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Abstract

We study submodular optimization in adversarial context, applicable to machine
learning problems such as feature selection using data susceptible to uncertainties and
attacks. We focus on Stackelberg games between an attacker (or interdictor) and a
defender where the attacker aims to minimize the defender’s objective of maximizing a
k-submodular function. We allow uncertainties arising from the success of attacks and
inherent data noise, and address challenges due to incomplete knowledge of the prob-
ability distribution of random parameters. Specifically, we introduce Distributionally
Risk-Averse k-Submodular Interdiction Problem (DRA k-SIP) and Distributionally
Risk-Receptive k-Submodular Interdiction Problem (DRR k-SIP) along with finitely
convergent exact algorithms for solving them. The DRA k-SIP solution allows risk-
averse interdictor to develop robust strategies for real-world uncertainties. Conversely,
DRR k-SIP solution suggests aggressive tactics for attackers, willing to embrace (distri-
butional) risk to inflict maximum damage, identifying critical vulnerable components,
which can be used for the defender’s defensive strategies. The optimal values derived
from both DRA k-SIP and DRR k-SIP offer a confidence interval-like range for the
expected value of the defender’s objective function, capturing distributional ambiguity.
We conduct computational experiments using instances of feature selection and sensor
placement problems, and Wisconsin breast cancer data and synthetic data, respectively.

Keywords: k-submodular function, distributionally risk averse optimization, distribu-
tionally risk-receptive, feature selection problem, adversarial machine learning

1 Introduction and Motivation

Submodularity is an important concept in the domain of combinatorial optimization as
submodular functions encompass various classes of functions, including weighted coverage,
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entropy, and mutual information functions (Krause and Golovin, 2014). Consequently, the
submodular functions have found extensive use in machine learning with applications such
as feature selection (Liu et al., 2013; Wei et al., 2015), image segmentation (Boykov and
Jolly, 2001), data summarization (Lin and Bilmes, 2010), influence maximization (Kempe
et al., 2003), and sensor placement (Krause et al., 2008a,b,c). Recently, it has been observed
that machine learning models are susceptible to unexpected noise associated to the training
or testing data, and to the adversarial attacks where an adversary can inject deteriorated
training data, thereby leading to inaccuracies in the output results (Goodfellow et al., 2014).
For an example, the feature selection process becomes significantly more complex in adver-
sarial scenarios due to the actions of attackers aiming to degrade model performance through
feature removal or label manipulation (Li et al., 2017).

In this paper, we consider Stackelberg games with submodular functions that involve
two non-cooperating players: an interdictor (or attacker) and a follower (or defender). The
attacker with limited budget aims to minimize the defender’s objective of maximizing a
submodular function by interdicting a subset of the ground set. The attacker’s optimal
solution identifies the subset of ground set whose disruption would most significantly under-
mine defender’s possible objective and this approach enables the attacker to prioritize the
resources effectively, by targeting the most vulnerable components for maximum disruption.
We explore this framework across two distinct problems: the Feature Selection Interdiction
Problem (FSIP) and the Weighted Coverage Interdiction Problem (WCIP), both character-
ized by the defender’s objective function being submodular. In FSIP, the attacker targets
specific data features to degrade the model performance and, as a response, a defender selects
an optimal subset of remaining features, by maximizing submodular function. Similarly, in
WCIP, attacker aims to minimize the defender’s maximum possible coverage by interdict-
ing certain locations, and defender positions sensors at a subset of unattacked locations to
achieve possible maximal coverage. This modeling framework can also be used to strate-
gize the most effective interdiction actions aimed at restraining an evader or enemy with an
objective of feature selection and sensors placement.

The relevance of submodular function optimization in adversarial settings is underscored.
While previous research (Tammmig and Sinnl, 2022) assumes known input parameters, the
unpredictable nature of real-world data introduces additional challenges (He et al., 2019).
These factors highlight the needs to develop submodular optimization approaches to effec-
tively address uncertainties in adversarial contexts where the robustness of decisions in the
midst of randomness is crucial. In this paper, we introduce stochastic submodular inter-
diction problems to handle uncertainties in the success of attacks and data associated with
the ground set (e.g., uncertain data corresponding to each feature in a feature selection
problem). Specifically, the attacker/interdictor aims to remove components (i.e., features
or potential sensor locations) of the ground set to minimize the expected value of the de-
fender’s objective function. However, in many applications, the evaluation of expectation is
constrained by the limited availability of historical data, which complicates the estimation
of true probability distributions associated with uncertain data parameters. To address this
additional challenge, we employ distributionally robust optimization (DRO) framework that
optimizes objective function for the worst-case probability distribution within a predefined
set, known as the ambiguity set (Dupacovd, 1987; Scarf et al., 1957). This framework yields
a distributionally robust solution for a risk-averse attacker, thereby offering a robust attack-



ing strategy when the interdictor is the main protagonist. From the defender’s perspective,
the assumption that the attacker’s strategy is solely risk-averse could lead to a misjudgment
of the attacker’s desire for aggressive actions (receptiveness to take risk), potentially leaving
the defender unprepared for more risky and impacting tactics. To this end, we introduce
distributionally risk-averse submodular interdiction problem (DRA SIP) and a distribution-
ally risk-receptive submodular interdiction problem (DRR SIP). An optimal solution for the
DRR SIP emphasizes key vulnerabilities, identifying which elements, if compromised, would
most severely degrade their objectives, thereby guiding the development of targeted defensive
strategies.

Furthermore, in many practical applications, the challenge often involves selecting mul-
tiple disjoint subsets instead of a single subset. For instance, consider the problem where
defender aims to maximize area coverage by deploying k& € Z. distinct types of sensors, each
with a unique range, and are constrained to install at most one sensor for each location.
This situation underscores the need for a mathematical model that can address the selection
of multiple, distinct subsets to optimize a given objective. To incorporate this feature, we
employ k-submodular function (Huber and Kolmogorov, 2012), which reduces to standard
submodular function when k = 1, as a defender’s objective function in stochastic SIP, DRA
SIP and DRR SIP. We denote these generalized problems as stochastic k-SIP, DRA k-SIP
and DRR k-SIP, and present exact solution approaches to solve them. This incorporation
not only addresses the problem of placing k-types of sensors for maximizing the coverage
but also extends applicability of our research to any situation where k-submodular function
can be employed (Ohsaka and Yoshida, 2015; Singh et al., 2012).

1.1 Contributions and Organization of the Paper

As per our knowledge, stochastic k-SIP, DRA k-SIP and DRR k-SIP have not been addressed
in current literature for any k£ > 1 and moreover, deterministic k-SIP has not been studied
for k > 2. We review the literature related to these problems in Section 2. In Section 3, we
present necessary background for submodular and k-submodular functions and introduce the
formulations of deterministic k-SIP, stochastic k-SIP, DRA k-SIP and DRR k-SIP. Next, in
Section 4, we describe exact solution methodologies for solving DRA k-SIP and DRR k-SIP
(that subsume both deterministic and stochastic k-SIPs), by introducing families of valid
inequalities and embedding them within decomposition-based approaches. In Sections 5 and
6, we present results of our computational experiments and concluding remarks, respectively.

