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Abstract

The Standard Quadratic optimization Problem (StQP), arguably the simplest among all classes

of NP-hard optimization problems, consists of extremizing a quadratic form (the simplest nonlinear

polynomial) over the standard simplex (the simplest polytope/compact feasible set). As a problem

class, StQPs may be nonconvex with an exponential number of inefficient local solutions. StQPs arise

in a multitude of applications, among them mathematical finance, machine learning (clustering), and

modeling in biosciences (e.g., selection and ecology). This paper deals with such StQPs under an

additional sparsity or cardinality constraint, which, even for convex objectives, renders NP-hard

problems. One motivation to study StQPs under such sparsity restrictions is the high-dimensional

portfolio selection problem with too many assets to handle, in particular, in the presence of trans-

action costs. Here, relying on modern conic optimization techniques, we present tractable convex

relaxations for this relevant but difficult problem. We propose novel equivalent reformulations of

these relaxations with significant dimensional reduction, which is essential for the tractability of

these relaxations when the problem size grows. Moreover, we propose an instance generation proce-

dure which systematically avoids too easy instances. Our extensive computational results illustrate

the high quality of the relaxation bounds in a significant number of instances. Furthermore, in con-

trast with exact mixed-integer quadratic programming models, the solution time of the relaxations

is very robust to the choices of the problem parameters. In particular, the reduced formulations

achieve significant improvements in terms of the solution time over their counterparts.
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1 The problem — introduction and some motivation

In many applications, one is interested in sparse solutions to optimization problems. In this paper, we consider

Standard Quadratic optimization Problems (StQPs) under a hard sparsity constraint.

An StQP consists of minimizing a (not necessarily convex) quadratic form over the standard simplex:

ℓn(Q) := min
x∈Rn

{
x⊤Qx : x ∈ Fn

}
, (StQP)

where

Fn :=
{
x ∈ Rn

+ : e⊤x = 1
}

(1)

is the standard simplex, the simplest polytope in the n-dimensional Euclidean space Rn. Here, e ∈ Rn denotes

the vector of all ones.

Despite its simplicity, this problem class serves to model manifold real-world applications, ranging from the

analysis of social networks (community detection via dominant-set-clustering) [10, 34] through biology, game

theory to economy and finance [8, 31], to cite just a few. For a survey on mixed-integer convex quadratic

optimization approaches to portfolio selection, see, e.g., [32].

One motivation to introduce sparsity constraints comes from high-dimensional portfolio selection. Recently,

the significant benefits of controlling the cardinality of a portfolio have been widely recognized in the literature,

e.g., by [22] who observed that maintaining a well-diversified portfolio on S&P 500 datasets only required ap-

proximately 10 ∼ 30 assets. By fixing the number of holding stocks in advance, they bypass estimation of the

covariance matrix Σ, focusing solely on the cardinality constraints. Even earlier, [28] already found empirically

that commonly employed shrinkage methods significantly underperform in constructing portfolios. This effect,

namely that using a mathematically well-behaved surrogate instead of the true sparsity term (which is discon-

tinuous and thus non-convex) can be grossly misleading, is by now widely known in other application domains,

e.g., in signal reconstruction.

Therefore, we propose to study the StQP with an exact, hard sparsity constraint, with the aim to develop

tight yet tractable relaxations. Such a problem can be expressed as follows:

ℓρ(Q) := min
x∈Rn

{
x⊤Qx : x ∈ Fρ

}
, (StQP(ρ))

where

Fρ := {x ∈ Fn : ∥x∥0 ≤ ρ} =
{
x ∈ Rn

+ : e⊤x = 1, ∥x∥0 ≤ ρ
}

. (2)

Here, ∥x∥0 denotes the number of nonzero components of a vector x and ρ ∈ [1 :n] := {1, . . . , n} is the sparsity

parameter.

Before we start our discussion, let us stress that the primary aim of this study is to provide rigorous and

tight bounds on an extremely difficult problem. In practice, this will most likely be complemented by fast, high-

performance heuristics. Combining both methods will, as we hope, provide practical solutions of reasonable,

guaranteed quality.
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As an aside, let us mention that we address here any StQP of any finite size n, not just the average case as

n → ∞. As shown in [18, 19], asymptotically (for large n) with high probability, an StQP instance already has

a global solution in F2, so very sparse. However, it is unclear, in general, for which value of n this effect kicks

in (if at all) and what happens in highly structured (e.g., convex) StQPs as in the portfolio selection case, which

may be somehow hidden in possibly lower-dimensional regions in the space of all instances; see, e.g., [12].

1.1 Literature review and contributions

The sparse StQP problem arises in a wide range of applications. A prominent class is comprised of portfolio

selection problems with an upper bound on the number of assets [5, 37, 44]. The relevance of this problem

is well illustrated by the fact that the most recent release of MATLAB [42] now offers an iterative mixed-integer

linear programming (MILP) algorithmic framework to solve the mixed-integer quadratic programming (MIQP)

formulation of (convex) portfolio selection problems with lower and upper bounds on the cardinality, as well

as the possibility of using semi-continuous variables (taking either zero or positive values above a certain fixed

threshold). However, a quick test of this toolbox reveals that even for n = 30 and extreme sparsity ρ = 1, the

solution time was around 40 seconds (note that the solution is trivial for ρ = 1 by extracting the smallest diagonal

element of the data matrix Q). For ρ = 2, no solution was found within two hours. Clearly, solution times are

dominated by all models discussed here, cf. Figure 2a below.

Further applications include selecting subsets of regression variables in computational algorithms [33], and

sparsity in the information rate of compressive sampling [17].

There are various studies on the sparse StQP problem. Those studies can be separated into two main cate-

gories. The first group of studies indirectly handles the sparsity constraint by regularization via the ℓ1-norm or the

ℓp-pseudonorms with p ∈ (0, 1), see for instance [14, 19]. The second category of studies considers the cardinality

constraints in the sparse StQP problem directly with different approaches. A semidefinite programming based

reformulation of the sparse StQP problem that helps generating perspective cuts has been studied in [23, 45];

see also [27]. In [15], the authors study a nonconvex reformulation of the sparse StQP problem with continuous

variables and apply a regularization method for solving the reformulation. A semidefinite programming based

heuristic method that can give an upper bound on the sparse StQP problem is introduced in [13]. A tight

semidefinite relaxation of the sparse StQP problem with strong computational behavior under the assumption of

convexity of the objective function is studied in [43]. Based on the mixed-integer formulation of the sparse StQP

problem, there are also many algorithms using discrete optimization techniques to either solve the problem to

optimality, or to find an approximate solution (see, for instance, [3, 5, 20, 35, 38, 41, 46]).

This work builds upon the recent work of the same set of authors on the sparse StQP problem [6], where

the focus was on classical convex relaxations given by the reformulation-linearization technique (RLT), Shor

relaxation (SDP), and their combination (SDP-RLT) arising from (P1(ρ)), one of the mixed-integer quadratic

formulations considered this paper. They established several structural properties of these relaxations in relation

to the corresponding relaxations of StQPs without any sparsity constraints, and utilized these relations to obtain

several results about the quality of the lower bounds arising from different relaxations. In contrast, in this paper,

we consider convex relaxations arising from exact copositive reformulations of two different MIQP formulations,

which are provably tighter than each of the aforementioned classical relaxations. Furthermore, our focus is on

finding tight but tractable relaxations that scale well with the problem dimension.
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Our contributions are as follows:

(i) We present exact copositive reformulations of two mixed integer quadratic optimization models (P1(ρ))

and (P2(ρ)).

(ii) We propose novel equivalent reformulations of doubly nonnegative relaxations of each of the two copositive

reformulations in significantly smaller dimensions.

(iii) We establish that one of the two relaxations is provably tighter than the other one.

(iv) We propose an instance generation procedure that avoids instances of (StQP(ρ)) for which the cardinality

constraint is redundant.

1.2 Notation and organisation of the paper

We use Rn, Rn
+, Rm×n, and Sn to denote the n-dimensional Euclidean space, nonnegative orthant, the space

of m × n real matrices, and the space of n × n real symmetric matrices, respectively. Throughout the paper,

vectors and matrices are denoted by bold lowercase and bold uppercase letters, respectively (e.g. x and X). In

particular, we reserve e (resp., E) and o (resp., O) for the vector (resp. matrix) of all ones and all zeroes of

appropriate dimensions, respectively. The dimension should be clear from the context. Scalars are denoted by

regular lowercase Roman or Greek letters. We employ subscripts to indicate a specific element of vectors or

matrices. For instance, we denote the ith component of the vector x by xi, and the (i, j)-entry of the matrix

X by Xij . For X ∈ Rn×n and two index sets A ⊂ {1, ..., n}, B ⊂ {1, ..., n}, XAB is the submatrix of X given by

the rows and columns indexed by A and B, respectively. Similarly, xA denotes the subvector of x ∈ Rn given

by the components indexed by A. For X ∈ Rn×n, we denote the column vector formed by the diagonal entries

of X by diag (X). Inequalities on vectors and matrices are understood to be componentwise scalar inequalities

on each of the corresponding components. For X ∈ Sn, we use X ⪰ O (resp., X ≻ O) to denote that X is

positive semidefinite (resp., positive definite). The trace inner product of X ∈ Rm×n and Y ∈ Rm×n is denoted

by ⟨X,Y⟩ = trace
(
X⊤Y

)
=

m∑
i=1

n∑
j=1

XijYij .

We define the following closed, convex cones in Sn:

CPn =
{
M ∈ Sn : M = AA⊤ for some A ∈ Rn×k such that A ≥ O

}
, (3)

Dn = {M ∈ Sn : M ⪰ O, M ≥ O} , (4)

SPNn = {M ∈ Sn : M = P+ N, for some P ⪰ O, N ≥ O} , (5)

COPn =
{
M ∈ Sn : u⊤Mu ≥ 0, for all u ∈ Rn

+

}
, (6)

i.e., CPn is the cone of completely positive matrices, Dn is the cone of doubly nonnegative matrices, SPNn is

the cone of SPN matrices (those which can be decomposed into the sum of a positive semidefinite (PSD) and a

componentwise nonnegative matrix), and COPn is the cone of copositive matrices. It is well-known and easy to

check that

CPn ⊆ Dn ⊆ SPNn ⊆ COPn . (7)

Furthermore, CPn = Dn and SPNn = COPn if and only if n ≤ 4 (see [21]).

