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1 Introduction

Suppose that H is a real Hilbert space and C is a nonempty closed convex subset in H. The inner product

and norm of the Hilbert space H are represented by 〈·, ·〉 and ‖ · ‖, respectively. Let A : H → 2H be a

multivalued operator, and F : H → H be a single-valued mapping. We pay attention to the following

bilevel multivalued variational inequality problems (shortly, BMVIPs): find x∗ ∈ V I(C, A), such that

〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ V I(C, A), (1.1)

where V I(C, A) denotes the solution set of the multivalued variational inequality problems (shortly,

MVIPs), that is,

V I(C, A) = {y∗ ∈ C : ∃ w∗ ∈ A(y∗) such that〈w∗, z − y∗〉 ≥ 0, ∀ z ∈ C}. (1.2)

It’s worth noting that the BMVIPs (1.1)-(1.2) serve as computational frameworks for important

applications from machine learning, image processing, transportation, economics, engineering, circuits in

electronics and other applied fields, see [1–5]. Thus, there are growing interests for studying numerical

algorithms to solve BMVIPs and related problems, see [6–23].

The extragradient method (shortly, EGM) was introduced by Korpelevich[24] for solving monotone

variational inequality problems (shortly, VIPs). It needs to compute two projections per iteration, which

may have a bad impact on the computational efficiency of the method when the projection on the feasible

set is very difficult to calculate. The projection and contraction method (shortly, PCM) [11,25,26] and

the subgradiend extragradient method (shortly, SEGM) [27] are outstanding algorithms in improving the

extragradient methods and calculate only one projection in every iteration. Inspired by [28], combining

advantages of PCM and SEGM, Thong and Vuong [29] introduced improved subgradient extragradient

methods (shortly, ISEGM) for solving pseudomonotone variational inequalities in Hilbert spaces. The

main spirit of ISEGM is adopting the step sizes rule of PCM in the second explicit projection step of

SEGM.

Multivalued variational inequality problems (shortly, MVIPs) are generalizations of VIPs and numer-

ical methods for solving MVIPs have attracted much attention among researchers, see [5–13]. Under the

condition that multivalued operators are continuous, most of numerical algorithms that solve MVIPs

need to use the linesearch procedure, which contains additional operations of the projection and map-

pings values and magnifies notably the computational burden of the corresponding algorithms, see [5–7,

9–11]. Recently, Anh, Thang and Thach [12] proposed Halpern projection methods without any linesearch

procedure for solving pseudomonotone MVIPs. Under the condition that the multivalued operators are

Lipschitz continuous, their algorithms are strongly convergent.

The inertial technique, which traces back to a discrete form of a second-order dissipative dynamical

system [30,31], has aroused great interests of scholars as a method to expedite the convergence rate of

algorithms. It has been used widely to create algorithms of variational inequalities and related problems,

and can improve distinctly computational efficiency of numerical methods, which has been confirmed in

many numerical experiments, see [11,17,18,21–23].

If the multivalued operator A is a single-valued mapping, then BMVIPs (1.1)-(1.2) reduces to bilevel

variational inequality problems (shortly, BVIPs). Next we state some algorithms for solving BVIPs, which

stimulate us to establish new efficient iterative schemes. Based on SEGM, Thong et al. [15] proposed an

extragradient method for solving bilevel pseudo-monotone variational inequality problems in real Hilbert

spaces. Tan, Liu and Qin [17] introduced inertial terms into extragradient algorithms and extended

the corresponding results of [15]. Combining PCM and the inertial technique, Tan, Qin and Yao [18]

established a new modified inertial projection and contraction algorithm with the linesearch procedure

for solving BVIPs. Tan and Cho [21] investigated BVIPs involving a pseudomonotone operator and

constructed the inertial algorithm for solving them by combining SEGM and PCM. Note that the methods

of [15–18,21–23] need to know in advance the Lipschitz constant and strong monotonicity coefficient of

F . However, the Lipschitz constants and strong monotonicity coefficients are sometimes not available

in practical applications, see [32]. Recently, without the knowledge of the Lipschitz constants and the
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strong monotonicity coefficients of the underlying operators, Hieu and Moudafi [19] introduced a new

regularization projection method and Yang [20] established no inertial acceleration algorithms, for solving

the BVIPs.

