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1 Introduction

Suppose that H is a real Hilbert space and C' is a nonempty closed convex subset in H. The inner product
and norm of the Hilbert space H are represented by (-,-) and || - ||, respectively. Let A : H — 2 be a
multivalued operator, and F : H — H be a single-valued mapping. We pay attention to the following
bilevel multivalued variational inequality problems (shortly, BMVIPs): find 2* € VI(C, A), such that

(F(z*), y—2a™) >0, Yy e VI(C, A), (1.1)

where VI(C, A) denotes the solution set of the multivalued variational inequality problems (shortly,
MVIPs), that is,

VIC, A)={y* € C: Fw" € A(y*) such that{(w*, z—y*) >0, V z € C}. (1.2)

It’s worth noting that the BMVIPs (1.1)-(1.2) serve as computational frameworks for important
applications from machine learning, image processing, transportation, economics, engineering, circuits in
electronics and other applied fields, see [1-5]. Thus, there are growing interests for studying numerical
algorithms to solve BMVIPs and related problems, see [6-23].

The extragradient method (shortly, EGM) was introduced by Korpelevich[24] for solving monotone
variational inequality problems (shortly, VIPs). It needs to compute two projections per iteration, which
may have a bad impact on the computational efficiency of the method when the projection on the feasible
set is very difficult to calculate. The projection and contraction method (shortly, PCM) [11,25,26] and
the subgradiend extragradient method (shortly, SEGM) [27] are outstanding algorithms in improving the
extragradient methods and calculate only one projection in every iteration. Inspired by [28], combining
advantages of PCM and SEGM, Thong and Vuong [29] introduced improved subgradient extragradient
methods (shortly, ISEGM) for solving pseudomonotone variational inequalities in Hilbert spaces. The
main spirit of ISEGM is adopting the step sizes rule of PCM in the second explicit projection step of
SEGM.

Multivalued variational inequality problems (shortly, MVIPs) are generalizations of VIPs and numer-
ical methods for solving MVIPs have attracted much attention among researchers, see [5-13]. Under the
condition that multivalued operators are continuous, most of numerical algorithms that solve MVIPs
need to use the linesearch procedure, which contains additional operations of the projection and map-
pings values and magnifies notably the computational burden of the corresponding algorithms, see [5-7,
9-11]. Recently, Anh, Thang and Thach [12] proposed Halpern projection methods without any linesearch
procedure for solving pseudomonotone MVIPs. Under the condition that the multivalued operators are
Lipschitz continuous, their algorithms are strongly convergent.

The inertial technique, which traces back to a discrete form of a second-order dissipative dynamical
system [30,31], has aroused great interests of scholars as a method to expedite the convergence rate of
algorithms. It has been used widely to create algorithms of variational inequalities and related problems,
and can improve distinctly computational efficiency of numerical methods, which has been confirmed in
many numerical experiments, see [11,17,18,21-23].

If the multivalued operator A is a single-valued mapping, then BMVIPs (1.1)-(1.2) reduces to bilevel
variational inequality problems (shortly, BVIPs). Next we state some algorithms for solving BVIPs, which
stimulate us to establish new efficient iterative schemes. Based on SEGM, Thong et al. [15] proposed an
extragradient method for solving bilevel pseudo-monotone variational inequality problems in real Hilbert
spaces. Tan, Liu and Qin [17] introduced inertial terms into extragradient algorithms and extended
the corresponding results of [15]. Combining PCM and the inertial technique, Tan, Qin and Yao [18]
established a new modified inertial projection and contraction algorithm with the linesearch procedure
for solving BVIPs. Tan and Cho [21] investigated BVIPs involving a pseudomonotone operator and
constructed the inertial algorithm for solving them by combining SEGM and PCM. Note that the methods
of [15-18,21-23] need to know in advance the Lipschitz constant and strong monotonicity coefficient of
F. However, the Lipschitz constants and strong monotonicity coefficients are sometimes not available
in practical applications, see [32]. Recently, without the knowledge of the Lipschitz constants and the
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strong monotonicity coefficients of the underlying operators, Hieu and Moudafi [19] introduced a new
regularization projection method and Yang [20] established no inertial acceleration algorithms, for solving
the BVIPs.

An interesting problem is whether one can further improve the methods considered by [17-23] to
obtain a new algorithm with inertial steps for BMVIPs (1.1)-(1.2) without any prior information of
the Lipschitz constants and the strong monotonicity coefficients of the associated mappings in infinite
dimensional Hilbert spaces.

In the paper, we introduce a novel adaptive inertial algorithm for solving bilevel variational inequal-
ities with multivalued pseudomonotone operators and prove the sequence from the proposed algorithm
converges strongly to the unique solution of BMVIPs (1.1)-(1.2) in real Hilbert spaces. The novel algo-
rithm requires only one projection per iteration, owns inertial terms and adaptive step sizes that can run
without any linesearch process or the prior information of the Lipschitz constants and strong monotonicity
coeflicients of the associated mappings.

The arrangement of this paper is as follows. In Section 2, we recall some preliminary results and
lemmas for further use. In Section 3, we present the new algorithm and analyze its convergence. In
Section 4, we report numerical experiments to illustrate the feasibility and efficiency of the proposed
algorithm. Some concluding remarks are given in the last section.

2 Preliminaries

Let us recall some notations, definitions and well-known results that will be used in this paper. The weak
convergence of x, to z is denoted by x,, — x and the strong convergence of z,, to x is written x,, — x as
n — oo.

Definition 2.1 Let A: H — 2% be a multivalued mapping such that A(z) is a nonempty closed convex
set for each x € H.
(a) The mapping A is called

(i) monotone on H if
(u—v, x—y)y >0, Vo, y € H, u € A(z), v € A(y);

(ii) pseudomonotone on H if
(v, z—y)>0=(u, x—y) >0, Vo, y€ H, ue A(z), ve Ay);
(iii) L-Lipschitz continuous if there exists a constant L > 0 on H such that
p(A(x), Ay)) < Lllz —yl, Vo, y € H,

where p denotes the Hausdorff distance, that is, for any nonempty subsets D; and Do of H the
Hausdorff distance p(D1, Ds) between Dy and Dy is defined by

p(D1, D2):= max{ sup inf ||z —y|, inf sup |z —y|}.
xeD1, yeD> xeD1, ye€D>

(b) Let F': H — H be a single-valued mapping. The mapping F is called
(i) L-Lipschitz continuous if there exists a constant L > 0 on H such that

[F(z) = F(y)ll < Lllx = yll, Vo, y € H;

if L € (0,1), then F is also called a contraction mapping;
(ii) B-strongly monotone, if there exists a constant 5 > 0 such that

(F(x) = F(y), = —y) > Bllz — ylI*, Yz, y € H.
(c) Given a vector x € H, the projection of x onto C, denoted by Po(x), is defined by

Pe(z) i= argmingec|z -y



4 Zhong-bao Wang et al.

Lemma 2.1 [33] The mapping Pc has the following characteristic properties.