The boundary of COPn, denoted by bd COPn, is given by

bd COPn =
{
M ∈ COPn : ∃ u ∈ Fn s.t. u⊤Mu = 0

}
, (8)
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where Fn is given by (1).

For M ∈ bd COPn, the set of zeroes of M is given by

VM =
{
u ∈ Fn : u⊤Mu = 0

}
. (9)

The paper is organized as follows: Section 2 presents two exact conic reformulations, one by using binary

variables directly (Section 2.1) and the other involving complementarity constraints (Section 2.2). In Section 3, we

discuss their doubly nonnegative relaxations and propose smaller equivalents. Section 3.3 compares the tractable

lower bounds generated by them. Section 4 is devoted to careful generation procedures which systematically avoid

too easy instances and provide testbeds of different complexity scale: PSD instances, then SPN instances, and

finally COP instances which provably cannot be reduced to an instance in the previously mentioned classes. In

Section 5, we describe our computational experiment in detail (Section 5.1), discuss solution times in Section 5.2,

and the quality of the lower bounds achieved in Section 5.3. We conclude in Section 6.

2 Two exact completely positive formulations

In this section, we present two exact formulations of the sparse StQP problem (StQP(ρ)) as mixed-binary

quadratic optimization problems, a direct one covered by Section 2.1, whereas Section 2.2 is devoted to a formu-

lation involving a complementarity constraint.

2.1 Conic formulation of direct MIQP

By introducing binary variables, the sparse StQP can be reformulated as the following mixed-binary quadratic

optimization problem:

ℓρ(Q) = min
(x,u)∈Rn×Rn

x⊤Qx

s.t. e⊤x = 1

e⊤u = ρ

x ≤ u

u ∈ {0, 1}n

x ≥ o .

(P1(ρ))

By introducing the redundant constraints u ≤ e, slack variables y ≥ o and v ≥ o so that x + y = u and

u+ v = e, we arrive at the following reformulation of (P1(ρ)):

ℓρ(Q) = min
(x,u,v,y)∈Rn×Rn×Rn×Rn

x⊤Qx

s.t. e⊤x = 1

e⊤u = ρ

x+ y = u

u+ v = e

u ∈ {0, 1}n

x ≥ o

y ≥ o

v ≥ o .

(P1A(ρ))
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By [16], (P1A(ρ)) admits an equivalent reformulation as the following conic optimization problem:

ℓρ(Q) = min
Z∈S4n+1

⟨Q,Zxx⟩

s.t. e⊤x = 1

e⊤u = ρ

x+ y = u

u+ v = e

⟨E,Zxx⟩ = 1

⟨E,Zuu⟩ = ρ2

diag (Zuu) = u

diag (Zxx) + diag (Zyy) + diag (Zuu) + 2 [diag (Zxy)− diag (Zxu)− diag (Zuy)] = o

diag (Zuu) + 2diag (Zuv) + diag (Zvv) = e

Z :=



1 x⊤ u⊤ v⊤ y⊤

x Zxx Zxu Zxv Zxy

u (Zxu)⊤ Zuu Zuv Zuy

v (Zxv)⊤ (Zuv)⊤ Zvv Zvy

y (Zxy)⊤ (Zuy)⊤ (Zvy)⊤ Zyy


∈ CP4n+1 .

(CP1A(ρ))

By [16], (P1A(ρ)) and (CP1A(ρ)) are equivalent in the following sense: Both of their optimal values are equal

to ℓρ(Q) and for any optimal solution Z ∈ S4n+1 of (CP1A(ρ)), (x,u,y,v) ∈ Rn ×Rn ×Rn ×Rn is in the convex

hull of the set of optimal solutions of (P1A(ρ)). Therefore, (CP1A(ρ)) is an exact convex reformulation of the

nonconvex optimization problem (P1A(ρ)).

2.2 Conic formulation of MIQP with complementarity constraint

In (P1(ρ)), sparsity constraints are handled by big-M constraints. Alternatively, sparsity can be enforced by

dropping the big-M constraints x ≤ u and replacing them with the complementarity constraints xj(1 − uj) =

0, j = 1, . . . , n (see, e.g., [15]). Defining v = e − u ∈ {0, 1}n, we obtain the following quadratic optimization

problem with complementarity constraints:

ℓρ(Q) = min
(x,v)∈Rn×Rn

x⊤Qx

s.t. e⊤x = 1

e⊤v = n− ρ

x⊤v = 0

v ∈ {0, 1}n

x ≥ o.

(P2(ρ))

Similarly, adding the redundant constraints v ≤ e and reintroducing the slack variables u ≥ o so that
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u+ v = e, (P2(ρ)) can be reformulated as follows:

ℓρ(Q) = min
(x,u,v)∈Rn×Rn×Rn

x⊤Qx

s.t. e⊤x = 1

e⊤u = ρ

u+ v = e

x⊤v = 0

u ∈ {0, 1}n

x ≥ o

v ≥ o

u ≥ o .

(P2A(ρ))

By [11, 16], (P2A(ρ)) admits an equivalent reformulation as the following copositive optimization problem:

ℓρ(Q) = min
Y∈S3n+1

⟨Q,Yxx⟩

s.t. e⊤x = 1

e⊤u = ρ

u+ v = e

⟨E,Yxx⟩ = 1

⟨E,Yuu⟩ = ρ2

diag (Yuu) = u

diag (Yuu) + 2diag (Yuv) + diag (Yvv) = e

e⊤diag (Yxv) = 0

Y :=


1 x⊤ u⊤ v⊤

x Yxx Yxu Yxv

u (Yxu)⊤ Yuu Yuv

v (Yxv)⊤ (Yuv)⊤ Yvv

 ∈ CP3n+1.

(CP2A(ρ))

Once again, the equivalence between (P2A(ρ)) and (CP2A(ρ)) is understood similarly to that between

(P1A(ρ)) and (CP1A(ρ)).

3 Two convex relaxations and their smaller equivalents

In this section, we consider two convex relaxations arising from the conic formulations (CP1A(ρ)) and (CP2A(ρ)).

Despite the fact that (CP1A(ρ)) and (CP2A(ρ)) are convex optimization problems, they are, in general,

NP-hard [36]. A well-known tractable convex relaxation of completely positive conic problems is obtained by

replacing the intractable cone CPd with the larger cone Dd of doubly nonnegative (DNN) matrices, i.e., the

convex cone of symmetric d × d matrices that are both PSD and componentwise nonnegative. It follows that

the optimal value of the DNN relaxation is a lower bound on the optimal value of the completely positive conic

optimization problem. Here, we present the DNN relaxations arising from conic optimization problems (CP1A(ρ))

and (CP2A(ρ)). Furthermore, we establish that each of the two DNN relaxations can, in fact, be reformulated

in smaller dimensions without sacrificing the strength of the corresponding lower bound. Finally, we present a

theoretical comparison of the strength of the two DNN relaxations.
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3.1 DNN relaxations of the direct MIQP formulation

In this section, we consider the DNN relaxation of the problem (CP1A(ρ)). By replacing the intractable conic

constraint Z ∈ CP4n+1 in (CP1A(ρ)) by Z ∈ D4n+1, where D4n+1 denotes the cone of doubly nonnegative (DNN)

matrices in S4n+1, we obtain the following tractable convex relaxation of (P1A(ρ)):

ν(D1A(ρ)) := min
Z∈S4n+1

⟨Q,Zxx⟩

s.t. e⊤x = 1

e⊤u = ρ

x+ y = u

u+ v = e

⟨E,Zxx⟩ = 1

⟨E,Zuu⟩ = ρ2

diag (Zuu) = u

diag (Zxx) + diag (Zyy) + diag (Zuu) + 2 [diag (Zxy)− diag (Zxu)− diag (Zuy)] = o

diag (Zuu) + 2diag (Zuv) + diag (Zvv) = e

Z :=



1 x⊤ u⊤ v⊤ y⊤

x Zxx Zxu Zxv Zxy

u (Zxu)⊤ Zuu Zuv Zuy

v (Zxv)⊤ (Zuv)⊤ Zvv Zvy

y (Zxy)⊤ (Zuy)⊤ (Zvy)⊤ Zyy


∈ D4n+1.

(D1A(ρ))

Note that (D1A(ρ)) consists of 5n + 4 linear equality constraints and a doubly nonnegative constraint in

S4n+1. First, we make several observations about feasible solutions of (D1A(ρ)).

