
Why Line Search when you can Plane Search?

Why Line Search when you can Plane Search?
SO-Friendly Neural Networks allow Per-Iteration Optimization of

Learning and Momentum Rates for Every Layer

Betty Shea sheaws@cs.ubc.ca
University of British Columbia

Mark Schmidt schmidtm@cs.ubc.ca

University of British Columbia, Canada CIFAR AI Chair (Amii)

Editor:

Abstract

We introduce the class of SO-friendly neural networks, which include several models used in
practice including networks with 2 layers of hidden weights where the number of inputs is
larger than the number of outputs. SO-friendly networks have the property that performing
a precise line search to set the step size on each iteration has the same asymptotic cost
during full-batch training as using a fixed learning. Further, for the same cost a plane-
search can be used to set both the learning and momentum rate on each step. Even
further, SO-friendly networks also allow us to use subspace optimization to set a learning
rate and momentum rate for each layer on each iteration. We explore augmenting gradient
descent as well as quasi-Newton methods and Adam with line optimization and subspace
optimization, and our experiments indicate that this gives fast and reliable ways to train
these networks that are insensitive to hyper-parameters.

1 Should we use Subspace Optimization in Machine Learning?

To train machine learning (ML) models, we often try to minimize a function f in terms
of some parameters w. Starting from an initial guess w0, a prototpyical algorithm for
performing this minimization is gradient descent with momentum (GD+M) (Polyak, 1964)
which generates a sequence of guesses according to the formula1

wk+1 = wk − αk∇f(wk) + βk(wk − wk−1). (1)

This update subtracts the gradient ∇f(wk) multiplied by what we call the learning rate αk,
and then adds the momentum term (wk −wk−1) multiplied by what we call the momentum
rate βk. Many variations exist including stochastic gradient descent (SGD) which uses a
stochastic approximation of the gradient to reduce the iteration cost (Robbins and Monro,
1951) and quasi-Newton methods which pre-multiply the gradient by a matrix to improve
the convergence rate (see Nocedal and Wright, 2006). The most popular variant in ML is
the Adam optimizer which incorporates a variation on momentum and uses a scaling of a
stochastic approximation of the gradient (Kingma and Ba, 2014).

In the modern practice of ML, the learning rate αk and momentum rate βk are often set
to fixed constants for all k. This can result in poor performance of Adam and related meth-

1. With the convention that w−1 = w0.

1

Shea and Schmidt

ods (Vaswani et al., 2020), so practitioners often run the algorithm with different choices
of the constant learning and momentum rates. After running the algorithm with differ-
ent hyper-parameter choices, we then choose the run giving the best performance (Zhang
et al., 2022). This “hyper-parameter search” approach to solving an optimization problem
is expensive compared to traditional deterministic numerical optimization approaches like
quasi-Newton methods. Popular quasi-Newton methods, such as those based on the limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) update (Nocedal, 1980), typically
give good performance “out of the box”. Specifically, deterministic methods often give good
performance without any hyper-parameter tuning using their default hyper-parameters.

A key ingredient that allows L-BFGS to work well with default parameters is using a line
search (LS) to set the learning rate. In particular, they search for a value of αk satisfying
conditions guaranteeing sufficient progress in optimizing f such as the strong Wolfe condi-
tions (Wolfe, 1969; Nocedal and Wright, 2006). This may require testing multiple learning
rates on each iteration, but various heuristics exist that allow us to quickly find a suitable
αk (Moré and Thuente, 1994; Shanno and Phua, 1978). With these heuristics, the cost of
using line search is typically smaller than running the algorithm for multiple fixed learning
rates. Further, since line searches allow us to find a good learning rate on each iteration,
using line searches has the potential to drastically outperform any fixed learning rate. Sev-
eral recent works highlight the advantages of using line search for modern ML problems
within SGD (Truong and Nguyen, 2018; Vaswani et al., 2019) as well as Adam (Vaswani
et al., 2020; Galli et al., 2023). However, using line search increases the iteration cost of
the method and these methods still use a fixed momentum rate.

In the context of many linear models like least squares and logistic regression, it is
possible to use line searches “for free”. In particular, for what we call linear-composition
problems (LCPs) using a LS or even performing line optimization (LO) to numerically solve
for the best step size does not change the asymptotic cost of the iterations compared to using
a fixed step size. Further, for this same cost LCPs also allow us to use a plane search to
set the learning rate αk and momentum rate βk on each iteration of GD+M (1) and related
methods. In Section 2 we review how we can optimize the learning and momentum rates
for LCPs for the same cost as using a fixed αk and βk, and how this leads to significantly
faster convergence in practice. Using a plane search is a special case of methods that use
subspace optimization (SO) to search along multiple directions on each iteration, and in
Section 3 we discuss the history of SO methods.

LO and SO are not typically used for neural networks since performing LO or SO in
general neural network model cannot be done “for free” as it can in linear models with
suitable directions. In this work, we introduce the class of SO-friendly neural networks
(Section 4). The key property of these networks is that performing LO to set the learning
rate, or SO to set the learning rate and momentum rate, does not increase the asymptotic
cost of training compared to using a fixed learning and momentum rate. While SO-friendly
networks are a restricted class, they include some networks used in practice such as networks
with 2 layers of weights where the number of inputs is much larger than the number of
outputs. A further appealing property of SO-friendly networks is that we can optimize
over a separate learning rate and momentum rate for each layer. For networks
with 2 layers of weights this gives us 4 step sizes that are tuned “for free” on each iteration,
and this flexibility can lead to even faster convergence in practice in some settings. In

2

Why Line Search when you can Plane Search?

Section 5 we consider augmenting L-BFGS and Adam with LO and SO, and show that this
leads to faster training for both LCPs and SO-friendly networks.

1.1 List of Contributions by Figure

We have performed a wide variety of experiments that support our main claim that LO
and SO can and should be used to improve the performance of various ML algorithms for
suitable problem structures. Here we give of figures highlighting various observations from
our experiments:

� Figure 2 illustrates how LO and SO can significantly improve the performance of
GD+M on the LCP of logistic regression.

� Figure 5 shows that GD+M with LO and SO can even improve performance over
accelerated gradient methods, but that performing SO over more than 2 directions
only results in marginal performance gains.

� Figure 6 shows that LO and SO also lead to improved performance of GD+M for
training 2-layer neural networks.

� Figure 8 shows that using SO to set per-layer step sizes can sometimes substantially
improve performance for training 2-layer networks, but sometimes makes performance
much worse.

� Figure 10 shows that using per-layer step sizes consistently improves performance if
regularization is added.

� Figure 13 and 14 show that LO can improve the performance of a quasi-Newton
method, and that using SO to optimize the step sizes in a quasi-Newton method with
momentum further improves performance.

� Figures 17 and 18 shows that LO improves the performance of Adam for LCPs though
not always for neural networks, but that a multi-direction Adam method with step
sizes set using SO typically improves performance over single-direction Adammethods.

1.2 Comments on Limitations of the Applicability of Subspace Optimization

In this work we restrict attention to deterministic optimization methods, to the restricted
class of SO-friendly networks, and to differentiable objective functions. Before beginning,
we briefly comment on these choices:

� Why focus on deterministic methods? While stochastic methods do indeed be-
come superior to deterministic as the number of examples increases, in many practical
scenarios we have a finite dataset and we perform multiple passes through the data
to train a model. For example, on the ImageNet dataset it is standard to perform 60
passes through the data (and this cost may be multiplied by the number of optimiza-
tion hyper-parameter settings that are explored). It is not obvious that stochastic
methods necessarily dominate deterministic methods in this common multi-pass set-
ting, since it is possible that deterministic methods could exist that find accurate

3

Shea and Schmidt

solutions in 10-20 passes through the data. Further, deterministic methods typically
do not require a search over optimization hyper-parameters. The insensitivity of deter-
ministic methods to hyper-parameter settings also means we can have more confidence
that deterministic optimizers will work robustly in new scenarios.

� Why focus on SO-friendly networks? Most deep neural networks are not SO-
friendly and thus it is not efficient to use SO. Nevertheless, a variety of SO-friendly
networks are used in practice (see Sections 2 and 4) including many networks with
two hidden layers of weights or deep networks where we have sub-optimized individual
layers. There has been recent interest in the ML literature on improved optimization
methods for such networks (Mishkin et al., 2022), and we believe that practitioners
in these settings would substantially reduce training times (or increase accuracy) by
exploiting SO.

� Why focus on differentiable objectives? Some objective functions arising in
ML are non-differentiable, such as support vector machines which are LCPs and neu-
ral networks with rectified linear unit (ReLU) non-linear functions. Note that SO
remains efficient for LCPs and SO-friendly networks even when the problem is non-
differentiable. However, in non-differentiable cases it is less obvious which directions
to use as search directions (since neither the gradient nor its negation necessarily point
in a direction that we can search in order to improve the objective function).

Nevertheless, in Section 6 we discuss how future work could use SO as a useful ingredient
in stochastic methods and/or methods to train general deep neural networks.

2 Line Search and Plane Search for Linear Composition Problems (LCPs)

Optimizing a function over a low-dimensional subspace is easier than optimizing the function
over the full space. However, for a given problem it is possible that SO is still too expensive
for it to be beneficial. Nevertheless, for certain problems we can perform LO or SO over
a low-dimensional subspace without increasing the asymptotic iteration cost compared to
using a fixed step size. We call these problems SO-friendly. Narkiss and Zibulevsky (2005a)
were the first to highlight an SO-friendly problem, for a class of LCPs.

LCPs have the form f(w) = g(Xw) for the n×d data matrixX and a function g. For this
problem setting, SO is efficient in the common case where the matrix multiplication with
X is much more expensive than evaluating g. For example, for a target vector y the least
squares objective is f(w) = 1

2∥Xw − y∥2, which can be written as an LCP with g(m) =
1
2∥m − y∥2. In this setting the matrix multiplication costs O(nd) but evaluating g only
costs O(n). Another canonical example is logistic regression, where g(m) =

∑n
i=1 log(1 +

exp(−yimi)) for binary labels yi ∈ {−1, 1}. Many other classic models in ML can be written
as LCPs such as robust regression with the Huber loss and support vector machines. More
advanced situations where LCPs arise include include neural tangent kernels (NTKs) (Jacot
et al., 2018) and transfer learning by re-training the last layer of a pre-trained deep neural
network (Donahue et al., 2014).

4

Why Line Search when you can Plane Search?

2.1 Efficient Line Search (LS) and Line Optimization (LO)

The classic gradient descent (GD) iteration takes the form

wk+1 = wk − αk∇f(wk). (2)

To ensure that the step size αk is sufficient small, standard deterministic optimizers impose
the Armijo sufficient decrease condition

f(wk − αk∇f(wk)) ≤ f(wk)− αkσ∥∇f(wk)∥2, (3)

for a positive sufficient decrease factor σ. LS codes may also ensure the step size is not too
small by imposing an additional curvature condition as in the strong Wolfe conditions (No-
cedal and Wright, 2006). There exist approaches to finding an αk satisfying these types of
conditions that require only a small number of evaluations of f (Moré and Thuente, 1994).
While these methods are effective for general smooth functions, in the special case of LCPs
we can efficiently use LO to set αk in order to decrease f by a larger amount than LS
methods.

For LCPs the gradient has the form ∇f(w) = XT∇g(Xw) and thus the gradient descent
iteration can be written

wk+1 = wk − αkX
T∇g(Xwk).

If we use a fixed step size, then for large n and d the cost of this update is dominated by the
2 matrix multiplications with X required for each iteration. But instead of using a a fixed
step size, consider the line optimization (LO) problem of finding the αk that maximally
decreases f ,

argmin
α

f(wk − αXT∇g(Xwk))) (4)

≡ argmin
α

g(X(wk − αXT∇g(Xwk)))

≡ argmin
α

g(Xwk︸ ︷︷ ︸
mk

−αX(XT∇g(mk))︸ ︷︷ ︸
dk

)

≡ argmin
α

g(mk − αdk),

where we have defined mk = Xwk and dk = X(XT∇g(mk)). The key to efficiently opti-
mizing over α is tracking the “memory” mk ∈ Rn across iterations. Notice that computing
dk requires 2 matrix multiplications, that we have mk+1 = mk − αkdk, and that given mk

and dk we can evaluate any value of α in O(n) time plus the inexpensive cost of evaluating
g. This allows us to numerically solve the LO problem with a total of only 2 matrix mul-
tiplications per iteration. Thus, in terms of the bottleneck operation the cost of gradient
descent with LO for LCPs is the same as the cost of using a fixed step size. In the case
of logistic regression, the iteration cost with a fixed step size is O(nd) while the iteration
cost if we use bisection to solve the LO to an accuracy of ϵ over a bounded domain is only
O(nd+ n log(1/ϵ)). Thus, for large d we can perform LO to a high accuracy “for free”.

