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Key words: Set optimization, strict efficient solution, optimality condition, directional

derivative, subdifferential, set-valued map

Mathematics Subject Classification (2020): 49J53

1. Introduction

A set-valued optimization problem, in brief (SOP), of the form

Minx∈ΩF (x),

where F : Ω ⊆ X ⇒ Y is a set-valued map and X and Y are normed spaces, has been

recently attracted more attention due to its extensive real-world applications, see [20, 26]

and the references therein.

There are several approaches to defining an efficient solution x̄ ∈ Ω for (SOP), among which

we would like to mention the classical vector approach and the set approach introduced by

Kuroiwa [28]. Roughly speaking, one compares some vector ȳ ∈ F (x̄) with other vectors in

the set ∪x∈ΩF (x) with respect to a partial order on Y in the first approach and one compares

the whole set F (x̄) with other sets F (x) with respect to some set order relations on 2Y in

the second approach. In this paper, we restrict ourselves to (SOP) studied with the set

approach.

Various types of solutions were considered in scalar optimization, among which strict solu-

tions are of particular importance for several reasons including that one that strict solutions

are, in contrast to regular minimum points, the most likely to be found by numerical algo-

rithms. Recall that this kind of solution (the name of which varies in different papers) was

introduced by Auslender [4] as follows. Let f : Ω→ R be a function. A point x̄ ∈ Ω is said

to be an isolated local minimum of order m (m ∈ {1, 2}) if there exist a scalar α > 0 and a
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neighborhood U of x̄ such that for all x ∈ U ∩ Ω, x 6= x̄, one has

f(x) > f(x̄) + α‖x− x̄‖m.

The concept of strict minimizer has been extended and developed successfully in vector

optimization by Bednarczuk [6], Ginchev et al [13], Jiménez [23, 24] and in (SOP) studied

with the vector approach by Crespi et al. [8], Flores-Bazán et al. [11]. Note that in [11],

the authors introduced the notion of strict minimizer, called φ-strict minimizer, for problem

(SOP) with respect to an admissible function φ, in such a way that this concept generalizes,

in a unified manner, to problems with set-valued maps all the definitions of strict minimizer of

order m and φ-strict minimizer for a vector-valued function given in the literature. Recently,

the concept of strict minimizer of order m with respect to the possibly less set order relation

for (SOP) studied with the set approach has been introduced by Michalak and Studniarski

[32]. Optimality conditions for strict minimizers have been obtained through different kinds

of derivative such as directional derivative, contingent derivative, Studniarski derivative,

radial derivative, among others. Nowadays, there exists an important literature dedicated

to strict efficiency. In addition to the papers mentioned above, we refer an interested reader

to [9, 13, 14, 30] for historical comments and different approaches to strict efficiency in

optimization.

In this paper, we introduce for (SOP) studied with the set approach the concepts of

(�r, φ)-strict solutions (r ∈ {l, p}) with respect to the l-type less order relation �l or the

possibly less set order relation �p and an admissible function φ. Our concept in case r = p

is a slightly extended version of the strict minimizer introduced in [32]. We obtain scalar

characterization in terms of the signed Hausdorff-type half-distance [15] and an abstract

scalarizing functional, and some necessary and/or sufficient conditions for these solutions.

Appropriate set-valued versions of high-order directional derivative and subdifferential are

presented in order to handle optimality conditions for strict efficiency of (SOP) under the

set approach paradigm. We also provide illustrative examples.

The paper is organized as follows. Next section contains auxiliary results. In Section 3, we

study the high order directional derivative and a subdifferential of set-valued maps. Section

4 is devoted to concepts of (�r, φ)-strict efficient solutions of (SOP). Scalar characterization

and optimality conditions for these solutions are obtained in Sections 5 and 6, respectively.

Some conclusions are given in the last section.

2. Preliminaries

2.1. Notations and some facts from vector optimization. Throughout the paper, let

X and Y be normed spaces. Given a normed space, say X, we denote its dual by X∗, the

pairing between X and X∗ by 〈·, ·〉X , its closed unit ball by BX , its norm by ‖.‖X and the
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distance from a point u to a nonempty set U of X by dU(u). When no confusion occurs, we

omit the subscript X in these notations. For a, b ∈ Y , denote [a, b] := {λa + (1 − λ)b : 0 ≤
λ ≤ 1}. For nonempty subsets A and B of X and a scalar t, A+B := {a+b : a ∈ A, b ∈ B},
A − B := {a − b : a ∈ A, b ∈ B} and tA := {ta : a ∈ A}. By Rq and Rq

+ we mean the

q-dimensional euclidean space and its nonnegative orthant.

We recall some concepts from vector optimization [31]. Let K ⊂ Y be a pointed closed

convex cone. Here, K is a cone if k ∈ K implies tk ∈ K for all t ≥ 0 and K is pointed if

K ∩ (−K) = {0}. We say that K is solid if intK 6= ∅, where intK denotes the interior of

K. The nonnegative dual cone of K is the set K∗ := {y∗ ∈ Y ∗ : 〈y∗, k〉 ≥ 0, ∀ k ∈ K}. A

partial order induced by K in Y is defined by: for any y1, y2 ∈ Y ,

y1 ≤K y2 :⇐⇒ y2 − y1 ∈ K

(we also write y2 ≥K y1). For simplicity, we omit the subscript K in these notations.

Let A ⊂ Y be a nonempty set. ā ∈ A is said to be an efficient point or a Pareto minimal

point of A with respect to K (denoted by ā ∈ Min(A)) if there is no a ∈ A \ {ā} such that

a ≤ ā. We say that A is K-bounded if there exists a bounded nonempty set M ⊂ Y such

that A ⊂M +K, A is K-compact if any cover of the form {Uα +K : α ∈ I, Uα are open} of

A admits a finite subcover and A has the domination property if Min(A) is nonempty and

A ⊆ Min(A) + K. It is known that if A is K-compact then it is K-bounded, if A has the

domination property then A + K = Min(A) + K and if A is K-compact then Min(A) 6= ∅
and A has the domination property [31, Theorem 3 and Lemma 3.5]. One can check that if

A+K = B+K then Min(A) = Min(B) and if A is K-bounded or K-compact, then so is B.

2.2. Set order relations. In the set approach to (SOP), various set order relations are used

to define optimal solutions, see [22, 28, 29]. In this paper, we are working with the following

ones.

Definition 2.1. Let A and B be nonempty subsets of Y .

(i) The l–type less order relation �l is defined by

A �l B :⇐⇒ B ⊆ A+K ⇐⇒
(
∀b ∈ B ∃ a ∈ A : a ≤ b

)
.

(ii) The possibly less order relation �p is defined by

A �p B :⇐⇒ (A−B) ∩ (−K) 6= ∅ ⇐⇒
(
∃a ∈ A ∃ b ∈ B : a ≤ b

)
.

It is easy to see that A �l B implies A �p B.

2.3. Abstract scalarizing functions. Let θ : Y → R be a function, which is nontrivial in

the sense that θ(y) 6= 0 for some y ∈ Y . We will consider the following properties.

(P1) Global Lipschizity: ∃L > 0 such that |θ(y1)− θ(y2)| ≤ L||y1 − y2‖ for all y1, y2 ∈ Y .
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(P2) Sublinearity: θ(ty) = tθ(y) for any y ∈ Y and scalar t ≥ 0 (positive homogeneity)

and θ(y1 + y2) ≤ θ(y1) + θ(y2) for all y1, y2 ∈ Y (subadditivity).