Lemma 3.1. Let Z ∈ S4n+1 be (D1A(ρ))-feasible. Then, the following relations hold:

xe⊤ − Zxu = Zxv ≥ O, (10)

−Zxx + Zxu = Zxy ≥ O, (11)

Zxx − Zxu − (Zxu)⊤ + Zuu = Zyy ≥ O, (12)

ee⊤ − eu⊤ − ue⊤ + Zuu = Zvv ≥ O, (13)

−ex⊤ + (Zxu)
⊤
+ eu⊤ − Zuu = Zvy ≥ O , (14)

diag (Zxu) = x , (15)

diag (Zxv) = o , (16)

diag (Zvy) = o , (17)

diag (Zvv) = v , (18)

diag (Zuv) = o . (19)
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Proof. Let Z ∈ S4n+1 be (D1A(ρ))-feasible. By using the Schur complementation, we obtain
Zxx Zxu Zxv Zxy

(Zxu)⊤ Zuu Zuv Zuy

(Zxv)⊤ (Zuv)⊤ Zvv Zvy

(Zxy)⊤ (Zuy)⊤ (Zvy)⊤ Zyy

 =


x

u

v

y




x

u

v

y



⊤

+
∑
k∈K


ak

bk

ck

dk




ak

bk

ck

dk



⊤

,

where K is a finite set and {ak,bk, ck,dk} ⊂ Rn for each k ∈ K. Using diag (Zuu)+2 diag (Zuv)+diag (Zvv) = e,

we obtain

u2
i +

∑
k∈K

(
bki

)2

+ 2

[
uivi +

∑
k∈K

(
bki

)(
cki

)]
+ v2i +

∑
k∈K

(
cki

)2

= (ui + vi)
2 +

∑
k∈K

(
bki + cki

)2

= 1 +
∑
k∈K

(
bki + cki

)2

= 1

for each i ∈ {1, . . . , n}, where we used u+ v = e in the second equality. We conclude that

bk = −ck, for all k ∈ K . (20)

In a similar manner, by using diag (Zxx)+diag (Zyy)+diag (Zuu)+2 [diag (Zxy)− diag (Zxu)− diag (Zuy)] = o,

we arrive at

(xi + yi − ui)
2 +

∑
k∈K

(
ak
i + dki − bki

)2

= 0

for each i ∈ {1, . . . , n}, which, together with x+ y = u, implies that

ak + dk = bk, for all k ∈ K . (21)

Therefore,

xe⊤ − Zxu = xe⊤ − xu⊤ −
∑
k∈K

ak
(
bk

)⊤
= xv⊤ +

∑
k∈K

ak
(
ck

)⊤
= Zxv ≥ O,

where we used u+ v = e, (20), and Z ∈ D4n+1. This establishes (10). Arguing similarly,

−Zxx + Zxu = −xx⊤ −
∑
k∈K

ak
(
ak

)⊤
+ xu⊤ +

∑
k∈K

ak
(
bk

)⊤
= xy⊤ +

∑
k∈K

ak
(
dk

)⊤
= Zxy ≥ O,

where we used x+ y = u, (21), and Z ∈ D4n+1. This establishes (11). Next,

Zxx − Zxu − (Zxu)⊤ + Zuu = xx⊤ +
∑
k∈K

ak
(
ak

)⊤
− xu⊤ −

∑
k∈K

ak
(
bk

)⊤

−ux⊤ −
∑
k∈K

bk
(
ak

)⊤
+ uu⊤ +

∑
k∈K

bk
(
bk

)⊤

= yyT +
∑
k∈K

dk
(
dk

)⊤

= Zyy ≥ O,

where we used x+ y = u, (21), and Z ∈ D4n+1. Similarly,

ee⊤ − eu⊤ − ue⊤ + Zuu = ee⊤ − eu⊤ − ue⊤ + uu⊤ +
∑
k∈K

bk
(
bk

)⊤
= vv⊤ +

∑
k∈K

ck
(
ck

)⊤
= Zvv ≥ O,

where we used u+ v = e, (20), and Z ∈ D4n+1, establishing (13). Next,

−ex⊤ + (Zxu)
⊤
+ eu⊤ − Zuu = −ex⊤ + ux⊤ +

∑
k∈K

bk
(
ak

)⊤
+ eu⊤ − uu⊤ −

∑
k∈K

bk
(
bk

)⊤

= −vx⊤ + vu⊤ +
∑
k∈K

ck
(
dk

)⊤

= Zvy ≥ O,
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where we used u+ v = e, x+ y = u, (20), (21), and Z ∈ D4n+1, establishing (14).

Using diag (Zuu) = u, (10), and (14),

o ≤ diag
(
xe⊤ − Zxu

)
= x− diag (Zxu) and

o ≤ diag
(
−ex⊤ + (Zxu)⊤ + eu⊤ − Zuu

)
= −x+ diag (Zxu) + u− diag (Zuu) = −x+ diag (Zxu) ,

which together yield (15). By (15) and diag (Zuu) = u, it is easy to see that (16) and (17) follow from (10) and

(14), respectively. Using (13), diag (Zuu) = u and u+ v = e, we obtain

diag (ee⊤ − eu⊤ − ue⊤ + Zuu) = e− 2u+ u = v = diag (Zvv),

which establishes (18). Finally, (19) follows from (18), diag (Zuu) = u, diag (Zuu)+2diag (Zuv)+diag (Zvv) = e,

and u+ v = e. This completes the proof.

In view of Lemma 3.1, let us now consider the following optimization problem:

ν(D1B(ρ)) := min
W∈S2n+1

⟨Q,Wxx⟩

s.t. e⊤x = 1

e⊤u = ρ

⟨E,Wxx⟩ = 1

⟨E,Wuu⟩ = ρ2

diag (Wuu) = u

xe⊤ −Wxu ≥ O

−Wxx +Wxu ≥ O

Wxx −Wxu − (Wxu)⊤ +Wuu ≥ O

ee⊤ − eu⊤ − ue⊤ +Wuu ≥ O

−ex⊤ + (Wxu)⊤ + eu⊤ −Wuu ≥ O

Wxx ≥ O

W :=


1 x⊤ u⊤

x Wxx Wxu

u (Wxu)⊤ Wuu

 ⪰ O .

(D1B(ρ))

It is easy to see that (D1B(ρ)) is a convex relaxation of (P1(ρ)) since, for any feasible solution (x,u) ∈ Rn×Rn

of (P1(ρ)),

W =


1

x

u



1

x

u


⊤

∈ S2n+1

is a feasible solution of (D1B(ρ)) with the same objective function value. Note that (D1B(ρ)) has n + 4 linear

equality constraints, (9/2)n2 + (3/2)n linear inequality constraints, and a PSD constraint in S2n+1. It is worth

noticing that the inequality constraints of (D1B(ρ)) are precisely given by all the RLT (reformulation-linearization

technique) constraints obtained from the inequalities x ≥ o, x ≤ u, and u ≤ e (see, e.g., [40]).

First, we present some properties of feasible solutions of (D1B(ρ)).

10



Lemma 3.2. Let W ∈ S2n+1 be (D1B(ρ))-feasible. Then,

W ∈ D2n+1 , (22)

−(Wxu)⊤ +Wuu ≥ O , (23)

ue⊤ −Wuu ≥ O , (24)

u ≤ e , (25)

x ≤ u . (26)

Proof. Let W ∈ S2n+1 be (D1B(ρ))-feasible. Since Wxx ≥ O and −Wxx + Wxu ≥ O, we obtain Wxu ≥ O. By

xe⊤ − Wxu ≥ O, we arrive at x ≥ o. Since diag (Wuu) = u and W ⪰ O, we have u ≥ o. Then, adding the

inequalities −Wxx + Wxu ≥ O and Wxx − Wxu − (Wxu)⊤ + Wuu ≥ O yields (23), which, in turn, establishes

(22) since Wuu ≥ (Wxu)⊤ ≥ O. Similarly, adding the inequalities
(
xe⊤ −Wxu

)⊤
= ex⊤ − (Wxu)⊤ ≥ O and

−ex⊤ + (Wxu)⊤ + eu⊤ − Wuu ≥ O, we arrive at (24). Adding (24) to ee⊤ − eu⊤ − ue⊤ + Wuu ≥ O, we get

e(e− u)⊤ ≥ O, which yields (25). Similarly, using diag (Wuu) = u,

o ≤ diag
(
xe⊤ −Wxu

)
= x− diag (Wxu) and

o ≤ diag
(
−ex⊤ + (Wxu)⊤ + eu⊤ −Wuu

)
= −x+ diag (Wxu) + u− diag (Wuu) = −x+ diag (Wxu) ,

which together yield diag (Wxu) = x. Combining this with (23), we get

o ≤ diag
(
−(Wxu)⊤ +Wuu

)
= −diag (Wxu) + diag (Wuu) = −x+ u ,

where we used diag (Wuu) = u. This establishes (26) and completes the proof.

Our next result shows that (D1B(ρ)) is equivalent to the DNN relaxation (D1A(ρ)) of (CP1A(ρ)).

Proposition 3.1. (D1A(ρ)) and (D1B(ρ)) are equivalent to each other. Therefore, ν(D1A(ρ)) = ν(D1B(ρ)).

Proof. Let W ∈ S2n+1 be (D1B(ρ))-feasible. Let us define Z ∈ S4n+1 as follows:

Z =



1 o⊤ o⊤

o I o

o O I

e O −I

o −I I




1 x⊤ u⊤

x Wxx Wxu

u (Wxu)⊤ Wuu





1 o⊤ o⊤

o I o

o O I

e O −I

O −I I



⊤

. (27)

Therefore,

Z =



1 x⊤ u⊤ e⊤ − u⊤ −x⊤ + u⊤

x Wxx Wxu xe⊤ −Wxu −Wxx +Wxu

u (Wxu)⊤ Wuu ue⊤ −Wuu −(Wxu)⊤ +Wuu

e− u ex⊤ − (Wxu)⊤ eu⊤ −Wuu ee⊤ − eu⊤ − ue⊤ +Wuu −ex⊤ + (Wxu)⊤ + eu⊤ −Wuu

−x+ u −Wxx + (Wxu)⊤ −Wxu +Wuu −xe⊤ +Wxu + ue⊤ −Wuu Wxx −Wxu − (Wxu)⊤ +Wuu


.

(28)

We claim that Z ∈ S4n+1 is (D1A(ρ))-feasible. By Lemma 3.2, (27), and (28), we conclude that Z ∈ D4n+1.

Since v = e−u, y = u− x, Zxx = Wxx, and Zuu = Wuu, the first seven sets of equality constraints of (D1A(ρ))
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are satisfied. Considering the eighth set of equality constraints of (D1A(ρ)) and substituting the corresponding

submatrices in (28), we obtain

diag (Zxx) = diag (Wxx)

diag (Zyy) = diag (Wxx)− 2diag (Wxu) + diag (Wuu)

diag (Zuu) = diag (Wuu)

diag (Zxy) = −diag (Wxx) + diag (Wxu)

diag (Zxu) = diag (Wxu)

diag (Zuy) = −diag (Wxu) + diag (Wuu),

which implies that

diag (Zxx) + diag (Zyy) + diag (Zuu) + 2 [diag (Zxy)− diag (Zxu)− diag (Zuy)] = o .

Finally, consider the last set of equality constraints of (D1A(ρ)):

diag (Zuu) + 2diag (Zuv) + diag (Zvv) = diag (Wuu) + 2 (u− diag (Wuu)) + e− 2u+ diag (Wuu) = e ,

which implies that Z ∈ S4n+1 is (D1A(ρ))-feasible and achieves the same objective function value as W in

(D1B(ρ)).

