investments in the regional infrastructure.

In terms of further research, it would be interesting to test alternative adaptive decision policies, to

explore the usage of scenario reduction techniques and to further analyze the data obtained from RA in

order to determine which parameters are the most impactful. Future work also envisions investigating the

potential synergy between RA and modeling to generate alternatives as well as the usage of RA within

simulation-based optimization.
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Appendix

A Model Description

In the applications considered in this paper we utilize a network flow mixed-integer optimization model.

The network is made up of nodes and arcs, where the nodes represent supply, intermediary, and demand

entities and the arcs represent connections between these entities. The flows over the arcs from one node

to another represent units of energy and emissions. The time horizon is discretized into 31 time periods,

where the periods are connected through investment decisions and storage capability. The objective of

the model is to maximize the total (discounted) sum of margins over the entire supply chain over the

specified time horizon while adhering to a number of constraints, which enforce supply, storage, transport

and processing capacities, as well as the balance of flows in and out of the nodes.

Here we present a mathematical formulation of this network flow model. To do this we must first

introduce some notation. Let the set of time periods be represented by T . This set is made up of ordinal

numbers, with initial time period t1 = 1. Let P represent the set of products (e.g. forms of energy,

emissions) and let Q represent the set of possible investment projects. We define the set of source/supply

nodes as Nsup, the set of sink/demand nodes as Ndem and the set of intermediary nodes as Nint. These

three combined give us the set of all nodes N = Nsup∪Nint∪Ndem. Additionally, we define a few special

nodes, namely the set of processing nodes Npro and the set of storage nodes Nsto. These are both subsets

of the set of intermediary nodes Nint. We use A to represent the set of arcs between our nodes.

Proceeding with the variables and parameters, in summary, we model three types of flows. These

are the flows in and out of nodes, flows to and from storage facilities and flows used in and produced

from processing activity. For these flows the modeler is able to specify a minimum and/or maximum in

order to emulate various types of restrictions. With such restrictions one is able to define the quantity

of supply/demand, processing capacity, etc.

The notation is as follows, we use yijpt to represent the flow of material p over arc (i, j) in time

period t and let Uarc
ijpt and Larc

ijpt represent the maximum and minimum limits on the flow over arc (i, j)

in period t. Additionally, we represent the flow into a node i with yinipt and out of a node with youtipt . We

represent the maximum and minimum limits on the flow in/out of nodes by U in
ipt/U

out
ipt and Lin

ipt/L
out
ipt .

Let sipt represent the storage level at node i of product p at the end of time period t. Let s−ipt represent

the amount of product moved to storage and let s+ipt represent the amount procured from storage in

time time period t. Additionally, we use sip0 to represent an initial amount of product p in storage at

node i. We denote the maximum and minimum storage capacity of product p at node i in time period t

with Usto
ipt and Lsto

ipt . Finally, we use r−ipt and r
+
ipt to represent the amount of product p consumed by and

produced from the processing node i during time period t. Furthermore, let rit represent a dimensionless

quantity of processing activity at node i in time period t, and we use κipt to denote the yield of product p

at processing node i. The yield of a product is negative whenever that product is consumed in the

processing activity and positive if it is produced from the activity.

Moving on to the investment component of the model, we use integer variable wqt to represent the

amount of capital invested in investment project q in time period t. We employ a supplementary variable

vqt to represent the amount of investment q that is active at time t, where “active” implies that the effect

of the investment are realized during time period t. We use lq to express the lifetime of investment q

(expressed in number of time periods for which the effects persist). The effect of a unit of investment q

on the maximum and minimum flow over arc (i, j) is expressed in units of product p and represented

by δarc,Uijpq and δarc,Lijpq . For the effect on the maximum and minimum over the flow in/out of a node i we

use δin,Uipq /δout,Uipq and δin,Lipq /δout,Lipq respectively. The impact on maximum and minimum storage capacity

is represented by δsto,Uipq and δsto,Lipq .
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Finally, using ψ as the discount rate, we determine the total net present value (ΠNPV ) using the

following equation:

ΠNPV =
∑
t∈T

1

(1 + ψ)(t−1)

[∑
p∈P

(∑
i∈N

[
crevipt y

in
ipt − c

sup
ipt y

out
ipt − chandipt (yinipt + youtipt )−

∑
j∈Nout

i

carcijptyijpt
]

∑
i∈Nsto

−cstoiptsipt

)
−

∑
q∈Q

cinvqt vqt

]
.

Where crevipt reflects revenue gained per unit of product p at node i in time period t. Similarly, we introduce

several cost parameters related to supply (csupipt ), handling (chandipt ), storage (cstoipt ), transportation (carcijpt)

and investment (cinvqt ). The investment costs cinvqt are the sum of two components, annualized capital ex-

penditure costs (cAC
qt ) and operation and maintenance costs (cO&M

qt ). The annualized capital expenditure

associated with investment q is computed as follows: cAC
qt =

ccapex
qt ϕ

(1−(1+ϕ))−lq
, where ccapexqt and ϕ represent

the capital expenditure of investment q at time t and weighted average cost of capital respectively. The

operation and maintenance costs are computed as: cO&M
qt = ccapexqt γ, where γ represents the annual OpEx

as percentage of CapEx.