(P3) K-monotonicity: θ(y1) ≤ θ(y2) for all y1, y2 ∈ Y satisfying y1 ≤ y2.

(P4) Cone representation property: −K = {y ∈ Y : θ(y) ≤ 0}.
(P5) Cone interior representation property (if K is solid): −intK = {y ∈ Y : θ(y) < 0}.
(P6) Uniform positivity: For any α > 0, there exists a scalar β > 0 such that y + αB ⊂

Y \ (−K) implies θ(y) ≥ β.

We say that θ is an abstract scalarizing function if it has the properties (P1)-(P4) [16].

Let us recall some functions that are frequently used for scalarization in vector and set

optimization.

(a) The function proposed by Gerstewizt (Tammer) [12]. Assume that K is solid and

k0 ∈ intK. Define a function ϕk0 : Y → R by

ϕk0(y) := inf{t ∈ R : y ∈ tk0 −K} = inf{t ∈ R : y ≤ tk0}.

(b) The Hiriart-Urruty signed distance ∆−K associated to the cone K defined by

∆−K(y) := d−K(y)− dY \(−K)(y) =

{
−dY \(−K)(y) if y ∈ −K
d−K(y) otherwise,

see [19] for the definition in the general case. This function is popularly known in

the literature also as the oriented distance function.

(c) The function introduced by Kasimbeyli [25]. Given a continuous linear functional

` ∈ Y ∗ with ‖`‖ ≥ 1, a Bishop-Phelps cone C(`) is defined as follows

C(`) := {y ∈ Y : `(y) ≥ ‖y‖},

see [5]. When ‖`‖ = 1, C(`) has the form C(`) = {y ∈ Y : `(y) = ‖y‖} and it is

called a Bishop-Phelps cone given by an equation in [17].

Let K = C(`). The function ξ` : Y → R used for scalarization by Kasimbeyli is

defined as follows: for every y ∈ Y

ξ`(y) := `(y) + ‖y‖.

It has been proved that these functions satisfy Properties (P1)-(P6) (the function intro-

duced by Kasimbeily satisfies (P5)-(P6) under an additional condition that ‖`‖ > 1) [16,

Propositions 3.1-3.3].

2.4. The signed Hausdorff-type half-distances and the Hausdorff-type distance.

We recall some quantities associated to a pair (A,B) of nonempty subsets of Y that have

been successfully used for scalarization in set optimization and will play an important role in

characterizing our strict minimizers. From now on, let θ be an abstract scalarizing function.
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The signed Hausdorff-type half-distances hlθ(A,B), hpθ(A,B) and the Hausdorff-type distance

dθ(A,B) are defined as follows [15, 16]:

hlθ(A,B) := sup
b∈B

inf
a∈A

θ(a− b),

hpθ(A,B) := inf
a∈A

inf
b∈B

θ(a− b),

and

dθ(A,B) := max{hlθ(A,B), hlθ(B,A)}.

Below, we collect some properties of hrθ(A,B) (r ∈ {l, p}) and dθ(A,B) that will be used

later, see [15, Proposition 3.2], [16, Propositions 4.1,4.2, 4.5, 4.6, 6.2, 6.3 and Corollary

4.1]. Note that the Hausdorff-type distance satisfies some properties of a metric such as

nonnegativity, symmetry and triangle inequality, among others.

Lemma 2.1. The following assertions are true.

(a) hrθ(A,B) is finite, provided A, B are K-bounded in case r = l and A, −B are K-

bounded in case r = p.

(b) The “sup” and “inf” in the definition of hrθ(A,B) can be replaced by “max” and

“min”, provided A, B are K-compact in case r = l and A, −B are K-compact in

case r = p.

(c) hrθ(A,A) ≤ 0.

(d) hrθ(A,A) = 0, provided A is K-bounded in case r = l and A = Min(A) in case r = p.

(e) dθ(A,B) = dθ(A,Min(B)) = dθ(Min(A),Min(B)) and there exist a ∈ Min(A) and

b ∈ Min(B) such that dθ(A,B) = θ(a − b) or dθ(A,B) = θ(b − a), provided that A

and B are K-compact.

3. Directional derivative and subdifferential of a set-valued map

In this section, we present a high order version of the directional derivative introduced in

[15] and define subdifferential in terms of coderivative for a set-valued map.

From now on, let Ω ⊆ X be a nonempty set and F : Ω ⊆ X ⇒ Y be a set-valued map with

nonempty values. The graph and epigraph of F are the sets grF := {(x, y) : x ∈ Ω, y ∈ F (x)}
and epiF := {(x, y) : x ∈ Ω, y ∈ F (x) +K}, respectively.

Let x̄ ∈ Ω. We say that d ∈ Y is an admissible direction of F at x̄ (or simply an admissible

direction) if there exists δ > 0 such that x̄+ td ∈ Ω for all t ∈]0, δ[. For such d and t, denote

At :=
F (x̄+ td)− F (x̄)

tk

and

W k
θ (x̄, d) := {A ⊂ Y : A is K−compact and lim

t↓0+
dθ(At, A) = 0}.
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Definition 3.1. The directional derivative Dk
θF (x̄, d) of order k of F at x̄ in an admissible

direction d is defined as follows:

Dk
θF (x̄, d) :=

{
Min(A) for some A ∈ W k

θ (x̄, d) if W k
θ (x̄, d) 6= ∅

∅ otherwise

Note that when k = 1 and θ = ∆−K , Definition 3.1 collapses into the definition of

directional derivative for a set-valued map introduced in [15, Definition 4.1]. Observe that

if the set-valued map F has bounded values, then the distance dθ(At, A) considered in the

definition of the set W k
θ (x̄, d) is finite and if A ∈ W k

θ (x̄, d), then A being K-compact has the

domination property and one can prove that the set Min(A) also is K-compact.

It turns out that the directional derivative of the order k is well-defined. Namely, we have

the following.

Proposition 3.1. Assume that W k
θ (x̄, d) 6= ∅.

(i) The directional derivative Dk
θF (x̄, d) is well-defined in the sense that it does not

depend on the choice of A ∈ W k
θ (x̄, d) and it satisfies

lim
t↓0+

dθ(At, D
k
θF (x, d)) = 0.

(ii) If B ⊂ Y is a nonempty K-compact set, then Dk
θF (x̄, d) = B if and only if

lim
t↓0+

dθ(At, B) = 0 and Min(B) = B.

(iii) If Dk
θF (x̄, d) is nonempty, then so is Dk

θF (x̄, λd) for any λ > 0 and

Dk
θF (x̄, λd) = λkDk

θF (x̄, d).

We omit the proof, which is similar to the one for the case k = 1 and θ = ∆−K [15,

Proposition 4.1].

Example 3.1. Let Ω = X = R, Y = R2 and K = R2
+. In this example, θ = ∆−R2

+
and

x̄ = 0. Due to Proposition 3.1 (iii), we can restrict ourselves to d = 1 and d = −1. We

provide some detailed proofs to demonstrate how to calculate the directional derivative in

these concrete cases.

(i) Let

F (x) :=

{
{(2x2, ex

2
), (x2, 2ex

2 − 1)} if x 6= 0

{(0, 0), (0, 1)} if x = 0

For d ∈ {−1, 1} and t > 0, we have

F (x̄+ td) = {(2t2, et2), (t2, 2et
2 − 1)},

F (x̄+ td)− F (x̄) = {(2t2, et2), (t2, 2et
2 − 1), (2t2, et

2 − 1), (t2, 2et
2 − 2)}
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and

At = {(2, et
2

t2
), (1,

2et
2 − 1

t2
), (2,

et
2 − 1

t2
), (1,

2et
2 − 2

t2
)}.