Note that the the value of f achieved by LO may be substantially smaller than the
value achieved by using the strong Wolfe conditions. Indeed, for non-quadratic functions

5

Shea and Schmidt

Figure 1: Valid step sizes allowed by Armijo condition (in blue) and update minimizing
function (in red) by line optimization. For a fixed σ, the improvement of line
optimization over the step sizes allowed by the Armijo condition can be made
arbitrarily large even for convex functions.

the Armijo condition (3) used as part of the strong Wolfe conditions may exclude the optimal
step size (see Figure 1). Indeed, even for convex problems the decrease in f achieved by LO
can be arbitrarily larger than the largest decrease for any step size satisfying the Armijo
condition. Unfortunately, if g is non-convex then the LO may be difficult to solve. However,
applying a local optimizer to the LO problem is still likely to achieve a greater decrease in
the function than line searches.

2.2 Efficient Plane Search (PS) for the Memory Gradient Method

The GD+M update (1) for LCPs has the form

wk+1 = wk − αkX
T∇g(Xwk) + βk(wk − wk−1).

With a fixed learning rate αk and momentum rate βk, notice that the dominant cost of this
update is again the 2 matrix multiplications with X. Consider instead using a SO to set
αk and βk to maximally decreases the function f ,

argmin
α,β

f(wk − αXT∇g(Xwk) + β(wk − wk−1)) (5)

≡ argmin
α,β

g(X(wk − αXT∇g(Xwk) + β(wk − wk−1)))

≡ argmin
α,β

g(Xwk︸ ︷︷ ︸
mk

−αX(XT∇g(mk))︸ ︷︷ ︸
dk

+β(mk −mk−1))

≡ argmin
α,β

g((1 + βk)mk − αdk + βmk−1︸ ︷︷ ︸
potential mk+1

).

6

Why Line Search when you can Plane Search?

Using the GD+M update (1) while optimizing αk and βk is called the memory gradient
method (Miele and Cantrell, 1969). For LCPs adding the momentum term requires us to
store mk−1, but still only requires 2 matrix multiplications total per iteration (the same as
using a fixed learning and momentum rate). If we solve the two-dimensional SO to accuracy
ϵ using a cutting plane method the cost for logistic regressions iterations with optimized αk

and βk values is O(nd+n log(1/ϵ)). Thus, using PS to optimize the learning and momentum
rate does not increase the asymptotic cost compared to using LO to optimize the learning
rate. However, note that optimizing both rates “for free” is somewhat specific to the use
of momentum as the second direction; if we use directions that are not in the span of the
previous parameters and gradients this would require additional matrix multiplications.

Note that the memory gradient method does not require αk or βk to be positive. Thus,
the method could set βk close to 0 to “reset” the momentum or could even use negative
momentum. A common variation on LCPs is functions of the form f(w) = g(Xw) + g0(w)
for a regularization function g0. The memory gradient remains efficient in this setting in
the typical case where evaluating g0 is much less expensive than matrix multiplications with
X. A typical choice is L2-regularization, g0(w) = (λ/2)∥w∥2 for a positive regularization
parameter, which only costs O(d) to evaluate.

2.3 LO and SO for LCPs in Practice

LCPs are widely used in ML, but is not common to fit these models with LO or SO.
We believe that this is because it is not common knowledge that this leads to impressive
performance gains compared to standard approaches to set the step size(s). To help give the
reader context, in this section we present empirical results comparing a variety of ways to set
the step size(s) for linear and logistic regression. In particular, our first set of experiments
compares the following methods:

� GD(1/L): gradient descent (2) with a step size of αk = 1/Lk, where Lk is an estimate of
the maximum curvature of the function. We initialize to L0 = 1 and each subsequent
iteration is initialized with the previous estimate Lk = Lk−1. But on each iteration
the value Lk is doubled until we satisfy the inequality f(wk − (1/Lk)∇f(wk)) ≤
f(xk) − (1/2Lk)∥∇f(wk)∥2. This backtracking approach corresponds to using the
Armijo condition (3) with σ = 1/2. This approach guarantees a similar theoretical
convergence rate to using a fixed step size of αk = 1/L, where L is the Lipschitz
constant of the gradient (see Beck and Teboulle, 2009). In particular, this approach is
within a constant factor of the worst-case optimal fixed step size for gradient descent
for minimizing convex functions.

� GD(LS): gradient descent (2) using a line search to find a learning rate satisfying the
strong Wolfe conditions. We use a standard implementation of the line search (see
Nocedal and Wright, 2006, Algorithm 3.5). The Armijo sufficient decrease parameter
σ in (3) is set to 0.0001 which allows larger step sizes than the GD(1/L) method, while
the curvature parameter is set to 0.9 requiring that the step sizes are large enough
to slightly decrease the magnitude of the directional derivative along the line. We
initialize the line search with the previous step size αk−1, double the step size during
the initial “bracketing phase”, and then take the midpoint of the current bracket
during the “zoom” phase.

7

Shea and Schmidt

� GD+M(LS): a non-linear conjugate gradient (CG) variation on the gradient descent
with momentum (1) update,

wk+1 = wk + αkdk,

where

dk = −∇f(wk) + ηk(wk − wk−1).

We set ηk using the non-negative variant of the formula of Polak and Ribiere (1969),

ηk = max

{
0,

∇f(wk)
T (∇f(wk)−∇f(wk−1)

∥∇f(wk)∥2

}
.

We set αk using a line search to satisfy the strong Wolfe conditions. We reset the
momentum rate to ηk = 0 on iterations where the directional derivative ∇f(wk)

Tdk
of the search direction dk is not negative.

� GD(LO): gradient descent (2) using LO (4) to set the learning rate on each iteration.
We discuss how we numerically solve the LO in Appendix A.

� GD+M(LO): the non-linear CG method GD+M(LS) but using LO to set the step size αk.
Note that with exact computation this is equivalent to the linear conjugate gradient
method for the special case of strongly-convex quadratic functions.

� GD+M(SO): gradient descent with momentum (1) where the learning rate and momen-
tum rate are optimized on each iteration using SO (5). We again refer to Appendix A
for how we numerically solve the SO problems. Note that with exact computation this
method is also equivalent to the linear conjugate gradient method for strongly-convex
quadratic functions.

We explored the performance of these methods for logistic regression on 16 datasets
drawn from the libsvm (Chang and Lin, 2011) collection and the UCI ML Repository (Dua
and Graff, 2017). These datasets were selected in Shea and Schmidt (2023) to represent a
variety of optimization challenges. We did not add a bias term or standardize the datasets,
which makes these datasets particularly-challenging for optimizers to fit (an exception is
the “madelon” dataset, where we standardized the features as they were poorly scaled and
the optimizers were not able to make any reasonable progress). Figure 2 shows the sub-
optimality against the number of iterations of the different methods on these datasets.2

While in our experiments we plot the performance in terms of the number of iterations,
we remind the reader that for LCPs the iteration costs of all of these methods are
dominated by the cost of the 2 matrix multiplications required per iteration.
Thus, as the size of the data grows the runtimes of the iterations of all methods we compare
will only differ by a small constant factor. This makes the comparison fair since we are
most interested in performance on larger datasets.

We observed several trends across the datasets in this experiment:

2. We approximated the optimal solution by running an variation on the non-monotonic Barzilai-Borwein
method of Raydan (1997) for 5,000 iterations.

8

Why Line Search when you can Plane Search?

Figure 2: Performance of different gradient-based methods for fitting logistic regression
models. Each plot is a different dataset. The black line only backtracks, the blue
lines use a line search that can decrease or increase the step size to satisfy the
strong Wolfe conditions, the orange lines use LO, and the magenta line uses SO.
The GD methods use the gradient direction, the GD+M(L*) methods use the gradi-
ent direction and momentum with the non-linear conjugate gradient relationship
between the parameters, and the GD+M(SO) method optimizes the learning rate
and momentum rate. We see that LS methods tend to dominate the 1/L method,
GD+M methods tend to dominate GD methods, LO methods tend to dominate
LS methods, and the best performance on every dataset was achieved with SO.

9

Shea and Schmidt

1. GD(1/L) was always the worst method, even though theoretically it is close to optimal.
The superiority of practical step sizes highlights the limitations of selecting algorithms
purely based on theoretical convergence rates.

2. LO methods tended to outperform LS methods, indicating that a more precise line
search improves performance. The GD(LO) method outperformed GD(LS) on most
datasets while the GD+M(LO) method outperformed GD+M(LS) on all datasets.

3. Adding momentum tended to help, despite momentum not improving the theoretical
rate for this class of problems, and momentum helped more when using LO. GD+M(LS)
outerperformed GD(LS) on most problems, while after the first iteration GD+M(LO)

dominated GD(LO) across all iterations across all problems.

4. The memory gradient method GD+M(SO), that optimizes both the learning rate and
momentum rate, performed as well or better than all other methods across every
iteration on every dataset.

To investigate why LO and SO improve performance, we plotted the step sizes used by
the different methods. In Figure 3 we show the step sizes used by the different methods
that only use the gradient direction. In these plots we see that the theoretically-motivated
1/L method tended to use much smaller step sizes than the other methods, either always
accepting the initial step size or decreasing the step size within the first few iterations and
then using a small constant step size. In contrast, the LO step sizes tended to oscillate
(with a period of 2) while often slowly increasing. Only two exceptions to this pattern
were observed, and on these problems the LO method quickly solved the problem using
large step sizes. The LS method tended to start with small step sizes before growing into a
similar range to the LO method’s oscillations, and tended to also have oscillations but with
a longer period.

In Figure 4, we plot the learning rate and momentum rate for the methods that in-
corporate momentum. Note that the optimal learning and momentum rates found by the
GD+M(SO) method tended not be constant, often differing by orders of magnitude between
iterations. The optimal learning rate and momentum rate do seem to show oscillations,
but the oscillations seem less regular than the GD(LO) method where momentum is not
used. We see that the non-linear conjugate gradient method with a precise line optimiza-
tion GD+M(LO) often closely tracks the learning rate and momentum rates found by the
GD+M(SO) method, while the imprecise line search GD+M(LS) finds very different values (and
indeed often resets the momentum to zero on early iterations). We finally note that on one
iteration, the optimal momentum rate used by the GD+M(SO) method was negative (absolute
value of the rate is shown).

3 The Scattered 50+ Year History of Subspace Optimization Methods

The use of SO in both theoretical and practical works has a long history. Indeed, the idea
of SO arises in a variety of contexts in the numerical optimization literature. In this section
we review a variety of the most closely related works.

Memory Gradient Method: the memory gradient method GD+M(SO) where SO is
used to set the learning rate and momentum rate in the GD+M update (1) was first explored

10

Why Line Search when you can Plane Search?

Figure 3: Step sizes of different gradient descent methods for fitting logistic regression mod-
els. Note that the GD(LO) step sizes tended to lead to the fastest convergence
while the GD(1/L) step sizes always converged slowest.

11

Shea and Schmidt

Figure 4: Step sizes of different gradient plus momentum methods for fitting logistic regres-
sion models. The solid lines are the learning rates and the dashed lines are the
momentum rates. Note that the GD+M(SO) step sizes tended to lead to the fastest
convergence while the GD+M(LS) step sizes usually converged slowest. A star is
used to indicate the iteration where the momentum rate was negative.

12

Why Line Search when you can Plane Search?

by Miele and Cantrell (1969). They proposed a particular method to approximately solve the
SO problem and presented numerical results showing that SO could improve performance
on a simple test function. However, Miele and Cantrell’s work had relatively little impact.
This is likely because numerical optimization work in the 1960s did not have the modern
focus on exploiting problem structure (like LCPs) to quickly solve the SO.