Conversely, let Z ∈ S4n+1 be (D1A(ρ))-feasible. Let W ∈ S2n+1 be given by the top left 3× 3-block of Z, i.e.,

W =


1 x⊤ u⊤

x Zxx Zxu

u (Zxu)⊤ Zuu

 . (29)

Clearly, W ∈ D2n+1 and satisfies all linear equality constraints and Wxx = Zxx ≥ O in (D1B(ρ)). By Lemma 3.1,

we conclude that W satisfies each of the remaining linear inequality constraints and achieves the same objective

function value as Z in (D1A(ρ)). It follows that ν(D1A(ρ)) = ν(D1B(ρ)).

Recall that (D1A(ρ)) consists of 5n+4 linear equality constraints and a doubly nonnegative constraint in

S4n+1. In contrast, (D1B(ρ)) has n+4 linear equality constraints, (9/2)n2+(3/2)n linear inequality constraints,

and a PSD constraint in S2n+1. By Proposition 3.1, we conclude that the lower bound arising from the DNN

relaxation of (CP1A(ρ)) can be computed by solving a conic optimization problem in a much smaller dimension.

3.2 DNN relaxations of the complementarity constraint formulation

In this section, we focus on the DNN relaxation of the copositive optimization problem (CP2A(ρ)). By replacing

the intractable conic constraint Z ∈ CP3n+1 in (CP2A(ρ)) by Z ∈ D3n+1, we obtain the following convex

optimization problem:
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ν(D2A(ρ)) := min
Y∈S3n+1

⟨Q,Yxx⟩

s.t. e⊤x = 1

e⊤u = ρ

u+ v = e

⟨E,Yxx⟩ = 1

⟨E,Yuu⟩ = ρ2

diag (Yuu) = u

e⊤diag (Yxv) = 0

diag (Yuu) + 2diag (Yuv) + diag (Yvv) = e

Y :=


1 x⊤ u⊤ v⊤

x Yxx Yxu Yxv

u (Yxu)⊤ Yuu Yuv

v (Yxv)⊤ (Yuv)⊤ Yvv

 ∈ D3n+1.

(D2A(ρ))

Once again, it is easy to verify that (D2A(ρ)) is a tractable convex relaxation of (P2A(ρ)). Note that (D2A(ρ))

consists of 3n+ 5 linear equality constraints and a doubly nonnegative constraint in S3n+1.

First, we establish several properties of feasible solutions of (D2A(ρ)).

Lemma 3.3. Let Y ∈ S3n+1 be (D2A(ρ))-feasible. Then, the following relations hold:

xe⊤ − Yxu = Yxv ≥ O, (30)

ee⊤ − eu⊤ − ue⊤ + Yuu = Yvv ≥ O, (31)

ue⊤ − Yuu = Yuv ≥ O , (32)

diag (Yxv) = o , (33)

diag (Yxu) = x , (34)

diag (Yvv) = v , (35)

diag (Yuv) = o . (36)

Proof. Let Y ∈ S3n+1 be (D2A(ρ))-feasible. By using the Schur complementation, we obtain
Yxx Yxu Yxv

(Yxu)⊤ Yuu Yuv

(Yxv)⊤ (Yuv)⊤ Yvv

 =


x

u

v



x

u

v


⊤

+
∑
k∈K


ak

bk

ck



ak

bk

ck


⊤

,

where K is a finite set and {ak,bk, ck} ⊂ Rn for each k ∈ K. Arguing similarly to the proof of Lemma 3.1, we

obtain bk = −ck for each k ∈ K. The relations (30), (31), and (32) can be established in a very similar manner.

Since e⊤diag (Yxv) = 0 and Y ∈ D3n+1, we obtain (33). By using u+ v = e, bk = −ck for each k ∈ K, and the

decomposition above, it is easy to verify that diag (Yxu) + diag (Yxv) = x, which establishes (34) due to (33).

Similarly, we obtain diag (Yvv) = e − 2u + diag (Yuu) = e − u = v since diag (Yuu) = u, which yields (35).

Finally, we obtain (36) from diag (Yuu) = u, diag (Yuu) + 2diag (Yuv) + diag (Yvv) = e, u + v = e, and (35).

This completes the proof.

Once again, we can utilize Lemma 3.3 to obtain the following optimization problem:
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ν(D2B(ρ)) := min
S∈S2n+1

⟨Q, Sxx⟩

s.t. e⊤x = 1

e⊤u = ρ

⟨E, Sxx⟩ = 1

⟨E, Suu⟩ = ρ2

diag (Suu) = u

diag (Sxu) = x

xe⊤ − Sxu ≥ O

ee⊤ − eu⊤ − ue⊤ + Suu ≥ O

ue⊤ − Suu ≥ O

S :=


1 x⊤ u⊤

x Sxx Sxu

u (Sxu)⊤ Suu

 ∈ D2n+1.

(D2B(ρ))

Note that (D2B(ρ)) has 2n+4 linear equality constraints, (5/2)n2 +(1/2)n linear inequality constraints, and

a doubly nonnegative constraint in S2n+1. Once again, it is worth noticing that (D2B(ρ)) contains all the RLT

constraints obtained from the inequalities x ≥ o, u ≥ o, and u ≤ e.

Our next result establishes the equivalence between (D2A(ρ)) and (D2B(ρ)).

Proposition 3.2. (D2A(ρ)) and (D2B(ρ)) are equivalent to each other. Therefore, ν(D2A(ρ)) = ν(D2B(ρ)).

Proof. The proof is very similar to that of Proposition 3.1. Let S ∈ S2n+1 be (D2B(ρ))-feasible. Let us define

Y ∈ S3n+1 as follows:

Y =


1 o⊤ o⊤

o I o

o O I

e O −I



1 x⊤ u⊤

x Sxx Sxu

u (Sxu)⊤ Suu



1 o⊤ o⊤

o I o

o O I

e O −I



⊤

. (37)

Therefore,

Y =


1 x⊤ u⊤ e⊤ − u⊤

x Sxx Sxu xe⊤ − Sxu

u (Sxu)⊤ Suu ue⊤ − Suu

e− u ex⊤ − (Sxu)⊤ eu⊤ − Suu ee⊤ − eu⊤ − ue⊤ + Suu

 . (38)

We claim that Y ∈ S3n+1 is (D2A(ρ))-feasible. Since diag (Suu) = u, and Suu − uu⊤ ⪰ 0, we obtain u ≤ e.

Therefore, by (37) and (38), we conclude that Y ∈ D4n+1. Since v = e − u, Yxx = Sxx, Yxu = Sxu, and

Yuu = Suu, the first six sets of equality constraints of (D2A(ρ)) are satisfied. Consider the seventh set of equality

constraints of (D2A(ρ)):

e⊤diag (Yxv) = e⊤diag (xe⊤ − Sxu) = e⊤ [x− diag (Sxu)] = 0,

where we used diag (Sxu) = x. Finally, the last set of equality constraints of (D2A(ρ)) can be directly verified

using (38). Therefore, Y ∈ S3n+1 is (D2A(ρ))-feasible and achieves the same objective function value as S in

(D2B(ρ)).

14



Conversely, let Y ∈ S3n+1 be (D2A(ρ))-feasible. Let S ∈ S2n+1 be given by the top left 3× 3-block of Z, i.e.,

S =


1 x⊤ u⊤

x Yxx Yxu

u (Yxu)⊤ Yuu

 . (39)

Clearly, S ∈ D2n+1 and satisfies all linear equality and inequality constraints in (D2B(ρ)) by Lemma 3.3.

Furthermore, S has the same objective function value in (D2B(ρ)) as that of Y in (D2A(ρ)). It follows that

ν(D2A(ρ)) = ν(D2B(ρ)).

A comparison of (D2A(ρ)) and (D2B(ρ)) reveals that the former consists of 3n+5 linear equality constraints

and a doubly nonnegative constraint in S3n+1 whereas the latter has 2n + 4 linear equality constraints,

(5/2)n2+(1/2)n linear inequality constraints, and a doubly nonnegative constraint in S2n+1. Proposition 3.2

implies that the lower bound arising from the DNN relaxation of (CP2A(ρ)) can be computed by solving a conic

optimization problem in a smaller dimension.

3.3 Comparing the two DNN relaxations

Now we compare the lower bounds arising from the two DNN relaxations of (CP1A(ρ)) and (CP2A(ρ)).

Proposition 3.3. (D1A(ρ)) (or equivalently, (D1B(ρ))) is at least as tight as (D2A(ρ)) (or equivalently, (D2B(ρ))),

i.e.,

ν(D2A(ρ)) = ν(D2B(ρ)) ≤ ν(D1A(ρ)) = ν(D1B(ρ)) ≤ ℓρ(Q) .

Proof. Let Z ∈ S4n+1 be (D1A(ρ))-feasible. Let Y ∈ S3n+1 be given by the top left 4× 4-block of Z, i.e.,

Y =


1 x⊤ v⊤ u⊤

x Zxx Zxv Zxu

u (Zxu)⊤ Zuu Zuv

v (Zxv)⊤ (Zuv)⊤ Zvv

 .

We claim that Y ∈ S3n+1 is (D2A(ρ))-feasible. Clearly, Y ∈ D3n+1 and all constraints of (D2A(ρ)) are satisfied

by Lemma 3.1. Therefore, for every (D1A(ρ))-feasible solution, there exists a corresponding (D2A(ρ))-feasible

solution with the same objective function value. By Propositions 3.1 and 3.2, we conclude that ν(D2A(ρ)) =

ν(D2B(ρ)) ≤ ν(D1A(ρ)) = ν(D1B(ρ)) ≤ ℓρ(Q).

Our next example illustrates that we can have ν(D2A(ρ)) < ν(D1A(ρ)). i.e., (D2A(ρ)) can be strictly weaker

than (D1A(ρ)).