To evaluate the impact of this paper, we use the Wisconsin Breast Cancer Data (Wolberg
et al., 1995) for FSIP and obtain optimal solutions for both attacker (interdicted features)
and defender (selected features) by solving deterministic, DRA, stochastic, and DRR k-SIPs
for kK = 1. Four Support Vector Classifiers (SVCs) were trained using only the defender-
selected features from each problem types and tested against 100 noise-injected scenarios,
to estimate the robustness of attacking strategies. Figure 1 illustrates the performance of
SVCs, where each dot represents the test accuracy of the SVCs for noise-injected data sets,
and the enveloping colored curves represent the frequency of occurrence of these accuracy
dots out of the 100 scenarios and two flat lines in the curvature represent the mean (along
with mean values) and the median (without mean values). Observe that the test accuracy
range for the SVC trained with DRA-SIP solution aligns closely with those trained using



solutions from both deterministic and stochastic (risk-neutral) SIPs, i.e., from 89% to 95%.
However, the test accuracy range for the SVC trained with the solution from DRR SIP spans
from 82% to 96%, presenting a broader distribution compared to other attacking strategies.
This suggests that attacking strategy derived from DRR-SIP has the potential to degrade
prediction model more significantly compared to other attacking strategies. In a nutshell, this
analysis provides not only bounds on the accuracy for varying levels of risk-appetite (ranging
from risk-aversion to risk-receptiveness) of decision makers but also returns most vulnerable
features of the data set. (Refer to Section 5.2 for results of computational experiments
conducted on randomly generated instances of weighted coverage problem.)

Comparison of Algorithm Accuracies
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Figure 1: Performance of Support Vector Classifiers (SVCs) on Wisconsin Breast Cancer Data
(Wolberg et al., 1995) using defender-selected features provided by different modeling framework

2 Literature Review

In this section, we review the literature related to submodular function, k-submodular func-
tion, Stackelberg zero-sum games (also referred as interdiction games), and adversarial ma-
chine learning including feature selection problems.

2.1 k-Submodular Functions and Their Applications

Submodular functions have a wide range of applications. Krause and Golovin (2014) provided
a comprehensive survey of the applications of submodularity in machine learning. Vohra and
Hall (1993) solved maximal covering problem by leveraging submodular objective function.
Likewise, Nemhauser et al. (1978) showed that the objective function of the incapacitated
facility location problem can be formulated as a monotone submodular function and provided
a greedy algorithm with (1 — 1/e) approximation ratio for solving it. In another direction,
Wei et al. (2015) introduced framework for unsupervised data subset selection problem by
formulating maximum likelihood estimator function of Naive Bayes classifier and Nearest



Neighbor classifiers as submodular function and selecting the data subset which maximizes
this submodular function using the greedy approach. Recently, Kothawade et al. (2022)
introduced various submodular information measures for data subset selection with the aim
of selecting subsets with desired characteristics.

A generalization of the submodular function, referred to as a k-submodular function,
was introduced by Huber and Kolmogorov (2012). As mentioned earlier, it has been widely
applied to the applications such as multi-topic influence maximization problem (Rafiey and
Yoshida, 2020; Ohsaka and Yoshida, 2015), multi-type sensor placement problem (Ohsaka
and Yoshida, 2015; Qian et al., 2017) and information coverage problem (Qian et al., 2017).
Acknowledging its practicability, most of the research focus on the methodology to maxi-
mize k-submodular functions. Ohsaka and Yoshida (2015) introduced a greedy algorithm
for monotone k-submodular function maximization under two types of size constraints: an
overall cardinality constraint and individual cardinality constraints for each of the k subsets.
Their greedy approach achieved approximation ratios of 1/2 and 1/3 for these respective
constraints. Expanding upon this, Sakaue (2017) addressed matroid constraints, yielding a
1/2-approximation algorithm, while Tang et al. (2022) focused on non-negative monotone
k-submodular function maximization under knapsack constraints, attaining an approxima-
tion ratio of (% — i) While the majority of research has been focused on approximation
methods, Yu and Kiiglikyavuz (2021) offered an exact solution approach. They first in-
troduced valid inequality which is the tight upper approximation of the hypograph of any
k-submodular function and incorporate them in the delayed constraint generation method
for repeatedly refining hypograph of k-submodular function to solve the problem exactly.

2.2 Stackelberg Zero-Sum Games

The attacker-defender dynamics is commonly modeled through Stackelberg zero-sum games.
A representative problem of this domain is the Network Interdiction Problem (NIP), (Fulker-
son and Harding, 1977; Israeli and Wood, 2002), where an attacker aims to disrupt a network
of nodes and arcs, thereby hindering a defender’s (also known as an evader or follower) ability
to transport illegal drugs or nuclear materials. The goal of the defender is to either maximize
the flow (Wollmer, 1964) or minimize the shortest path (Israeli and Wood, 2002) from source
node to destination node, and the interdictor’s aim is to minimize or maximize, respectively,
the defender’s objective. Israeli and Wood (1999) introduced stochastic network interdic-
tion problem by incorporating uncertain data parameters defined by random variables with
known probability distribution. Readers can refer to Smith and Song (2020) for a compre-
hensive survey on other variants of NIP. Building on the literature, Kang and Bansal (2023)
considered incomplete information of probability distribution associated with uncertain pa-
rameters in stochastic NIP, and offered adjustments based on varying level of risk-appetite
of decision makers in NIP. In another direction, Park and Bansal (2024) extended beyond
the conventional formulations of the defender’s problem as linear or integer programs. They
considered a computational geometry problem of placing multiple rectangular camera view-
frames to capture areas with maximum threat as defender’s problem. Similarly, Taninmis
and Sinnl (2022) explored a deterministic interdiction game with a monotone 1-submodular
function as the defender’s objective and presented a branch-and-cut based exact solution
approach for solving this problem.



2.3 Machine Learning in the Presence of Adversarial Attacks

For the sake of completeness of literature review, we briefly review some advances in ad-
versarial machine learning that are relevant for this paper. Kurakin et al. (2016) pointed
that machine learning models are susceptible to the adversarial attacks such as intentionally
injected malicious input samples or noise. They emphasized the importance of construct-
ing robust models that perform well in various adversarial scenarios. For feature selection
problem, Globerson and Roweis (2006) introduced a problem where a subset of features of
test instances is interdicted and thereby the support vector machine model trained using
labeled train data with all features, can only rely on the subset of features associated with
test data for the classification. This led to a game-theoretic min-max problem allowing
defender (i.e., data user) to build a model that is resilient to feature interdiction executed
by the attacker. Dekel and Shamir (2008) presented a more efficient algorithm for solving
the foregoing problem by taking into account the level of importance of each feature. Both
studies optimized the objective function based on the labeled training data, thereby relying
provided label information. They developed robust models for test samples, where only a
subset of the training data features is available, and different features may be interdicted
for different test data points. However, they did not account for uncertainty and incomplete
information regarding the probability distribution. Additionally, their approach depend on
the label information, which can be vulnerable to attacks.

In the domain of Graph Neural Networks, addressing adversarial attack on graph struc-
tures has become a critical area of research. Dai et al. (2018) proposed reinforcement
learning-based effective attacking strategy by modifying or deleting edges of the graph struc-
ture where the model learns to attack the graph from the classifier’s prediction. Xu et al.
(2019) also introduced a gradient-based attack method to obstruct the processing of graph
structured data by data users, and adversarial learning techniques for graph neural network
to build more robust models against such attacks. As per our knowledge, the aforemen-
tioned studies do not incorporate the following features: uncertainty in the data, incomplete
information of probability distribution, and adjustments based on risk-appetite of a decision
maker.

3 k-Submodular Interdiction Problems without and with
Uncertainty: Formulations and Applications

In this section, we provide some definitions necessary to introduce formulations of four
problems: Deterministic, Stochastic (Risk-Neutral), Distributionally Risk-Averse (DRA),
and Risk-Receptive (DRR) k-SIPs. We also present two applications of these formulations,
i.e., feature selection interdiction problem and weighted coverage interdiction problem, that
we employ for our computational experiments as well.