Conjugate Gradient Methods: the conjugate gradient (CG) method was proposed
in 1952 for solving positive-definite linear systems (Hestenes and Stiefel, 1952), but it can
equivalently be written as using the memory-gradient method to minimize strongly-convex
quadratic functions (Cantrell, 1969). Due to its outstanding empirical and theoretical prop-
erties, various non-linear CG methods have been proposed for general smooth optimization.
The first non-linear CG method is due to Fletcher and Reeves (1964), but numerous vari-
ants have appeared over the years (see Hager and Zhang, 2006). Non-linear CG methods
typically use a LS along a direction that is a weighted combination of the gradient and mo-
mentum directions, and have been explored in some neural network settings (LeCun et al.,
2002). However, by fixing the weighting between the learning rate and momentum rate, CG
methods may make less progress per iteration than the memory gradient method. Current
non-asymptotic analyses of non-linear CG methods show that their worst case performance
is not better than gradient descent with a line search (Gupta et al., 2023). Further, it was
already identified by Fletcher and Reeves that on some problems we need to “reset” the
momentum rate to 0 for non-linear CG to obtain good practical performance. It is known
that using LO and resetting non-linear CG every n iterations leads to asymptotic quadratic
convergence (as in Newton’s method) in terms of n-iteration cycles (Cohen, 1972). The
fact that non-linear CG’s performance is improved by this resetting mechanism suggests
that we might improve performance by using the memory gradient method’s approach of
optimizing the momentum rate on each iteration (where some iterations could use small or
zero or even negative momentum rates).

Accelerated Gradient Methods: SO was important in the development of first-order
methods achieving the accelerated O(1/k2) error rate for minimizing convex functions (Ne-
mirovski, 1982; Nemirovski and Yudin, 1983). Nemirovski showed the O(1/k2) rate could
be achieved using SO over a subspace containing the current gradient and specific weighted
combinations of previous gradients. Nemirovski later showed that we could achieve this
rate with a LS instead of SO, while Nesterov (1983) eventually showed the rate could be
achieved with a fixed learning rate and a modified momentum. Nesterov’s accelerated
gradient (NAG) algorithm can also be used to achieve accelerated convergence rates for
strongly-convex (Nesterov, 2013) and non-convex (Carmon et al., 2017) objectives.

However, convergence rates only describe the worst case performance and it has been
highlighted that NAG often underperforms non-linear CG methods in practice (Narkiss and
Zibulevsky, 2005a). In Figure 5, we add a NAG variant to the previous experiment. In
particular, the NAG(1/L) method implements the backtracking version of NAG described
by Beck and Teboulle (2009). In this experiment we see that the accelerated NAG(1/L)

dominates the non-accelerated GD(1/L), but that NAG(1/L) is consistently outperformed
by the non-accelerated non-linear CG method with LO GD+M(LO) and the non-accelerated
memory gradient method GD+M(SO).

Sequential Subspace Optimization: Narkiss and Zibulevsky (2005a) proposed se-
quential subspace optimization (SESOP), which uses SO over multiple directions in order

13

Shea and Schmidt

Figure 5: Performance of different gradient-based methods for fitting logistic regression
models. The black lines only backtrack, the orange line uses LO, the magenta
line uses a two-dimensional SO, the light green line uses a three-dimensional SO,
and the dark green line uses a four-dimensional SO. The NAG(1/L) is an imple-
mentation of Nesterov’s accelerated gradient method. The NAG(SO) adds “gradi-
ent momentum” to the memory gradient method GD+M(SO), while the SNAG(SO)
method further adds scaling of the parameter vector. We see that acceleration
on its own tends to be less effective than using LO with an appropriate direction.
We also see that adding additional directions improves performance but that only
small gains tend to be observed by optimizing over more than 2 directions.

14

Why Line Search when you can Plane Search?

to obtain the O(1/k2) rate for convex optimization but also obtain CG-like practical per-
formance. They highlight LCPs as a problem class where SO over the gradient and momen-
tum directions can be performed without significantly increasing the cost of the method.
SESOP has been applied to various LCP problems (Narkiss and Zibulevsky, 2005a,b; Elad
et al., 2007), and has been combined with diagonal scaling and a Hessian-free Newton
approach (Zibulevsky, 2008).

Supermemory Method: the supermemory gradient method (Cragg and Levy, 1969)
uses the most-recent momentum direction (wk−wk−1) and momentum directions (wt−wt−1)
from previous iterations t. A variation on this idea is to use several previous gradient di-
rections, and examples of this type of method include the methods of Elad et al. (2007)
and Wang and Yuan (2006). It is known that using SO over all previous gradient directions
has appealing convergence properties (Drori and Taylor, 2020), but this can impose signif-
icant additional computational costs. We note that for LCPs these supermemory methods
also only requires 2 matrix multiplications per iteration. However, in our experiments we
did not find that additional momentum terms improved performance enough to justify the
increased memory requirements and increased SO cost.

Multi-Linear Problems: The linear structure in LCPs is what allows us to use LO and
SO within the gradient and memory gradient methods without changing their iteration cost.
A related problem is multi-linear problems where the function is linear in certain subsets of
the variables. Sorber et al. (2016) discuss performing LO and SO for a supermemory method
in the special case of tensor factorization models. In Appendix B we consider variations on
the memory gradient method for matrix factorization, while Appendix C discusses using
LO or SO for log-determinant problems if we use low-rank directions. Unfortunately, it
does not seem possible to implement LO and SO for generic multi-linear models without
changing the iteration cost. We also note that typical neural networks are not multi-linear.
In the case of Sorber et al. (2016), they only perform an SO every 4th iteration to keep
costs low in their application.

Acceleration and SO: NAG can be written as augmenting the GD+M method with
a third direction that is a form of “gradient momentum”, (∇f(wk)−∇f(wk−1)) (Shi et al.,
2021). A CG method based on these three directions was proposed by Andrei (2014) that
gave excellent numerical performance. But we could also consider a version of NAG that
uses these 3 directions,

xk+1 = xk − αk∇f(wk) + βk(wk − wk−1) + γk(∇f(wk)−∇f(wk−1)), (6)

and performs 3-dimensional SO (this still only requires 2 matrix multiplications per iteration
for LCPs). This is appealing since different choices of {αk, βk, γk} allow NAG to achieve ac-
celerated convergence rates in convex, strongly-convex, and non-convex settings (Nesterov,
2013; Li and Lin, 2022). We thus might expect in some cases that SO would adapt to the
problem difficulty. Indeed, several authors have shown that SO allows a single algorithm
to achieve optimal rates in several settings (Drori and Taylor, 2020; Nesterov et al., 2021;
Guminov et al., 2023).

In Figure 5 we consider using (6) with a three-dimensional subspace optimization, under
the name NAG(SO). In this experiment we found that NAG(SO) typically only gave a small
improvement over the memory gradient method. This lack of improvement is consistent
with the experiments of Karimi and Vavasis (2017). They propose a restarted variant of

15

Shea and Schmidt

the memory gradient method called CGSO that can add a correction step to achieve the
accelerated rate in the strongly-convex setting. This correction step adds directions to the
memory gradient method, but they found that in practice the method applied the memory
gradient step in almost every case.

Scaled Gradient and Memory Methods: Sorber et al. (2016) consider a scaled
gradient method,

xk+1 = δkxk − αk∇f(wk),

where on each iteration we estimate a scaling factor δk for the original variable. For LCPs
we can search for an optimal αk and δk while still only requiring 2 matrix multiplications
per iteration. However, Sorber et al. (2016) found that adding the scaling factor δk did not
significantly improve performance in their tensor factorization experiments. In preliminary
experiments we found that this scaled gradient method improved performance over the
gradient method with LO, but did not tend to outperform the memory gradient method
which also uses 2 directions.

We could also use a scaled variant of the memory gradient method

xk+1 = δkxk − αk∇f(wk) + βk(wk − wk−1), (7)

and solving for the three scaling factors still only requires 2 matrix multiplications. In pre-
liminary experiments we found that this 3-direction approach can improve the performance
of the memory gradient method, but tended to be outperformed by the 3-direction NAG(SO)

method that has momentum and gradient momentum (6). On the other hand, a further
small performance gain could be obtained by combining all 4 directions into the update

xk+1 = δkxk − αk∇f(wk) + βk(wk − wk−1) + γk(∇f(wk)−∇f(wk−1)).

We refer to this method as SNAG(SO) in Figure 5.

Second-Order SO: Using LO to set the step size in Newton’s method does not in-
crease the iteration cost for many problem structures and preserves the superlinear con-
vergence rate of Newton’s method (Shea and Schmidt, 2023). Recent work gives explicit
non-asymptotic convergence rates of BFGS with LO (Jin et al., 2024). Conn et al. (1994)
discuss using SO with the gradient direction and the Newton direction. This method im-
proves on the global convergence properties of Newton’s method while maintaining its su-
perlinear convergence rate (Zibulevsky, 2013; Shea and Schmidt, 2023). We note that it
is common to use SO to minimize quadratic approximations of the function, as in trust
region methods (see Nocedal and Wright, 2006), but in this work we focus on methods
that use SO to directly minimize the function. An approximate second-order method has
also been proposed in a majorization-minorization framework for certain problem struc-
tures (Chouzenoux et al., 2010). However, second-order information typically significantly
increases the iteration cost. Thus, in Section 5.1 we consider using SO within quasi-Newton
methods that cheaply approximate second-order information.

Global Optimization with SO: Wang et al. (2016) consider global optimization, and
search for an approximate solution by optimizing over a random subspace. Recent works
have explored iterative variations where a different subspace is used on each iteration (Cartis
and Otemissov, 2022; Cartis et al., 2023a) or growing subspaces are used (Cartis et al.,

16

Why Line Search when you can Plane Search?

2023b). But in this work we restrict attention to the typical ML setting where the dimension
is high and only a local minimum may be found.

SGD with SO: Richardson et al. (2016) consider augmenting an SGD method with
SO. In particular, they alternate between taking a large number of SGD steps with a small
mini-batch and then taking an SO step with a large mini-batch. The SO step uses the cur-
rent gradient and differences between previous iterates (as in the supermemory method).
This method improved the performance of three different SGD methods (SGD with mo-
mentum, NAG, and AdaGrad) in terms of runtime on several deep learning tasks. In this
work we restrict focus to deterministic methods since these are the key ingredient behind
the most effective SGD methods. In particular, SGD with momentum is a stochastic ver-
sion of Polyak’s deterministic GD+M method while it has recently been shown that the
performance advantage of Adam on language models is due to its deterministic proper-
ties (Kunstner et al., 2022). We expect that by improving the deterministic ingredients of
stochastic methods that this work will lead to faster stochastic methods in the future.

4 Line Search and [Hyper-]Plane Search for Neural Networks

While SO has a long history and numerous applications, the work of Richardson et al. (2016)
is the only previous work we are aware of that considers using SO to train neural networks.
The lack of works using SO to train neural networks is sensible because for general neural
networks we cannot evaluate the objective at many points in a subspace for a lower cost
than evaluating the objective at arbitrary points. Nevertheless, there exist neural networks
that are used in practice where a linear operator with the parameters is the bottleneck
operation. These networks allow us to efficiently implement SO to set the learning rate
and momentum rate, and indeed allow us to optimize over separate rates for each layer. In
these settings we may expect to see the same performance gains that SO offers for LCPs.

4.1 Definition: SO-Friendly Neural Networks

We can write typical neural network objective functions in the form f(W, v) = g(h(XW)v)
for non-linear functions g and h. Here, X is the data matrix (in Rn×d), W is the set of
weights in the first hidden layer (in Rd×r with r hidden units), and v is the concatenation
of the parameters in the second and higher layers of the network. We say that a neural
network is SO-friendly if the cost of evaluating f is dominated by the cost
of matrix multiplications with X. The dominant computational cost in SO-friendly
networks is similar to LCPs, and this allows us to use LO and SO efficiently even though
the parameters v apply to a non-linear function of the input.

There are a variety of possible SO-friendly neural network structures, but we will first
discuss the simple case of a network with two layers of hidden weights. This type of network
has been popularized in practice under the name extreme learning machine (ELM) (Huang
et al., 2006), and ELMs are among the best performing out-of-the-box classifiers (Fernández-
Delgado et al., 2014). However, in ELMs the first layer of weights is set randomly while
we consider using SO to fit both layers efficiently. Two-layer networks are also popular
in reinforcement learning within the trust-region policy optimization and proximal policy
optimization frameworks (Schulman et al., 2015, 2017), where simple networks have been
sufficient to solve a number of continuous control tasks (Rajeswaran et al., 2017). Finally,

17

Shea and Schmidt

we note that having an efficient method for fitting 2-layer networks would allow us to replace
1-layer networks in settings where these degenerate linear models are used. For example,
for transfer learning we could train the last two layers of a pre-trained deep network instead
of only training the last layer.