Example 3.1. Consider the following instance, where n = 6 and ρ = 3:

Q =



2.6947 −0.2028 −1.1144 −2.4230 −2.1633 0.7710

−0.2028 5.1998 0.5005 −2.0941 0.7828 −3.3611

−1.1144 0.5005 5.2918 1.4119 −1.1526 −1.9723

−2.4230 −2.0941 1.4119 4.1140 −0.2025 0.3132

−2.1633 0.7828 −1.1526 −0.2025 7.6645 −0.0170

0.7710 −3.3611 −1.9723 0.3132 −0.0170 3.3040


.
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For this instance, we have ν(D2A(ρ)) = ν(D2B(ρ)) ≈ 0.1320 < ν(D1A(ρ)) = ν(D1B(ρ)) ≈ 0.1333. In addition,

we observe that the computed optimal solution S∗ of (D2B(ρ)) is not feasible for (D1B(ρ)). For instance, (Sxu
31 )

∗−

(Sxx
31 )

∗ ≈ −0.00137 < 0.

4 Generating nontrivial instances of sparse StQPs

In this section, we discuss procedures for generating nontrivial instances of the sparse StQP problem (StQP(ρ)).

To this end, we say that an instance of (StQP(ρ)) is nontrivial if the sparsity constraint is violated by each optimal

solution of the corresponding instance of StQP given by (StQP) (or, equivalently, (StQP(ρ)) with ρ = n). For a

nontrivial instance of the sparse StQP, it follows that the sparsity constraint cuts off all optimal solutions of the

corresponding StQP instance without the sparsity constraints.

We aim to construct a nontrivial instance of (StQP(ρ)) in two steps. First, we discuss how to construct an

instance of (StQP) with a prespecified unique optimal solution. We then choose the sparsity parameter ρ to

be strictly smaller than the sparsity of the designated unique optimal solution of (StQP). It follows that the

resulting instance of (StQP(ρ)) is nontrivial since the unique optimal solution of (StQP) is cut off by the sparsity

constraint.

In Section 4.1, we consider generating an instance of (StQP) with a unique optimal solution. We then present

simple algorithms for generating nontrivial instances of (StQP(ρ)) in Section 4.2.

4.1 Generating StQP instances with a unique optimal solution

Let us next focus on generating an instance of (StQP) with a unique optimal solution. To that end, we first

recall that an StQP can be reformulated as the following copositive optimization problem [9]:

ℓn(Q) = min
x∈Rn

{
x⊤Qx : x ∈ Fn

}
= min

X∈Sn
{⟨Q,X⟩ : ⟨E,X⟩ = 1, X ∈ CPn} ,

where Fn is given by (1) and E = ee⊤ ∈ Sn.

The doubly nonnegative (DNN) relaxation of an StQP is therefore given by

µ(Q) = min
X∈Sn

{⟨Q,X⟩ : ⟨E,X⟩ = 1, X ∈ Dn} . (40)

Note that µ(Q) ≤ ℓn(Q). For a given instance of StQP, we say that its DNN relaxation is exact if µ(Q) = ℓn(Q)

and inexact otherwise.

We will review the following useful results, which will play a fundamental role in our instance construction

procedures.

Theorem 4.1. Let x ∈ Fn, where Fn is given by (1).

(i) x is a globally optimal solution of (StQP) if and only if there exist M ∈ bd COPn and λ ∈ R such that

x ∈ VM and Q = M+ λE, where bd COPn and VM are given by (8) and (9), respectively. Furthermore,

in this case, λ is the optimal value of (StQP), and the set of optimal solutions of (StQP) is given by VM.

(ii) x is a globally optimal solution of (StQP) and its doubly nonnegative relaxation is exact if and only if there

exist R ⪰ O, N ≥ O, and λ ∈ R such that x⊤Nx = 0 and Q = (I− ex⊤)R(I− xe⊤) + N+ λE.
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(iii) x is a globally optimal solution of (StQP) and its doubly nonnegative relaxation is inexact if and only if

there exist M ∈ bd COPn\SPNn and λ ∈ R such that x ∈ VM and Q = M + λE, where bd COPn and

VM are given by (8) and (9), respectively.

Proof. The reader is referred to [7] for (i), and to [24] for (ii) and (iii).

In view of Theorem 4.1, we first give a simple recipe to construct an instance of (StQP) such that it has a

unique optimal solution and its doubly nonnegative relaxation is exact.

Proposition 4.1. Let x ∈ Fn, where Fn is given by (1). Let A = {j ∈ {1, . . . , n} : xj > 0} and B = {j ∈

{1, . . . , n} : xj = 0}. Then, for any R ≻ O, any N ∈ Sn is such that NAA = O, NAB ≥ O, and NBB ≥ O, and any

λ ∈ R, if Q = (I − ex⊤)R(I − xe⊤) + N + λE, then x is the unique globally optimal solution of (StQP) and its

DNN relaxation is exact.

Proof. It follows from the hypothesis and Theorem 4.1(ii) that x is a globally optimal solution of (StQP) and its

DNN relaxation is exact. We next show the uniqueness. For any y ∈ Fn, where Fn is given by (1), we have

y⊤Qy = (y − x)⊤R(y − x) + y⊤Ny + λ ≥ λ = x⊤Qx,

where we used x ∈ Fn, y ∈ Fn, R ≻ O, y ≥ o, and N ≥ O. Since R ≻ O, the inequality above holds with equality

if and only if y = x. We conclude that x is the unique globally optimal solution of (StQP).

In Proposition 4.1, if one chooses N = O and λ ≥ o, we obtain Q ⪰ O, which implies that the resulting

instance of (StQP) is a convex optimization problem. On the other hand, by choosing N and λ in such a way

that Q ̸⪰ O, Proposition 4.1 allows us to construct a nonconvex instance of StQP that admits an exact DNN

relaxation. We will utilize both of these observations in our computational experiments.

Next, we consider constructing an instance of StQP with a unique optimal solution but an inexact DNN

relaxation. In contrast with the previous case, such a construction is more involved and requires additional care.

Our next result presents such a procedure.

Proposition 4.2. Let x ∈ Fn, where Fn is given by (1). Let A = {j ∈ {1, . . . , n} : xj > 0} and B = {j ∈

{1, . . . , n} : xj = 0}. Let Q = (I − ex⊤)R(I − xe⊤) + N + λE, where λ ∈ R, R ∈ Sn is such that RAA ⪰ O,

RBB ∈ COP |B|, RAB = O, and N ∈ Sn is such that NAA = O, NAB ≥ O, and NBB ≥ O.

(i) x is a globally optimal solution of (StQP). Furthermore, if RAA ≻ O, then x is the unique globally optimal

solution.

(ii) If RBB ∈ COP |B|\SPN |B| and N = O, there exists an ϵ > 0 such that, for all RAA ≻ O with ∥RAA∥ < ϵ,

where ∥ · ∥ denotes the operator norm, x is the unique globally optimal solution of (StQP) and its doubly

nonnegative relaxation is inexact.

Proof. (i) Let M = (I− ex⊤)R(I− xe⊤) + N. By Theorem 4.1(i), it suffices to show that M ∈ bd COPn and

x ∈ VM, where VM is given by (9). For any y ∈ Fn,

y⊤My = (y − x)⊤R(y − x) + y⊤Ny = (yA − xA)
⊤RAA(yA − xA) + y⊤

B RBByB + y⊤Ny ≥ 0 = x⊤Mx, (41)

where we used y ∈ Fn in the first equality, RAB = O and xB = o in the second equality, RAA ⪰ O,

RBB ∈ COP |B|, N ≥ O, and y ≥ o to derive the inequality, and x ∈ Fn in the last equality. We conclude
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that M ∈ bd COPn and x ∈ VM. By Theorem 4.1(i), x is a globally optimal solution of (StQP). If, in

addition, RAA ≻ O, then it follows from (41) that y⊤My = 0 if and only if (yA − xA)
⊤RAA(yA − xA) =

y⊤
B RBByB = y⊤Ny = 0. Since RAA ≻ O, we conclude that yA = xA. Since x ∈ Fn, xB = o, and yA = xA, we

obtain 1 = e⊤x = e⊤
A xA + e⊤

B xB = e⊤
A xA = e⊤

A yA, which implies that yB = o since y ∈ Fn. It follows that

y = x. Therefore, VM = {x}. By Theorem 4.1(i), x is the unique globally optimal solution of (StQP).

(ii) Let M = (I − ex⊤)R(I − xe⊤). By Theorem 4.1(ii), it suffices to show that M ∈ bd COPn\SPNn and

x ∈ VM. By (i), M ∈ bd COPn and x ∈ VM. Since RBB ∈ COP |B|\SPN |B|, CP |B| and D|B| are the

dual cones of COP |B| and SPN |B|, respectively, it follows from (7) that there exists T ∈ D|B|\CP |B| such

that ⟨RBB,T⟩ = −δ < 0. Let U ∈ Sn be such that UAA = O, UAB = O, and UBB = T. Clearly, U ∈ Dn.

Furthermore,

⟨M,U⟩ = ⟨MBB,T⟩

=
〈(

x⊤
A RAAxA

)
eBe

⊤
B + RBB,T

〉
=

(
x⊤
A RAAxA

)(
e⊤
B TeB

)
− δ

≤ ∥RAA∥µ− δ,

where µ = e⊤
B TeB > 0 and we used ∥xA∥ ≤ 1 to derive the last inequality. We conclude that ⟨M,U⟩ < 0

provided that ∥RAA∥ < ϵ, where ϵ = δ/µ > 0. Therefore, for any RAA ⪰ O such that ∥RAA∥ < ϵ, we obtain

M ∈ bd COPn\SPNn since U ∈ Dn. By Theorem 4.1(ii), it follows that the DNN relaxation of (StQP)

is inexact. If, in addition, RAA ≻ O, then x is the unique globally optimal solution of (StQP) by part (i).

This concludes the proof.

4.2 Two algorithms for generating nontrivial sparse StQP instances

In this section, we present two algorithms for generating nontrivial instances of (StQP(ρ)). Given x ∈ Fn with

∥x∥0 ≥ 2, both algorithms initially generate an instance of (StQP) such that x is the unique optimal solution.

Then, a nontrivial instance of (StQP(ρ)) is constructed by choosing ρ ∈ {1, . . . , ∥x∥0 − 1}.