(i) For any x € H, z = Po(x) if and only if (z —x, y — 2z) >0, Yy € C;
(ii) ||Po(@) = Pe()|? < (Pe(z) — Pely), = —y), Yo, y € H;
(iii) | Pc (@) —yl|* < [l = yl* — ||z — Pe(2)|?, Yo € H, ¥y € C.

Lemma 2.2 [3/] For any z,y € H, ||z +y|*> < |z|*> + 2(y, = +y).

Lemma 2.3 [35] Let sequences of real numbers {b,}, {¢n} and {B,} satisfy v >0, 5, € (0,1) and
ooy Bn = o0o. Assume that

Uny1 < (1= Bp)n + Bnbp, Y n>1.

If imsupy,_, . bn,, < 0, for every subsequence {1, } of {¥n} satisfying liminfy_,oo (Yn,41 — Yn,) = 0,
then lim,, o9, = 0.

3 Main results

In this section, we introduce an adaptive inertial algorithm to solve BMVIPs (1.1)-(1.2) and establish
the strong convergence of the proposed algorithm. To analyse the strong convergence of the proposed
algorithm, the following assumptions are presented.

Assumption 3.1 (i) The solution set VI(C, A) is nonempty.
(ii) The mapping A : H — 28 is pseudomonotone, and Li-Lipschitz continuous with nonempty closed
and conver values.
(iii) If xp — x* and wy € A(xy), then there exists a subsequence {wy,;} of {wx} such that wy, — w* €
A(z*) as j — +o0.
(iv) The mapping F : H — H is B-strongly monotone and Lo-Lipschitz continuous.

Assumption 3.2 The positive real sequences {€,}, {vn}, {an}, {¢,} and {p,} satisfy
(i) v € (0, 1), 307 v = 00, limy 06 7 = 0 and lim, oo ;—Z =0;
(i) 07 1 pn < 00, {gn} C [1,400) and {q},} C [1,400) with lim, s ¢, = lim;, 00 ¢}, = 1.

If A= A; is a single-valued mapping in BMVIPs (1.1)-(1.2), then BMVIPs (1.1)-(1.2) reduces to the
following BVIPs : find z* € VI(C, A1), such that

(F(z*), y—a*) >0, Yy e VI(C, Ay), (3.1)
where VI(C, A;) is the solution set of the VIPs, that is,
VIC, A))={P: (A(P),y—P)>0,VyecC}. (3.2)

Assumption 3.3 (i) The mapping Ay : H — H is pseudomonotone, Lipschitz continuous and for any
{zn} C H with x,, = w*, one has ||Ajw*|| < lIminf, o ||[A12,].
(i) The solution set VI(C, Ay) is nonempty.
(i) The mapping F: H — H is B3-strongly monotone and Lo-Lipschitz continuous.

Algorithm 3.1 Take xg, v1 € H, p, ' € (0,1) with p < p/, 6, &' € (O,%) with § < ¢, a € (0,1),
T E (%, i), v > 0 and A1 > 0, and choose the sequences {en}, {n}, {an}, {¢.} and {pn} such that
Assumption 3.2 holds.

Step 1. Let {a,} be a sequence such that 0 < a,, < &y,, where

min{m7 a}, if In 7& Tn—1,

(3.3)
a, otherwise.

Qy =

Step 2. Compute
Wy, = Ty + A (T, — Tp—1). (3.4)
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Step 3. Taking u, € A(w,), compute

Step 4. Taking vy, = Pay,)(un), compute

and
Zn = PTn (wn - A77,777Lvr7,)a (36)
where
T, = {z € H{{wy, — TApUp — Yn, T — yn) < 0}
and
Mn = 0dn <wn\|7dinH72 dn)’ if dp, # 0,
! neld 7(11;:5/)2 ) 71_5;#,] otherwise.

Step 5. Update Tpi1 = 2 — Yy F(2n) and

min{uqn%, An +pn}, if fJun —vall #0,

)\n+1 = .
An F P, otherwise.

Letn =n+1 and return to Step 1.

Remark 3.1 We have the following comments on the Assumptions and Algorithm 3.1.

e The conditions (ii) and (iii) of Assumption 3.1 have been used and given the corresponding concrete
example in [12]. In Assumption 3.3, the condition ”for any {z,} C H with z,, — w*, one has ||A;w*|| <
liminf, o ||A12,]|” is strictly weaker than the sequentially weakly continuous assumption, see [36,37].

e In order to get larger step sizes, the sequences {¢,} and {¢/,} are used to relax the parameter pu and
d, respectively. The equality (3.4) is called an inertial term, which can speed up notably convergence rate
of numerical methods, see [11,17,18,21-23]. If a,, = 0, A = A; is a single-valued mapping, then the step
size A, is the same as the one of Algorithms 1 and 2 of [20].

e Computing the projection on the half-space T, has an explicit formula, see [18]. Hence Algorithm
3.1 needs to calculate only one projection in each iteration except computing v,. Motivated by [21], we
use the step size 7\, to compute the y,, which can improve the convergence rate of the algorithm.

e We only require the parameter v > 0, other than v € (0, %g) as in [15-18,21-23]. Thus we do not
need to know in advance the Lipschitz constant and strong monotonicity coefficient of F', which is an
important innovation of Algorithm 3.1.

Remark 3.2 1t follows from (3.3) that an||#n — @p—1 < €n = yn 5>, this and Assumption 3.2 mean that

n

nh_}n;O || — Xp-1]] = 0. (3.8)

Remark 3.3 Let {p,} and {\,} be generated by Algorithm 3.1, and P =Y | p,. Thus
lim, oo Ay = A and A\, X € [min{%,)\l},)\l + PJ.