4.2 Example: 2-Layer Networks with a Single Output - Tied Step Size(s)

A classic example of an SO-friendly neural network is a fully-connected neural network
with two layers of weights and a single output. In this setting v has r elements and f
has the simplified form f(W, v) = g(h(XW)v), where the activation function h applies a
non-linear operation such as a sigmoid function element-wise and the loss function g maps
the n predictions to a scalar loss. The gradient descent update for a 2-layer neural network
with a single output takes the form

Wk+1 = Wk − αkX
T diag(∇g(h(XWk)vk))h

′(XWk)diag(vk)︸ ︷︷ ︸
Rk

,

vk+1 = vk − αk h(XWk)
T∇g(h(XWk)vk)︸ ︷︷ ︸
∇vf(Wk,vk)

,

where h′ is the matrix containing the derivative with respect to each input and “diag”
makes a diagonal matrix from a vector. With a fixed step size the computational cost of
this update is dominated by the two multiplications with X per iteration: one to compute
XWk and another to compute XTRk. Consider now performing LO to set the step size,

argmin
α

f(Wk − αXTRk, vk − α∇vf(Wk, vk))

≡ argmin
α

g(h(X(Wk − αXTRk)(vk − α∇vf(Wk, vk))))

≡ argmin
α

g(h(XWk︸ ︷︷ ︸
Mk

−αX(XTRk)︸ ︷︷ ︸
Dk

)(vk − αk∇vf(Wk, vk)))

≡ argmin
α

g(h(Mk − αDk︸ ︷︷ ︸
potential Mk+1

)(vk − α∇vf(Wk, vk))).

Analogous to LCPs, if we track the n × r product Mk = XWk then we can perform LO
using only two of the bottleneck matrix multiplications per iteration: one to compute the
d by r product XTRk, and another to pre-mutiply this matrix by X. These two matrix
multiplications cost O(ndr), and given Mk and Dk evaluating the LO objective only costs
O(nr). Similar to the LCP case, we can also optimize the momentum rate without additional
matrix multiplications with X.

For neural networks the LO and SO problems are non-convex, and we did find that it
was possible to find poor local optima of the SO problem in particular. Thus, care should
be taken in how we try to solve the SO problem and we should at least use a method that
guarantees we decrease f compared to using a step size (or step sizes) of zero (otherwise
LO/SO can result in worse performance). Nevertheless, we found that the simple generic
method used in our LCP experiments (see Appendix A) typically performed well and we
used this method in all our neural network experiments.

18

Why Line Search when you can Plane Search?

Figure 6: Performance of different gradient-based methods for 2-layer neural networks. The
black line only backtracks, the blue lines use a line search that can decrease or
increase the step size to satisfy the strong Wolfe conditions, the orange lines use
LO, and the magenta line uses SO. The GD methods use the gradient direction,
the GD+M(L*) methods use the gradient direction and momentum with the non-
linear conjugate gradient relationship between the parameters, and the GD+M(SO)
method optimizes the learning rate and momentum rate. We see that the 1/L
method has better performance for training neural networks than for training
linear models, but that the GD+M(LO) and GD+M(SO) methods that exploit mo-
mentum and optimized step sizes tend to outperform the other methods..

4.3 LO and SO for 2-Layer Networks in Practice (Tied Step Sizes)

In this section we consider training 2-layer networks using the methods and datasets from
Section 2.3. We emphasize that the iteration costs of all methods in this setting are
dominated by the cost of the two products with X on each iteration, and thus on large
datasets all methods will have similar runtimes. For these networks we use r = 100
hidden units, use h = tanh as the activation function, use the squared loss objective
g(h(XW)v) = ∥h(XW)v − y∥22, and initialize all elements of W and v with a sample

19

Shea and Schmidt

from a standard normal distribution divided by the total number of weights in the network
r(d+ 1).

We plot the results of the 2-layer training experiment in Figure 6. We highlight two
observations from this experiment:

1. The essentially-fixed step size method GD(1/L) performed much better for neural
networks than for it did for the linear model. In particular, GD(1/L) was often not
substantially worse than the line search GD(LS) method and in some cases performed
better than the line search method. This counter-intuitive behaviour is perhaps ex-
plained by the edge of stability phenomenon (Cohen et al., 2020); unlike linear models
where a constant step size must adapt to the maximum curvature of the function, in
neural networks it appears empirically that the curvature of the function can adapt
to the step size. In Figure 7 we plot the step sizes of the different gradient descent
methods, and we see that the GD(1/L) method often found steps on a similar scale
to the GD(LS) method (unlike for linear models where the GD(1/L) step sizes were
typically too small). That the curvature of the network may be adapting to the step
size may explain why classic line searches have had little impact on the training of
neural networks.

2. The methods using LO and SO with momentum, GD+M(LO) and GD+M(SO), consistently
outperformed the other methods. Thus, it appears that neural network training
can be sped up by per-iteration step size tuning but that it must be done
precisely and must use an appropriate per-iteration momentum. We did
not find obvious patterns in the step sizes used by GD+M(LO) and GD+M(SO) that were
not seen in the LCP experiments, although we note that the GD+M(SO) method used
negative momentum rates slightly more frequently than for linear models.

4.4 Example: 2-Layer Networks with a Single Output - Per-Layer Step Sizes

While LO and SO appear to be helpful for training neural networks, we can further take
advantage of the layer structure to efficiently use different step sizes in different layers. First
consider the case of a 2-layer network and a variant of gradient descent where we have a
step size for each layer:

Wk+1 = Wk − α1
kX

TRk,

vk+1 = vk − α2
k∇vf(Wk, vk),

where α1
k is the step size for the first layer and α2

k is the step size for the second layer. We
might expect better performance by updating the different layers at different rates. Observe
that using SO to set both step sizes requires only the same two matrix multiplications with
X that we need to set a single step size,

argmin
α1,α2

g(h(Mk − α1Dk︸ ︷︷ ︸
potential Mk+1

)(vk − α2∇vf(Wk, vk))).

20

Why Line Search when you can Plane Search?

Figure 7: Step sizes of different gradient descent methods for fitting 2-layer neural networks.
The basic GD(1/L) tended to find step sizes closer to the line search and LO
methods on these problems.

21

Shea and Schmidt

The GD+M update (1) with a separate learning and momentum rate for each layer has the
form

Wk+1 = Wk − α1
kX

TRk + β1
k(Wk −Wk−1)

vk+1 = vk − α2
k∇vf(Wk, vk) + β2

k(vk − vk−1),

and optimizing over all 4 step sizes again only requires the same two matrix multiplications,

argmin
α1,α2,β1,β2

f(Wk − α1XTRk + β1(Wk −Wk−1), vk − α2∇vf(Wk, vk) + β2(vk − vk−1))

≡ argmin
α1,α2,β1,β2

g(h(X(Wk − α1XTRk + β1(Wk −Wk−1))(vk − α2∇vf(Wk, vk) + β2(vk − vk−1))))

≡ argmin
α1,α2,β1,β2

g(h((1 + β1)Mk − α1Dk − β1Mk−1︸ ︷︷ ︸
potential Mk+1

)((1 + β2)vk − α2∇vf(Wk, vk)− β2vk−1)).

Thus, at each iteration we can numerically search for a learning rate for each layer and
a momentum rate for each layer for the same asymptotic cost as using fixed step sizes.
We could also consider adding previous iterations or gradients as additional directions as
in supermemory methods, or use a scaling of each layer as in the scaled memory gradient
method (7).

4.5 LO and SO for 2-Layer Networks in Practice (Per-Layer Step Sizes)

In this section, we repeat our previous experiment but include methods with per-layer step
sizes:

� GD(SB): Gradient descent where SO is used to set a learning rate for each layer (2
step sizes for 2-layer networks).

� GD+M(SB): Gradient descent with momentum using the non-linear CG direction, but
where SO is used to set a step size for each layer (2 step sizes for 2-layer networks).
We use the PR+ formula separately for each layer, but only reset if the combined
direction across layers is not a descent direction.

� GD+M(SO+SB): Gradient descent with momentum where SO is used to set a separate
learning rate and momentum rate for each layer (4 step sizes for 2-layer networks).

We once again repeat that the iteration costs of all methods are dominated by the cost
of the two products with X on each iteration, although we note that a 4-dimensional SO
problem may take more time to solve than a 2-dimensional or 1-dimensional problem.

Figure 8 shows the performance of these methods with per-layer step sizes and the
corresponding methods with step sizes tied across layers. In these plots we observed two
conflicting behaviours:

� On some datasets using per-layer step sizes significantly improves performance.

� On some datasets using per-layer step sizes significantly harms performance.

22

Why Line Search when you can Plane Search?

Figure 8: Performance of different gradient-based methods for 2-layer neural networks. The
red GD(SB) and GD+M(SB) use SO to a step size for each layer while the purple
GD+M(SO+SB) method set a learning and momentum rate for each layer. We see
that in some cases per-layer step sizes substantially improve performance while
in some cases per-layer step sizes harm performance.

23

Shea and Schmidt

Unfortunately, based on this performance it does not appear that per-layer step sizes are
a reliable option if we want a method that is free of hyper-parameters. A potential source
of the poor performance of per-layer step sizes is that the optimized per-layer step sizes
are often very large. We compare the learning rates for gradient descent with optimized
tied and per-layer learning rates in Figure 9, where we see that the per-layer rates are
often much larger for at least one of the layers and have larger oscaillations (sometimes
oscillating between positive and negative step sizes). These large step sizes lead to a large
initial reduction in the objective, but they make the norm of the parameters much larger
than with tied step sizes. This large norm seems to be the cause of the slow progress on
later iterations for some datasets.

To explore whether controlling the norm of the parameters would make per-layer step
sizes viable, we repeated this experiment using L2-regularization of the parameters. In
particular, we add to the objective a term of the form (λ/2)(∥W∥2F + ∥v∥2) where we set
λ = 1/n. Figure 10 shows the performance of the same methods on the regularized objective.
In this plot, we see that per-layer step sizes typically lead to a performance improvement
(and in many cases a large improvement). We plot the four learning and momentum rates
used by best-performing method (GD+M(SO+SB)) in Figure 11, showing the wide range of per-
layer learning and momentum rates that lead to this strong performance. It is possible that
other strategies for controlling the scale of the parameters, such as trust region methods,
would also allow per-layer step sizes to be effective if we do not want to use a regularized
objective.

4.6 Other Examples of SO-Friendly Networks

Above we consider fully-connected 2-layer neural networks with a single output. But there
exists a variety of other settings where neural networks are SO-friendly. Here we give three
examples.

Fully-connected 2-layer networks with a small number of outputs: if we have a
2-layer network with c outputs, the r×1 vector v is replaced by a r×c matrix V and the the
cost of forward and backward propagation through the last layer of weights changes from
O(r) to O(rc) for each of the n examples. In order to remain SO efficient, the O(nrc) cost
associated with applying the last layer must be dominated by the O(ndr) cost of applying
the first layer. Thus, 2-layer networks with multiple outputs are SO-friendly provided that
c ≪ d, and we can use SO in cases where the number of outputs is significantly smaller
than the number of inputs. Note that such situations arise in common ML datasets such as
MNIST (LeCun et al., 1998) which has 784 inputs and 10 outputs, CIFAR-10 (Krizhevsky
et al., 2009) which has1024 inputs and 10 outputs, and ImageNet (Deng et al., 2009) which
has 181,503 inputs for an average image and 1,000 outputs. Note that if we fix the weights
in the first layer of a 2-layer network, then the optimization problem becomes an LCP.
Thus, even if the number of labels is large it could still make sense to do SO on only the
second layer on a subset of the iterations.

Wide-then-narrow deep networks: consider a fully-connected network with ℓ layers
where the first layer has r outputs and the remaining layers have at most ρ outputs. In
this setting the cost of applying the network to all examples is O(ndr + nrρ+ nρ2ℓ). Such
networks are SO-friendly if we have ρ ≪ d and ρℓ ≪ r. Such networks must have a large

24

Why Line Search when you can Plane Search?