LetA := {(1, 2), (2, 1)}. One can check that Min(A) = A and Min(At) = {(1, 2et
2−2
t2

), (2, et
2−1
t2

)}.
A simple calculation gives

hl∆−K
(Min(At),Min(A)) =

= max{min{∆−K((0, 2et
2−2
t2
− 2)),∆−K((1, et

2−1
t2
− 2))},

min{∆−K((−1, 2et
2−2
t2
− 1)),∆−K((0, et

2−1
t2
− 1))}}

= max{2et
2−2
t2
− 2, et

2−1
t2
− 1} = 2( et

2−1
t2
− 1)

and
hl∆−K

(Min(A),Min(At)) =

= max{min{∆−K((0, 2− 2et
2−2
t2

)),∆−K((1, 1− 2et
2−2
t2

))},
min{∆−K((−1, 2− et

2−1
t2

)),∆−K((0, 1− et
2−1
t2

))}}
= max{0, 0} = 0.

Therefore,

limt↓0+ d∆−K (At, A) = limt↓0+ d∆−K (Min(At),Min(A))

= limt↓0+ max{2( et
2−1
t2
− 1), 0} = 0,

which means that

D2
θF (0, 1) = D2F (0,−1) = {(1, 2), (2, 1)}.

(ii) Let

F (x) :=

{
{(x, 1), (x, 2)} if x 6= 0

{(0, 0), (0, 1)} if x = 0.

Then

D1
θF (0, d) =

{
{(1, 0)} if d = 1

{(−1, 0)} if d = −1

(see Example 4.1 in [15]).

(iii) Let

F (x) :=

{
{(x, 0), (x, 1)} if x 6= 0

{(0, 0), (0, 1)} if x = 0

Then

D1
θF (0, d) =

{
{(1, 0)} if d = 1

∅ if d = −1

We omit the proof of the equality D1
θF (0, 1) = {(1, 0)} and show that D1

θF (0,−1) =

∅. For d = −1 and t > 0, we have

F (x̄+ td) = {(−t, 0), (−t, 1)},
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and

At = {((−1, 0), (−1,
1

t
), (−1,−1

t
)}.

One can check that Min(At) = {at}, where at = (−1,−1
t
). Suppose to the contrary

that there exists a nonempty R2
+-compact subset A ⊂ R2 such that

lim
t↓0+

d∆−R2
+

(Min(At),Min(A)) = 0.

Note that since A is R2
+-compact, we have

t∗ := inf{a : ∃a′ such that (a, a′) ∈ A or (a′, a) ∈ A} > −∞.

By Lemma 2.1, for each t > 0 (sufficiently small), there exists āt = (ūt, v̄t) ∈ A such

that either

d∆−R2
+

(Min(A),Min(At)) = ∆−R2
+

(āt − at) = ∆−R2
+

((ūt + 1, v̄t +
1

t
))

or

d∆−R2
+

(Min(A),Min(At)) = ∆−R2
+

(at − āt) = ∆−R2
+

(−(ūt + 1, v̄t +
1

t
)).

Let consider the first case. Since ūt ≥ t∗, v̄t ≥ t∗ and 1
t
→ +∞, we get (for t

sufficiently small such that v̄t + 1
t
> 0)

∆−R2
+

((ūt + 1, v̄t +
1

t
)) =

{ √
(ūt + 1)2 + (v̄t + 1

t
)2 if ūt + 1 ≥ 0

v̄t + 1
t

if ūt + 1 < 0.

Then it follows that

lim
t↓0+

d∆−R2
+

(Min(At),Min(A)) = +∞,

a contradiction. The second case can be considered in a similar way. Thus, W 1
θ (0,−1) =

∅ and D1
θF (0,−1) = ∅.

(iv) Let

F (x) :=

{
{(xk, 1), (0, xkex + 1)} if x 6= 0

{(0, 0), (0, 1)} if x = 0.

If k is even, then Dk
θF (0, 1) = Dk

θF (0,−1) = {(1, 0), (0, 1)}.

Next, we define subdifferential of the map F . In what follows, Ω is assumed to be convex

whenever some convexity assumption is imposed on the map F .

Definition 3.2. We say that

(i) F is convex [2] if for all x1, x2 ∈ Ω and λ ∈ [0, 1]

λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2).
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(ii) F is K-convex [31] if for all x1, x2 ∈ Ω and λ ∈ [0, 1]

λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2) +K.

We associate to F a set-valued map F+ : Ω ⇒ Y defined by

F+(x) = F (x) +K.

It is known that F is convex if and only if its graph is convex and F is K-convex if and only

if its epigraph is convex, for the second fact see [27, Proposition 2.2]. Since epiF = graphF+,

the map F is K-convex if and only if the map F+ is convex.

Let us recall some concepts from convex analysis and nonsmooth analysis. Given a convex

set A in a normed space X, a normal cone to A at x̄ ∈ A is the set

N(A, x̄) := {x∗ ∈ X∗ : 〈x∗, a− ā〉 ≤ 0,∀a ∈ A}.

For a convex set-valued map G : Ω ⇒ Y , its coderivative D∗G(x̄, ȳ) at (x̄, ȳ) ∈ graphG is a

set-valued map from Y ∗ to X∗ defined as follows [2]: for y∗ ∈ Y ∗

D∗G(x̄, ȳ)(y∗) = {x∗ ∈ X∗ : (x∗,−y∗) ∈ N(graphG, (x̄, ȳ))}.

Definition 3.3. Assume that F is K-convex and x̄ ∈ Ω. The subdifferential of F at x̄ is

the set

∂F (x̄) := ∪ȳ∈F (x̄) ∪y∗∈K∗,‖y∗‖=1 D
∗F+(x̄, ȳ)(y∗).

It follows from the definition that

∂F (x̄) = { x∗ ∈ X∗ : ∃ȳ ∈ F (x̄) ∃y∗ ∈ K∗, ‖y∗‖ = 1

such that (x∗,−y∗) ∈ N(epiF, (x̄, ȳ)}.

One can check that if (x∗,−y∗) ∈ N(epiF, (x̄, ȳ)), then y∗ ∈ K∗ and if F is a convex function

from Ω to R, then the subdifferential given by Definition 3.3 reduces to the subdifferential

of convex analysis.

Example 3.2. Let Ω = X = R, Y = R2, K = R2
+, θ = ∆−K and F be the map defined by

F (x) := [(|x|, e|x|), (|x|, 2e|x| − 1)].

Since the set epiF = {(x, y, z) : x ∈ R, y ≥ |x|, z ≥ e|x|} is convex, the map F is K-convex.

One can check that F (0) = {(0, 1)}, D1
θF (0, 1) = D1

θF (0,−1) = {(1, 1)} and ∂F (0) = [−1, 1].

We conclude this section with some comments.

Remark 3.1. Various concepts of directional derivative and subdifferential for a set-valued

map F have been introduced in literature and each of them has shown to be useful for specific

optimization problems [7, 10, 15, 18, 21, 30, 32]. Here, we follow the lines of [7, 10, 15, 21]

in taking into consideration a point x̄ in the domain of F and the whole set F (x̄), and not
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a pair (x̄, ȳ) from the graph of F like in [18, 30, 32], in order to be closer in spirit to the set

approach in set-valued optimization and appropriately formulate optimality conditions for

strict minimizers by means of these constructions. We also note that our subdifferential is

defined through normal cone and coderivative, which are known concepts in convex analysis

and variational analysis, in contrast to [10, 18, 21], where subdifferential is defined with the

help of new constructions.