Indeed, since A is L;-Lipschitz continuous, according to the definition of v, we get

Jun —vall = inf  Juy =3/ < sup inf fl2" —y'|| < p(A(wn), A(yn)) < Liflwn — yull. (3.9)
y' €A(yn) ' €A(wn) y'€A(yn)
Thus
n”wn_ynH > 4 [wn — ynll > o
||Un_vnH Llen_ynH Ly

The rest of the proof is the same as in Lemma 3.1 of [38], and we omit it.

In order to obtain the strong convergence of Algorithm 3.1, we need the following lemmas.
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Lemma 3.1 Let {n,} and {d,} be from Algorithm 3.1. Then the following statements hold
(i) there exists a positive integer N > 0 such that
(47w = vl 2 dall = (U= 7)o — | and 12 > > S W n > N
(i) For alln > N, d,, =0 if and only if w,, = yn.
Proof Tt follows that from Algorithm 3.1, for each n > 1,

<wn — Yn, dn> = <wn — Yn, Wn — Yn — T)\n(un - vn)) Z ||wn - yn||2 - T)\nHwn - yn””Un - vnH (310)
and
ldnll = llwn = Yn — TAn(tn — Vo) || = [lwn = Yull — TAulUun — val|- (3.11)

Now, we consider two cases:

Case 1 If ||u, — v,]| = 0, then by (3.10) and (3.11), we have

yul? > (1= 7Y |wn — yoll* and [[dn]| = [lwn = yall > (1= 74) [wn — yal|.
(3.12)

<wn - yn7dn> = Hwn

Case 2 If ||uy, — v,|| # 0, then according to (3.10), (3.11), Remark 3.3 and the definition of A,41, we
have

||2 TAn

(W = Yy dn) > [ wn = Yull” — T_H)‘er”wn — Ynlllun —vnll > ( Mwn — yn||2 (3.13)

and
TAn
ldnll = (1 = S==ans)l[wn = ynll (3.14)
n+1
In addition,
ldnll = [lwn = yn = TAn(un = vp)l| < [wn = ynll + TAnllun — vn ] < ( Mwn =yl (3.15)

In view of Assumption 3.2 and Remark 3.3, we know that

TAn

limy, 00 ¢;,0 =0 < &', limy 00 1 — § Sl = 1—7pu>1—7u and lim, o ~ )\ =T <TW.
Thus there is a positive integer N such that
, , TAn , TAn ,
g,0 <¢, 1— Gnit>1—7p and 1+ Gnpt < 14+7u', ¥Yn>N. (3.16)
)\n+1 /\n+1
It follows from (3.12), (3.14), (3.15) and (3.16) that
(L 7Y ln = yall > dull > (1= 7)o — gll, ¥ 1 > N. (3.17)
If d,, # 0, then
— Yn, dn) [wn — || &
= ;5% g, 51— Inll < . VYn>N
L AT fdll = T=mi
By (3.12), (3.13), (3.15) and (3.16), we have
’ <wn — Yn, dn> <wn — Yn, d’ﬂ> 1- 7'/./
Mo = ¢,,0 >4 >4 ,Vn>N. (3.18)
lldnl? l[dnll? (1+7p')?

If d,, = 0, then T >np > 6W hold naturally.
On the other hand, note that (3.17) implies that d,, = 0 if and only if w,, = y,, for all n > N. This

completes the proof. O
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Lemma 3.2 Let the Assumptions 3.1-3.2 hold and lim,_, 4 ||yn — wy|| = 0. If the sequence {xy} is
bounded and there exists a subsequence {x,, } of {x,} such that {z,,} converges weakly to P € H, then
PeVI(C, A).

Proof By the definition of y,, and Lemma 2.1 (i), we obtain
<wnk - T)‘nkunk —Yng, T — ynk> <0,Vzel

and

<wnk —Yny, T 7ynk> < <T>\nkunka zr— ynk>, VzeC. (319)

From (3.4), Remark 3.2 and Assumption 3.2, it follows that

lim ||w, —z,|| = lim ap|z, — Tp—1]] < lim fyne—n =0.
n—00 n— 00 n— 00 Yn
Since the sequence {z,} is bounded and lim, s |[|[yn — wy| = 0, we know that {w,} and {y,} are

bounded. Furthermore, in view of x,, — P, we get w,, — P and y,, — P as k — +oo. Owing to
Assumption 3.1 (iii), without loss of generality, we can assume that u,, — up € A(P) and hence {u,, }
is bounded.

According to lim, o0 ||yn — Wy || = 0, Remark 3.3 and (3.19), we can establish

lminf(un,,, € —wy,,) = Uminf(u,,, £ — (Wn, — Yn,) — Yny)

k— o0 k—o0
= hm inf<u”k, xr — ynk> - hm <unk7 wnk - ynk> (320)
k—o0 k— o0

= liminf(u,,, £ —yn,) >0, V2 e C.

k—o0

Due to (3.20), for each -, there exists ko > 0 such that for all z € C

1
1
(g @ = way) + — 20, V k> ko. (3.21)
k

Now we consider two cases:
Case 1 If there exists a subsequence {unkj} of {up,} such that Un,, = 0 for all j > 0. Due to
Un,, € A(wn, ) and wy,  — P, Assumption 3.1 (iii) implies that up = 0 € A(P). Thus, P € VI(C, A).