The details of our algorithms are presented in Algorithm 1 and Algorithm 2. The two algorithms differ only

in terms of whether the StQP instance generated in the first stage admits an exact or inexact DNN relaxation.

Algorithm 1 Nontrivial instance of (StQP(ρ)) with (StQP) admitting an exact DNN relaxation
Require: n ≥ 2, x ∈ Fn such that ∥x∥0 ≥ 2, λ ∈ R

Ensure: A nontrivial instance of (StQP(ρ))

1: A← {j ∈ {1, . . . , n} : xj > 0}, B← {j ∈ {1, . . . , n} : xj = 0}

2: Choose an arbitrary R ∈ Sn such that R ≻ O.

3: Choose an arbitrary N ∈ Sn such that NAA = O, NAB ≥ O, and NBB ≥ O.

4: Q← (I− ex⊤)R(I− xe⊤) + N+ λE

5: Choose an arbitrary ρ ∈ {1, . . . , ∥x∥0 − 1}.

Our first algorithm, given by Algorithm 1, requires as input n ≥ 2, x ∈ Fn such that ∥x∥0 ≥ 2, and

λ ∈ R, and generates an instance of (StQP(ρ)). By Proposition 4.1, the instance generated by Algorithm 1 is a
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nontrivial instance of (StQP(ρ)) such that x is the unique optimal solution of (StQP), which admits an exact

DNN relaxation. We remark that each step of Algorithm 1 can be implemented in a fairly straightforward way.

Algorithm 2 Nontrivial instance of (StQP(ρ)) with (StQP) admitting an inexact DNN relaxation
Require: n ≥ 7, x ∈ Fn such that 2 ≤ ∥x∥0 ≤ n− 5, λ ∈ R

Ensure: A nontrivial instance of (StQP(ρ))

1: A← {j ∈ {1, . . . , n} : xj > 0}, B← {j ∈ {1, . . . , n} : xj = 0}

2: Construct R ∈ Sn using the following steps.

3: RAB ← O

4: Choose an arbitrary RBB ∈ COP |B|\SPN |B|.

5: Choose an arbitrary T ∈ D|B|\CP |B| such that ⟨RBB,T⟩ < 0.

6: δ ← −⟨RBB,T⟩, µ← e⊤B TeB, ϵ← δ
µ

7: Choose any RAA ≻ O such that ∥RAA∥ < ϵ.

8: Q← (I− ex⊤)R(I− xe⊤) + λE

9: Choose an arbitrary ρ ∈ {1, . . . , ∥x∥0 − 1}.

Our second algorithm, given by Algorithm 2, takes as input n ≥ 7, x ∈ Fn such that 2 ≤ ∥x∥0 ≤ n − 5,

and λ ∈ R, and outputs an instance of (StQP(ρ)). Similarly, it follows from Proposition 4.2 that the instance

generated by Algorithm 2 is a nontrivial instance of (StQP(ρ)) such that x is the unique optimal solution of

(StQP), which admits an inexact DNN relaxation.

In contrast with Algorithm 1, the practical implementation of Algorithm 2 merits further discussion. Step 4 of

Algorithm 2 requires RBB ∈ COP |B|\SPN |B|. Such matrices are called exceptional. Recall that SPNn ⊆ COPn,

and SPNn = COPn if and only if n ≤ 4 (see [21]). Therefore, such an exceptional matrix exists if and only if

|B| ≥ 5, which is ensured by the choices of the input parameters of Algorithm 2. A well-known exceptional 5× 5

matrix is the Horn matrix given by

H =



1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1


∈ COP5\SPN 5. (42)

Furthermore, H is an extreme ray of COP5 [26].

We next present a practical procedure for constructing an exceptional matrix in higher dimensions. Our

procedure is inspired by a similar procedure outlined in [24, Section 6.2].

Let n ≥ 7 and let x ∈ Fn satisfy ∥x∥0 ≤ n − 5, which ensures that |B| ≥ 5. We now construct RBB ∈

COP |B|\SPN |B| as follows. Choose an arbitrary B ∈ COP |B|−5, which can, for instance, be ensured by choosing

B ∈ SPN |B|−5 by (7) (or even B ≥ O or B ⪰ O), and an arbitrary C ∈ R(|B|−5)×|B| such that C ≥ O. Let us define

RBB =

 B C

C⊤ H

 ∈ S|B|. (43)

It is easy to see that RBB ∈ COP |B| (see also [39, Lemma 3.4 (a)]). Since H ∈ COP5\SPN 5, there exists
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F ∈ D5\CP5 such that ⟨H,F⟩ = −δ < 0. Let

T =

O O

O F

 . (44)

Note that T ∈ D|B| and ⟨RBB,T⟩ = ⟨H,F⟩ = −δ < 0, which implies that RBB ̸∈ SPN |B|. We conclude that

RBB ∈ COP |B|\SPN |B|. We then define µ = e⊤
B TeB > 0 and ϵ = δ/µ.

While any choice of F ∈ D5\CP5 such that ⟨H,F⟩ = −δ < 0 works in the above construction, it may be

preferable in practice to choose F such that the corresponding value of ϵ is as large as possible. This can be easily

achieved in practice by solving the following small semidefinite programming (SDP) problem:

ϵ := max
F∈D5\{O}

−⟨H,F⟩
e⊤
B FeB

= max{−⟨H,F⟩ : e⊤
B FeB = 1 , F ∈ D5} , (45)

where the second equality follows from the homogeneity of the objective function. An approximate optimal

solution of (45) is given by

F =
1

78.2



7 4.32 0 0 4.32

4.32 7 4.32 0 0

0 4.32 7 4.32 0

0 0 4.32 7 4.32

4.32 0 0 4.32 7


, (46)

which yields ϵ ≈ 0.1049.

Remark 1. The above construction works for any exceptional RBB once we can control T, the normal separating

RBB (corresponding to H above) from SPN |B|, in the sense to solve the (effectively small) SDP problem

ϵ := max
T∈D|B|\{O}

−⟨RBB,T⟩
e⊤
B TeB

= max{−⟨RBB,T⟩ : e⊤
B TeB = 1 , T ∈ D|B|} . (47)

Observe that any extremal ray of COP |B| different from a rank-one matrix or a symmetric componentwise non-

negative matrix with exactly two positive entries – which constitute the extremal rays of the cone of PSD matrices

and the cone of componentwise nonnegative matrices – is necessarily exceptional, by extremality. While for larger

|B|, these extremal rays are (yet) unknown, we can imitate the above extension strategy and build upon the known

ones for |B| ∈ {5, 6}, e.g., using Hildebrand matrices [1, 29]. All these used in RBB would render (47) feasible

(recommended only for extremal rays of moderate order to keep this effort low), and proceeding as above with H

and F, this approach provides more nontrivial examples. Finally, note that extremality is used in this context only

to ensure exceptionality; any non-extremal but exceptional matrix would work as well.

4.3 Set of instances

To assess the impact of the choice of the instance set on the solution time of each exact model and each convex

relaxation as well as on the quality of the lower bound, we conduct extensive experiments on a variety of carefully

constructed instances of (StQP(ρ)). Let us now describe the set of instances in detail.

Using Algorithm 1 and Algorithm 2, we generated three sets of nontrivial instances of (StQP(ρ)) with different

characteristics.

(i) PSD Instances: This set of instances of (StQP(ρ)) is constructed using Algorithm 1 in such a way that

Q ⪰ O, i.e., the corresponding instance of (StQP) is a convex optimization problem. For instance, such
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instances may arise in portfolio optimization problems. We remark that the resulting instances of (StQP(ρ))

are, in general, still NP-hard. In Step 2 of Algorithm 1, we construct R ≻ O so that all of its eigenvalues are

uniformly distributed in (0, 3). By choosing N = O and λ = 0, we ensure that Q = (I−ex⊤)R(I−xe⊤) ⪰ O.

Since x⊤Qx = 0, Q is PSD but not positive definite. By Proposition 4.1, each PSD instance satisfies

ℓρ(Q) > ℓn(Q) = µ(Q) = 0, (48)

where µ(Q) is defined as in (40).

(ii) SPN Instances: This set of instances of (StQP(ρ)) is generated using Algorithm 1 in a similar manner to

PSD instances, i.e., we set λ = 0 and use the same procedure to construct R. However, instead of choosing

N = O as in PSD instances, each entry of NAB ∈ R|A|×|B| and NBB ∈ S|B| is uniformly generated in (0, 3). In

contrast with PSD instances, Q = (I− ex⊤)R(I−xe⊤) +N is, in general, not PSD. In fact, we numerically

verified that Q was an indefinite matrix for each SPN instance. By Proposition 4.1, each SPN instance

satisfies

ℓρ(Q) > ℓn(Q) = µ(Q) = 0. (49)

(iii) COP Instances: This set of instances of (StQP(ρ)) is generated by Algorithm 2. In Step 2, we construct

R ∈ Sn using the procedure outlined in Section 4.2. In particular, RBB is constructed as in (43), where

B ≻ O is generated with eigenvalues uniformly distributed in (0, 3), and each entry of C ≥ O is uniformly

distributed in (0, 1). Our choices are, in part, motivated by the observation that the eigenvalues of the Horn

matrix H given by (42) lie in [−1.236, 3.236] so that the eigenvalues of B ≻ O have similar magnitude. The

separating matrix T is constructed as in (44), where F is given by (46), which yields ϵ ≈ 0.1049. Finally,

RAA ≻ O is constructed with eigenvalues uniformly distributed in (0, 0.99ϵ), ensuring that ∥RAA∥ < ϵ. We

then choose λ = 0 and set Q = (I−ex⊤)R(I−xe⊤). By Proposition 4.2, this procedure ensures that Q ̸⪰ O

and each COP instance satisfies

ℓρ(Q) > ℓn(Q) = 0 > µ(Q). (50)

In summary, each of the three sets of instances of (StQP(ρ)) is comprised of nontrivial instances that exhibit

different characteristics. While each PSD instance and each SPN instance has a corresponding StQP instance

that admits an exact doubly nonnegative (DNN) relaxation, they differ in terms of the convexity of the objective

function. On the other hand, each COP instance has a nonconvex objective function with the additional property

that the DNN relaxation of the corresponding StQP instance is inexact.