4. Concepts of strict solutions of a set-valued optimization problem

studied with the set approach

In this section, we introduce concepts of strict solutions for (SOP) studied with the set

approach. From now on, let φ : R+ → R+ be an admissible function, i.e. φ is nondecreasing,

φ(0) = 0 and φ(t) > 0 for t > 0. Let us recall main concepts of strict efficiency in scalar

optimization and set optimization.

(a) Scalar optimization problem

Let g : Ω→ R be a function. Consider a scalar optimization problem (OP)

Minx∈Ωg(x).

Definition 4.1. We say that x̄ ∈ Ω is a φ-strict local solution of (OP) or x̄ is a φ-strict local

minimizer of g over Ω (with constant α > 0) if there exists a neighborhood U of x̄ such that

for all x ∈ U ∩ Ω, x 6= x̄, one has

g(x) > g(x̄) + αφ(‖x− x̄‖).

Remark that strict minimizers for a scalar function have been introduced with φ(t) = tm,

m = 1, 2 [4] and considered also for m ≥ 2 [34]. Definition 4.1 involving an admissible

function φ is motivated by the one presented for a vector-valued function in [6].

(b) Set optimization problem studied with the vector approach.

Definition 4.2. [11, Definition 3.2] We say that a pair (x̄, ȳ) ∈ graphF is a φ-strict local

efficient solution of (SOP) or (x̄, ȳ) is a φ-strict local minimizer of F over Ω if ȳ ∈ Min(F (x̄))

and there exists a neighborhood U of x̄ such that for all x ∈ U ∩ Ω, x 6= x̄, one has

(F (x) +K) ∩ (ȳ + αφ(‖x− x̄‖)B) = ∅. (1)

Condition (1) can be expressed in the following equivalent way: for all x ∈ U ∩ Ω, x 6= x̄,

y ∈ F (x), b ∈ B, one has

y + αφ(‖x− x̄)b 6≤ ȳ. (2)
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(c) Set optimization problem studied with the set approach

Let us recall some concepts of solutions to (SOP) studied with the set approach. From

now on, we assume that r ∈ {l, p}.

Definition 4.3. [15, Definition 5.1] We say that x̄ is a strict �r-efficient local solution of

(SOP) if there exists a neighborhood U of x̄ such that for all x ∈ U ∩ Ω, x 6= x̄, one has

F (x) 6�r F (x̄).

Definition 4.4. [32, Definition 11] We say that a point x̄ is a set-based strict local minimizer

of order m for F over Ω with respect to the order set relation�p if there exists a neighborhood

U of x̄ such that for all x ∈ U ∩ Ω, x 6= x̄, one has

F (x) 6�p B(F (x̄), α‖x− x̄‖m), (3)

where B(A, t) := ∪a∈A(a+ tB) for any nonempty subset A of Y and nonnegative scalar t.

Remark that the order relation �p has been referred to as “possibly less domination

elation” in [32].

Now, let us introduce concepts of strict efficiency for (SOP) studied with the set approach.

Definition 4.5. We say that x̄ is a (�r, φ)-strict local efficient solution of (SOP) or x̄ is a

(�r, φ)-strict local minimizer of F over Ω (with constant α > 0) if there exists a neighborhood

U of x̄ such that for all x ∈ U ∩ Ω, x 6= x̄, one has

F (x) + αφ(‖x− x̄‖)B 6�r F (x̄). (4)

When U = Ω in Definitions 4.1-4.5, we have corresponding global concepts.

Let us state some facts about relationships among concepts of efficiency given in Definitions

4.2-4.5. In what follows, when no confusion occurs, we omit “local/global” or “ over Ω” while

speaking about solutions of (SOP)/minimizers of F .

Lemma 4.1. (a) If x̄ is a (�p, φ)-strict solution of (SOP), then it is a (�l, φ)-strict

solution of (SOP).

(b) If x̄ is a (�r, φ)-strict solution of (SOP), then then it is a strict �r-efficient solution

of (SOP).

We omit an easy proof of this lemma.

Lemma 4.2. (a) If x̄ is a set-based strict local minimizer of order m of F with respect

to the order set relation �p, then it is a (�p, φ)-strict minimizer of F with φ(t) = tm.
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(b) If x̄ is a (�p, φ)-strict minimizer of F and there exists ȳ ∈ Min(F (x̄)), then (x̄, ȳ) is

a φ-strict minimizer of F .

Proof. The first assertion is true because (3) is equivalent to (4) when r = p and φ(t) = tm

and the second one follows from the fact that if (3) is satisfied and ȳ ∈ Min(F (x̄)), then (2)

holds for all x ∈ U ∩ Ω, x 6= x̄, y ∈ F (x) and b ∈ B. �

Remark 4.1. The second assertion of Lemma 4.2 is motivated by [32, Theorem 4], which

has been proved for a strict minimizer in the sense of Definition 4.4.

We provide some examples to illustrate the above concepts of strict efficiency as well as

to show that the converses to the assertions of Lemma 4.1 are not true.

Example 4.1. Let Ω = X = R, Y = R2, K = R2
+ and x̄ = 0.

(i) x̄ is a (�p, φ)-strict global minimizer. Let F be the map in Example 3.1 (i) and

φ(t) = t2. Then x̄ is a (�p, φ)-strict global minimizer of F and (4) is globally satisfied

in case r = p with any constant α ∈]1, 0[. Indeed, observe that

F (x) + α|x|2B = {(2x2 + αx2u, ex
2

+ αx2v) : (u, v) ∈ B}
∪ {(x2 + αx2u, 2ex

2 − 1 + αx2v) : (u, v) ∈ B}.

Since α ∈]0, 1[ and u ∈ [−1, 1], we have 2x2 +αx2u = x2(2+αu) > 0 and x2 +αx2u =

x2(1 + αu) > 0. Hence, if y ∈ F (x) + αx2B and ȳ ∈ F (x̄), then y 6≤ ȳ. This means

that (4) holds in case r = p for all x 6= x̄.

(ii) x̄ is not a (�p, φ)–strict local minimizer. Let F be the map considered in Example

3.1 (ii) and φ(t) = t. Then x̄ is not a (�p, φ)-strict local minimizer of F . Indeed, led

α > 0 be an arbitrary scalar. For any x < 0, take y = (x, 1). Then y ∈ F (x) +α|x|B
and y ≤ (0, 1) ∈ F (0). Thus, for any neighborhood U of zero, there exists x ∈ U ,

x 6= 0 such that (4) does not hold in case r = p.

(iii) x̄ is a (�l, φ)-strict local minimizer but it is not a (�p, φ)-strict local minimizer. Let

F be the map

F (x) :=

{
{(−3, 1

2
ex), (−2, 1

3
ex)} if x 6= 0

{(0, 0), (0, 1)} if x = 0

and φ(t) = t. Let α > 0 be an arbitrary scalar. We show that for x sufficiently close

to zero, (4) is satisfied in case r = l but is not satisfied in case r = p. Indeed, observe

that

F (x) + α|x|B = {(−3 + α|x|u, 1
2
ex + α|x|v) : (u, v) ∈ B}

∪ {(−2 + α|x|u, 1
3
ex + α|x|v) : (u, v) ∈ B}.
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For x sufficiently close to zero and |u| ≤ 1, |v| ≤ 1, we have

0 < min{1

2
ex + α|x|v, 1

3
ex + α|x|u},

which means that for any y ∈ F (x) +α|x|B, one has y 6≤ (0, 0). Thus, (4) is satisfied

in case r = l. For x sufficiently close to zero and y = (−3, 1
2
ex) ∈ F (x) + α|x|B, we

have y ≤ (0, 1), which means that (4) is not satisfied in case r = p.