An interesting problem is whether one can further improve the methods considered by [17–23] to

obtain a new algorithm with inertial steps for BMVIPs (1.1)-(1.2) without any prior information of

the Lipschitz constants and the strong monotonicity coefficients of the associated mappings in infinite

dimensional Hilbert spaces.

In the paper, we introduce a novel adaptive inertial algorithm for solving bilevel variational inequal-

ities with multivalued pseudomonotone operators and prove the sequence from the proposed algorithm

converges strongly to the unique solution of BMVIPs (1.1)-(1.2) in real Hilbert spaces. The novel algo-

rithm requires only one projection per iteration, owns inertial terms and adaptive step sizes that can run

without any linesearch process or the prior information of the Lipschitz constants and strong monotonicity

coefficients of the associated mappings.

The arrangement of this paper is as follows. In Section 2, we recall some preliminary results and

lemmas for further use. In Section 3, we present the new algorithm and analyze its convergence. In

Section 4, we report numerical experiments to illustrate the feasibility and efficiency of the proposed

algorithm. Some concluding remarks are given in the last section.

2 Preliminaries

Let us recall some notations, definitions and well-known results that will be used in this paper. The weak

convergence of xn to x is denoted by xn ⇀ x and the strong convergence of xn to x is written xn → x as

n→∞.

Definition 2.1 Let A : H → 2H be a multivalued mapping such that A(x) is a nonempty closed convex

set for each x ∈ H.

(a) The mapping A is called

(i) monotone on H if

〈u− v, x− y〉 ≥ 0, ∀x, y ∈ H, u ∈ A(x), v ∈ A(y);

(ii) pseudomonotone on H if

〈v, x− y〉 ≥ 0 =⇒ 〈u, x− y〉 ≥ 0, ∀x, y ∈ H, u ∈ A(x), v ∈ A(y);

(iii) L-Lipschitz continuous if there exists a constant L > 0 on H such that

ρ(A(x), A(y)) ≤ L‖x− y‖, ∀x, y ∈ H,

where ρ denotes the Hausdorff distance, that is, for any nonempty subsets D1 and D2 of H the

Hausdorff distance ρ(D1, D2) between D1 and D2 is defined by

ρ(D1, D2) := max{ sup inf
x∈D1, y∈D2

‖x− y‖, inf sup
x∈D1, y∈D2

‖x− y‖}.

(b) Let F : H → H be a single-valued mapping. The mapping F is called

(i) L-Lipschitz continuous if there exists a constant L > 0 on H such that

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ H;

if L ∈ (0, 1), then F is also called a contraction mapping;

(ii) β-strongly monotone, if there exists a constant β > 0 such that

〈F (x)− F (y), x− y〉 ≥ β‖x− y‖2, ∀x, y ∈ H.

(c) Given a vector x ∈ H, the projection of x onto C, denoted by PC(x), is defined by

PC(x) := argminy∈C‖x− y‖.
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Lemma 2.1 [33] The mapping PC has the following characteristic properties.

(i) For any x ∈ H, z = PC(x) if and only if 〈z − x, y − z〉 ≥ 0, ∀y ∈ C;

(ii) ‖PC(x)− PC(y)‖2 ≤ 〈PC(x)− PC(y), x− y〉, ∀x, y ∈ H;

(iii) ‖PC(x)− y‖2 ≤ ‖x− y‖2 − ‖x− PC(x)‖2, ∀x ∈ H, ∀y ∈ C.

Lemma 2.2 [34] For any x, y ∈ H, ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.

Lemma 2.3 [35] Let sequences of real numbers {bn}, {ψn} and {βn} satisfy ψn ≥ 0 , βn ∈ (0, 1) and∑∞
n=1 βn = ∞. Assume that

ψn+1 ≤ (1− βn)ψn + βnbn, ∀ n ≥ 1.

If lim supk→∞bnk
≤ 0, for every subsequence {ψnk

} of {ψn} satisfying lim infk→∞(ψnk+1 − ψnk
) ≥ 0,

then limn→∞ψn = 0.

3 Main results

In this section, we introduce an adaptive inertial algorithm to solve BMVIPs (1.1)-(1.2) and establish

the strong convergence of the proposed algorithm. To analyse the strong convergence of the proposed

algorithm, the following assumptions are presented.

Assumption 3.1 (i) The solution set VI(C, A) is nonempty.