Definition 3.1 (Submodular function). Let N = {1,...,n} be a non-empty finite ground
set. A function f is a monotone submodular if for every A C B C N and i € N\ B, the
following holds:

pi(A) = F(AU{Y) — F(A) > F(BUY) — F(B) = pi(B), (1)



where p;(+) is a marginal gain of adding element i.

Definition 3.2 (Set of k Disjoint Sets). For k > 1 and N = {1,...,n}, we denote a set of
all k disjoint subsets of N by

X(N,k)={(Z,...,2Z): Zy C N forallq e {1,....k} and Z, N Zy = 0 for q # ¢'}.

Definition 3.3 (k-Submodular Function). A function f : X(N,k) — R is a k-submodular
function if for any X = (Xq,..., Xg) and Y = (Y1,...,Yy) € X(N, k), the following holds:

JX)+ (YY) =2 fXTY) + f(XUY) (2)

where XMY = (X;NYy, ..., X NYy) and

k
k
XUY = (X;uv)\ Jx,uyy),
=1
po i=1

Definition 3.4 (Marginal Gains for k-Submodular Functions). Given X € X(N, k), for any
ge{l,....k},ie N\ Ule X, the marginal gain of adding 7 to X, is defined as

qu(X):f(Xlw-'anU{i}v-”»Xk)_f(X)‘

If function f is k-submodular, then for every X,Y € X(V, k) such that X, C Y, for all
red{l,... k},

k
Pgi(X) > pgi(Y)  forallie N\ U Y, and g € {1,... k}.

r=1

Definition 3.5 (k-Submodular Maximization). Given a set of problem dependent feasible
solutions S C X(N, k), the k-submodular maximization problem is defined as:

max{f(S):S € S}. (3)

For any S € X(N, k), we can write f(S) = f(s) wheres = (s1,...,s;) € {0,1}" and s,; = 1
when i € Sy, and s,; = 0 otherwise for all g € {1,...,k} andi € N.

3.1 Formulations for k-SIPs without and with Uncertainty

To illustrate the formulation of the deterministic k-submodular interdiction problem, we
consider an example of the weighted coverage interdiction problem. In this problem, an in-
terdictor intends to prevent a defender from installing sensor of type g € {1,...,k} at loca-
tion ¢ € N by minimizing the defender’s objective of maximizing coverage. The interdictor’s
decision variable z,; = 1 if he decides to block the installation of a type ¢ sensor at sites ¢ and
0 otherwise. In contrast, we denote the defender’s decisions by S = (S1,...,5) C X(N, k)
where S, represents a set of locations where the defender choose to place type g € {1, ..., k}
sensors. We assume that both players are subject to budget limitations for each sensor type

7



q € {1,...,k}, denoted as A, and D, for the interdictor and defender, respectively. We
formulate the deterministic k-submodular interdiction problem as:
Deterministic k-SIP

min O p(x) (4a)
n k

where X := {x {0, 13 Twgi <A, Vge{l,. kYD) m <1, Vie N}, (4b)
i=1 q=1

dp(x):= max{f(S) 1S eX(N,k), 500 <1—wy;, Yge{1,...,k},Vie N, (4c)

> 540 < Dy, Vg € {1,...,I<:}}. (4d)

=1

In (4b), first constraint enforces the budget limits for the interdictor for each ¢ € {1,... k},
and the second constraint ensures that the interdictor selects k disjoint subsets, i.e., for
each location ¢« € N, an interdictor can block the installation of at most one type of sensor
qg € {1,...,k}. The constraint in (4c) indicates that the defender cannot place sensor
type ¢ € {1,...,k} at location ¢ € N if it has been blocked by the attacker’s solution x.
Constraint(4d) enforces defender’s budget limits for each ¢ € {1,...,k}.

We also present formulations for problem (4) with two types of uncertainties. We rep-
resent the uncertainty associated with the success of attack vector and noise in the data
set using random variables £ € {0,1}" and D with m samples and n number of features,
respectively. Let Q := {wi,...,wjq} be a finite set of possible realizations of (£, D) and
each realization (£¥, D) occurs with probability p,. Contrary to the initial assumption in
problem (4) that every attack by an attacker is successful, we assume that the attack on
location ¢ € N for type ¢ = {1, ..., k} is successful if and only if the condition & - z,; = 11is
satisfied. Moreover, due to uncertain data set D, function value f(-) varies across scenarios
w € Q, which we represent as f“(:). After observing the attacker’s solution x € X and a
realization of uncertainties w € €2, the defender selects subset of available items, denoted by
S“, to maximize its k-submodular function. For w € €, the defender’s problem is defined as

Qu(x, &%) = max{f“(S“’) 1 8Y € X(N, k), (5a)
9 < 1—w&, Yge{l,... .k} andi € N, (5b)
Zs;”iSDq, qu{l,...,k}}. (5¢)
i=1

If probability distribution P associated with random parameters is known, we get

Stochastic (Risk-Neutral) k-SIP

min ¢y (x) :=Ep[Q.(x,E7)], (6)

xeX



where Ep[-] is an expectation operator.

When complete information of the probability distribution P is not known and it belongs
to a predefined ambiguity set B, we formulate Distributionally Risk-Receptive k-Submodular
Interdiction Problem (DRR k-SIP) and Distributionally Risk Averse k-Submodular Inter-
diction Problem (DRA k-SIP) with the predefined ambiguity set 3 as follows.

DRR k-SIP

min {%(x) = minEpIQu(x 5“’)1} )
DRA k-SIP
min {<I>A<x> = axEplQu(x, 5‘”)]} (®)

where the inner minimization and maximization with respect to the ambiguity set handle the
risk-receptiveness and risk-aversion of the interdictor by selecting best-case and worst-case
distributions, respectively. In case [B| = 1, formulations (7) and (8) reduce to (6). Also,
when || = 1, formulations (6), (7), and (8) reduce to (4).

3.2 Applications of k-SIPs
3.2.1 Feature Selection Interdiction Problem: An Application of 1-STP

Feature selection is a fundamental problem in machine learning, where the goal is to identify
a subset of relevant features that contribute most significantly to the predictive performance
of a machine learning model. This process not only enhances model interpretability but also
improves efficiency by reducing dimensionality and mitigating overfitting issues. Within this
context, this paper addresses a specific challenge associated to the feature selection problem
in the presence of an adversary. Specifically, data sets are often compromised through
targeted attacks on specific features, thereby impacting the performance of predictive models
employed by defenders. As a response, defenders select a subset of unaffected features to
train their models, aiming to reduce the impact of these attacks. Submodular functions are
employed to assist in this feature selection process, a method proven effective by Liu et al.
(2013); Lin and Bilmes (2009) for choosing subset of features. This strategy is centered
around the use of selected features for model training and focusing on maintaining model
efficacy rather than enhancing performance directly.

Mathematically, FSIP is defined as follows. Given a data set D with m data samples
each containing n features (represented by an m by n matrix). Let w; ;(> 0) be a similarity
between feature i and j. Then, function f : 2 — R defined as

f(S) = Z max wj ;

ies
ien ?

is a monotone submodular function (Liu et al., 2013). This function evaluates a given set
S € N by selecting, for each ¢ € N, a feature j € S that has the highest similarity to i as
given by w; j, and then aggregating these values. Using this function, we solve problems (6),
(7), and (8) and obtain optimal solutions for an attacker and defender. For details on the
experimental setup and computational results, please refer to section 5.1.