Case 2 There is not any subsequence {u"kj} of {un, } such that Un,,; = 0 for all j > 0. We can choose
: un :

the sequence {uy;} C {un, } with uy, # 0. Setting vy, = W, we have (uy,, vn,) = 1. This, along
with (3.21) implies that
1
(un,, =+ FT)NJ —wn;) >0, Ve e C,j > ko.
J
Combining this and the pseudomonotonicity of A, we get
1 ) 1
(u, x+ 0N, —wn,) >0, Vo € C, j > ko, u€ A(z + —0n;). (3.22)

N; N;

Since uy; converges weakly to up € A(P), the weakly lower semicontinuity of the norm implies that
0 < Jlupll < liminf u, |
j—oo
Then, if up = 0, then, obviously,
(up, ©—P) >0, Yz € C

and thus we have P € VI(C, A).
Now, if liminf; o [|un;, || > 0, then

1 : 1
N hInSupj_>oo V‘]

1
0 < limsup FHT)NJ. | = limsup 0. (3.23)

J < —
jmoo Nj jooo lun |l T liminfj oo flun, |
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This means lim; o + [|Un, || = 0. Given any a € C, for each u, € A(z), set uy’ = Pptat Loy (Ua)-
J j J
According to the definition of the projection and Lipschitz continuity of the mapping A, we have
lug” —uz || = inf [y—ua| < sup inf ly—,l| < p(A(e), Ala+iw,)) < Lo, |
z £ YEA(T+ x5 N;) zll = U;EA(m)yeA(w*'NLjﬁNj) zll = ) N; TN j
and hence (3.23) implies that
li N <1i Lo, | =
imsup [luy? — ug| < 1msupﬁ||v]vj|| =0.
Substituting u := us’ € Az + y,) into (3.22), we get
1
(uli x+ E@Nj —wy,) >0, VzeC. (3.24)

Using lim; uivj = Uy, WN, — P and lim;_, %H@Nj || =0in (3.24), we obtain

(uy, = — P) > 0. (3.25)
For every 1 € (0, 1], define z, : = 2+ (1 — +)P € C. According to (3.25) we have

_ 1 1 . _
0 < {ug, zxr — P) = (uy, %ZE+(1—%)P—P>
1 _

= EKuk’ x— P)], Vug € A(zy)
and hence

(ug, = — P) > 0. (3.26)

Since uy € A(xy) and x, — P as k — oo, Assumption 3.1 (iii) implies that there exists a subsequence
{ug,} of {ux} converges weakly to u € A(P). Taking uy = uy, and k — oo in (3.26), we obtain

(u, x— P) >0, Yz € C,
that is, P € VI(C, A). This completes the proof. O

Remark 3.4 In the case that the mapping A is monotone, it is not necessary to impose (iii) of Assumption
3.1 on A. Indeed, it follows from (3.21) and the monotonicity of A that for all x € C and u, € A(x)

1
(g, x—wnk>+n—k >0, Vk>ko. (3.27)

Letting k — 400 in (3.27), we have

(Up,x — Py >0, VxeCl,
and the rest of the proof is the same as Lemma 3.2.

Lemma 3.3 Let {z,} be a sequence generated by Algorithm 3.1 and p € VI(C, A). Then

1 1 2 1—7p)t
oo =9l < =0l = s = 2= Tl + (5 = 250 (e

75 ”wn_yn||2, Vn>N.

Proof Since y,, = Po(wn, — TApuy), via Lemma 2.1 (i), we get
(Wp, — TApUp, — Yny, T —Yn) <0, V2 el
and thus C' C T,,. Since p € C C T, Lemma 2.1 implies that
20 = plI> = |1 Pr,, (wn = Xathavn) = Pr, 0)II” < (20 — P, wn = Aathnvy — D)

1 1 1
= §||Zn - p”2 + §||wn — AU — p||2 - §||zn — Wy, + )‘nnnUnHQ

1

1
= §||Zn _p”2 + §||wn _pH2 - <wn - D ATL"7n'Un> - 7Hzn - ujn”2 - <Zn — Wn, )\nnnvn>

1 1 1
= §||Z7l _p||2 + 5”11)" _pH2 - inn - wn”2 - <Zn - P, Annnvn>~
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Therefore
”Zn _p”2 < ”wn —pH2 - ”Zn - wnHz - 2<)\n77nvna Zn _p>~ (3'28)

Since y, € C and p € VI(C, A), there exists u, € A(p) such that (up, y, —p) > 0. The pseudomono-
tonicity of A implies that

<Un7 p— yn> S 0.

According to Lemma 3.1 and Remark 3.3, we know that

_2/\n7-7]n<vn7 Zn — Yn + Yn — p> = _2)\n7-77n<vna Yn — p> - 2/\n7—77n<vn7 Zn — yn>

(3.29)
< *2)\n7_77n<vna Zn — yn>7 vV n>N.
From z, = P, (w, — Anfnvs) € T, it follows that
<wn - T)‘nun —Yn, Zn — yn> S 0
and thus
<wn —Yn — T>\n(un - Un)a Zn — yn> = <dn7 Zn — yn> é T)‘n<vnv Zn — yn>
This implies that

Combining (3.29) and (3.30), we get
_2>\n7—77n<vna Zn _p> S _2nn<dn7 Zn — yn> = _2nn<dn7 Wy, — yn> + 277n<dn; Wp — Zn>> Vn Z N (331)

Now, we estimate —2%77n<dn, Wy, — Yp) and 2%nn<dn, Wy, — Zn)-
If d,, # 0, then by the definition of 7,,, we have

77n||dn||2 = 5qg1<dnv Wp — yn>

If d, = 0, then n,||d,||* = §¢,,(dn, wy, — y,) holds obviously.
Thus

—2n,%||dn ? 1
= —2-n,{dy, Wy — Yn). 3.32
— “a{dns wa ~ n) (3:32)

In addition, we note that

1 1
2777n<dn7 Wnp — Zn> = 2<777ndn7 Wy — Zn>
T T (3.33)

1 1
= —|lwn — zn — *nndnw + [Jwn, — ZnHz + 7773L||dn||2-
T 72

It follows from (3.31), (3.32) and (3.33) that

1 1 2
_2/\n77n<vm Zn —p> < _Hwn — Rn — ;UndnHQ + ”wn - Zn||2 =+ (ﬁ - 70q )ninnH2v Vn > N. (3-34)

/!
n

It follows from (3.16) and 7 € (%, i) that % — qu, <% -2 <0, Vn > N. In view of Lemma 3.1,
(3.28) and (3.34), we obtain '

12 (1)

1
2 2 2 2
llzn —plI* < |lwn —plI" — ”wn*zn*;nndn” Jr(ﬁ*ﬁ) (1_~_7_M/)4Hwn*yn” .
The proof is completed. O

Next, we give the following main theorem.

Theorem 3.1 If the Assumptions 3.1-3.2 hold, then the sequence {x,} generated by Algorithm 3.1 con-
verges strongly to the unique solution of BMVIPs (1.1)-(1.2).