(iv) x̄ is a strict �r-efficient local solution of (SOP) but it is not a (�r, φ)-strict local ef-

ficient solution. This happens when F is the map defined by F (x) = {(x2, 0), (x2, 1)}
and φ(t) = t.

(v) x̄ is a (�p, φ)-strict local minimizer but Min(F (x̄)) = ∅. Let φ(t) = t2 and F be the

map defined by

F (x) :=

{
{(2x2, ex

2
), (x2, 2ex

2 − 1)} if x 6= 0

{(0, t) : 0 < t ≤ 1} if x = 0.

Similar to the case (i), we can show that x̄ is a (�p, φ)-strict local minimizer. The

fact that Min(F (x̄)) = ∅ is obvious.

Next, we show that the concepts of (�r, φ)-strict local/global minimizer may coincide

under the K-convexity condition.

Proposition 4.1. Assume that F is K-convex and φ(t) = t. If x̄ is a (�r, φ)-strict local

minimizer of F , then it is a (�r, φ)-strict global minimizer of F with the same constant α.

Proof. Assume that x̄ is a (�r, φ)-strict local minimizer of F . Then there exists a (convex)

neighborhood U of x̄ such that for all x ∈ U ∩ Ω, x 6= x̄, one has

F (x) + α‖x− x̄‖B 6�r F (x̄). (5)

Suppose to the contrary that x̄ is not a (�r, φ)-strict global minimizer of F with the constant

α. Then there exists x ∈ Ω such that

F (x) + α‖x− x̄‖B �r F (x̄). (6)

Let xλ := λx+ (1− λ)x̄, where λ ∈]0, 1]. Observe that xλ ∈ U ∩Ω, xλ 6= x̄ for λ sufficiently

close to zero. Therefore, (5) implies

F (xλ) + α‖xλ − x̄‖B 6�r F (x̄). (7)
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On the other hand, the K-convexity and (6) imply

F (x) + α‖x− x̄‖B �l F (x̄)

=⇒ F (x̄) ⊆ F (x) + α‖x− x̄‖B +K

=⇒ λF (x̄) ⊆ λF (x) + αλ‖x− x̄‖B +K = λF (x) + α‖xλ − x̄‖B +K

=⇒ F (x̄) ⊆ λF (x̄) + (1− λ)F (x̄) ⊆ λF (x) + (1− λ)F (x̄) + α‖xλ − x̄‖B +K

=⇒ F (x̄) ⊆ F (xλ) + α‖xλ − x̄‖B +K

=⇒ F (xλ) + α‖xλ − x̄‖B �l F (x̄)

in case r = l and

F (x) + α‖x− x̄‖B �p F (x̄)

=⇒ ∃ȳ ∈ F (x̄) : ȳ ∈ F (x) + α‖x− x̄‖B +K

=⇒ ∃ȳ ∈ F (x̄) : λȳ ∈ λF (x) + αλ‖x− x̄‖B +K = λF (x) + α‖xλ − x̄‖B +K

=⇒ ∃ȳ ∈ F (x̄) : ȳ = λȳ + (1− λ)ȳ ∈ λF (x) + (1− λ)F (x̄) + α‖xλ − x̄‖B +K

=⇒ ∃ȳ ∈ F (x̄) : ȳ ∈ F (xλ) + α‖xλ − x̄‖B +K

=⇒ F (xλ) + α‖xλ − x̄‖B �p F (x̄)

in case r = p. This is a contradiction to (7). �

5. Scalarization for strict minimizers

Scalarization is one of the most important techniques in vector and set optimization.

In this section, we show that (�r, φ)-strict local minimizers of F are in fact φ-strict local

minimizers of some scalar functions. Afterward, we study the convexity and Lipschizity

properties of these scalarizing functions.

Let θ : Y → R be an abstract scalarizing function and x̄ ∈ Ω. We define a function

grθ : Ω→ R as follows:

grθ(x) = hrθ(F (x), F (x̄))

(some assumptions will be made to ensure that grθ has finite values). In what follows, we

say that F is N-valued if for all x ∈ Ω, F (x) is N, where N is K-compact, compact or

K-bounded.

Proposition 5.1. Assume that K is solid, θ satisfies Property (P5) and the following con-

ditions are satisfied.

(a) (Case r = l) F is K-compact-valued.

(b) (Case r = p) F is compact-valued and F (x̄) = Min(F (x̄)).

Then x̄ is a (�r, φ)-strict local minimizer of F if and only if it is a φ-strict local mini-

mizer of grθ (in case r = p, the “only if part” is true without the assumption that F (x̄) =

Min(F (x̄))).
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Proof. Observe that since K is solid and θ satisfies Property (P5), one has

β1 := sup
b∈B
−θ(b) > 0 and β2 := sup

b∈B
θ(b) > 0. (8)

This follows from the fact that for b ∈ intK∩B, we have θ(−b) < 0 and, since θ(b)+θ(−b) ≥
θ(0) = 0, we also have θ(b) > 0. Observe further that under the assumptions (a)-(b), the

function grθ has finite values and grθ(x̄) = 0 due to Lemma 2.1.

The “only if” part: We show that if (4) holds then we have

grθ(x) > grθ(x̄) + αβ1φ(‖x− x̄‖).

Indeed, (4) implies that the following situations occur:

- Case r = l: ∃ȳ ∈ F (x̄) such that ∀y ∈ F (x), ∀b ∈ B, one has y + αφ(‖x− x̄‖)b 6≤ ȳ.

- Case r = p: ∀ȳ ∈ F (x̄), ∀y ∈ F (x), ∀b ∈ B, one has y + αφ(‖x− x̄‖)b 6≤ ȳ.

In both cases we have θ(y − ȳ + αφ(‖x− x̄‖)b) > 0 and

θ(y − ȳ) ≥ θ(y − ȳ + αφ(‖x− x̄‖)k0)− θ(αφ(‖x− x̄‖)b) > α(−θ(b))φ(‖x− x̄‖).

As b ∈ B is arbitrary, we get

θ(y − ȳ) > α(sup
b∈B
−θ(b))φ(‖x− x̄‖) = αβ1φ(‖x− x̄‖). (9)

Recall that by Lemma 2.1 and the conditions (a)-(c), the “sup” and “inf” in the definition

of hrθ can be replaced by “max” and “min”. Therefore, (9) implies that

hrθ(F (x), F (x̄)) > αβ1φ(‖x− x̄‖).

Thus, we have grθ(x) > grθ(x̄) + αβ1φ(‖x− x̄‖), as it was to be shown.

The “if” part: We show that if (4) does not hold then

grθ(x) ≤ grθ(x̄) + αβ2φ(‖x− x̄‖).

Indeed, if (4) does not hold then the following situations occur:

- Case r = l: ∀ȳ ∈ F (x̄), ∃y ∈ F (x), ∃b ∈ B such that y − αφ(‖x− x̄‖)b ≤ ȳ.

- Case r = p: ∃ȳ ∈ F (x̄), ∃y ∈ F (x), ∃b ∈ B such that y − αφ(‖x− x̄‖)b ≤ ȳ.

In both cases we have θ(y − ȳ − αφ(‖x− x̄‖)b) ≤ 0 and

θ(y − ȳ) ≤ θ(y − ȳ − αφ(‖x− x̄‖)b) + θ(αφ(‖x− x̄‖)b) ≤ α(θ(b))φ(‖x− x̄‖).