Figure 9: Step sizes of gradient descent methods for fitting 2-layer neural networks, opti-
mizing a single step size for both layers (GD(LO)) or optimizing a step size for each
layer (GD(SB)). For the per-layer method, the solid line is for the output layer and
the dashed line is for the input layer. We plot the absolute value, and include
markers to indicate iterations where the step was negative. We see that both
methods tend to have cyclic behaviour, we see that the per-layer method tends
to use larger step sizes (for for at least one of the layers) and tends to have larger
oscillations. We also see that the output layer often uses negative step sizes, in
some cases using a negative step size on every iteration but in many cases using
a negative step size on every second iteration.

25

Shea and Schmidt

Figure 10: Performance of different gradient-based methods for regularized 2-layer neural
networks. The red GD(SB) and GD+M(SB) use SO to a step size for each layer
while the purple GD+M(SO+SB) method set a learning and momentum rate for
each layer. We see that per-layer step sizes consistently improve performance.

26

Why Line Search when you can Plane Search?

Figure 11: Step sizes of gradient descent methods for fitting 2-layer neural networks, opti-
mizing a learning rate and momentum rate for each layer (GD+M(SO+SB)). The
solid lines are the learning rates and the dashed lines are the momentum rates.
We plot the absolute value, and include markers to indicate iterations where the
step was negative.

27

Shea and Schmidt

Figure 12: Example structure of a 5-layer SO-friendly neural network (d = 10000, r =
500, ρ = 20, ℓ = 5). For the same asymptotic cost as using a fixed learning
rate and momentum rate, we could numerically optimize a learning rate and
momentum rate for each of the 5 layers on each step (10 step sizes).

number of inputs and can have a large number of hidden units in the first layer, but must
have a relatively smaller number of units in subsequent layers. Thus, they can perform
a large-dimensional linear transformation followed by a number of lower-dimensional non-
linear transforms. We give an example of a 5-layer network that is SO-friendly in Figure 12.
While being SO-friendly limits the possible structures available, note that this structure
allows efficient per-layer optimization of the learning and momentum rates for all the layers.

Convolutional neural networks (CNNs) with large strides and/or pooling
operators: convolutional neural networks are a popular variant of neural networks that
include convolution and pooling layers (see LeCun et al., 1998; Krizhevsky et al., 2012).
Convolution layers may include a “stride” variable that controls the size of the output of
a layer compared to the input, and pooling layers often also result in a dimensionality
reduction. If a CNN is setup with large-enough strides or pooling areas, it is possible to
make SO-friendly CNNs where applying the first layer is the dominant cost.

Non-linear neural tangent kernels: the NTK approach to training deep neural
network optimizes a linearized approximation to the network (Jacot et al., 2018). This
linearization allows us to efficiently use SO via the linear CG method if we use the squared
loss function. However, the linearization may lose important information about the non-
linearity present in the network. We could alternately consider training with a linearization
of only the first l layers, and maintaining the non-linearity in the deep layers. If l is chosen
large enough, the network will be SO-friendly (with the standard NTK corresponding to
setting l to the number of layers). This would give a better approximation than the NTK,

28

Why Line Search when you can Plane Search?

and would allow optimizing shared step sizes for the first l layers and then separate step
sizes for the layers beyond layer l.

5 Augmenting Quasi-Newton and Adam with Subspace Optimization

The previous sections considered using SO to set step sizes within the GD+M update.
However, SO is also suitable for many of the common variants on this update. In this
section, we discuss using SO to improve on the performance of two of the most empirically
effective methods.

5.1 Augmenting Quasi-Newton with Subspace Optimization

Quasi-Newton updates can be written in the form

wk+1 = wk − αkBk∇f(wk), (8)

where the learning rate is chosen using the strong Wolfe conditions, and Bk is chosen to
satisfy a variant of the secant equations, Bk(∇f(wk)−∇f(wk−1)) = (wk − wk−1). One of
the most successful quasi-Newton methods is the L-BFGS method, which does not explicitly
store Bk but implicitly forms the matrix based on the p most-recent values of (wk −wk−1)
and (∇f(wk) − ∇f(wk−1)) (Nocedal, 1980). The L-BFGS method only requires O(dp)
memory and allows multiplications with Bk to be performed in O(dp), so with small p the
L-BFGS update has a similar cost to the GD+M update. But in practice the approximate
second-order information in Bk often allows the L-BFGS update to make substantially more
progress per iteration. For precise details on the method, see Nocedal and Wright (2006,
Chapters 6-7). The computational savings for LO in LCPs and SO-friendly networks can
also be used with updates of the form (8),

argmin
α

f(wk − αBkX
T∇g(Xwk))

≡ argmin
α

g(X(wk − αBkX
T∇g(Xwk)))

≡ argmin
α

g(mk − αX(BkX
T∇g(mk))︸ ︷︷ ︸
dk

)

≡ argmin
α

g((1 + β)mk − αdk)︸ ︷︷ ︸
potential mk+1

).

We can consider adding directions to quasi-Newton methods and using SO to set the
corresponding step sizes. A natural update to consider is a hybrid with the gradient method
and quasi-Newton method

wk+1 = wk − α1
k∇f(wk)− α2

kBk∇f(wk).

This method would guarantee at least as much progress as gradient descent on each iteration,
which could lead to more progress than a quasi-Newton update if the matrix Bk is badly
scaled. However, this update would require 3 matrix multiplications with X for LCPs and
SO-friendly neural networks. Thus, on large problems adding the gradient direction would
increase the iteration cost by around 50% compared to the standard quasi-Newton method.

29

Shea and Schmidt

Alternately, we could consider adding a momentum term to the quasi-Newton update,

wk+1 = wk − αkBk∇f(wk) + βk(wk − wk−1). (9)

The computational savings for SO in LCPs and SO-frinedly networks are preserved for
this “quasi-Newton with momentum” method. In the case of LCPs solving for αk and βk
corresponds to solving

argmin
α,β

f(wk − αBkX
T∇g(Xwk) + β(wk − wk−1))

≡ argmin
α,β

g(X(wk − αBkX
T∇g(Xwk) + β(wk − wk−1)))

≡ argmin
α,β

g(mk − αX(BkX
T∇g(mk))︸ ︷︷ ︸
dk

+β(mk −mk−1))

≡ argmin
α,β

g((1 + β)mk − αdk + βmk−1︸ ︷︷ ︸
potential mk+1

),

where mk = Xwk and dk = X(BkX
T∇g(mk)). Similar to the GD+M update this only

requires 2 matrix multiplications with X per iteration. Thus, for LCPs we can optimally
set the learning rate of the L-BFGS method and use a non-zero momentum term with an
optimally set momentum rate. Further, for SO-friendly networks we could additionally set
these step sizes on a per-layer basis.

In Figures 13 and 14 we plot the performance of methods that use L-BFGS directions
where the step size is set using the Wolfe conditions (QN(LS)), the step size is set using LO
(QN(LO)), or we add a momentum term and set both step sizes using SO (QN+M(SO)). For all
methods, we use the method of Shanno and Phua (1978) to improve the scaling of Bk, and
for the QN(LS) method we initialize the line search with a step size of αk = 1. While the
differences are smaller than what we see for gradient methods, in these figures we see that
using LO often improves performance and that using SO with the additional momentum
term often further improves performance.

It may appear surprising that we can improve the performance of quasi-Newton meth-
ods with LO and SO, since asymptotically if quasi-Newton methods converge to a strict
minimizer then the choice of αk = 1 is optimal and momentum is not needed. However,
we note that for any finite iteration quasi-Newton can benefit from using step sizes other
than 1 and can benefit from momentum. In Figures 15 and 16 we plot the step sizes. In
these plots we that the line search QN(LS) method typically accepts the initial step size of
1, while the LO and SO methods typically use step sizes that are slightly larger than 1. We
also see that the momentum rate used by the QN+M(SO) method is typically much smaller
than the step size, and that negative momentum steps are often used (we were surprised
that αk was also negative on one iteration on the phishing dataset).

30

Why Line Search when you can Plane Search?

Figure 13: Performance of different quasi-Newton methods for fitting logistic regression
models. The blue line uses a line search initialized with 1, the orange line uses
LO, and the magenta line uses SO to optimize the learning and momentum rates.

31

Shea and Schmidt

Figure 14: Performance of different quasi-Newton methods for 2-layer neural networks. The
blue line uses a line search initialized with 1, the orange line uses LO, and the
magenta line uses SO to optimize the learning and momentum rates

32

Why Line Search when you can Plane Search?

Figure 15: Step sizes of different quasi-Newton methods for fitting logistic regression mod-
els. We plot the absolute value, and include markers to indicate iterations where
the step was negative. The dashed line is the momentum rate for the SO method.
We see that the line search typically uses a learning rate of 1, while the LO and
SO methods typically use slightly larger values. Note that the momentum rate
was frequently negative in the SO method.

33

Shea and Schmidt

Figure 16: Step sizes of different quasi-Newton methods for fitting = 2-layer neural net-
works. We plot the absolute value, and include markers to indicate iterations
where the step was negative. The dashed line is the momentum rate for the SO
method. We see that the line search typically uses a learning rate of 1, while
the LO and SO methods typically use slightly larger values. Note that the mo-
mentum rate was frequently negative in the SO method.

34

Why Line Search when you can Plane Search?

5.2 Augmenting Adam with Subspace Optimization

The Adam optimizer uses the update

µk+1 = β1
kµk + (1− β1

k)∇f(wk)

vk+1 = β2
kvk−1 + (1− β2

k)∇f(wk) ◦ ∇f(wk)

wk+1 = wk − αk V
−1
k+1µk+1︸ ︷︷ ︸

dk

,
(10)

for a learning rate αk, gradient momentum rate β1
k, squared-gradient momentum rate β2

k,
and Vk being a diagonal matrix where diagonal i given by (

√
(vk)i+ϵ) for a small ϵ (we use ◦

for element-wise multiplication).3 In many applications the three learning rates {αk, β
1
k, β

2
k}

are set to fixed values across iterations, with a default choice being αk = 0.001, β1
k = 0.99,

β2
k = 0.999, and ϵ = 10−8. However, for over-parameterized problems recent works show

that the out-of-the-box performance of Adam is improved by using a line search to set αk on
each iteration (Vaswani et al., 2020; Galli et al., 2023). For LCPs and SO-friendly networks
we can further improve the performance of Adam using LO. For example, with 2 matrix
multiplications per iteration we could use LO to set αk: one to compute ∇f(wk) and one
to compute XV −1

k+1µk.
Unfortunately, even for LCPs it does not appear efficient to use SO to set the learning

and momentum rates in Adam. It would require 3 matrix multiplications per iteration to
optimize αk and β1

k: one to compute ∇f(wk), one to compute XVk+1−1µk, and one to
compute XV −1

k+1∇f(wk). Unfortunately, this increase the iteration by 50% in terms of the
bottleneck matrix multiplication operations. Further, it does not appear that the structure
of the algorithm allows to efficiently use SOs to optimize all three parameters even for LCPs.

Nevertheless, for amenable problem structures it is possible to add additional directions
to Adam that can be efficiently optimized with SO. For example, we explored adding an
additional momentum term βk(wk −wk−1) to Adam and found this improved performance.
But we found that a larger performance increase could be obtained by using multiple Adam
directions,

wk+1 = wk − α1
kdk − α2

kdk−1, (11)

where dk is defined by the Adam algorithm (10) Despite Adam usually being considered
as a method that works with stochastic gradients, we found that this update was often an
effective deterministic optimization method when using SO to set the step sizes.

We plot the performance of a variety of Adam variants for logistic regression and 2-layer
networks in Figures 17 and 18. The methods we compare are using a step size of α = 10−3

as in PyTorch (Adam(Default)), using the strong Wolfe line search to set αk initialized
with the previous step size (Adam(LS)), using LO to set αk (Adam(LO)), or using SO for
update (11) to optimize over two Adam step sizes (Adam2(SO)). The other Adam hyper-
parameters are fixed at their default values. The Adam direction dk may not be a descent
direction, and on iterations where this happened we made the Adam(LS) search along the
direction −dk instead of dk. For logistic regression we see that the default step size tends

3. We omit the bias correction factors in the update of wk for simplicity and because they made the
performance of the method worse in our experiments. But these factors do not affect the efficiency of
SO.