Using the notation described above, we arrive at the following mathematical formulation for our

model:

max
y,w,s,r

ΠNPV (2a)

s.t. yinipt + s+ipt + r+ipt = youtipt + s−ipt + r−ipt ∀i ∈ Npro ∩Nsto,∀p ∈ P,∀t ∈ T (2b)

yinipt + r+ipt = youtipt + r−ipt ∀i ∈ Npro −Nsto,∀p ∈ P,∀t ∈ T (2c)

yinipt + s+ipt = youtipt + s−ipt ∀i ∈ Nsto −Npro,∀p ∈ P,∀t ∈ T (2d)

yinipt = youtipt ∀i ∈ Nint −Npro −Nsto,∀p ∈ P,∀t ∈ T (2e)

Larc
ijpt +

∑
q∈Q

δarc,Lijpq vqt ≤ yijpt ≤ Uarc
ijpt +

∑
q∈Q

δarc,Uijpq vqt ∀(i, j) ∈ A,∀p ∈ P,∀t ∈ T (2f)

Lin
ipt +

∑
q∈Q

δin,Lipq vqt ≤ yinipt ≤ U in
ipt +

∑
q∈Q

δin,Uipq vqt ∀i ∈ N, ∀p ∈ P,∀t ∈ T (2g)

Lout
ipt +

∑
q∈Q

δout,Lipq vqt ≤ youtipt ≤ Uout
ipt +

∑
q∈Q

δout,Uipq vqt ∀i ∈ N, ∀p ∈ P,∀t ∈ T (2h)

Lsto
ipt +

∑
q∈Q

δsto,Lipq vqt ≤ sipt ≤ Usto
ipt +

∑
q∈Q

δsto,Uipq vqt ∀i ∈ Nsto,∀p ∈ P,∀t ∈ T (2i)

sipt = sip(t−1) + s−ipt − s
+
ipt ∀i ∈ Nsto,∀p ∈ P,∀t ∈ T (2j)

r−ipt = −κiptrit ∀(i, p, t) ∈ {Npro × P × T : κipt < 0} (2k)

r+ipt = κiptrit ∀(i, p, t) ∈ {Npro × P × T : κipt > 0} (2l)

vqt =

lq∑
i=0

wq(t−i) ∀q ∈ Q,∀t ∈ T (2m)

yinipt =
∑

j∈Nin
i

yjipt ∀i ∈ N, ∀p ∈ P,∀t ∈ T (2n)

youtipt =
∑

j∈Nout
i

yijpt ∀i ∈ N, ∀p ∈ P,∀t ∈ T (2o)

yijpt ≥ 0 ∀(i, j) ∈ A,∀p ∈ P,∀t ∈ T (2p)

sipt, s
+
ipt, s

−
ipt ≥ 0 ∀i ∈ Nsto,∀p ∈ P,∀t ∈ T (2q)

rit ≥ 0 ∀i ∈ Npro,∀t ∈ T (2r)

wqt ∈ N0 ∀q ∈ Q,∀t ∈ T. (2s)

The objective function of this optimization problem is to maximize the total net present value of
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margins over the entire supply chain. Constraints (2b), . . . , (2e) form the backbone of our model and

enforce the balance of all flows in and out of the intermediary nodes. Constraints (2f) restrict the arc flows

such that they must satisfy the minimum and maximum requirements over the arc. These requirements,

and thus the constraints, are dependent on the investment decisions. Constraints (2g), (2h) and (2i) serve

a similar function for the flows in and out of nodes and for the amount of “product” kept in storage.

Constraints (2j) ensure that the storage levels are derived correctly. Constraints (2k) and (2l) ensure that

the in-feed and out-feed product flows from processing nodes is modeled correctly in accordance with the

relevant yields. Here, the variable rit plays an instrumental role in linking the different products together.

Constraints (2m), (2n) and (2o) enforce the definitions which we have assigned to these variables. Finally,

Constraints (2p), . . . , (2s) enforce non-negativity and integer constraints on the decision variables.

B Sensitivity Analysis

When SA is applied to optimization models, one analyzes how changes in the model’s parameters affect

its optimal solution. This is visualized in Figure 19 below, where the decision vector x is determined

after the realization of the uncertain parameter vector z. A procedural description of SA is presented in

Algorithm 4.

time

realization:

decision:

Figure 19: Visual aid for chronology of events in sensitivity analysis

Algorithm 4 Pseudo code for sensitivity analysis

Input: Set of scenarios
{
z1, . . . , zN

}
.

Output: Evaluation of sensitivity of optimal solution x∗ w.r.t. each scenario in
{
z1, . . . , zN

}
.

1: for i ∈ {1, . . . , N} do
2: Determine optimal solution xi∗ by solving min

x
{f(x, zi) | x ∈ X (zi)}

3: Evaluate outputs of interest Yj(x
i∗, zi), ∀j = 1, . . . ,M

4: end for
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