3.2.2 Weighted Sensor Coverage Interdiction Problem as k-SIP

Consider a set N = {1,...,n} of potential sites for installation of sensors that are of k
different types depending on their monitoring ranges. Let p;, be the reward obtained by
covering site ¢ € N using sensor type ¢ € {1,...,k}. However, only one sensor can be
placed at each site, and at most D, sensors of type ¢ € {1,...,k} can be installed. Let S =
(S1,5%,...,Sk) € X(V, k) denotes a feasible sensor placement strategy with S, representing
the set of locations where type ¢ sensors are placed. Consequently, we can compute the total
reward by introducing a k-submodular function f : X(N, k) — R, i.e.,

where C; C {1,...,k} is the set of sensor types covering site i. Again, using this function,
formulations (6), (8), and (7) lead to weighted sensor coverage interdiction problem under
uncertainty. In Section 5.2, we describe the experimental setup and results in details.

4 Solution Methodologies: Valid Inequalities and Al-
gorithms

We present valid inequalities for deterministic, DRA k-SIP and DRR k-SIP in Section 4.1,
and decomposition-based exact approaches for solving DRA k-SIP and DRR k-SIP in Section
4.2. Specifically, we introduce tight lower approximations for the objective functions of
problems (4), (6), (7) and (8) using affine functions that lead to inequalities, which are
referred to as valid inequalities (or cutting planes). These inequalities are used to iteratively
refine the lower bounds of the objective functions within a decomposition framework, thereby
ensuring a global optimal solution (4.2). Note that these objective functions ®p(x), Pry (%),
®rr(x), and Pra(x) are non-convex, non-concave, and non-submodular. This complicates
the application of known optimization techniques such as gradient methods for optimizing
them.

4.1 Valid Inequalities

The term “valid” in valid inequality implies that all feasible solutions satisfy this inequality
and hence, the inequality is valid. In the following theorems, we provide these inequalities
and for the sake of ease for a reader, all validity proofs are provided in Section 4.3.

Theorem 1. Gipen an attacker’s solution X and associated defender’s optimal solution g,
i.e., ®p(x) = f(S) in Formulation (4), the following inequality is valid for all x € X':

Op(x) = Pp(%) — ) Z Pai (), (9)

where p,;(0) is the marginal gain of adding item i to ¢ empty set in @, where @ is the tuple
consisting of k empty sets.
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Theorem 2. Given an attacker’s solution X and associated defender’s solution in For-
mulation (4), denoted by S = (Sl,...,gk) with an arbitrary permutation of elements in
S'q = {ig1,-- -, iqn,} forq € {1,... k}. The following inequality is valid for problem (4) for
any x € X and it dominates inequality (9), i.e., it provides a tighter lower bound approzi-
mation in comparison to (9):

k
(I)D( Zzpqlqt S quqt7 (1())

q=1 t=1

where S,L(t) =(5,... 7S;,(t)7 0,...,0) such that S’;V(t) = {ig1,---sigt—1} for 2 <t < T, and

Theorem 3. Given an altacker’s solution X and associated defender’s optimal solutions
{S¥}oeq in formulation (6). The following inequality is valid for all x € X':

EA

(I)N( Zzzpwpqz q(t fwxqzqtv (11)

=1 we t=1

where {p, }w € P in the case where |P| =1, and S“ ) is defined similar to S y in Theorem 2.

Theorem 4. Given an attacker’s solution X and associated defender’s optimal solution
{S“}ueq in formulation (7), the following inequality is valid for all x € X':

D p(x) ZZ (maxzpwpqz yq@>£ Tais (12)

q=1 ieN weN

where fori € N and g € {1,...,k},

L {1 ifi e s,

Yai = 0 otherwise.

Theorem 5. Given an attacker’s solution X and associated defender’s optimal solutions
{S“}uecq in formulation (8). Then, the following inequality is valid for all x € X:

EA

CI)A( Zzzpwpqz q(t 5“’ quqﬂ (13)

=1 we t=1

where {P, }wea € ar}g)glnax Y wea Puf®(S¥) and S;(t) is defined similar to S%(t) in Theorem 2.

Observation 6. Inequalities (10), (11), (12), and (13) are tight (hold at equality) for x = x.
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4.2 Decomposition Algorithms for DRR and DRA £-SIPs

Since formulations (4) and (6) are special cases of DRR k-SIP, i.e., (7), we present decompo-
sition algorithm for the latter to avoid repetition. Our decomposition algorithm incorporates
inequalities (12) to refine the lower bound for problem (7) during each iteration, as detailed
in Algorithm 1. The algorithm begins with an initialization stage where the iteration counter
L =1, the upper bound 0% < oo, the lower bound 6%, < —oo, and an initial feasible so-
lution %' is selected from the set X. In each iteration L > 1, we set x to x* and solve
the defender’s problem for every scenario w € ), as outlined in Line 4, to obtain fw(Sw).
Subsequently, in lines 6 and 7, we obtain an extremal optimal probability distribution by
solving distribution separation problem:

{Pu}weq € argmin prf“’(gw)

Pep weN

and then compute Pr(X) = > g Duf?(S¥). If ®p(%) is smaller than the current upper

bound 0%~ we update 64 to the value of ®x(x) and the best known solution X* to X.

Subsequently, we derive and add inequality (12) to a lower bound approximation model

from the previous iteration, M., obtaining M, p:
o
0., = min 7 (14)
k
st 0> Pp(R) = > Z <r}glgq>3<2pwp;",i(0)@;’,i> SET (15)
q=1 ieN wef
for x € {x!,... %"}

which is a tighter lower bound approximation. We solve M¥% .. L > 1, in Line 12 to get

an optimal solution (%! %L*1) and update the best-known lower bound 6% to nt*l. We

terminate the algorithm when the optimality gap (04 — 6% ) lies within a predetermined
threshold e.

Theorem 7. Algorithm 1 solves DRR k-SIP to global optimality in finite iterations if dis-
tribution separation problem, line 6 in Algorithm 1, can be solved in finite iterations.

Proof. Refer to Section 4.3. O

Remark 8. Algorithms for DRA, Deterministic, and Risk-Neutral k-SIP. Algo-
rithm 1 with inequalities (10),(11) and (13) in Line 11 provide an exact algorithm for solving
problem (4), (6) and (8) respectively.

4.3 Proof of Theorems 1 - 5 and Theorem 7

Lemma 9 (Yu and Kiiglikyavuz (2021)). Let f be a monotone k-submodular function. For
any Y,Z € X(N, k), the following inequality holds:

FO Y D pa@+D Y ) pu®). (16)

q:1 7;Ei/q\Ljle Zy q:1 pe{l 7777 k}\{‘]} iqumZP
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Algorithm 1 Decomposition Method for the DRR, k-SIP (7)

1: Let L+ 1,0% < —o00, 0% « 00, X+ X' € X;

. drlrb drr
. 1 u p—
2: while 037 — 0, > edo

3: for w € Q2 do

4: Solve subproblem to get f*(S“):;

5: end for

6: Compute {p}, ., € argmin prfw(gw);
Pep weN

7. Obtain ®p(X) = 3 Duf(S¥) ;

8 if % > ®p(X) then
9: 04 < Pr(X) and X* + X;

10: end if
11: Add the following inequality in M% 5 to get ME L p:

k
n > Pp(x) — Z Z (Igggzpwp:i(mng ST

weN

12:  Solve ME - to get optimal solution (n~!, &L+1);

13: Update the lower bound 6% <« n**! and % « xF*1;

14: L+ L+1,

15: end while

16: Return: Optimal Solution Value 6% and Optimal Solution X*.

drr

Proof of Theorem 1. For a feasible attacker’s solution x = (x1,...,xy), let Ny = U’;Zleq
be the set of items interdicted by x where N, = {i € N : x,; = 1} for ¢ € {1,...,k}.
We define S = (S5, ..., Sk), where S, = S'q \ N, for ¢ € {1,...,k}. From the definition, it
follows that S, is a subset of S, and 37 s,s < Y27, 8, < D, holds. Therefore, S is a
feasible defender’s solution for the attacker’s solution x. Subsequently, referring to (16), we

derive the following:

k k
FS)<FS)+) pai(S) Y Y D p(®)

a=1 eS8, \U"_, S, a=1 pe{l,...k}\{q} icS,nS,
k

=fS)+Y > palS)