(ii) The mapping A : H → 2H is pseudomonotone, and L1-Lipschitz continuous with nonempty closed

and convex values.

(iii) If xk ⇀ x∗ and wk ∈ A(xk), then there exists a subsequence {wkj} of {wk} such that wkj ⇀ w∗ ∈
A(x∗) as j → +∞.

(iv) The mapping F : H → H is β-strongly monotone and L2-Lipschitz continuous.

Assumption 3.2 The positive real sequences {εn}, {γn}, {qn}, {q′n} and {pn} satisfy

(i) γn ∈ (0, 1),
∑∞
n=1 γn =∞, limn→∞ γn = 0 and limn→∞

εn
γn

= 0;

(ii)
∑∞
n=1 pn <∞, {qn} ⊂ [1,+∞) and {q′n} ⊂ [1,+∞) with limn→∞ qn = limn→∞ q′n = 1.

If A = A1 is a single-valued mapping in BMVIPs (1.1)-(1.2), then BMVIPs (1.1)-(1.2) reduces to the

following BVIPs : find x∗ ∈ V I(C, A1), such that

〈F (x∗), y − x∗〉 ≥ 0, ∀y ∈ V I(C, A1), (3.1)

where V I(C, A1) is the solution set of the VIPs, that is,

V I(C, A1) = {P̄ : 〈A1(P̄ ), y − P̄ 〉 ≥ 0, ∀ y ∈ C}. (3.2)

Assumption 3.3 (i) The mapping A1 : H → H is pseudomonotone, Lipschitz continuous and for any

{xn} ⊂ H with xn ⇀ w∗, one has ‖A1w
∗‖ ≤ lim infn→∞ ‖A1xn‖.

(ii) The solution set VI(C, A1) is nonempty.

(iii) The mapping F : H → H is β-strongly monotone and L2-Lipschitz continuous.

Algorithm 3.1 Take x0, x1 ∈ H, µ, µ′ ∈ (0, 1) with µ < µ′, δ, δ′ ∈ (0, 2
µ′ ) with δ < δ′, α ∈ (0, 1),

τ ∈ ( δ
′

2 ,
1
µ′ ), γ > 0 and λ1 > 0, and choose the sequences {εn}, {γn}, {qn}, {q′n} and {pn} such that

Assumption 3.2 holds.

Step 1. Let {αn} be a sequence such that 0 ≤ αn ≤ ᾱn, where

ᾱn =

min{ εn
‖xn−xn−1‖ , α}, if xn 6= xn−1,

α, otherwise.
(3.3)

Step 2. Compute

wn = xn + αn(xn − xn−1). (3.4)
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Step 3. Taking un ∈ A(wn), compute

yn = PC(wn − τλnun). (3.5)

Step 4. Taking vn = PA(yn)(un), compute

dn = wn − yn − τλn(un − vn)

and

zn = PTn
(wn − λnηnvn), (3.6)

where

Tn = {x ∈ H|〈wn − τλnun − yn, x− yn〉 ≤ 0}

and

ηn =

δq′n
〈wn−yn, dn〉
‖dn‖2 , if dn 6= 0,

η̄ ∈ [δ 1−τµ′
(1+τµ′)2 ,

δ′

1−τµ′ ] otherwise.

Step 5. Update xn+1 = zn − γγnF (zn) and

λn+1 =

min{µqn ‖wn−yn‖
‖un−vn‖ , λn + pn}, if ‖un − vn‖ 6= 0,

λn + pn, otherwise.
(3.7)

Let n = n+ 1 and return to Step 1.

Remark 3.1 We have the following comments on the Assumptions and Algorithm 3.1.

• The conditions (ii) and (iii) of Assumption 3.1 have been used and given the corresponding concrete

example in [12]. In Assumption 3.3, the condition ”for any {xn} ⊂ H with xn ⇀ w∗, one has ‖A1w
∗‖ ≤

lim infn→∞ ‖A1xn‖” is strictly weaker than the sequentially weakly continuous assumption, see [36,37].

• In order to get larger step sizes, the sequences {qn} and {q′n} are used to relax the parameter µ and

δ, respectively. The equality (3.4) is called an inertial term, which can speed up notably convergence rate

of numerical methods, see [11,17,18,21–23]. If αn = 0, A = A1 is a single-valued mapping, then the step

size λn is the same as the one of Algorithms 1 and 2 of [20].