35

Shea and Schmidt

Figure 17: Performance of different variations on Adam for fitting logistic regression models.
We see that the default Adam settings (black line) tend to perform poorly, while
using a line search (blue) or line optimization (orange) improves the performance.
The multi-direction method using SO(magenta) dominated the single-direction
methods.

to perform poorly, while the more clever step sizes perform better and the multi-direction
method with SO tends to perform the best. For neural networks the performance differences
were not as clear; on some datasets the default sep size performed poorly while on other
datasets it was competitive. However, on neural networks the SO method still tended to
have the best performance.4

The relative performance differences of the different Adam variants can partially be
explained by looking at the step size plots Figures 19 and 20. For logistic regression we
see that the default step is often too small while for neural networks the default step size
appears more reasonable. We also see that the line search method often uses the same
step size for many iterations (and occasionally used a negative step size), while the LO
method was constantly changing the step size. Periodic behaviour is observed in the LO

4. An exception to the good performance of Adam(SO) was on the splice dataset, where on the second itera-
tion the method converged numerically to a stationary point and halted. We found that this degenerate
behaviour was not observed if we added regularization.

36

Why Line Search when you can Plane Search?

Figure 18: Performance of different variations on Adam for fitting 2-layer neural networks.
We see that the default Adam settings (black line) are more competitive for
neural networks than for linear models. The multi-direction method using
SO(magenta) often outperformed the single-direction methods.

37

Shea and Schmidt

Figure 19: Step sizes of different variations on Adam for fitting logistic regression models.
We plot the absolute value, and include markers to indicate iterations where
the step was negative. The dashed line is for the step size on dk−1 in the SO
method. We see that the default step size tends to be too small, that the line
search tends to use larger constant values over several iterations, that the LO
seems to show periodic behaviour with a period longer than 2, and that the SO
method typically shows periodic behaviour with a period of 2 where positive and
negative step sizes of similar magnitudes are used.

method, but the period appears larger than it did for gradient decent with LO. Finally,
the SO method tended to use step sizes with similar magnitudes on dk and dk−1, but on
many iterations it used a positive step size on dk and a negative step size on dk−1. Thus,
the Adam(SO) method often seemed to approximate the difference between successive Adam
directions in order to make more progress in decreasing the objective.

5.3 Gradient, Quasi-Newton, and Adam with[out] Subspace Optimization

Our experiments indicate that gradient descent with momentum benefit from LO and SO,
that quasi-Newton methods benefit from LO while SO allows us to add an optimized mo-
mentum term, and that Adam often benefits from LO while using SO to combine multiple

38

Why Line Search when you can Plane Search?

Figure 20: Performance of different first-order methods for 2-layer networks. We plot the
absolute value, and include markers to indicate iterations where the step was
negative. The dashed line is for the step size on dk−1 in the SO method. We see
that the default step size tends to be in a similar range to the other methods,
that the line search tends to use constant values over several iterations, the
LO is consistently changing the step size, and that the SO method often shows
periodic behaviour with a period of 2 where positive and negative step sizes of
similar magnitudes are used.

39

Shea and Schmidt

Adam directions yields further improvements. However, up to this point we have not com-
pared the three styles of methods (gradient, quasi-Newton, and Adam) to each other. In
Figures 21 and 22 we compare the performance of what we view as the best-performing
method of each of the 3 types if we exploit LO/SO and the best performing methods if we
do not exploit the problem structure.

These “best methods” plots indicate that the choice regarding whether or not to use
SO seems more important than choosing between gradient/quasi-Newton/Adam
methods. Among the methods not exploiting SO, only the QN(LS) method seems to consis-
tently come close to the performance of the SO methods (this could be due to its natural
step size of αk = 1). On the logistic regression problems the QN+M(SO) method seems to be
the most effective, always performing at least as well or better than all other methods. On
the neural network problems the QN+M(SO) was also consistently among the best methods,
but on a small number of datasets the multi-direction Adam2(SO) method performed the
best.

6 Beyond Deterministic, SO-Friendly, and Differentiable Problems

In this work we show that SO can be efficiently applied to a restricted class of neural
networks, and it seems to generically improve the performance of deterministic optimization
algorithms. However, many deep learning architectures do not follow these structures and
are trained with SGD variants. In this section we discuss directions that future work could
take to exploit SO within stochastic algorithms and to use SO to speed up training neural
networks that are not SO-friendly.

6.1 Using Subspace Optimization within SGD

SGD methods use variants of the GD+M algorithm where ∇f(wk) is computed based on
a subset of the training examples, which can be advantageous if the number of training
examples is large. If we use LO or SO to set the SGD step size(s), SGD does not con-
verge in general. However, it has recently been shown that some LS variants do converge
for over-parameterized models and that this gives impressive performance in various set-
tings (Vaswani et al., 2019; Galli et al., 2023). We believe that SO could be used to further
improve the performance of SGD for over-parameterized models. For under-parameterized
models SO could be used with growing batch sizes (Friedlander and Schmidt, 2012; Bol-
lapragada et al., 2018; De et al., 2016), with alternating SGD steps (Richardson et al., 2016),
or to implement better models of the objective (Asi and Duchi, 2019). We could alternately
simply use a very-large fixed batch size, such as the 3.2 million used by GPT-3 (Brown
et al., 2020), since large batch sizes makes SGD behave like a deterministic algorithm up to
a fixed accuracy.

6.2 Using Subspace Optimization for Deep Learning

Many deep learning models are not SO-friendly. Nevertheless, we may be able to use SO to
implement methods that make more progress per iteration than SGD. For example, prox-
linear methods partially linearize functions that are written as compositions (such as neural
networks) and can guarantee more progress per iteration than gradient descent (Nesterov,

40

Why Line Search when you can Plane Search?

Figure 21: Performance of different gradient-based, quasi-Newton, and Adam methods for
fitting logistic regression models. The blue lines use a classic line search that
does not exploit the problem structure while the purple lines exploit the problem
structure to perform SO. We see that the SO methods tend to dominate, with
only the QN(LS) method coming close to the performance of the SO methods.
Among the SO methods, the QN+M(SO) method has among the best performance
across datasets.

41

Shea and Schmidt

Figure 22: Performance of different gradient-based, quasi-Newton, and Adam methods for
fitting 2-layer neural networks. The blue lines use a classic line search that does
not exploit the problem structure while the purple lines exploit the problem
structure to perform SO. We see that SO methods tend to perform better across
most datasets. On most datasets the QN+M(SO) method has among the best
performance, except on some datasets while the Adam2(SO) method performs
better.

42

Why Line Search when you can Plane Search?

2007; Lewis and Wright, 2016; Duchi and Ruan, 2018; Drusvyatskiy and Paquette, 2019).
The iterations of the prox-linear method are LCPs, and thus this is a natural direction to
explore to obtain better optimization algorithms for deep learning.

An alternative way to use SO for deep learning is with layer-wise training. It has
been shown that layer-wise training allows building deep models that are competitive on
ImageNet (Belilovsky et al., 2019). Layer-wise training can be formulated as an LCP
and may be a way to remove the frustrations associated with training deep networks (due
to sensitivity to hyper-parameters). While the default layer-wise method would focus on
optimizing a single layer, it may be possible to quickly optimize SO-friendly sub-networks
of a deep network to yield a fast and robust training method.

Acknowledgments and Disclosure of Funding

We would like to thank Michael Zibulevsky for pointing us towards additional references
on the topic. Betty Shea is funded by an NSERC Canada Graduate Scholarship. The work
was partially supported by the Canada CIFAR AI Chair Program and NSERC Discovery
Grant RGPIN-2022-036669.

Appendix A. Solving SO Problems

Conn et al. (1994) discuss the details of a way to numerically solve the SO problem at every
iteration. They suggest using a full-memory BFGS method, which finds a local optimum
with a local superlinear convergence rate under suitable conditions. Using the full-memory
variant is feasible since the SO problem is low-dimensional, and allows us to easily modify
the BFGS matrix to prevent it becoming unrelated to the gradient direction (which can
cause BFGS to not converge). Conn et al. (1994) suggest terminating the BFGS iterations
when a lack of potential progress is detected. Despite solving the SO problem inexactly,
they prove that the overall algorithm is convergent if the learning rate α is initialized with
a line search and other step sizes are initialized to 0 (assuming that the BFGS iterations
monotonically decrease f).

In our experiments, we found that a simple approach to solving the SO problem led to
good performance in practice. In particular, we solved the SO using the simple Barzilai-
Borwein (BB) (Barzilai and Borwein, 1988) approximate quasi-Newton method, augmented
with a non-monotonic Armijo line-search (Grippo et al., 1986) as in Raydan (1997). The
BB method has a superlinear convergence rate for two-dimensional quadratic functions, so
we expect it to work efficiently for low-dimensional problems. To initialize the method, we
simply set all step sizes to zero.

As opposed to quasi-Newton methods, SESOP uses a Newton-like method to numerically
solve the SO (Narkiss and Zibulevsky, 2005a). But this approach requires extra implementa-
tion effort for new problems to compute the second derivatives on the subspace. Alternately,
cutting plane methods generalize the bisection-style methods used in line-search codes, but
this requires additional memory and these methods require careful implementation in cases
where the SO is non-convex (Hinder, 2018). We note that the best performance in terms of
runtime might be obtained by increasing the accuracy that we solve the SO problem as the

43

Shea and Schmidt

algorithm runs; when far from a solution it is unlikely that a high accuracy is needed but
we can benefit from an accurate solution as we approach an optimum. However, it is not
obvious how to optimally choose the accuracy at each step5.

Appendix B. Matrix Factorization Problems

Matrix factorization (MF) problems can be written in the form f(U,W) = g(UW T) for
a function g and matrices U ∈ Rn×r and W ∈ Rd×r for some rank r ≤ min{n, d}. For
this problem setting, SO becomes appealing if the matrix multiplication UW T is the dom-
inant cost, which happens as the rank r grows (in the typical case where evaluating g is
less expensive than the matrix multiplication). A classic example is the principal compo-
nent analysis (PCA) problem, which can be written f(U,W) = 1

2∥UW T − X∥2F for the
data matrix X where ∥ · ∥F is the matrix Frobenius norm. For the PCA setting we have
g(M) = 1

2∥M − X∥2, and thus evaluating g becomes cheaper than computing the matrix
multiplication UW T as the rank r grows.

The MF gradient matrices have the form∇Uf(U,W) = ∇g(UW T)W and∇W f(U,W) =
∇g(UW T)TU . Thus, the GD+M update has the form

Uk+1 = Uk − α1
k∇g(UkW

T
k)Wk + β1

k(Uk − Uk−1),

Wk+1 = Wk − α2
k∇g(UkW

T
k)TUk + β2

k(Wk −Wk−1).

We have written this update in terms of four step sizes: a learning rate α1
k on U , a learning

rate α2
k on W , and separate a momentum rate β1

k and β2
k for each matrix. The bottleneck

in this update is matrix multiplications costing O(ndr). With all rates fixed to constant
values this update requires 3 matrix multiplications with this cost: UkW

T
k and the matrix

∇g(UkW
T
k) multiplied by both Wk and Uk. A common variation is to update only one of

the two matrices on each iteration (“alternating minimization”) (Bell and Koren, 2007),
and in this case only 2 matrix multiplications are required.6

There are several ways we could incorporate SO into a MF optimization method:

1. Alternating Minimization: if we only update one matrix on each iteration, then the
problem considered on each iteration is an LCP. Thus, we can use SO to set the learning
rate and momentum rate with only 2 matrix multiplications.

5. One practical approach could be to vary the maximum number of iterations allowed for the subproblem
solver depending on the stage of the main optimization problem. For example, if we are at the kth
iteration of the optimization process, we can set the maximum number of iterations allowed in the inner
loop maxIterInnerLoop to be some multiple of k.

6. If we only update one matrix on each iteration, it can make sense to replace Uk−1 and Wk−1 in the
momentum term with the matrices from earlier iterations.

44

Why Line Search when you can Plane Search?

2. Simultaneous Gradient Descent: if we do not use momentum terms, we can use SO
to optimally set the two step sizes α1

k and α2
k,

argmin
α1,α2

f(Uk − α1∇Uf(Uk,Wk),Wk − α2∇W f(Uk,Wk))

≡ argmin
α1,α2

g((Uk − α1∇g(UkW
T
k)Wk)(Wk − α2∇g(UkWk)

TUk)
T)

≡ argmin
α1,α2

g(UkW
T
k − α1∇g(Mk)WkW

T
k︸ ︷︷ ︸

D1
k

−α2 UkU
T
k ∇g(Mk)︸ ︷︷ ︸
D2

k

+α1α2∇g(Mk)WkU
T
k ∇g(Mk)︸ ︷︷ ︸

D3
k

)

≡ argmin
α1,α2

g(Mk − α1D1
k − α2D2

k + α1α2D3
k).