=1 ieS\Uk_, S»

k
=F(S)+ D> pgi(S)zya

a=1eg,

<FS)+ DY pgi(@)zy,

9=1jeg,

13
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(18)

(19)

(20)



For any p,q € {1,...,k} with p # ¢, S”q N S’p = (), and since S, C gp, equality (18) holds.
Similarly, we know that S, \ U*_, S, = S, \ S, and for i € S, z,; = 0, thereby (19) holds.
Finally, inequality (20) is established from the diminishing return property of the monotone
k-submodular function. Thus, we have

Pp(x) = f(S) = Zzpqz J2qi =V Zzpqz )Zq,i- (21)

a=1ies, 9=1 ieg,

Proof of Theorem 2. For an attacker’s solution x, let S, = S’q \ N, and S, ) =
(S1,...,8 1, 0,...,0) where S{;’(t) = g;,(t) \ N, for 2 <t <T,and ¢q € {1,...,k}. From

q,(t)?

the fea51b1hty of S for x, the following holds:

Pp(x) > f(S) = pri, (S1,w) (X = 1iy) + -+ priy g (S1ee) (1= 214, 4,)
+ P2,i.1 (S2,0)) (1 = Taipy) + -+ + p2iy 1, (S2,(1)) (1 — T2y )

+ Phyins Sk, ) (1 = T ) + 0+ Prin g, (Sk)) (1 — Thip 1, )

E Tq
= Z Z pq,iq,t(s%(t))(l - x%iq,t)

q=1 t=1
ko Tq
>3 paia (Sq) (L — g4, (22)
q=1 t=1
kT
= Op(x) — Z Z Pasiq (Sa,t))Taiq.- (23)
qg=1 t=1

From the definition of S, ), S, C S and S C S ) holds for all ¢ € {1,...,k} and
te{l,...,7,} and thereby, 1nequahty (22) holds from the diminishing return property of

k—submodulgr function. It is worth to note that this inequality dominates inequality (9)
since pgi, . (Sq.) = Pain. (@) for all t € {1,...,T,} for g € {1,... k}. |

Proof of Theorem 3. The proof follows the same arguments as those of Theorem 4 and
Theorem 5 with a singleton ambiguity set, i.e., |B| = 1. [ |

Proof of Theorem 4. Given x € X, let {S“’}weg be an optimal defender’s solution, and
{Pw}weq be an associated extremal probability distribution, i.e.,

{pw }wGQ S arg min Z pwf Sw)

pPep we

Additionally, for w € €2, define N¥ = UI;ZIN:%JQ as the set of items interdicted by the attacker’s
solution X, where N = {i € N : 2, - & = 1} for ¢ € {1,...,k}. For w € Q, we define

14



{S Ve = (S5, ... ,gt;) where gt; = S*;J \ N forall ¢ € {1,...,k}, w € Q. This ensures
that {S”},cq is a feasible defender’s solution for the given %. Then,

CI)R<)~() = Zﬁwfw(sw)

weN

>3 pure(s%) (24a)
weN

> o | £4(89) Z >0l E, (24b)
we q=1 ZGS‘*’

)= > D > huri (06 Ty, (24c)

q=1 weN ’LGS[I“)

k
X) = Z Z Zﬁwp‘;l(@)%zfﬁqz (24d)

q=1 iEN we

k
SEDIY (I;lg%prpqz yw) £ T (24e)

q=1 ieN

Inequality (24a) holds from the feasibility of set {S”},cq for the attacker’s solution %X and
inequality (24b) follows from (25). Since ®x(x) = minpep Ep[QL(X,£Y)], inequality (24c)
holds. Also, from the definition of 7;, inequality (24d) holds. Finally, inequality (24e) holds
because pi; (@), ¢, & and Z,; are non-negative for all ¢ € {1,...,k} and i € N and {p, }wen
is a feasible solution for the maximization problem in inequality (24e). [

Proof of Theorem 5. For any feasible attacker’s solution x, define S° = (S}, ... ,?t;)

where ?; = S’;J \ Ny forall ¢ € {1,...,k} and w € Q. From the definition, {S"}ueq is
a feasible defender’s solution for the given x. Referring to (21), the following holds for all
w e

f (gw Zzpqz f :qu (25)
q=1 ZES“
Moreover, from (22), the following inequality holds for all w € €

k
f2(S%) Z p:;,qfsw, )i T, (26)

q=1 t=1

Let {p}weco € argmax Yo p.f(S”). Then,
Pep

15



Oa(x) > Y puf(S") (27a)

weN
>S5 pufe(s”) (27b)
weN
ko199
> b | S = DD P (S )€ Taus, (27¢)
weN qg=1 t=1
k 192
= a0 =Y D> D By, (ST0)€d Tais, (274)
q=1 we t=1

From the feasibility of S” for given x, (27a) holds. Inequality (27b) is based on the definition
of {Pw}weq. From (26), (27¢) and (27d) follow. |

Proof of Theorem 7. Given that 2 is a set of finite possible realizations, we solve finite
|©2] number of subproblems in each iteration of the while loop (steps from line 2 to line 15).
For each subproblem (a k-submodular maximization problem), an optimal solution can be
found in a finite iterations, given that the ground set N = {1,...,n} has a finite number of
elements (Yu and Kiigiikyavuz, 2021). Additionally, we solve the master problem (a mixed-
binary problem) once and solve distribution separation problem in line 6 and 7) at most nk
number of times. Assuming the existence of an algorithm that converges in finite iterations
for distribution separation problem (line 6 and 7), the steps from line 2 to line 15 will also
take finite number of iterations for any counter L. Now, we only need to prove that steps
from line 2 to line 15 iterate finite number of times, i.e., L is finite, until the algorithm
converges to an optimal solution. Consider an iteration L. = t < oo. Suppose we obtain
optimal solution (x*,7") by solving the master problem MY, 5, where 5t = 0 . If there is no
optimality cut separating (x*,n"), then this solution is feasible for the DRA k-SIP, implying
nt = dp(xt) = 6% . Hence, n* = 0 = 0  which satisfies termination condition, and we
have optimal solution in the finite iterations (at iteration t).

If there exists an optimality cut separating (x‘,7n'), it will be added as in line 11 and
the process (while loop) continues. Assume we obtain an optimal master solution (x*,n")
in iteration u where u > t. If we already visit x* in previous iterations, this implies (x*,n")
is a feasible solution of the DRR k-SIP and no new optimality cut will be added. We al-
ready show that in this case, algorithm will be terminated with the optimal solution (x*,n").
Finally, if (x*,n") is the new solution we never visited before, the new optimality cut will
be added and algorithm will be continued. Since the attacker’s solution x is a vector of
binary variables, there exists finite number of feasible attacker’s solution that can be visited.
Consequently, the algorithm will be terminated in finite iterations with an optimal solution
because of Observation 6. [ |
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5 Results of Computational Experiments