10 Zhong-bao Wang et al.

Proof Due to Assumption 3.1 and [1,2], we know that BMVIPs (1.1)-(1.2) have a unique solution, which
is denoted by p.
Since F': H — H is (-strongly monotone and Ls-Lipschitz continuous, we have

Bl —yl* < (F() = F(y), = —y) < |F(z) = FW)lllz -yl < Lol —yl*, Vo, y € H.

Hence

[N

Ly > and 1 — (v7,)% (28 — (1) 2 La?) > (1 — (v7) 2 8)%.

Furthermore, we know that
I = (1) 2 F)(20) = (I = (37) 2 F) ()]
= ll2n = PII* + 170l F (z0) = F@O)I* = 2(v90)* (F(20) = F(p), 20 — p)

1
< |lzn = PII* + ¥ L2120 — plI*> = 2B(v¥n) % |20 — p|?
= (1= (77)2 (28 = (Ym)2 L2?))||zn — p||*-

According to Hmnﬁoo('yvn)% = 0, we deduce that there exists a positive integer N such that

2
(’YV”)% < min{lv fg}v Vn > Nl-
2
Let’s assume for the sake of convenience N > N;. Thus, for all n > N

(I =y E)(zn) — (I — v F) (D)
< (V)2 Il = (P7) T F) (2n) — (I = (v) EF) @) + (1 = (770) ®)l|2n — D] (3.35)

<[ (yym) 2 (1 - \/1 — (y)2 (28 — (v1m) 2 L)z — pll = (1 — (1) 2 ) 20 — 2,

where I, =1 — \/1 — (1) % (28 = (ym) 2 L2%).
We know that for all n > N, (y7,)? < min{1, i—@} implies that I, € (0,1], V n > N. Thanks to
2
Lemma 3.3, we have
[2n = pll < [[wp = pll, V= N. (3.36)
In view of Assumption 3.2, we know lim, (1 — (fy'yn)%f'n)%ﬂa:n — Zp—1|| = 0 and thus there exists
M > 0 such that

(U= () L) 2l — 2| < M, ¥ n > N,
YIn
It follows from (3.35) and (3.36) that

Hxn-i-l _pH = ||Zn _'Y’VnF(Zn) _p”

= (I =y F)(zn) — (I =y ) () — v F @)

<NT = F)(2n) = (I =y F) @) + (7 F(p)

< (1= (1) L)z — pll + ¥3 I F )|

< (1= ()2 ) |wn = pll + 17| F ()]

< (1= ()2 L) — P+ an(@n — 2n1)|| + 79[ F ()] (3.37)
< (1= (yy)2 Do) [ln — pll + [(1 - (vvnﬁrn)%’;nxn — Tt [ + 17l F @)

1
< (L= (yw) 2 Ln)llen — pll + v M + 71 F ()|l

= (= ()BTl — ol + () L2 1 PN

(YY) 2
I,

< max{||z, — pl, (M +[[F())}, ¥Vn=N.
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By the definition of I, and Assumption 3.2, we get

lim (v;n)f — lim (Y1)
V1= (1)} (28 = (13) Lo?) 539)
I (@8- (1)L
= lim T3 =2
noreo 2B — (vyn)? Lo

1
which implies that there exists My > 0 such that 0 < % < M>. This, together with (3.37), yields

[2n1 = pll < max{||z, —pll, Mo(M + [|[F(p)[)} < -+ < max{[lan —pll, M2(M + [[F(p)[)}.  (3.39)

This implies that the sequence {x,} is bounded.
By the definition of w,, we get

[lwn, —p||2 = an +an(rp —Tp_1) _p”2 <3 40)
< |lwn _pH2 + 2an [Ty — zn—allllzn — pll + ai”xn - xanHQ-
By using Lemma 2.2, (3.35), (3.36) and (3.40), we have
[2nt1 —plI* = 20 — Y9 F (zn) — pl?
= I(I =¥ F)(zn) = (I = ¥ F)(p) = v F (p)|I”
< =¥ F)(z0) = I =y F)D)IP + 2970 (F(p), p — Tnt1)
1
( (’Y’Yn)QFn)2||Zn - p”2 + 27’Vn<F(p), p— -Tn+1>
1
< (1= ()  Tn)*lwn — plI* + 2y (F(p), p — Tnt1) (3.41)
1 .
<(1- (’Y’Yn)2pn)2(||xn - pH2 +anllrn — 21| 2llzn — pll + anllrn — 20-1l]))
+ 297 (F(P), P — Tnt1)
1 1 (7%
< (1= ()2 To)llzn — pIIP + (Y1) 2 Tn[@ ——— |0 — T
(vm)2 I
1
)3
#2992 p), )] Y0z N

where Q = sup, {2||z, — p|| + anl|zrn — Tn-1|]} > 0.
1
Set wn = Hxn _pHQa 6n = (V’Yn)%Fn and bn = anxn — Tn— 1|| + 2(’W+)<F(p)v p— xn+1>'
From (3.41) it follows that

’(/}nJrl < (1 - Bn)wn + ﬂnbna VYn>N.

According to (3.38), we have

Thus >~ ; v», = oo implies that Y7, 8, = oc.
In addition, since (y7,)? < min{1, Lg} and I, € (0,1], YV n > N, we have for all n > N, 3, € (0,1).
Let {t¢n, } be a subsequence of {1} such that lim infr oo (Ynyt1 — Y, ) > 0.
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Utilizing Lemmas 2.2 and 3.3, (3.35), (3.40) and (3.41), we have

[Znt1 = plI* = 20 — Y F(20) — pl?
= I(I = F)(zn) = (I =y F) () = 7 F (p)|”
<N = F)(z0) = (L =11 F)D)I* + 29 (F(p), p = Zny1)
< (1= ()2 1)l — Bl + 293 | E@)lp — 2
< flzn = pl* + 70 @1 (3.42)
1 2 (17

1
< lwn = plI* = llwn — 20 — ;nndnll2 + (= —=5)0 A+ )t

2 7y llwn — yn||2 + Q1

1
<|lzn *p”z +anl|rn — Tn1]|Q — [lwn — 25 — ;nndn”2

1 2 o (1—Tu)!