Hence,

θ(y − ȳ) ≤ α sup
b∈B

(θ(b))φ(‖x− x̄‖) = αβ2φ(‖x− x̄‖).

It follows that

hrθ(F (x), F (x̄)) ≤ αβ2φ(‖x− x̄‖).

Thus, we have grθ(x) ≤ αβ2φ(‖x− x̄‖), as it was to be shown. �
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Remark 5.1. Since −θ(−b) ≤ θ(b) for all b ∈ Y , we have β1 ≥ β2. Let Y = R2 and K = R2
+.

One can check that β1 =
√

2/2, β2 = 1 when θ is the Hiriart-Urruty signed distance function

∆−R2
+

and β1 = 1, β2 =
√

2 when θ is the Gerstewizt scalarizing function ϕk0 and k0 = (1, 1).

Next, we consider the convexity and Lipschitzity properties of the functions grθ .

Definition 5.1. We say that

(i) F is locally Lipschitz around x̄ [3] if there is a scalar L > 0 and a neighborhood U

of x̄ such that for any x1, x2 ∈ U ∩ Ω

F (x1) ⊆ F (x2) + L‖x1 − x2‖B.

(ii) F is locally K-Lipschitz around x̄ [1] if there is a scalar L > 0 and a neighborhood

U of x̄ such that for any x1, x2 ∈ U ∩ Ω

F (x1) ⊆ F (x2) + L‖x1 − x2‖B +K.

Proposition 5.2. Assume that the functions grθ have finite values.

(a) If F is K-convex, then grθ are convex.

(b) Assume that K is solid and θ also has Property (P5). If F is locally K-Lipschitz

around x̄ ∈ Ω, then grθ are locally Lipschitz around x̄.

Proof. (a) Let x1, x2 ∈ Ω and λ ∈ [0, 1]. Denote xλ := λx1 + (1− λ)x2. Let ŷ1 ∈ F (x1), ŷ2 ∈
F (x2). Since F is K-convex, there exists ŷλ ∈ F (xλ) such that λŷ1 + (1− λ)ŷ2 ≥ ŷλ. Then

λ(ŷ1 − ȳ) + (1− λ)(ŷ2 − ȳ) ≥ ŷλ − ȳ, ∀ȳ ∈ F (x̄)

and

λθ(ŷ1 − ȳ) + (1− λ)θ(ŷ2 − ȳ) ≥ θ(ŷλ − ȳ) ≥ inf
yλ∈F (xλ)

θ(yλ − ȳ), ∀ȳ ∈ F (x̄).

Since ŷ1 ∈ F (x1) and ŷ2 ∈ F (x2) can be arbitrarily chosen, we get

λ inf
y1∈F (x1)

θ(y1 − ȳ) + (1− λ) inf
y2∈F (x2)

θ(y2 − ȳ) ≥ inf
yλ∈F (xλ)

θ(yλ − ȳ), ∀ȳ ∈ F (x̄).

Again, since ȳ ∈ F (x̄) can be arbitrarily chosen, we get

λglθ(x1) + (1− λ)glθ(x2) ≥ glθ(xλ)

and

λgpθ(x1) + (1− λ)gpθ(x2) ≥ gpθ(xλ).

This means that the functions grθ are convex.

(b) Let L, U , x1 and x2 as in the definition of the K-Lipschizity. For any ŷ1 ∈ F (x1) there

exists ŷ2 ∈ F (x2) and b̂ ∈ B such that ŷ2− ŷ1 ≤ L‖x1−x2‖b̂. Then for all ȳ ∈ F (x̄), we have

θ(ŷ2 − ȳ1) ≤ θ(L‖x1 − x2‖b̄) ≤ L sup
b∈B

θ(b)‖x1 − x2‖ = Lβ2‖x1 − x2‖
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and

θ(ŷ2 − ȳ) ≤ θ(ŷ1 − ȳ) + θ(ŷ2 − ȳ1) ≤ θ(ŷ1 − ȳ) + Lβ2‖x1 − x2‖, ∀ȳ ∈ F (x̄),

where β2 is defined by (8). Therefore,

inf
y2∈F (x2)

θ(y2 − ȳ) ≤ θ(ŷ2 − ȳ) ≤ θ(ŷ1 − ȳ) + Lβ2‖x1 − x2‖, ∀ȳ ∈ F (x̄)

and since ŷ1 ∈ F (x1) is arbitrary, we obtain

inf
y2∈F (x2)

θ(y2 − ȳ) ≤ inf
y1∈F (x1)

θ(y1 − ȳ) + Lβ2‖x1 − x2‖, ∀ȳ ∈ F (x̄).

Again, since ȳ ∈ F (x̄) can be arbitrarily chosen, we get

glθ(x2) ≤ glθ(x1) + Lβ2‖x1 − x2‖

and

gpθ(x2) ≤ gpθ(x1) + Lβ2‖x1 − x2‖.

Thus, the functions grθ are locally Lipschitz around x̄. �

Example 5.1. Let Ω = X = R, Y = R2, K = R2
+, θ = ∆−K , x̄ = 0 and F be the map

defined by F (x) := {(0, e|x|), (|x|, 1)}. It is easy to see that F is locally Lipschitz. Observe

that F (x̄) = {(0, 1)} and hence, glθ = gpθ . One can check that

glθ(x) = inf
y∈F (x)

∆−R2
+

(y − (0, 1)) =

{
x if x ≥ 0

e−x − 1 if x < 0

and the functions glθ and gpθ are locally Lipschitz.

6. Necessary and sufficient conditions for (�r, φ)-strict minimizers

The aim of this section is to establish optimality conditions for x̄ ∈ Ω to be a (�r, φ)-

strict local/global minimizer of F . These conditions are either imposed on the set difference

F (x)−F (x̄), on hrθ(F (x), F (x̄)) or expressed in terms of the directional derivative Dk
θF (x̄, d)

and the subdifferential ∂F (x̄). In what follows, the notation “x →Ω x̄” means x → x̄ and

x ∈ Ω.

Let us start with optimality conditions for a (�p, φ)-strict minimizer.

Theorem 6.1. The following assertions are equivalent.

(a) x̄ is a (�p, φ)-strict local minimizer of F .

(b) There exist a neighbrhood U of x̄ and a scalar α > 0 such that the following equality

holds

(F (x) +K) ∩ (F (x̄) + αφ(‖x− x̄‖)B) = ∅, ∀x ∈ (U ∩ Ω) \ {x̄}. (10)
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(c) The following relation holds

0 /∈ Limsupx→Ωx̄, x 6=x̄
F (x)− F (x̄) +K

φ(‖x− x̄‖)
(11)

(the set in the right hand side of (11) is the set of all cluster points).

Proof. (a) ⇐⇒ (b) It is immediate from the fact that if A and B are nonempty subsets of

Y and t is a nonegative scalar, then

A 6�p B ⇐⇒ (A+K) ∩B = ∅

and

(A+ tB) ∩B = ∅ ⇐⇒ A ∩ (B + tB) = ∅.

(b) =⇒ (c) Suppose to contrary that (10) is true but (11) is not. Then there exist a

sequence xn →Ω x̄, xn 6= x̄, yn ∈ F (xn), ȳn ∈ F (x̄) and kn ∈ K such that

yn − ȳn + kn
φ(‖xn − x̄‖)

→ 0.