In this section, we present the computational results for solving DRA k-SIP, DRR k-SIP,
risk-neutral (stochastic) k-SIP, and deterministic k-SIP instances. The evaluation is divided
into two categories based on the objective function of the defender: £k = 1 and £ = 2
submodular function in feature selection interdiction problem (Section 5.1) and weighted
coverage interdiction problem (Section 5.2), respectively. The algorithms were implemented
in Python 3.8.5 with the Gurobi 9.5.2 optimization solver and the experiments were con-
ducted using Intel Xeon(R) W-2255 processor (3.7 GHz) with 32GB RAM. We consider two
types of ambiguity set that are widely used in the literature: Moment matching set and
Wasserstein ambiguity set. The moment matching set, denoted by B/, is defined by con-
straining first moment of the random variables within predetermined lower and upper bounds
denoted by [y and uy, respectively. Let m; be the first moment of the random variable &, i.e.,
M = .0 /|9 Given a tolerance level €, we obtain the bounds as I; = (1 — ey)m
and u; = (1 + €p7)m;. The moment matching set is then defined as:

‘BM = {{pw}weg L < prE(w) < uy, pr =Lip, >0, Vw € Q}?

we weN

where E[] is the expectation defined on 2 and its sigma-algebra F.
In contrast, the Wasserstein ambiguity set is a set of probability distributions within a
given ey (> 0) distance from a reference distribution P* = {p’ },cq and is defined as:

B = {P ={Poteca D po=1 Y fwi—wjlite.w, < ews

weN wi;«éw]-EQ
Z Vi w; = Duyy for all w; € € Z Vi ; = ij,ij e Q; (28)
wJ'GQ w; €N

P >0, for all w € Q; v, 0, > 0,Vw;, w; € Q}

5.1 Feature Selection Interdiction Problem
5.1.1 Instance Generation and setting

For FSIP instances, we use Wisconsin Breast Cancer Data set (D), which is widely recognized
in the field of medical informatics for research purposes (Wolberg et al., 1995). This data
set is available from the UCI Machine Learning Repository (Carrizosa et al., 2008; De Loera
et al., 2017) and consists of 569 data points each representing a patient. Each patient
is described by n = 30 features derived from digitized images of breast mass biopsies. The
data set is primarily used for binary classification tasks within machine learning frameworks.
We assume that each data point inherently possesses uncertainty, indicating potential noise
within each data point. Specifically, the “true” data point exists within a ball of radius
d(> 0) that is centered around each data point in D.
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Utilizing the data set D, we generated multiple data sets, {D“},cq, to represent a set of
distinct possible realizations of the true data. For each data set D*, w € ), every feature
value of the each observed data in D was perturbed by adding uniformly distributed random
noise within the range defined by 6 = 0.1. This means that in D*, w € €2, all data points are
perturbed independently but concurrently based on the original data set D, ensuring that we
generated distinct data sets without cross-combining perturbed data points from different
realizations. Furthermore, corresponding to each variant of the data set, we generate sets
of binary vectors, £ € {0,1}", w € €, indicating the success of the attack on feature i
if ¢ = 1. These vectors are generated from the Bernoulli distribution with a probability
0.75, meaning & = 1 with probability 0.75 for i € {1,...,n}. Finally, we fix the number of
scenarios || to 100.

5.1.2 In sample test: Impact of Solutions on Accuracy of SVC Models

Using {D“},cq, we solve DRA, Risk-Neutral and DRR 1-SIP using the proposed decomposi-
tion algorithms and obtain optimal solutions for attackers (Xga, Xgn, Xgr) and for defenders
across different data realizations ({S5 4 }uea, {S%n bweas {S%r fwen). We also solve the deter-
ministic problem (4) using original data set D to find an optimal attacker’s solution Xpy.
Subsequently, for {D“},cq, we obtained a set of defender’s solution {S%);},cq when at-
tacker’s solution is fixed to xpr. Then, for each scenario w € €2, we partitioned the data set
D¥ into training and test sets using a 70:30 split. We trained four SVCs using the train data
from D*, however, each with defender selected features S, S% 4, Sfn and S%p respectively.
The impact of attacking strategies was assessed by comparing the test accuracy of the SVC
models for test data from D*. For the moment matching set with e;; = 0.05, the results are
visualized in Figure 2 where each dot represents test accuracy of SVC that is trained with
defender selected features under each model setting across all w € 2. We varied the color
based on the problem type and represented the distribution of the accuracy to describe the
frequency of the accuracy achieved by the SVCs, highlighting maximum, mean and minimum
test accuracy values for each model.

In Figure 2(a), observe that the attacker’s solution xr4 achieves the lowest maximum
test accuracy, 95%, among the four evaluated problems, indicating its robustness from the
attacker’s perspective, as higher accuracy is undesirable for the attacker. However, this so-
lution could not degrade model performance as significantly as the attacker’s solution xgg,
which can reduce performance to 82% but also paradoxically permits accuracy up to 96% for
some realizations. This result aligns with our expectation that attacker would opt for xzgr
(distributionally risk-receptive solution) when they aim to minimize the defender’s objective
and to reduce test accuracy as much as possible which comes with the risk of allowing the
defender to achieve their objective that is not attainable if the attacker opts for any other at-
tacking strategies. In Figure 2(b), we observe outcomes for different budget and notice that
by not leveraging the inherent uncertainties present in real-world data sets, xpr strategy fails
to effectively degrade the model’s performance in comparison to the other three attacking
strategies. This (deterministic) attacking strategy leads to a relatively stable but less im-
pactful outcome from an attacker’s perspective while the other three (stochastic) attacking
solutions force a wider range of model performance, showing their ability to substantially
influence model accuracy or compromise data integrity. Overall, from the defender’s per-
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Figure 2: Performance of Support Vector Classifiers (SVCs) Trained on Defender-Selected Features
Across Different Problem Scenarios and Budget Settings

spective, solving the DRR k-SIP offers insights by identifying the most vulnerable features,
whose removal could significantly compromise data quality.

In Tables 1 and 2, we report the objective function values, ®4(xgra), Pn(Xry), and
®r(xgr), for instances with same budget for the attacker and defender, ranging from 1 to
14. In Figures 3(a) and 3(b), we present the objective function values as we increase ey
and €. Observe that the gap between risk-averse solution values and risk-receptive solution
values increase as we increase the ey and €, to increase the size of the ambiguity set. Also,
objective values from DRA k-SIP and DRR k-SIP establish an interval for the objective value
of the Risk-Neutral k-SIP, this trend implies that when the attacker has less information
associate with the probability distribution, i.e., when they assume the larger ambiguity set,
they construct large confidence interval for the expectation of defender’s objective value. For
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the attacker, the interval constructed for the expected values of the defender’s objective in
a distributional ambiguity, as illustrated in Figure 3(a), serves as a valuable reference which
enables them to decide whether to pursue aggressive actions or conservative approach.

Wasserstein ambiguity set (en)

Instance aw =03 ew =05
(Budgets )
DRA k-SIP Risk Neutral k-SIP DRR k-SIP DRA k-SIP Risk Neutral k& DRR k-SIP
Reward Time  Reward Time Reward  Time Reward Time Reward Time Reward Time
Qu(xpa) (8) Pn(xXrw) (s) Pr(xprr)  (8)  Palxra) ()  @n(xrv) ()  Pr(xrr) (5)
1 13.8 1.4 13.6 1.3 13.5 1.6 13.8 0.8 13.6 1.0 13.5 1.5
2 18.1 39.5 17.6 39.6 17.2 49.7 18.4 46.0 17.6 39.5 17.0 42.8
3 19.7 129.4 19.1 179.6 18.5 172.2 20.0 135.6 19.1 180.1 18.3 179.5
4 20.7 316.8 20.0 423.5 19.3 413.9 21.1 317.6 20.0 422.3 18.8 497.3
5 21.7 912.9 20.1 589.9 18.5 507.2 22.3 983.2 20.1 590.3 17.8 660.3
6 21.5 848.1 18.5 399.0 14.7 845.0 22.5 1799.9 18.5 400.2 12.7 599.8
7 22.0 2016.7 18.6 553.9 14.3 693.7 23.0 2656.4 18.6 552.9 11.8 910.7
8 22.0 2074.5 18.7 1068.6 14.4 1610.4 23.2 3451.3 18.7 1068.2 11.9 1203.5
9 21.5 3376.7 17.6 1609.1 12.3 1497.9 22.7 2639.0 17.6 1618.6 9.2 1338.8
10 21.1 2701.5 17.7 1301.2 12.4 1954.6 22.2 1788.8 17.7 1300.7 9.4 1390.8
11 21.3 2782.0 16.8 1722.2 11.4 2290.5 22.9 3779.9 16.8 1721.8 8.3 1870.5
12 20.8 2684.7 17.6 2103.6 11.9 2321.2 22.0 2696.0 17.6 2093.0 8.6 1927.1
13 18.7 2246.2 16.9 1629.1 14.9 1903.1 22.0 2077.3 16.9 1635.8 7.9 2504.8
14 18.3 4220.5 16.4 2331.7 14.5 2458.4 22.1 3937.3 16.4 2331.8 7.7 2863.2