+ (g = 2 s vl 42,1 Y2 N,

T2 7

where Q1 = sup, {27|[|F(p)||l|lp — zn+1)]|} > 0. Combining (3.42) and the assumptions ¢’ € (0, %) and

re (g, ﬁ), we infer that

: 1 2 1 2 o(—Tp) 2

11£isogp[l|wnk — Rng T ;Wnkdnkn - (ﬁ - ﬁ) m”wnk — Yni[|]

< limsup(Hxnk - p”2 - ||$7lk+1 - p||2) + limsup(ank Hxﬂk - QTnk,lHQ + 'ynk-Q1>
k—o0 k— o0

P . ni €n ..
< _hkn_igf(wnk-&-l - '(/)nk) + lim SUP(MQ + ’Ynle) < —lim g.}f(wnk-i-l - wnk) < 07

k— o0 Nk k—
which implies
My o0 [ Wny, — Zny, — 20ndn, || = 0 and limy_ o0 [|[wn, — Yn, || = 0.
Since the sequence {z,, 11} is bounded, there exists a subsequence {xnkjﬂ} of {Zn,+1} such that

. .
Ty, 41 — 2" a8 J — 00 and

limsup(F(p), p — Tn,+1) = lim (F(p), p— xnk.ﬁl) = (F(p), p—z*). (3.43)

k— o0 Jj—oo

Lemma 3.2 and limg o0 [|Wn,, — Yn, || = 0 imply that * € VI(C, A). From (3.43) and the assumption p
is the unique solution of BMVIPs (1.1)-(1.2), it follows that

limsup(F(p), p — Tn,+1) = lim (F(p), p — mnkj+1> = (F(p), p—z*) <0. (3.44)

k—o0 J—o0

Using (3.38), the assumption lim, ff = 0 and the definition of «,,, we have

1
lim Q" ey — o] < lm Q— T = 1im U
n—o0o ('Y'Vn)§rn n—o00 ('Y'Yn)ipn n— o0 Fn YYn

This, together with (3.38) and (3.44) implies that

[N

lim sup by, < lim Q# + lim sup 2M

F(p), p—x, <0.

Thus Lemma 2.3 ensures that the sequence {z,} converges strongly to p. The proof is completed. O

Proposition 3.1 Suppose that A = A; is a single-valued mapping, the Assumptions 3.2-8.83 hold, and
{wn} and {yn} are sequences generated by Algorithm 3.1. If lim ||w, —yn| = 0 and {w,} converges
n—oo

weakly to some P € H, then P € VI(C, Ay).

Proof This proof is the same as in Lemma 3.7 of [37], and we omit it.



Title Suppressed Due to Excessive Length 13

Corollary 3.1 Let H, C, F and A, be the same as the above statement. Choose xo, x1 € H, u, 1’ € (0,1)
with p < @', 6, 8" € (0, %) with 6 < ¢, a € (0,1), 7 € (%/, ﬁ), v > 0 and Ay > 0. Suppose that
Assumptions 3.2 and 3.3 hold. Let {x,,} be a sequence generated by

Wy = Ty + W (T, — Tp1)s

Yn = Po(w, — A A1 (wy)),

T, = {z € H|(wp — TAA1(wn) — Yn, T — yn) < 0},
zn = Pr, (wn, — AannA1(yn)),

dp, = Wy, — Y — TAL (A1 (wr) — A1(yn)),

Tpt1 = zn — YT F (2n),

(3.45)

where {a,} and {n,} are defined in Algorithm 3.1, and

min{pqn%, An+pnt, I [[Ar(wn) — Ar(yn)l| # 0,
An + Pn, otherwise.

>\n+1 -

Then the sequence {x,} converges strongly to the unique solution of BVIPs (3.1)-(3.2).

Proof Replacing Lemma 3.2 with Proposition 3.1 and taking A = A1, u, = A1(w,) and v, = A1(yy) in
Lemmas 3.1 and 3.8, and Theorem 8.1, the desired conclusion holds.

Remark 3.5 We compare Corollary 3.1 with corresponding results in recent literature.

e Corollary 3.1 improves Theorem 3.1 of [20] in the following aspects: (i) we require that the mapping
A; satisfies the condition "for any {z,} C H with z, — w*, one has ||4A;w*| < liminf,, [[A12,]",
which is strictly weaker than the sequentially weakly continuous assumption, see [36,37]; (ii) the step
size T\, is used to compute the y,, which can improve the convergence efficiency of the algorithm, see
[21]; (iil) Instead of just relaxing p, we relax the parameters u and § by using the sequences {g,} and
{q,,}, respectively, to get the larger step sizes; (iv) the iterative scheme (3.45) owns the inertial term
Wy, = Ty + (T — Tp—1), which often accelerates prominently convergence speed of numerical methods,
see [11,17,18,21-23].

e The mapping A; may be pseudomonotone and the iterative scheme (3.45) has inertial acceleration.
Thus Corollary 3.1 improves Theorem 1 of [19].

e Compared with Theorem 3.1 of [18], Theorem 2.2 of [21] and Theorems 3.1 and 3.2 of [22], though
A is Lipschitz continuous, the step sizes of the iterative scheme (3.45) are updated at each iteration by a
cheap computation without any linesearch procedure. Since we relax the parameters p and § by using the
sequences {¢,} and {¢,}, respectively, the step sizes of the iterative scheme (3.45) are larger than ones
in Algorithm 2.1 of [21] and Algorithm 3.1 of [23]. Especially, we only assume that the parameter v > 0,
other than v € (0, %) as in [15-18,21-23]. Thus we do not need the prior information of the Lipschitz
constant and strong monotonicity coefficient of F'.

Let p’ be a constant such that p’ € (0,1) and f: H — H be a p’-contraction mapping. It is easy to
know that F(z) =z — f(x), Vo € H is (1 + p’)-Lipschitz continuous and (1 — p’)-strongly monotone. By
Corollary 3.1, we can get the following corollary.

Corollary 3.2 Let H, C and Ay be the same as Corollary 3.1, and f : H — H be a p’'-contraction
mapping. Take xg, v1 € H, p, p' € (0,1) with p < p’, 4§, 6" € (0, %) with 6 < o', a € (0,1), 7 € (%,, ﬁ),
v>0,p €(0,1) and Ay > 0. Suppose that (i) and (ii) of Assumption 3.3 and Assumption 3.2 hold. Let
{z,} be a sequence generated by

Wy, = Ty + @ (T — Tp—1),

Yn = Po(w, — TAR AL (wy)),

T, ={z € H|{{w, — TA A1 (W) — Yn, T — yn) < 0},
zn = Pr, (Wn = A AL (Yn)),

dp, = Wy — Yn — TAR(A1(wn) — A1(Yn)),

Tn+1 = (1 =)0 + 17 f(2n),

(3.46)
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where {an} and {ny} are defined in Algorithm 3.1, and

min{#%%, Antpnt, A [[Ar(wn) — Ar(ya)|| # 0,

)\n+1 - .
An + Pn, otherwise.