5 Computational results

In this section, we report and discuss the results of our computational experiments. After describing the experi-

mental setup in Section 5.1, we report our results in detail in Sections 5.2 and 5.3.

5.1 Experimental setup

The set of instances was already described in Section 4.3. Here, we outline the details of our experimental setup.

In our experiments, we chose n ∈ {25, 50}. For each choice of n, we identified three sparsity levels for

the designated optimal solution x ∈ Fn of (StQP), denoted by ρ0 = ∥x∥0. In particular, we considered ρ0 ∈
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{⌊0.25n⌉, ⌊0.5n⌉, ⌊0.75n⌉}, where ⌊·⌉ denotes the nearest integer function. Finally, for each choice of ρ0, we chose

ρ ∈ {⌊0.25ρ0⌉, ⌊0.5ρ0⌉, ⌊0.75ρ0⌉}. The parameters are summarized in Table 1.

n ρ0 ρ

25

6 {2,3,4}

12 {3,6,9}

19 {5,10,14}

50

12 {3,6,9}

25 {6,12,19}

38 {10,19,28}

Table 1: Choices of the parameters n, ρ0, and ρ

For each choice of n, ρ0, and ρ presented in Table 1, we generated 25 instances from each of the three sets of

instances described in Section 4.3, which gave rise to a total of 1,350 nontrivial instances of (StQP(ρ)) comprising

of 450 PSD instances, 450 SPN instances, and 450 COP instances. For each instance of (StQP(ρ)), we solved

(P1(ρ)), (P2(ρ)), (D1A(ρ)), (D1B(ρ)), (D2A(ρ)), and (D2B(ρ)).

Algorithm 1 and Algorithm 2 were implemented in Julia version 1.8.5 [4]. Each instance of (P1(ρ)) and

(P2(ρ)) was solved by Gurobi version 11.0.0 [25] via the modeling languageJuMP v1.19.0 [30]. We solved (D1A(ρ)),

(D1B(ρ)), (D2A(ρ)), and (D2B(ρ)) by MOSEK version 10.1.24 [2] via JuMP. Our computational experiments were

carried out on a 64-bit HP workstation with 24 threads (2 sockets, 6 cores per socket, 2 threads per core) running

Ubuntu Linux with 96 GB of RAM and Intel Xeon CPU E5-2667 processors with a clock speed of 2.90 GHz. We

imposed a time limit of 600 seconds on each solve. The default settings were used for all of the other parameters

of Gurobi and MOSEK.

5.2 Solution time

Now we focus on the solution time of each of the six models (P1(ρ)), (P2(ρ)), (D1A(ρ)), (D1B(ρ)), (D2A(ρ)),

and (D2B(ρ)).

Figure 1 depicts the average solution times of each of the six models on each of the three instance sets. The

results for PSD instances, SPN instances, and COP instances are presented in the first, second, and third rows

of Figure 1, respectively. In each row, the results for n = 25 and n = 50 are given in the first and second

column, respectively. In each graph, the horizontal axis denotes the average solution time (in seconds) presented

in logarithmic scale. We used identical axis limits in each graph to facilitate a better comparison across different

graphs. The vertical axis is comprised of nine sets of bar charts, each of which represents a particular choice

of the tuple (ρ0, ρ) corresponding to the choice of n as outlined in Table 1. Finally, for each choice of (ρ0, ρ),

the corresponding bar chart represents the average solution times of the six models (P1(ρ)), (P2(ρ)), (D1A(ρ)),

(D1B(ρ)), (D2A(ρ)), and (D2B(ρ)) over 25 instances generated using the procedure in Section 4.3. Note that

the solution times of instances that were terminated due to the time limit of 600 seconds were also included in

the average solution times. Therefore, each bar chart represents the average computational requirement of the

corresponding model. We recall that (P1(ρ)) and (P2(ρ)) were solved by Gurobi whereas (D1A(ρ)), (D1B(ρ)),
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(a) PSD Instances (n = 25) (b) PSD Instances (n = 50)

(c) SPN Instances (n = 25) (d) SPN Instances (n = 50)

(e) COP Instances (n = 25) (f) COP Instances (n = 50)

Figure 1: Average solution times (in seconds) of (P1(ρ)), (P2(ρ)), (D1A(ρ)), (D1B(ρ)), (D2A(ρ)), and

(D2B(ρ)) for PSD, SPN, and COP instances

(D2A(ρ)), and (D2B(ρ)) by MOSEK.

Figure 1 reveals several interesting relations about average solution times. We first outline our observations
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concerning the exact MIQP models (P1(ρ)) and (P2(ρ)):

(i) Average solution times of the two exact models exhibit very similar behavior for each fixed choice of the

instance set and the triple (n, ρ0, ρ). However, there seems to be a very strong correlation between the

average solution time and the choices of (n, ρ0, ρ) as well as the instance set.

(ii) Considering each row of Figure 1 separately, the average solution time of each of the two exact models

across all choices of the tuple (ρ0, ρ) increases as n increases. However, the rate of increase seems to be

highly dependent on the choice of the instance set.

We next present the corresponding observations for the average solution times of the convex relaxations

(D1A(ρ)), (D1B(ρ)), (D2A(ρ)), and (D2B(ρ)):

(i) In contrast with the exact models, for each choice of n, Figure 1 reveals that the average solution times

of the convex relaxations exhibit very similar behavior across all three sets of instances and all choices of

(ρ0, ρ).

(ii) The average solution time of our reduced formulation (D1B(ρ)) consistently achieves the lowest average

solution times, followed by the reduced formulation (D2B(ρ)), which, in turn, is followed by (D2A(ρ)) and

(D1A(ρ)), respectively.

(iii) The average solution time of our reduced formulation (D1B(ρ)) exhibits at least an order of magnitude

improvement over that of (D1A(ρ)). On the other hand, the corresponding improvement of (D2B(ρ)) over

(D2A(ρ)) seems to be less pronounced, especially in smaller dimensions.

(iv) As expected, the average solution time of each relaxation increases with n. While the rate of increase

does not seem to be influenced by the specific instance set, we observe that it does depend on the specific

relaxation.

Since Figure 1 is based only on average solution times, it cannot capture the variability in the data. In

an attempt to shed more light on the distribution of the solution times across all instance sets, we present the

empirical cumulative distribution functions of all six models in Figure 2, which is organized similarly to Figure 1.

The three rows display the results for PSD, SPN, and COP instances, respectively, whereas the two columns are

devoted to the results for n = 25 and n = 50, respectively. Each of the six graphs presents six plots corresponding

to the empirical cumulative distribution functions of solution times of each of the six models on all 225 instances

for the corresponding choice of the instance set and n (see Table 1). The horizontal axis denotes the solution

time (in seconds) on a logarithmic scale, and the vertical axis represents the fraction of the instances solved. The

markers represent the data points for every 25th instance. Once again, we employed identical axis limits in each

of the six graphs.

Figure 2 clearly reveals the difference between the distributions of solution times of the exact models (P1(ρ))

and (P2(ρ)) and those of the convex relaxations (D1A(ρ)), (D1B(ρ)), (D2A(ρ)), and (D2B(ρ)). We outline our

observations below:

(i) The solution times of the two exact models, in general, exhibit a very similar distribution but a significant

variability across different instance sets.

(ii) In contrast, we observe that the solution times of the convex relaxations tend to have a much smaller

variance and exhibit very similar distributions across different instance sets.
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(a) PSD Instances (n = 25)
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(b) PSD Instances (n = 50)
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(c) SPN Instances (n = 25)
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(d) SPN Instances (n = 50)
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(e) COP Instances (n = 25)
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(f) COP Instances (n = 50)

Figure 2: Empirical cumulative distribution functions of solution times of (P1(ρ)), (P2(ρ)), (D1A(ρ)),

(D1B(ρ)), (D2A(ρ)), and (D2B(ρ))

Therefore, in contrast with the exact models (P1(ρ)) and (P2(ρ)), we conclude that the solution time of each

convex relaxation seems to be very robust with respect to the choice of the instance set and the choice of (ρ0, ρ)

25



in our setting.

In the sequel, we present a more detailed discussion of the behavior of the solution times of the exact models

and convex relaxations.

5.2.1 Exact MIQP models

As illustrated by Figures 1 and 2, the solution time of the exact models is highly dependent on the choices of the

instance set and on the triple (n, ρ0, ρ). Here, we aim to shed more light on this dependence.

In Figures 3 and 4, we present the empirical cumulative distribution functions of solution times of (P1(ρ))

and (P2(ρ)) for all instances with n = 25 and n = 50, respectively. Each graph in each figure consists of six plots,

each of which corresponds to the solution times of (P1(ρ)) and (P2(ρ)) on each of PSD, SPN, and COP instances

for a fixed choice of (n, ρ0, ρ). In each column of each figure, we fix the tuple (n, ρ0) and present the empirical

cumulative distributions of the solution times of 25 instances corresponding to the three different choices of ρ as

presented in Table 1. On the other hand, each row corresponds to a different ratio of ρ/ρ0 ∈ {0.25, 0.5, 0.75}.

Again, we use a logarithmic scale for the solution time and ensure that all axis limits are identical for a meaningful

comparison across different graphs. Finally, we note that the markers represent the data points at every 5th

instance.

A close examination of Figures 3 and 4 reveal the following observations about the two exact models (P1(ρ))

and (P2(ρ)):

(i) The two models, in general, exhibit very similar distributions across all parameter choices, except for some

small differences for a few choices of (n, ρ0, ρ) on PSD instances, where (P1(ρ)) seems to be solved slightly

faster than (P2(ρ)).

(ii) We clearly observe an empirical first-order stochastic dominance among PSD, SPN, and COP instances.

For each choice of (n, ρ0, ρ), PSD instances tend to achieve the lowest solution times, followed by SPN

instances, whereas COP instances exhibit the highest solution times.

(iii) For each fixed (n, ρ0), we observe that the solution time tends to decrease as ρ increases for PSD instances,

especially for n = 50, whereas it increases for each of SPN and COP instances.