Table 1: Computational results for solving DRA k-SIP, Risk-neutral £-SIP and DRR k-SIP
with Wisconsin Breast Cancer Data with Wasserstein ambiguity set

Objective Value
Objective Value

-
-
s
.-

I I R ]
Budget for both players Budget for both players

(a) Comparisons of optimal objective val- (b) Comparisons of optimal objective values
ues with Wasserstein ambiguity set defined by ~ with Moment matching set defined by €, €
ew € {0.3,0.5,0.7} {0.03,0.05,0.1}

Figure 3: Comparisons of optimal objective values with different ambiguity sets

5.1.3 Out of Sample Testing of Deterministic, Risk-Neutral, DRA, and DRR

For out-of-sample testing, we generate another set of possible realizations Q= {@1, ... ’@Ifll}
of (£, D) using Bernoulli and uniform distributions for £ and D, respectively, as those em-
ployed for generating in-sample tests. Then, we mirrored the same procedure used in sec-
tion 5.1.2 to evaluate the impact of attacking solutions through the test accuracy of SVCs
which are trained solely with defender selected features. For these experiments, we increased
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Moment matching set (epr)

Instance en = 0.03 en = 0.05
(Budgets )
DRA k-SIP Risk Neutral k-SIP DRR k-SIP DRA k-SIP Risk Neutral k& DRR k-SIP
Reward Time  Reward Time Reward Time Reward Time Reward Time Reward Time
Qu(xpa) (8) Pn(Xrw) (s) Pr(xpr)  (8)  Palxra) ()  @n(xry) ()  Pr(xrr) (5)
1 13.8 3.6 13.6 1.0 13.5 54.2 13.8 34 13.6 1.1 13.5 51.1
2 17.9 36.0 17.6 39.3 17.4 115.4 18.0 35.7 17.6 38.8 17.3 122.6
3 19.3 158.1 19.1 179.3 18.7 304.3 194 156.7 19.1 178.2 18.7 298.0
4 20.3 364.1 20.0 425.2 19.7 775.1 20.4 386.4 20.0 419.8 19.6 750.7
5 20.9 795.4 20.1 593.0 19.3 802.8 21.0 928.7 20.1 587.9 19.2 812.3
6 20.4 927.8 18.5 407.7 15.7 624.6 20.7 1193.4 18.5 397.3 15.1 613.2
7 20.6 1567.9 18.6 552.4 15.7 747.2 20.9 1528.9 18.6 552.0 15.1 657.5
8 20.5 1216.4 18.7 1067.8 15.9 1264.5 20.8 2555.8 18.7 1065.9 154 1286.3
9 19.8 2048.0 17.6 1605.8 14.0 2031.9 20.2 2078.5 17.6 1605.7 13.3 1656.0
10 19.6 1744.1 17.7 1302.2 14.4 1953.2 19.9 1827.8 17.7 1303.6 13.7 2029.1
11 19.1 2832.8 16.8 1724.6 12.5 2273.5 19.5 3051.6 16.8 1710.0 11.9 2586.1
12 19.5 2723.9 17.6 2077.2 13.9 2353.0 19.9 3765.9 17.6 2067.2 13.3 2373.3
13 18.8 2195.8 16.9 1641.7 13.1 2736.8 19.2 2203.9 16.9 1674.9 12.5 4221.1
14 18.7 2235.5 16.4 2335.0 12.0 3864.4 19.1 1586.1 16.4 2413.6 11.4 4650.6

Table 2: Computational results for solving DRA k-SIP, Risk-neutral £-SIP and DRR k-SIP
with Wisconsin Breast Cancer Data with Moment matching set

the number of scenarios to 300, i.e, ]Q] = 300. We varied the size of the Wasserstein am-
biguity set and for each defined ambiguity set, we followed the aforementioned procedure
across different budget settings for both the attacker and the defender. The test results are
presented in Figures 4, 5 and 6.

Overall, we notice that the solution obtained using the stochastic models, xg4 and Xgrg
provide significant advantages over xpr obtained by solving deterministic model. The x4
reduces the variability of the outcome, offering a robust attacking strategy that minimizes
the risk. Also, xzr degrades the model performance more effectively than xpr, presenting a
more aggressive strategy. Theses two distinct strategies offer decision makers the flexibility
to choose between robustness and aggressiveness.

5.2 Weighted Coverage Interdiction Problem
5.2.1 Instance Generation

For k = 1, we use instances provided by Taninmig and Sinnl (2022) for problem pre-
sented in subsection 3.2.2, where customer locations are randomly generated from Uniform
[1,10] x [1,10] and candidate locations for the sensor is same as the generated location of the
customers. For customer j € N, we randomly generate associated reward p; from Uniform
[1,100] and the customer j is covered by sensor placed at location ¢ € N if euclidean distance
d;; < r where r denotes the radius of the sensor. Instances were created for radii r = {1, 2},
maintaining uniform sensor radius within each instance. For k = 2, indicating the presence
of two sensor types with distinct radii (r = 1 or r = 2), it is possible to install both types
simultaneously. Sensors with a larger radius (r = 2), although offering a wider coverage
range, yield only half the reward per customer compared to those with a radius of » = 1.
For both categories, i.e., k = 1 and k = 2, we generate a realization £ € {0,1}", w € Q,
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Figure 5: Performance of Support Vector Classifiers (SVCs) trained on defender selected features
across different problem scenarios with varying ey and fixed attacker and defender budget of 7.
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Deterministic k-SIP DRA k-SIP Risk-Neutral k-SIP DRR E-SIP

no |9

Reward . Reward . Reward . Reward .

B (xpr) Time (s) B A(xpa) Time (s) B (xrn) Time (s) B (x5 Time (s)
50 1687 0.37 1,770 21 1,748 10 1,722 56
60 2093 0.57 2,215 67 2,185 38 2,147 252
70 100 2597 1.2 2,717 361 2,690 204 2,655 1,370
80 3044 2.8 3,194 2,378 3,164 993 3,123 4,610
90 3599 11 3,773 5,722 3,733 2,602 3,703 14,690
100 2925 37 3,133 6,933 3,100 3,906 3,034 16,815

Table 3: Weighted Coverage Interdiction Problem: Computational results for solving Deter-
ministic k-SIP, DRA k-SIP, Risk-Neutral £-SIP and DRR k-SIP where k& = 1.

following a Bernoulli distribution with a success probability of 0.75.