Then the sequence {xy} converges strongly to P € VI(C, A1) and P = Py c,a,)(f(P)).

Remark 3.6 We only require p’ € (0,1), other than p’ € (0,4/5 — 2). In addition, the parameter v can
equal 1. Thus Corollary 3.1 improves Corollary 2.1 of [21].

Taking F'(z) = x — f(x) for all x € H in Theorem 3.1, we can get the following corollary.

Corollary 3.3 Let H, C and A be the same as Theorem 3.1, and f : H — H be a p'-contraction

mapping. Take xo, 1 € H, p, p' € (0,1) with p < ', 6, ' € (0, %) with § < ¢, a € (0,1), 7 € (%,, ﬁ),
v >0, p €(0,1) and Ay > 0. Suppose that (i)-(iii) of Assumption 3.1 and Assumption 3.2 hold. Let

{zn} be a sequence generated by

Wy, = Ty + (T, — Tp—1), Un € Alwy,)
Yn = Po(wn — TAntn), vn = Pagy,)(Un)
T, = {z € H{(w, — TAptp — Yn, T — yn) < 0}, (3.47)
Zn = Pr (Wn — Aninvn),
dp = Wy, — Yn — TAp (U, — V),

Tpt1 = (1 —YYn)2n + 'Y'an(zn)a

where {a,}, An and {n,} are defined in Algorithm 3.1. Then the sequence {x,} converges strongly to
P e VI(O, A) and P = PVI(C,A)(f(P))-

Remark 3.7 Corollary 3.3 extends Theorem 3.9 of [12] in the following aspects.

(i) The iterative scheme (3.47) has inertial acceleration (w,, = %, + @, (2, — T—1)), which has been
widely uesd to increase the convergence rate of algorithms, see [11,17,18,21-23].

(ii) The step sizes of the iterative scheme (3.47) are updated at each iteration without any prior
information of Lipschitz constants, while the step sizes of the Algorithm 3.1 of [12] must satisfy A, €
(0, %), where L is a Lipschitz constant of the mapping A. In some cases, the value of the Lipschitz constant
may be very large, which leads to a very small step size of the algorithm and reduces the convergence speed
of Algorithm 3.1 of [12]. Furthermore, the Lipschitz constant is sometimes not obtainable in practical
applications, see [32].

4 Numerical experiments

In this section, we report some numerical experiments to show the numerical behaviors of the proposed
algorithm, namely Algorithm 3.1 (shortly, Alg3.1), and also compare them with several other well known
algorithms including the Halpern projection algorithm 3.1 (HPM3.1) in [12], the Subgradient extragra-
dient algorithm (SEA1) in [15], the projection and contraction methods 1 and 2 (PCM1, PCM2) in
[20] and the modified subgradient extragradient algorithms 2.1 and 2.2 (MSE2.1, MSE2.2) in [21], the
Relaxed forward-backward splitting method (RFBSM) in [40], the inertial Mann-type Tseng algorithm
3.3 (IMTT3.3) [41], and the new iterative proximal algorithm (NIPA) [42]. If the solution of the bilevel
pseudomonotone multivalued variational inequality problem is unknown, then we use the function

Dy (x) = [|oy — xn71||2

to measure the error of the n-th iteration. Otherwise, when the solution z* of the bilevel pseudomonotone
multivalued variational inequality problem is known, we use the function

E(z) = ||z —2*|?

to show the efficiencies of aforementioned algorithms.
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All the programs are written in MATLAB 2021a on an AMD Ryzen 5 3600 6-Core Processor (12
CPUs), 3.6Hz computer with RAM 16.00GB. We denote by ”Iter.” the number of iterations.

Example 4.1 Assume that the operator
F(z):= Mz+q,

where M is a symmetric and positive-definite matrix of size 5 x 5 and g € R° with their entries generated
randomly in (—2,2). It is clear that F' is 8- strongly monotone and Lo-Lipschitz continuous with 8 =
min{eig(M)}, Ly = max{eig(M)}. The feasible set is C = {z € ®° : 1 < x; < 3,i = 1,2,--- ,5}.
Consider the following fractional programming problem

in f( )_xTQx+aTx+a0
wee ! T T T by

)

where a = (1,2,-1,-2,1)", b= (1,0,-1,0,1) T, ag = —2, by = 20, and

5 -1202
~16 —-130
Q=2 1301
0 3 050
2 0 104

It is easy to verify that @ is symmetric and positive definite and f is pseudo-convex, see [19]. Setting

(bTx+b0)(2Qr +a) —b (27T Qx +az+ ag)

A(z) == Vf(z) = b2+ by)? )

thus A is pseudo-monotone. The exact solution of our problem is 2* = (1,1,1,1,1) T. The starting point
is z0 = 1 = (2,2,2,2,2) 7. In Example 4.1, the parameters are taken as

e Alg3l:a =04, € = b, 7= 08, M = 1,0 = 1.2, p = 0.9, ' = 0.95,8' = 1.5, v = 1077,

’YnZ%H,an(n;l)l.u%:l-ﬁ‘%“»q;:l"‘ﬁrl;

e MSE2.1: 0 =04,7=0.8,6 =15~ = 1';;, M =05, 0=01,0n = Gy, an = 475 € = G
. _ _ _ _ 17 _ _ 1 _ 1 _ 1 _
.MSE229—04,7——08,6—15,'}/— L§ ,M—O.l,gn—m7an—m7§n—m70'—27
£ =0.5;
e PCM1: Ay = 1,6 = 1.5, p = 0.9, y/ = 0.95, ovpy = 7255, pn = (n{l)u, G =1+ 7253

e PCM2: \; = 1,6 = 1.5, u = 0.9, ¢/ = 0.95, o, = 355, Pn = GrDrT @n =1+ g

o SEAL: v =L 11=0.1, A\ =05, ap = 2.
2

The numerical results are shown in Fig. 1.