For any ε > 0, there exists n0 = n0(ε) such that for n ≥ n0 one has

‖yn + kn − ȳn‖ ≤ εφ(‖xn − x̄‖),

which means that yn + kn ∈ ȳn + εφ(‖xn − x̄‖)B. Since we can take ε < α/2, it follows that

(F (xn) +K) ∩ (F (x̄) + αφ(‖xn − x̄‖)B) 6= ∅, a contradiction to (10).

(c) =⇒ (b) Suppose to contrary that (11) is true but (10) is not, i.e., for any positive

integer n, there exists xn such that xn →Ω x̄, xn 6= x̄ and

(F (xn) +K) ∩ (F (x̄) +
1

n
φ(‖xn − x̄‖)B) 6= ∅, ∀n.

Then one can find yn ∈ F (xn), kn ∈ K, ȳn ∈ F (x̄) and bn ∈ B such that yn + kn =

ȳn + 1
n
φ(‖xn − x̄‖)bn. It follows that

yn − ȳn + kn
φ(‖xn − x̄‖)

=
1

n
bn,

a contradiction to (11). �

Corollary 6.1. If x̄ ∈ Ω is a (�p, φ)-strict local minimizer of F , then

Limsupx→Ωx̄, x6=x̄
F (x)− F (x̄)

φ(‖x− x̄‖)
∩ (−K) = ∅. (12)

In the case Ω ⊂ Rm and K = Rm
+ , x̄ is a (�p, φ)-strict local minimizer of F if

Limsupx→Ωx̄, x6=x̄
F (x)− F (x̄)

φ(‖x− x̄‖)
∩ [−∞, 0]m = ∅. (13)
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Proof. First, suppose to the contrary that (12) does not hold. Then there exist k ∈ K, a

sequence xn →Ω x̄, xn 6= x̄, yn ∈ F (xn) and ȳn ∈ F (x̄) such that

yn − ȳn
φ(‖xn − x̄‖)

→ −k

and hence,
yn − ȳn + kφ(‖xn − x̄‖)

φ(‖xn − x̄‖)
→ 0,

which is a contradiction to (11).

Next, suppose to the contrary that x̄ ∈ Ω is not a (�p, φ)-strict local minimizer of F .

Proposition 6.1 implies that (11) does not hold. Then there exist a sequence xn →Ω x̄,

xn 6= x̄, yn ∈ F (xn), ȳn ∈ F (x̄) and kn ∈ Rm
+ such that

yn − ȳn + kn
φ(‖xn − x̄‖)

→ 0.

Applying the arguments used in the proof of Proposition 3.5 (b) in [23], we can find subse-

quences xnj →Ω x̄, ynj ∈ F (xnj), ȳnj ∈ F (x̄) and k ∈ [0,∞]m such that

ynj − ȳnj
φ(‖xnj − x̄‖)

→ −k.

This is a contradiction to (13). �

Let us illustrate Theorem 6.1 and Corollary 6.1.

Example 6.1. (i) Let F be the map in Example 3.1 (i) and φ(t) = t2. Condition (11)

is satisfied, namely,

(0, 0) /∈ Limsupx→Ωx̄, x6=x̄
F (x)− F (x̄) +K

φ(‖x− x̄‖)
= {(u, v) : u ≥ 1, v ≥ 0}.

Hence, x̄ = 0 is a (�p, φ)-strict global minimizer (with α ∈]0, 1[).

(ii) Let F be the map in Example 3.1 (ii) and φ(t) = t. Condition (12) is not satisfied,

namely,

Limsupx→Ωx̄, x6=x̄
F (x)− F (x̄)

φ(‖x− x̄‖)
= {(−1, 0)} ∈ R2

+.

Hence, x̄ = 0 is not a (�p, φ)-strict global minimizer.

(iii) Let F be the map considered in Example 3.2 and φ(t) = t. Condition (13) is satisfied,

namely,

Limsupx→Ωx̄, x6=x̄
F (x)− F (x̄)

φ(‖x− x̄‖)
= [(1, 1), (1, 2)] ∩ [−∞, 0]2 = ∅.

Hence, x̄ = 0 is a (�p, φ)-strict local minimizer and since the map F is K-convex, x̄

is a (�p, φ)-strict global minimizer.
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Theorem 6.2. Assume that K is solid, θ satisfies (P5), φ(t) = tk and the directional

derivative Dk
θF (x̄, d) exists for all admissible direction d.

(a) If x̄ is a (�p, φ)-strict local minimizer of F , then for any admissible direction d we

have

Dk
θF (x̄, d) ∩ (−K) = ∅ (14)

and

inf{∆−K(u) : u ∈ Dk
θF (x̄, d)} ≥ 0. (15)

(b) Assume that F is K-convex, θ = ∆−K and k = 1. Then x̄ is a (�p, φ)-strict global

minimizer of F if

inf{∆−K(u) : u ∈ D1
θF (x̄, d), d is an admissible direction, ‖d‖ = 1} > 0. (16)

Proof. (a) Let α and U be as in the definition of a (�p, φ)-strict local minimizer of F . Suppose

to the contrary that there exist an admissible direction d and a vector v ∈ Dk
θ (x̄, d)∩ (−K).

Without lost of generality, we may assume that ‖d‖ = 1. Let δ > 0 be a scalar such that

x̄ + td ∈ (U ∩ Ω) \ {x̄} for all t ∈]0, δ[. Fix t̂ ∈]0, δ[ and denote x̂ := x̄ + t̂d. Observe that

t̂ = ‖x̂− x̄‖. Then (4) (in case r = p) implies that for all ŷ ∈ F (x̂), ȳ ∈ F (x̄) and b ∈ B we

have ŷ + α‖x̂− x̄‖kb 6≤ ȳ. Since v ∈ −K, we get

ŷ − ȳ
‖x̂− x̄‖k

− v + αb /∈ −K

and therefore,

θ(
ŷ − ȳ
‖x̂− x̄‖k

− v + αb) > 0.

We have

θ(
ŷ − ȳ
‖x̂− x̄‖k

− v) ≥ θ(
ŷ − ȳ
‖x̂− x̄‖k

− v + αb)− θ(αb) > α(−θ(b)

and since b ∈ B is arbitrary, we get

θ(
ŷ − ȳ
‖x̂− x̄‖k

− v) ≥ α sup
b∈B

(−θ(b)) = αβ1,

where β1 is defined by (8). Hence,

hlθ(
F (x̂)− F (x̄)

‖x̂− x̄‖k
, Dk

θF (x̄, d)) = sup
v∈DkF (x̄,d)

inf
ŷ∈F (x̂),ȳ∈F (x̄)

θ(
ŷ − ȳ
‖x̂− x̄‖k

− v) ≥ αβ1.

Since dθ(A,B) ≥ hlθ(A,B) by the definition, we get

dθ(
F (x̄+ t̂d)− F (x̄)

t̂k
, Dk

θF (x̄, d)) ≥ αβ1.

The just obtained inequality holds for all t̂ ∈]0, δ[, and this is a contradiction to the definition

of the directional derivative. The fact that (14) implies (15) is obvious.
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(b) Suppose to the contrary that (16) holds but x̄ is not a (�p, φ)-strict global minimizer of

F . Since F is K-convex, Proposition 4.1 implies that x̄ is not a (�p, φ)-strict local minimizer

of F . Proposition 6.1 implies

0 ∈ Limsupx→Ωx̄, x6=x̄
F (x)− F (x̄) +K

‖x− x̄‖
.

Recall that for any x ∈ Ω, x − x̄ is an admissible direction because Ω is a convex set. Let

θ = ∆−K , which is known to be an abstract scalarizing function satisfying Properties (P5).