5.2.2 Computational Results

Table 3 details the results from solving Deterministic k-SIP and applying our decomposition
methods to solve DRA k-SIP, Risk-Neutral k-SIP and DRR k-SIP, with columns for “Re-
ward” and “Time (s)” indicating the objective values and computational times, respectively.
We report average over 18 instances for each row in Table 3, except for n = 100, where the
results are averaged over 8 instances. For each n, we assume that budget for the attacker and
defender is 0.1 x n. As expected, defender’s covered rewards for DRR k-SIP are consistently
less than those for Risk-Neutral £-SIP and DRA k-SIP. This suggests that DRR k-SIP could
serve as a strategic tool for attackers who are willing to take a risk, providing them with
a quantitative measure of how much they can potentially diminish the defender’s objective
of covered demand. From the vulnerability analysis standpoint for the defender, the DRR
k-SIP identifies the most severe attacking strategies, enabling the identification of critical
locations, which can significantly reduce captured reward if compromised. This solution
allows the defender to plan fortification of locations against potential attacks obtained from
DRR k-SIP. This approach is reasonable, as defenders cannot anticipate the risk preferences
of attackers, requiring them to prepare for a risk-receptive attackers as well. Conversely, for
attackers who prefer to avoid a risk, the DRA k-SIP offers a conservative estimate of the
maximum reward the defender could achieve, thereby informing a risk-averse strategy. Note
that defender’s ®p(xpr) are less than those of the other three problems, reflecting the naive
assumption in the deterministic problem that all attacks are successful. This assumption,
although optimistic from the attacker’s perspective, does not realistically capture the uncer-
tain nature of real-world scenarios, potentially misleading the attacker in determining the
best attacking solution.

To underscore the importance of accounting for uncertainty in the optimization models,
we measure Value of Stochastic Solution (VSS) that is computed as follows.

VSS = ®n(xpr) — Pn(XrN),

where O (xpr) returns the defender’s expected covered reward when attacker’s adheres to
xpr (deterministic optimal solution) and there is no distributional ambiguity. Additionally,
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# of instances

n (DN (XD'I') (I)N<XRN> VSS # Oi‘/vlsnshidél(’,es q)A (XDT) (I)A(XRA) VAS # O{/Klsst;i(;l(,eb (I)R(XDT) (I)R(XRR) VRS VRS>0
50 1760.7 1748.0 253 9 1787.6 1770.5  25.7 12 1732.2 1722.7 215 8
60 2197.5 2185.5  19.6 11 2234.0 22154 24.0 14 2158.0 21479  20.1 9
70 2707.1 2690.2  20.3 15 2740.1 27172 242 17 2671.8 2655.6  19.5 15
80 3182 3164.5  23.2 14 3220.0 31946  35.1 13 3138.8 3123.7  20.8 13
90  3770.5 3743.1 309 16 3806.5 3773.2 499 12 3723.5 3703.8 324 11
100 3156.8 3100.7  64.0 7 3330.5 31334 1975 8 3038.1 3034.0  32.5 1

Table 4: Average values of VSS, VAS and VRS

we introduce Value of Distributionally Risk Averse Solution (VAS) and Value of Distribu-
tionally Risk Receptive Solution (VRS) as follows.

VAS = q)A(XDT) - (I)A(XRA) and VRS = (I)R(XDT) - q)R(XRR)7

By definition, VSS, VAS and VRS are non-negative as Xgy,Xgra and xXggr are all optimal
solutions and xpr is a feasible solution. In Table 4, we report average of VSS only for
instances where VSS > 0, out of 18 instances for each n , except for n = 100, and similarly,
average VAS and VRS are reported for instances where VAS > 0 and VRS > 0.

From Table 4, we notice that VSS, VAS and VRS increase as n increase. For n = 100,
VAS is 197.5 and this suggests that if the attacker naively relies on the deterministic optimal
solution xpr despite the presence of uncertainty, they miss the opportunity to diminish the
defender’s reward by 197.5 units, which could have been achieved by solving DRA k-SIP and
opting xz4. This interpretation holds when VSS or VRS is greater than zero.

As indicated in Figure 7, VAS consistently
exceeds both VSS and VRS for all n € E§§§
{50, 60, 70, 80,90, 100} and interestingly, as n in-
creases, the value of all measures, VAS, VSS and
VRS, also increases. In other words, as the num-
ber of candidate locations and the budgets for :
both decision-makers increase, the advantages, - 4/4
an attacker could gain by opting for stochastic
decisions, Xp4,Xgny and Xgpg, also increase.

Weighted Coverage Interdiction Problem with k = 2. Table 5 details the results for bi-
submodular function. The results are averaged over 10 instances for each row in Table 3, and
for each n, we assume that budget for the attacker and defender is 0.1 x n. Additionally, we
set the number of scenarios |2 = 30. We observe that defender’s optimal captured rewards
for DRR 2-SIP is less than those of Risk-neutral 2-SIP and DRA 2-SIP. Again, this results
aligns with the fact that DRR k-SIP provides the solution where the attacker can degrade
the defender’s objective to the greatest extent, making it useful for vulnerability analysis
from the defender’s perspective. Conversely, the defender’s capture rewards for DRA 2-SIP
are greater than those of Risk-neutral 2-SIP and DRR 2-SIP, as it provides the conservative
strategy towards the distributional ambiguity for the attacker.

Figure 7: Comparison’of VSS, VAS and VRS
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Deterministic k-SIP DRA E-SIP Risk-Neutral £-SIP DRR k-SIP

n |9

Reward ) Reward . Reward . Reward .

B (xpr) Time (s) B 4 (xpa) Time (s) By (Xw) Time (s) B p(xn) Time (s)
10 83.0 0.09 84.6 0.1 84.4 0.1 84.2 0.2
20 310 0.2 323 1.3 321 14 318 1.5
30 730 0.7 842 8.8 823 8.6 802 14
40 30 933 6.2 1,045 76 1,030 85 1,014 129
50 1,278 9.5 1,452 142 1,428 150 1,408 238
60 2,013 2,550 2,160 7,053 2,142 8,884 2,124 16,870
70 2,732 1,425 2,963 4,341 2,932 5,033 2,898 10,490

Table 5: Weighted Coverage Interdiction Problem: Computational results for solving Deter-
ministic k-SIP, DRA k-SIP, Risk-Neutral k-SIP and DRR k-SIP where k = 2.

6 Conclusion

To address submodular optimization in adversarial and uncertain environment, we intro-
duced Distributionally Risk-Averse k-Submodular Interdiction Problem (DRA k-SIP) and
Distributionally Risk-Receptive k-Submodular Interdiction Problem (DRR k-SIP) and pre-
sented exact solution approaches for them. We conducted computational experiments on
instances of Feature Selection Interdiction Problem (FSIP) and Multi-type Sensor Cover-
age Interdiction Problem. Note that feature selection is a key concept in machine learning,
underscoring the importance of these results for practical applications. We analyzed the
solutions obtained from both problems from each of the decision maker’s perspective with
varying levels of risk-appetite. In FSIP, the optimal solution from DRA 1-SIP demonstrated
robust feature removal strategy which is effective from the attacker’s risk-averse (or conser-
vative) perspective. Conversely, solution from DRR, 1-SIP identified critical features whose
removal reduce the quality of data the most from the attacker’s risk-receptive (or defender’s
risk-averse) perspective. In general, the DRA k-SIP seeks to determine the optimal expected
value of the defender’s objective function under the worst probability distribution from the
attacker’s perspective, providing a robust strategy suitable for risk-averse attackers. In con-
trast, the DRR k-SIP offers insights into effective strategies for risk-taking attackers, thereby
identifying critical vulnerabilities in the defender’s system.

Data Awvailability Statement The instances used for computational studies in this paper
will be made available in “Submodular-Interdiction-Game” folder at https://github.com/
Bansal-0RGroup/.
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