Ezample 4.2 Suppose H = L?([0,1]) is an infinite-dimensional Hilbert space with inner product

1
(1) = / (y(t)dt, ¥ z,y € H,
0
and the induced norm )
]| := (/ w(t)2dt), ¥z € H.
0

Assume r and R are two positive real numbers such that R/(k+ 1) < r/k < r < R for some k > 1. Let
C={x € H:|z| <r}. The mapping A : H — H is defined by

A(z) = (R — ||z||)z, Yz € H.

Taking R = 1.5,r = 1,k = 1.1, we can verify that the operator A is pseudo-monotone rather than
monotone (see [39], Section 4). Let F : H — H be defined by (Fz)(t) = 3z(t),t € [0,1]. Thus the
mapping F' is %—strongly monotone and %—Lipschitz continuous. The parameters of all algorithms are the
same as in Example 4.1 except v = 27 of Alg3.1.
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Fig. 1: Numerical results for Example 4.1
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Fig. 2: Numerical results for Example 4.2

The solution of this problem is z*(¢) = 0. The maximum number of iterations 100 is used as a common
stopping criterion. Fig. 2 shows the numerical behaviors of E(x) = ||z — z*||? of all algorithms with two
starting points xg(t) = z1(t). In Fig. 3, we give performances of Algorithm 3.1 for different values of v in
Example 4.2. This means that v > %g may be better than the case with v € (0, %), where 8 = Ly = %
Ezample 4.3 Let [0,255] be the value range of each pixel, M and N be the width and height of image
pixels, respectively, D = M x N, C = [0,255]”, and H = RP be a Hilbert space with the standard
Euclidean norm || - ||2. If we do not consider the effects of noise, then the image deblurring problem is

stated as follows:

find x € C' such that y = Kz, (4.1)

where y is the observed image, K denotes the blurring matrix and z is the original image. The problem

(4.1) can be seen as the convex minimization problem:

. 1 )
min h(z) = 5 [|Kz — yll2. (42)
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Fig. 3: The performances of Algorithm 3.1 for different values of v in Example 4.2

Therefore, we can use Corollary 3.2 to solve above problem. Note that A; = Vh(z). The signal to noise
ration (SNR) in decibel(dB) is defined by

I3

SNR = 10log, EEEE
3

where T denotes the original image and x denotes the recovered image. SNR can measure the efficiency of
different algorithms to restore the image. The larger the SNR value, the better is the image restoration
effectiveness. Let g = 1 € RP and 1 = 0 € RP. We consider the Lena (512 x 512) as test image and
use the blurring function of motion blur (”fspecial(’motion’, 45,180)”) from Matlab.

Then Table 1 reports numerical results. Fig. 4 gives the original image, blurred image and recovered
images by using the methods Alg3.1, IMTT3.3, REBSM, SEA1 and PCM1. Fig. 5 shows the SNR values
of images recovered by the methods Alg3.1, IMTT3.3, RFBSM, SEA1 and PCM]1, respectively. The
parameters of algorithms are the same as in Example 4.1 except

e Alg3.1: 7=10.9, v =0.3, f(x) = 0.5z;

¢ IMTT3.3: 0 = 0.5, u = 0.9, ¢, = %, A =1, an =27, B = 0.5(1 — ay), f(x) = 0.5z;

e RFBSM: @« =0.1,0 =05, \; =1 and p = 0.7.

Table 1: Numerical comparison for the methods Alg3.1, IMTT3.3, RFBSM, SEA1 and PCM1

Image SNR(dB)
& ITter. Alg3.1 IMTT3.3 RFBSM SEA1l PCM1
2500 28.1640 23.0983 23.3417 18.7880  25.5059
Lena

3000 28.4122  23.5398 23.7863 19.1445  25.8858
Size = 512 x 512 4000 28.7557  24.2262 24.4735 19.7243  26.4382
5000 28.9807  24.7401 24.9829 20.1905  26.8475

Ezxample 4.4 Let N be a matrix of order m, B be an m x m skew-symmetric matrix, ) be an m x m

diagonal matrix and

Ax) ={f(t)Mx : t €[0,1]}, F(x) = 0.1z, Vo € R,
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(a) original image  (b) image motion (¢) the method (d) the method
blur (Alg3.1) (IMTT3.3)

(f)the method (f)the method (f)the method
(RFBSM) (SEA1) (PCM1)

Fig. 4: Comparison of Lena images recovered by using different algorithms
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Fig. 5: Graphs of SNR for the methods Alg3.1, IMTT3.3, RFBSM, SEA1 and PCM1 of Lena image

where M = N« NT + B+ Q and
ft)=3t-2t+1, te0,1].

Example 4.4 has been considered in [12]. In this test, the matrices N, B, @ are randomly generated
by using commands N = rand(m,m) x 2 x m — m, B = skewdec(m,1),Q = diag(1 : m). Take C' = {z €
f™ ¢ ||2f| < 2} and m = 100. The numerical behaviors of D,,(z) = ||z, — 7,,—1||? of all algorithms with
initial point g = x; = rand(m, 1) are shown in Fig. 6. In Example 4.4, the parameters are the same as
in Example 4.1 except

o Alg3.1: v = 27;

e HPM3.1: y = 1.5, A\ =

e NIPA: « = 0.5, ¢, = @

1 - 1.
gIM[+5° “n = 3p12000°
1

A= L
FD)(n+2)’ 1 = B[[M[[+5"

5 Conclusions

In the paper, we present an adaptive inertial algorithm to approximate the solution of bilevel variational
inequalities with multivalued pseudomonotone operators in real Hilbert spaces. The features of the pro-
posed algorithm are that (1) does not need to know any prior information of the Lipschitz constants and
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Fig. 6: Numerical results for Example 4.4

strong monotonicity coefficients of the associated mappings; (2) requires only one projection per iteration
except computing v,,; (3) the operator involved is pseudomonotone and Lipschitz continuous; (4) its step
sizes are updated at each iteration by a cheap computation without any linesearch procedure; (5) the
embedding of the inertial terms speeds up the convergence rate of the algorithm. We prove the strong
convergence of the proposed algorithm under mild conditions, and give several numerical examples to
show the proposed algorithms have competitive advantages in comparison with the known methods in
the literature. The results obtained in this paper improve and extend some corresponding ones in [15-23].
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