Due to [15, Proposition 4.4], we have F (x)− F (x̄) ⊆ D1
θF (x̄, x− x̄) +K. Hence,

F (x)− F (x̄) +K

‖x− x̄‖
⊆ D1

θF (x̄,
x− x̄
‖x− x̄‖

) +K

and

Limsupx→Ωx̄,x 6=x̄
F (x)− F (x̄) +K

‖x− x̄‖
⊆ Limsupx→Ωx̄,x 6=x̄(D

1
θF (x̄,

x− x̄
‖x− x̄‖

) +K).

It follows that

0 ∈ Limsupx→x̄,x 6=x̄(D
1
θF (x̄,

x− x̄
‖x− x̄‖

) +K).

One can find sequences xi →Ω x̄, xi 6= x̄, ui ∈ D1
θF (x̄, xi−x̄

‖xi−x̄‖), ki ∈ K such that ui + ki → 0.

Since ∆−K(ui) ≤ ∆−K(ui + ki), we get

lim sup
i→∞

∆−K(ui) ≤ lim
i→∞

∆−K(ui + ki) = 0,

a contradiction to (16). �

Example 6.2. Conditions (14)-(15) are satisfied for the map considered in Example 3.1 (i)

with φ(t) = t2 and are not satisfied for the map considered in Example 3.1 (ii) with φ(t) = t.

Conditions (16) is satisfied for the map considered in Example 3.2.

The following sufficient condition is a set-valued version of [9, Proposition 3.4].

Theorem 6.3. Assume that X is a Banch space, F is K-convex and there exists µ > 0 such

that

µBX∗ ⊂ ∂F (x̄) +N(Ω, x̄). (17)

Let φ(t) = t. Then x̄ is a (�p, φ)-strict global minimizer of F over Ω with (any) α ∈]0, µ[.

Proof. Suppose to the contrary that there exists x̃ ∈ Ω, x̃ 6= x̄ such that

F (x̃) + α‖x̃− x̄‖B �p F (x̄)

and therefore, one can find ỹ ∈ F (x̃), ȳ ∈ F (x̄), b ∈ B and k ∈ K such that

ỹ + α‖x̃− x̄‖b+ k = ȳ
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It follows from a consequence of the Hahn-Banach theorem that there exists u∗ ∈ X∗ such

that ‖u∗‖ = 1 and

〈u∗, x̃− x̄〉 = ‖x̃− x̄‖.

By the assumption, there exists x∗ ∈ ∂F (x̄) such that µu∗−x∗ ∈ N(Ω, x̄). By the definition

of the normal cone, we have 〈µu∗ − x∗, x̃− x̄〉 ≤ 0. Hence, we get

µ‖x̃− x̄‖ = 〈µu∗, x̃− x̄〉 ≤ 〈x∗, x̃− x̄〉. (18)

On the other hand, since x∗ ∈ ∂F (x̄), there exist ȳ ∈ F (ȳ), k∗ ∈ K∗, ‖k∗‖ = 1 such that

(x∗,−k∗) ∈ N(epiF (x̄, ȳ)). Then 〈(x∗,−k∗), (x̃, ỹ)− (x̄, ȳ)〉 ≤ 0 and hence,

〈x∗, x̃− x̄〉 ≤ 〈k∗, ỹ − ȳ〉 = 〈k∗,−α‖x̃− x̄‖b− k〉 ≤ 〈k∗,−α‖x̃− x̄‖b〉
≤ α‖x̃− x̄‖‖k∗‖‖b‖ < µ‖x̃− x̄‖,

which is a contradiction to (18). �

Example 6.3. Condition (17) is satisfied with µ = 1 for the map considered in Example

3.2 and hence, x̄ is a (�p, φ)-strict global minimizer of F .

Remark 6.1. If there exists ȳ ∈ Min(F (x̄)), then due to Lemma 4.2 (ii), one can get

necessary conditions for x̄ to be a (�p, φ)-strict local/global minimizer from the known ones

for a φ-strict minimizer (x̄, ȳ) in the sense of Definition 4.2. This argument has been used

in the proof of [32, Theorem 5].

Next, we consider optimality conditions for a (�r, φ)-strict minimizer of F in both the

cases r = l and r = p. Our argument is based on using the scalar characterization of these

minimizers and optimality conditions for strict local minimizers of a scalar-valued function

obtained by Studniarski [34] and Durea [9].

Theorem 6.4. Assume that Ω = X and the conditions of Proposition 5.1 are satisfied. Then

x̄ is a (�r, φ)-strict local minimizer of F with φ(t) = t if and only if the following condition

is satisfied:

(i) Case F is locally K-Lipschitz: For all v ∈ X \ {0}

lim inf
t↓0+

hrθ(F (x̄+ tv), F (x̄))

t
> 0.

(ii) Case F is K-convex: For all v ∈ X \ {0}

lim
t↓0+

hrθ(F (x̄+ tv), F (x̄))

t
> 0.

Proof. Due to Proposition 5.1, x̄ is a (�r, φ)-strict local minimizer of F with φ(t) = t if

and only if x̄ is a strict local minimizer of the function grθ , where grθ(x) = hrθ(F (x), F (x̄)).
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Proposition 5.2 implies that grθ is locally Lipschitz or convex if F is locally K-Lipschitz or K-

convex, respectively. Theorem 2.1 in [34] applied to grθ states that x̄ is a strict local minimizer

of the function grθ if and only if the following condition is satisfied: For all v ∈ X \ {0}

lim inf
t↓0+

grθ(x̄+ tv)− grθ(x̄)

t
> 0

in case grθ is locally Lipschitz and

lim
t↓0+

grθ(x̄+ tv)− grθ(x̄)

t
> 0

in case grθ is convex. Since grθ(x̄) = 0 due to Lemma 2.1, the assertion follows. �

Example 6.4. The locally K-Lipschitz map F considered in Example 5.1 satisfies conditions

of Theorem 6.4. Indeed, for r ∈ {l, p}, θ = ∆−R2
+

and v ∈ R, v 6= 0, we have

hrθ(F (x̄+ tv), F (x̄)) = grθ(tv) =

{
tv if v ≥ 0

e−tv − 1 if v < 0

and

lim inf
t↓0+

hrθ(F (x̄+ tv), F (x̄))

t
=

{
v if v ≥ 0

−v if v < 0.

Remark 6.2. Assume in the case (i) of Theorem 6.4 that X is an Asplund space. Theorem

3.7 in [9] states that x̄ is a φ-strict local minimizer of grθ with α > 0 and φ(t) = t (so x̄ is a

(�r, φ)-strict local minimizer of F ) only if

αB ⊂ ∂̃grθ(x̄) + Ñ(Ω, x̄),

where ∂̃grθ(x̄) and Ñ(Ω, x̄) are the limiting (or Mordukhovich) subdifferential of the function

grθ at x̄ and the limiting (or the Mordukhovich) normal cone to the set Ω at x̄. We refer

an interested reader for the concepts of Asplund space, limiting subdifferential and limiting

cone to the book [33].

7. Conclusions

We introduced the concepts of (�r, φ)-strict efficient solutions (r ∈ {l, p}) for a set opti-

mization problem studied with the set approach with respect to the l-less set order relation

�l and the possibly less set order relations �p and an admissible function φ. We obtained

scalar characterization and some necessary/sufficient conditions for these solutions and pro-

vided various illustrative examples. In particular, some conditions for (�p, φ)-strict efficient

solutions have been expressed in terms of high-order directional derivative and subdifferential

of a set-valued map. It is of interest to study further optimality conditions for (�l, φ)-strict

efficient solutions.
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