If we have stored Mk from the previous iteration, this requires a total of 5 matrix
multiplications (two to form D1

k, two to form D2
k, and one more to form D3

k). This is 2
more multiplications than using fixed a step size, but we would expect that using two
step sizes would lead to more progress per iteration. Further, since the asymptotic cost
is increased by a factor of less than 2, using SO to set both step sizes on each iteration
is faster than re-running with two different sets of fixed step sizes. Further, compared
to methods that only update one matrix per iteration, updating both matrices with an
optimal learning rate only requires one additional matrix multiplication for both matrices
to be updated. Finally, we note that if only one learning rate was used (α1 = α2), the LS
would still require up to 5 matrix multiplications. Thus, when updating both matrices,
SO is not “free” in the sense that it does require additional matrix multiplications.

3. Momentum on One Matrix: If we use momentum on only one of the matrices, it
requires a total of 7 matrix multiplications to set all three step sizes. If we choose the U
matrix, this leads to an update of the form

Uk+1 = Uk − α1∇g(UkW
T
k)Wk + β(Uk − Uk−1),

Wk+1 = Wk − α2∇g(UkW
T
k)TUk).

The function value for a given choice of {α1, α2, β} is given by

f(Uk − α1∇Uf(Uk,Wk) + β(Uk − Uk−1),Wk − α2∇W f(Uk,Wk))

=g(((1 + β)Uk − βUk−1 − α1∇g(UkW
T
k)Wk)(Wk − α2∇g(UkWk)

TUk)
T)

=g((1 + β)UkW
T
k − α1∇g(UkW

T
k)WkW

T
k − α2(1 + β)UkU

T
k ∇g(UkW

T
k)

+ α1α2∇g(UkW
T
k)WkU

T
k ∇g(UkW

T
k)−βUk−1W

T
k + α2βUk−1U

T
k ∇g(UkW

T
k))).

These 7 matrix multiplications are two more than the 5 we require if we do not include
the momentum term (the extra matrix multiplications come from the terms highlighted
in red). If we used momentum on W instead of U , it would similarly require 7 matrix
multiplications.

4. Momentum on Both Matrices - Exact SO: the update if we use a momentum term
on both matrices is given by

Uk+1 = Uk − α1∇g(UkW
T
k)Wk + β1(Uk − Uk−1),

Wk+1 = Wk − α2∇g(UkW
T
k)TUk + β2(Wk −Wk−1)).

45

Shea and Schmidt

The function value for a given choice {α1, α2, β1, β2} is given by

f(Uk − α1∇Uf(Uk,Wk) + β1(Uk − Uk−1),Wk − α2∇W f(Uk,Wk) + β2(Wk −Wk−1)

=g(((1 + β1)Uk − β1Uk−1 − α1∇g(UkW
T
k)Wk)((1 + β2)Wk − β2Wk−1 − α2∇g(UkWk)

TUk)
T)

=g((1 + β1)(1 + β2)UkW
T
k − α1(1 + β2)∇g(UkW

T
k)WkW

T
k − α2(1 + β1)UkU

T
k ∇g(UkW

T
k)

+ α1α2∇g(UkW
T
k)WkU

T
k ∇g(UkW

T
k) + β1β2Uk−1W

T
k−1

−β1(1 + β2)Uk−1W
T
k − (1 + β1)β2UkW

T
k−1 + α2β1Uk−1Uk∇g(UkW

T
k) + α1β

2∇g(UkW
T
k)WkW

T
k−1

This requires 9 matrix multiplications, which is 4 more than the 5 we require if not
include any momentum terms.

5. Momentum on Both Matrices - Inexact SO: nine matrix multiplications to perform
SO compared to 3 matrix multiplications to use fixed learning and momentum rates may
be a significant increase in the iteration cost. Rather than computing all 9 required
matrix multiplications and precisely optimizing the step sizes, we could instead compute
2 matrix multiplications plus one matrix multiplication for each set of step sizes that we
try. Specifically, as before we track Mk = UkW

T
k and use 2 matrix multiplications to

compute ∇Uf(Uk,Wk) = ∇g(Mk)Wk and ∇W f(Uk,Wk) = ∇g(Mk)
TUk. We could then

compute

f(Uk − α1∇Uf(Uk,Wk) + β1(Uk − Uk−1),Wk − α2∇W f(Uk,Wk) + β2(Wk −Wk−1)

=g((Uk − α1∇Uf(Uk,Wk) + β1(Uk − Uk−1))(Wk − α2∇W f(Uk,Wk) + β2(Wk −Wk−1))
T),

which requires one matrix multiplication for each prospective {α1, α2, β1, β2} we test.
Thus, this may be advantageous over the precise approach if we can find suitable step
sizes using less than 7 guesses.

Modern variations on MF problems often include regularizers on the matrices U and W ,
or consider matrix completion settings where g only depends on a subset of the entries in
UW T . For example, both of these variations appear in the probabilistic matrix factorization
framework that is widely used for recommender systems (Mnih and Salakhutdinov, 2007).
Regularization does not complicate the use of SO in the typical case where (given UW T)
evaluating the regularizer is much less expensive than evaluating UW T such as penalizing
∥UW T ∥2F . Matrix completion similarly supports SO since the sparse dependency on UW T

can be exploited in all the required matrix multiplications.

Appendix C. Log-Determinant Problems

We say that a problem is a log determinant (LD) problem if we have a symmetric matrix
variable V ∈ Rd×d that is constrained to be positive definite and the dominant cost in
evaluating the objective is computing the logarithm of the determinant of V , log |V |. A
classic example is fitting the precision matrix of a multivariate Gaussian, where f(V) =
Tr(SV) − log |V | for the empirical covariance matrix S. In this example the trace term in
this objective is a linear composition but the log determinant term is not. Note that we also
obtain trace and log-determinant terms in the more complex case of fitting a multivariate

46

Why Line Search when you can Plane Search?

student t (Cornish, 1954; Lindsey and Lindsey, 2006), and indeed log-determinants problems
tend to arise when fitting distributions under a change of variables. In this section we discuss
how SO is efficient for this type of problem under certain types of updates.

A common approach to solving log-determinant problems is coordinate optimization and
block coordinate descent (Banerjee et al., 2006; Friedman et al., 2008; Scheinberg and Rish,
2009; Hsieh et al., 2014). On each iteration, these methods update either a single entry or
a single column (and corresponding row) of the matrix. In this setting of updating a single
column in each iteration, SO is efficient due to the multilinearity property of determinants:
if all columns are fixed except one, then the determinant is linear with respect to that
column. Thus, in block coordinate updates where all columns are fixed except one, the
update acts as if the problem was an LCP.

However, rather than restricting to updating one element/column at a time, we can
alternately consider SO along general rank-1 search directions. For example, if on iteration
k we consider the rank-1 direction uku

T
k , by applying the matrix determinant lemma we

have

|Vk+1| = |Vk + αkuku
T
k |

= (1 + αku
T
k V

−1
k uk)|Vk|

= (1 + αku
T
k ũk)|Vk|,

where we compute ũk by solving Vkũk = uk. By tracking the determinant |Vk|, we can
thus evaluate |Vk+1| for many potential values of αk at the cost of solving a single linear
system. We can additionally use the matrix inversion lemma to perform SO on two rank-1
directions,

|Vk+1| = |Vk + α1
kuku

T
k + α2

kvkv
T
k |

= (1 + α2
kv

T
k (Vk + α1

kuku
T
k)

−1vk)|Vk + α1
kuku

T
k |

= (1 + α2
kv

T
k (V

−1
k −

α1
k

1 + α1
ku

T
k V

−1
k uk

V −1
k uku

T
k V

−1
k)vk)(1 + α1

ku
T
k V

−1
k uk)|Vk|

= (1 + α2
kv

T
k ṽk −

α1
kα

2
k

1 + α1
ku

T
k ũk

vTk ũku
T
k ṽk)(1 + α1

ku
T
k ũk)|Vk|

= ((1 + α1
ku

T
k ũk)(1 + α2

kv
T
k ṽk)− α1

kα
2
kv

T
k ũku

T
k ṽk)|Vk|,

where ṽk solves Vkṽk = vk. Thus, performing an SO to set the step sizes α1 and α2 for
two rank-1 search directions can be done for the cost of solving two linear systems. Solving
these linear systems has a similar or smaller cost than computing/updating a Cholesky
factorization to compute the determinant and check positive-definiteness.

47

Shea and Schmidt

References

N. Andrei. An accelerated subspace minimization three-term conjugate gradient algorithm
for unconstrained optimization. Numerical Algorithms, 65:859–874, 2014. (cited on 15)

H. Asi and J. C. Duchi. The importance of better models in stochastic optimization.
Proceedings of the National Academy of Sciences, 116(46):22924–22930, 2019. (cited on
40)

O. Banerjee, L. E. Ghaoui, A. d’Aspremont, and G. Natsoulis. Convex optimization tech-
niques for fitting sparse gaussian graphical models. In ICML, pages 89–96, 2006. (cited
on 47)

J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA Journal of
Numerical Analysis, 8:141–148, 1988. (cited on 43)

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, 2(1):183–202, 2009. (cited on 7, 13)

E. Belilovsky, M. Eickenberg, and E. Oyallon. Greedy layerwise learning can scale to
imagenet. In International conference on machine learning, pages 583–593. PMLR, 2019.
(cited on 43)

R. M. Bell and Y. Koren. Scalable collaborative filtering with jointly derived neighborhood
interpolation weights. In Seventh IEEE international conference on data mining (ICDM
2007), pages 43–52. IEEE, 2007. (cited on 44)

R. Bollapragada, J. Nocedal, D. Mudigere, H. J. Shi, and P. Tang. A progressive batching
L-BFGS method for machine learning. In ICML, pages 620–629. PMLR, 2018. (cited on
40)

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. NeurIPS,
33:1877–1901, 2020. (cited on 40)

J. W. Cantrell. Relation between the memory gradient method and the Fletcher-Reeves
method. Journal of Optimization Theory and Applications, 4(1):67–71, 1969. (cited on
13)

Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. “convex until proven guilty”: dimension-
free acceleration of gradient descent on non-convex functions. In ICML, pages 654–663.
PMLR, 2017. (cited on 13)

C. Cartis and A. Otemissov. A dimensionality reduction technique for unconstrained global
optimization of functions with low effective dimensionality. Information and Inference:
A Journal of the IMA, 11(1):167–201, 2022. (cited on 16)

C. Cartis, E. Massart, and A. Otemissov. Bound-constrained global optimization of func-
tions with low effective dimensionality using multiple random embeddings. Mathematical
Programming, 198(1):997–1058, 2023a. (cited on 16)

48

Why Line Search when you can Plane Search?