(iv) If we fix n and the ratio ρ/ρ0 ∈ {0.25, 0.5, 0.75}, the solution time increases as ρ0 increases across all three

sets of instances. For fixed n, we therefore conclude that the solution time of the exact models seems to

be also highly influenced by the choice of the ratio ρ/ρ0.

(v) For n = 25, both exact models can be solved very quickly for all PSD instances. In contrast, for SPN

and COP instances, each of (P1(ρ)) and (P2(ρ)) is terminated due to the time limit of 600 seconds on

certain subsets of the instances. Therefore, we observe that SPN and COP instances can be particularly

challenging for (P1(ρ)) and (P2(ρ)), even for n = 25 with particular choices of (ρ0, ρ). For n = 50, we

observe that even some PSD instances were terminated due to the time limit. Recall that each instance in

this set has a convex objective function. For each choice of (n, ρ0, ρ), a comparison of PSD, SPN, and COP

instances reveals that the number of instances terminated due to the time limit exhibits a monotonically

increasing behavior.

In summary, the solution time of exact models (P1(ρ)) and (P2(ρ)) seem to be highly dependent on each

of the choices of the instance set, (n, ρ0, ρ), as well as on the ratio ρ/ρ0. COP instances tend to be the most
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challenging for the exact models, followed by SPN instances, which, in turn, are followed by PSD instances. These

results illustrate that Algorithms 1 and 2 are capable of generating instances of (StQP(ρ)) that are particularly

challenging for Gurobi, even in relatively small dimensions.

We close this section with a brief discussion of why we choose not to report optimality gaps for (P1(ρ)) and

(P2(ρ)) on instances that were terminated by the time limit. Gurobi computes the optimality gap using the

formula |zP − zD|/|zP |, where zP and zD denote the best objective function value and the best lower bound,

respectively. In our settings, the optimal value is usually very close to zero, which leads to very large optimality

gaps due to the division by a very small number. Therefore, optimality gaps reported by Gurobi tend to be

extremely large and do not seem to reflect the quality of the solution accurately. We will, however, discuss the

quality of the solutions relying directly on the lower bounds in Section 5.3.

5.2.2 Convex DNN relaxations

Now let us focus on solution times of the four convex relaxations (D1A(ρ)), (D1B(ρ)), (D2A(ρ)), and (D2B(ρ)).

In contrast with the exact models, Figure 2 illustrates that the solution times of convex relaxations do not

exhibit a strong correlation with the choices of the instance set and the tuple (ρ0, ρ). As such, we do not present

the counterparts of Figures 3 and 4 for the convex relaxations due to space considerations.

Based on Figure 2, we make the following observations about the convex relaxations (D1A(ρ)), (D1B(ρ)),

(D2A(ρ)), and (D2B(ρ)):

(i) The distributions of the solution times clearly illustrate the computational advantages of the reduced

formulations (D2A(ρ)) and (D2B(ρ)) over their counterparts.

(ii) We observe an empirical first-order stochastic dominance among the distributions of the solution times of

(D1A(ρ)), (D1B(ρ)), (D2A(ρ)), and (D2B(ρ)) on each of the six graphs. In particular, we observe that

the reduced formulation (D1B(ρ)) consistently achieves the lowest solution times, followed by the reduced

formulation (D2B(ρ)), which, in turn, is followed by (D2A(ρ)) and (D1A(ρ)), respectively. In addition to

being the theoretically tightest relaxation, it is worth noticing that (D1B(ρ)) also outperforms (D2B(ρ))

in terms of the solution time.

(iii) For n = 25, each of the four relaxations can be solved to optimality within the time limit for each instance

set and each choice of ρ0 and ρ. For n = 50, we observe that (D1A(ρ)) was terminated due to the time

limit on every instance whereas (D2A(ρ)) was terminated due to the time limit on some subsets of the

PSD and SPN instances. In contrast, each of the two reduced formulations (D1B(ρ)) and (D2B(ρ)) was

solved to optimality within the time limit on all instances. These observations clearly demonstrate the

computational advantages of the reduced formulations (D2A(ρ)) and (D2B(ρ)) over their counterparts,

especially in higher dimensions.

(iv) For PSD instances with n = 25, the distributions of the solution times of each of the two exact models

exhibit a first-order stochastic dominance on the corresponding distribution of each of the four convex

relaxations. In contrast, we observe that the solution times of the convex relaxations achieve better

performance on a larger subset of instances for each instance set with a larger n. For fixed n, a comparison

of PSD, SPN, and COP instances reveals an increasingly better performance of the convex relaxations in

comparison with the exact models.
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Table 2 reports the number of instances on which (D2A(ρ)) is terminated due to the time limit. Note that

we omit (D1A(ρ)) since all instances with n = 50 were terminated due to the time limit. It is worth noticing

that (D2A(ρ)) was solved to optimality within the time limit on all COP instances with n = 50. In contrast with

n = 25, we therefore conclude that the solution time of (D2A(ρ)) for n = 50 seems to be somewhat sensitive to

the set of instances and the choices of the parameters (ρ0, ρ).

Instance Set n ρ0 ρ (D2A(ρ))

PSD 50

12 9 1

25 6 14

25 12 10

25 19 3

38 10 8

38 19 22

38 28 18

SPN 50

12 3 1

25 6 12

25 12 8

25 19 2

38 10 20

38 19 24

38 28 10

COP 50 – – –

Table 2: Number of instances (out of 25) terminated due to the time limit (excluding (D1A(ρ)) that was

terminated due to the time limit on all instances with n = 50)

Finally, we recall that optimality gaps are not reported on instances terminated due to the time limit since

they are not particularly meaningful in our setting.

In conclusion, the solution time of each relaxation seems to be very robust with respect to the choice of the

instance set and the choice of (ρ0, ρ) in our setting. The reduced formulations (D2A(ρ)) and (D2B(ρ)) yield

significant computational advantages over their counterparts, especially in higher dimensions.

5.3 Quality of lower bounds

In this section, we discuss the quality of the lower bounds arising from the convex relaxations. To that end, we

compare the absolute gaps of the exact models with those of the convex relaxations. For an instance, we define

the MIQP gap as the difference between the best upper bound and the best lower bound obtained from (P1(ρ))

and (P2(ρ)). Similarly, we define the DNN gap to be the difference between the best upper bound obtained from

the two exact models, (P1(ρ)) and (P2(ρ)), and the best lower bound obtained from the reduced formulations

(D2A(ρ)) and (D2B(ρ)). Note that we use the lower bounds from the reduced formulations since all of them can
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be solved to optimality on all instances.

If at least one of (P1(ρ)) and (P2(ρ)) can solve an instance to optimality, then the MIQP gap will be very

close to zero. On such an instance, we deem that our relaxation is exact if the DNN gap is of similar magnitude

to that of the MIQP gap. If each of (P1(ρ)) and (P2(ρ)) is terminated due to the limit on an instance, then the

MIQP gap will be sufficiently away from zero. In this case, if the DNN gap is smaller than or equal to the MIQP

gap, we say that our relaxations are better than the exact modes. Otherwise, our relaxations are worse than the

exact models.

In Figure 5, which is organized similarly to Figure 2, we plot the DNN and MIQP gaps. To ease reading,

we have accumulated all instances of the same dimensions from each instance set across all different parameter

constellations (ρ0, ρ), yielding 225 such instances in total for every graph (a)-(f), depicting the situation in the

different hardness classes of the generated instances. In each graph, the horizontal axis represents the instances

ordered in nondecreasing MIQP gaps, which are represented by the blue curve, and the vertical axis denotes the

absolute gap. Finally, the markers indicate the data points at every 25th instance.

We outline our observations:

(i) For PSD instances, our relaxations are exact on the vast majority of all instances solved to optimality by

an exact model and are better than the exact models on all instances with a positive MIQP gap.

(ii) For SPN instances, our relaxations are exact on a relatively smaller proportion of all instances solved to

optimality by an exact model and are better than the exact models on all instances with a positive MIQP

gap. Furthermore, it is worth noticing that our relaxations continue to be exact on several instances with

a positive MIQP gap.

(iii) On COP instances, our relaxations are worse than the exact models on the vast majority of instances.

However, we remark that the DNN gap is smaller on a small subset of instances with n = 50 that admit a

positive MIQP gap.

The results show clearly that the DNN relaxations provide tight lower bounds on a large number of PSD

and SPN instances and that there is a significant number of instances where the MIQP gap is larger than the

gaps achieved by the DNN relaxations, sometimes drastically so (one or even two orders of magnitude). The

dominance of MIQP models on the extremely difficult COP instances in graphs (e) and (f) may be explained by

the fact that additional cuts may be needed to tighten the DNN gaps without resorting to higher-order relaxations

of the (intractable) exact conic reformulations.

We close this part by reporting that we have not observed a significant difference between the quality of the

lower bounds arising from the provably tighter relaxation (D1B(ρ)) and the weaker (D2B(ρ)). However, we still

recommend using the tighter (D1B(ρ)) since it also outperforms (D2B(ρ)) in terms of the solution time on our

instance sets.

6 Discussion, conclusions and outlook

In this paper, we studied the sparse StQP. By utilizing exact copositive reformulations of two mixed integer

quadratic optimization models, we proposed two tractable convex relaxations. For both relaxations, we estab-

lished equivalent tractable reformulations in significantly smaller dimensions. We also presented a theoretical

comparison of the two relaxations. Finally, we proposed an instance generation scheme that is guaranteed to
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(a) PSD Instances (n = 25)
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(b) PSD Instances (n = 50)
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(c) SPN Instances (n = 25)
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(d) SPN Instances (n = 50)
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(e) COP Instances (n = 25)
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Figure 5: Absolute gaps of the best of (P1(ρ)) and (P2(ρ)) versus the best of (D1B(ρ)) and (D2B(ρ))

construct nontrivial instances. Our computational results clearly illustrate the computational advantages of our

reduced relaxations as well as the quality of the relaxation bounds.

In the near future, we aim to focus on the description of the set of instances of (StQP(ρ)) that admit
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exact relaxations. Motivated by our computational results, we intend to investigate how our relaxations can be

strengthened for hard instances such as COP instances.
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