C. Cartis, E. Massart, and A. Otemissov. Global optimization using random embeddings.
Mathematical Programming, 200(2):781–829, 2023b. (cited on 16)

C. C. Chang and C. J. Lin. LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. (cited on 8)

E. Chouzenoux, J. Idier, and S. Moussaoui. A majorize–minimize strategy for subspace
optimization applied to image restoration. IEEE Transactions on Image Processing, 20
(6):1517–1528, 2010. (cited on 16)

A. I. Cohen. Rate of convergence of several conjugate gradient algorithms. SIAM Journal
on Numerical Analysis, 9(2):248–259, 1972. (cited on 13)

J. Cohen, S. Kaur, Y. Li, J. Z. Kolter, and A. Talwalkar. Gradient descent on neural
networks typically occurs at the edge of stability. In International Conference on Learning
Representations, 2020. (cited on 20)

A. R. Conn, P. L. Toint, A. Sartenaer, and N. Gould. On iterated-subspace minimization
methods for nonlinear optimization. Technical report, P00024646, 1994. (cited on 16, 43)

E. A Cornish. The multivariate t-distribution associated with a set of normal sample
deviates. Australian Journal of Physics, 7:531, 1954. (cited on 47)

E. E. Cragg and A. V. Levy. Study on a supermemory gradient method for the minimization
of functions. Journal of Optimization Theory and Applications, 4(3), 1969. (cited on 15)

S. De, A. Yadav, D. Jacobs, and T. Goldstein. Big batch SGD: automated inference using
adaptive batch sizes. arXiv:1610.05792, 2016. (cited on 40)

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F. F. Li. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. (cited on 24)

J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf:
a deep convolutional activation feature for generic visual recognition. In ICML, pages
647–655. PMLR, 2014. (cited on 4)

Y. Drori and A. B. Taylor. Efficient first-order methods for convex minimization: a con-
structive approach. Mathematical Programming, 184(1):183–220, 2020. (cited on 15)

D. Drusvyatskiy and C. Paquette. Efficiency of minimizing compositions of convex functions
and smooth maps. Mathematical Programming, 178:503–558, 2019. (cited on 43)

D. Dua and C. Graff. UCI machine learning repository, 2017. (cited on 8)

J. C. Duchi and F. Ruan. Stochastic methods for composite and weakly convex optimization
problems. SIAM Journal on Optimization, 28(4):3229–3259, 2018. (cited on 43)

M. Elad, B. Matalon, and M. Zibulevsky. Coordinate and subspace optimization methods
for linear least squares with non-quadratic regularization. Applied and Computational
Harmonic Analysis, 23(3):346–367, 2007. (cited on 15)

49

Shea and Schmidt

M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we need hundreds of
classifiers to solve real world classification problems? JMLR, 15(1):3133–3181, 2014.
(cited on 17)

R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. The computer
journal, 7(2):149–154, 1964. (cited on 13)

M. P. Friedlander and M. Schmidt. Hybrid deterministic-stochastic methods for data fitting.
SIAM Journal on Scientific Computing, 34(3):A1380–A1405, 2012. (cited on 40)

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3):432–441, 2008. (cited on 47)

L. Galli, H. Rauhut, and M. Schmidt. Don’t be so monotone: Relaxing stochastic line
search in over-parameterized models. arXiv preprint arXiv:2306.12747, 2023. (cited on
2, 35, 40)

L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search technique for Newton’s
method. SIAM journal on Numerical Analysis, 23(4):707–716, 1986. (cited on 43)

S. Guminov, A. Gasnikov, and I. Kuruzov. Accelerated methods for weakly-quasi-convex
optimization problems. Computational Management Science, 20(1):1–19, 2023. (cited on
15)

S. D. Gupta, R. M. Freund, A. Sun, and A. Taylor. Nonlinear conjugate gradient
methods: worst-case convergence rates via computer-assisted analyses. arXiv preprint
arXiv:2301.01530, 2023. (cited on 13)

W. W. Hager and H. Zhang. A survey of nonlinear conjugate gradient methods. Pacific
journal of Optimization, 2(1):35–58, 2006. (cited on 13)

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, 49(6):409–436, 1952. (cited on
13)

O. Hinder. Cutting plane methods can be extended into nonconvex optimization. In COLT,
pages 1451–1454. PMLR, 2018. (cited on 43)

C. J. Hsieh, M. A. Sustik, I. S. Dhillon, P. Ravikumar, et al. Quic: quadratic approximation
for sparse inverse covariance estimation. JMLR, 15(1):2911–2947, 2014. (cited on 47)

G. B. Huang, Q.Y. Zhu, and C. K. Siew. Extreme learning machine: theory and applications.
Neurocomputing, 70(1-3):489–501, 2006. (cited on 17)

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. NeurIPS, 31, 2018. (cited on 4, 28)

Q. Jin, R. Jiang, and A. Mokhtari. Non-asymptotic global convergence rates of bfgs with
exact line search. arXiv preprint arXiv:2404.01267, 2024. (cited on 16)

50

Why Line Search when you can Plane Search?

S. Karimi and S. Vavasis. A single potential governing convergence of conjugate gradient,
accelerated gradient and geometric descent. arXiv:1712.09498, 2017. (cited on 15)

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014. (cited on 1)

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.
(cited on 24)

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.
(cited on 28)

F. Kunstner, J. Chen, J. W. Lavington, and M. Schmidt. Noise is not the main factor
behind the gap between sgd and adam on transformers, but sign descent might be. In
The Eleventh International Conference on Learning Representations, 2022. (cited on 17)

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. (cited on 24, 28)

Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In Neural networks:
Tricks of the trade, pages 9–50. Springer, 2002. (cited on 13)

A. S. Lewis and S. J. Wright. A proximal method for composite minimization. Mathematical
Programming, 158:501–546, 2016. (cited on 43)

H. Li and Z. Lin. Restarted nonconvex accelerated gradient descent: no more polylogarith-
mic factor in the O(ε−7/4) complexity. In ICML, pages 12901–12916. PMLR, 2022. (cited
on 15)

J. K. Lindsey and P. J. Lindsey. Multivariate distributions with correlation matrices for
nonlinear repeated measurements. Computational statistics & data analysis, 50(3):720–
732, 2006. (cited on 47)

A. Miele and J. W. Cantrell. Study on a memory gradient method for the minimization of
functions. Journal of Optimization Theory and Applications, 3(6), 1969. (cited on 7, 13)

A. Mishkin, A. Sahiner, and M. Pilanci. Fast convex optimization for two-layer relu net-
works: Equivalent model classes and cone decompositions. In International Conference
on Machine Learning, pages 15770–15816. PMLR, 2022. (cited on 4)

A. Mnih and R. R. Salakhutdinov. Probabilistic matrix factorization. NeurIPS, 20, 2007.
(cited on 46)

J. J. Moré and D. J. Thuente. Line search algorithms with guaranteed sufficient decrease.
ACM Transactions on Mathematical Software (TOMS), 20(3):286–307, 1994. (cited on
2, 5)

G. Narkiss and M. Zibulevsky. Sequential subspace optimization method for large-scale
unconstrained problems. Technical report, Technion - Israel Institute of Technology,
2005a. (cited on 4, 13, 15, 43)

51

Shea and Schmidt

G. Narkiss and M. Zibulevsky. Support vector machine via sequential subspace optimization.
Technical report, Technion - Israel Institute of Technology, 2005b. (cited on 15)

A. Nemirovski. Orth-method for smooth convex optimization. Engineering Cybernetics, 20
(2):937–947, 1982. (cited on 13)

A Nemirovski and D Yudin. Information-based complexity of mathematical programming.
Izvestia AN SSSR, Ser. Tekhnicheskaya Kibernetika (the journal is translated to English
as Engineering Cybernetics. Soviet J. Computer & Systems Sci.), 1, 1983. (cited on 13)

Y. Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o(1/k2). In Doklady AN USSR, pages 543–547, 1983. (cited on 13)

Y. Nesterov. Modified Gauss–Newton scheme with worst case guarantees for global perfor-
mance. Optimisation Methods and Software, 22(3):469–483, 2007. (cited on 40)

Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical program-
ming, 140(1):125–161, 2013. (cited on 13, 15)

Y. Nesterov, A. Gasnikov, S. Guminov, and P. Dvurechensky. Primal–dual accelerated
gradient methods with small-dimensional relaxation oracle. Optimization Methods and
Software, 36(4):773–810, 2021. (cited on 15)

J. Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of compu-
tation, 35(151):773–782, 1980. (cited on 2, 29)

J. Nocedal and S. J. Wright. Numerical Optimization, 2nd Ed. Springer, 2006. (cited on 1,
2, 5, 7, 16, 29)

E. Polak and G. Ribiere. Note sur la convergence de méthodes de directions conjuguées.
Revue française d’informatique et de recherche opérationnelle. Série rouge, 3(16):35–43,
1969. (cited on 8)

B. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4:1–17, 1964. (cited on 1)

A. Rajeswaran, K. Lowrey, E. V. Todorov, and S. M. Kakade. Towards generalization and
simplicity in continuous control. Advances in Neural Information Processing Systems, 30,
2017. (cited on 17)

M. Raydan. The Barzilai and Borwein gradient method for the large scale unconstrained
minimization problem. SIAMOpt, 7(1):26–33, Feb 1997. (cited on 8, 43)

E. Richardson, R. Herskovitz, B. Ginsburg, and M. Zibulevsky. Seboost-boosting stochas-
tic learning using subspace optimization techniques. Advances in Neural Information
Processing Systems, 29, 2016. (cited on 17, 40)

H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951. (cited on 1)

52

Why Line Search when you can Plane Search?

K. Scheinberg and I. Rish. Sinco-a greedy coordinate ascent method for sparse inverse
covariance selection problem. preprint, 2009. (cited on 47)

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimiza-
tion. In International conference on machine learning, pages 1889–1897. PMLR, 2015.
(cited on 17)

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347, 2017. (cited on 17)

D. F. Shanno and K. H. Phua. Matrix conditioning and nonlinear optimization. Mathe-
matical Programming, 14:149–160, 1978. (cited on 2, 30)

B. Shea and M. Schmidt. Greedy Newton: Newton’s method with exact line search. NeurIPS
Workshop on Optimization for Machine Learning, 2023. (cited on 8, 16)

B. Shi, S. S. Du, M. I. Jordan, and W. J. Su. Understanding the acceleration phenomenon
via high-resolution differential equations. Mathematical Programming, pages 1–70, 2021.
(cited on 15)

L. Sorber, I. Domanov, M. Van Barel, and L. De Lathauwer. Exact line and plane search
for tensor optimization. Computational Optimization and Applications, 63:121–142, 2016.
(cited on 15, 16)

T. T. Truong and T. H. Nguyen. Backtracking gradient descent method for general C1

functions, with applications to deep learning. arXiv:1808.05160, 2018. (cited on 2)

S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel, and S. Lacoste-Julien. Pain-
less stochastic gradient: interpolation, line-search, and convergence rates. In NeurIPS,
volume 32, 2019. (cited on 2, 40)

S. Vaswani, I. Laradji, F. Kunstner, S. Y. Meng, M. Schmidt, and S. Lacoste-Julien. Adap-
tive gradient methods converge faster with over-parameterization (but you should do a
line-search). arXiv:2006.06835, 2020. (cited on 2, 35)

Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and N. De Feitas. Bayesian optimization in
a billion dimensions via random embeddings. Journal of Artificial Intelligence Research,
55:361–387, 2016. (cited on 16)

Z. H. Wang and Y. X. Yuan. A subspace implementation of quasi-Newton trust region
methods for unconstrained optimization. Numerische Mathematik, 104:241–269, 2006.
(cited on 15)

P. Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–235, 1969.
(cited on 2)

Y. Zhang, C. Chen, N. Shi, R. Sun, and Z. Q. Luo. Adam can converge without any
modification on update rules. arXiv:2208.09632, 2022. (cited on 2)

M. Zibulevsky. Sesop-tn: combining sequential subspace optimization with truncated New-
ton method, 2008. (cited on 15)

53

Shea and Schmidt

M. Zibulevsky. Speeding-up convergence via sequential subspace optimization: Current
state and future directions. arXiv preprint arXiv:1401.0159, 2013. (cited on 16)

54

	Should we use Subspace Optimization in Machine Learning?
	List of Contributions by Figure
	Comments on Limitations of the Applicability of Subspace Optimization

	Line Search and Plane Search for Linear Composition Problems (LCPs)
	Efficient Line Search (LS) and Line Optimization (LO)
	Efficient Plane Search (PS) for the Memory Gradient Method
	LO and SO for LCPs in Practice

	The Scattered 50+ Year History of Subspace Optimization Methods
	Line Search and [Hyper-]Plane Search for Neural Networks
	Definition: SO-Friendly Neural Networks
	Example: 2-Layer Networks with a Single Output - Tied Step Size(s)
	LO and SO for 2-Layer Networks in Practice (Tied Step Sizes)
	Example: 2-Layer Networks with a Single Output - Per-Layer Step Sizes
	LO and SO for 2-Layer Networks in Practice (Per-Layer Step Sizes)
	Other Examples of SO-Friendly Networks

	Augmenting Quasi-Newton and Adam with Subspace Optimization
	Augmenting Quasi-Newton with Subspace Optimization
	Augmenting Adam with Subspace Optimization
	Gradient, Quasi-Newton, and Adam with[out] Subspace Optimization

	Beyond Deterministic, SO-Friendly, and Differentiable Problems
	Using Subspace Optimization within SGD
	Using Subspace Optimization for Deep Learning

	Solving SO Problems
	Matrix Factorization Problems
	Log-Determinant Problems