• Computing the projection on the half-space Tn has an explicit formula, see [18]. Hence Algorithm

3.1 needs to calculate only one projection in each iteration except computing vn. Motivated by [21], we

use the step size τλn to compute the yn, which can improve the convergence rate of the algorithm.

• We only require the parameter γ > 0, other than γ ∈ (0, 2β
L2

2
) as in [15–18,21–23]. Thus we do not

need to know in advance the Lipschitz constant and strong monotonicity coefficient of F , which is an

important innovation of Algorithm 3.1.

Remark 3.2 It follows from (3.3) that αn‖xn − xn−1‖ ≤ εn = γn
εn
γn

, this and Assumption 3.2 mean that

lim
n→∞

αn‖xn − xn−1‖ = 0. (3.8)

Remark 3.3 Let {pn} and {λn} be generated by Algorithm 3.1, and P =
∑∞
n=1 pn. Thus

limn→∞ λn = λ and λn, λ ∈ [min{ µL1
, λ1}, λ1 + P ].

Indeed, since A is L1-Lipschitz continuous, according to the definition of vn we get

‖un − vn‖ = inf
y′∈A(yn)

‖un − y′‖ ≤ sup
x′∈A(wn)

inf
y′∈A(yn)

‖x′ − y′‖ ≤ ρ(A(wn), A(yn)) ≤ L1‖wn − yn‖. (3.9)

Thus

µqn
‖wn − yn‖
‖un − vn‖

≥ µqn
‖wn − yn‖
L1‖wn − yn‖

≥ µ

L1
.

The rest of the proof is the same as in Lemma 3.1 of [38], and we omit it.

In order to obtain the strong convergence of Algorithm 3.1, we need the following lemmas.
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Lemma 3.1 Let {ηn} and {dn} be from Algorithm 3.1. Then the following statements hold

(i) there exists a positive integer N > 0 such that

(1 + τµ′)‖wn − yn‖ ≥ ‖dn‖ ≥ (1− τµ′)‖wn − yn‖ and δ′

1−τµ′ ≥ ηn ≥ δ
1−τµ′

(1+τµ′)2 , ∀ n ≥ N ;

(ii) For all n ≥ N , dn = 0 if and only if wn = yn.

Proof It follows that from Algorithm 3.1, for each n ≥ 1,

〈wn − yn, dn〉 = 〈wn − yn, wn − yn − τλn(un − vn)〉 ≥ ‖wn − yn‖2 − τλn‖wn − yn‖‖un − vn‖ (3.10)

and

‖dn‖ = ‖wn − yn − τλn(un − vn)‖ ≥ ‖wn − yn‖ − τλn‖un − vn‖. (3.11)

Now, we consider two cases:

Case 1 If ‖un − vn‖ = 0, then by (3.10) and (3.11), we have

〈wn − yn, dn〉 = ‖wn − yn‖2 ≥ (1− τµ′)‖wn − yn‖2 and ‖dn‖ = ‖wn − yn‖ ≥ (1− τµ′)‖wn − yn‖.
(3.12)

Case 2 If ‖un − vn‖ 6= 0, then according to (3.10), (3.11), Remark 3.3 and the definition of λn+1, we

have

〈wn − yn, dn〉 ≥ ‖wn − yn‖2 −
τλn
λn+1

λn+1‖wn − yn‖‖un − vn‖ ≥ (1− τλn
λn+1

qnµ)‖wn − yn‖2 (3.13)

and

‖dn‖ ≥ (1− τλn
λn+1

qnµ)‖wn − yn‖. (3.14)

In addition,

‖dn‖ = ‖wn − yn − τλn(un − vn)‖ ≤ ‖wn − yn‖+ τλn‖un − vn‖ ≤ (1 +
τλn
λn+1

qnµ)‖wn − yn‖. (3.15)

In view of Assumption 3.2 and Remark 3.3, we know that

limn→∞ q′nδ = δ < δ′, limn→∞ 1− τλn

λn+1
qnµ = 1− τµ > 1− τµ′ and limn→∞

τλn

λn+1
qnµ = τµ < τµ′.

Thus there is a positive integer N such that

q′nδ < δ′, 1− τλn
λn+1

qnµ > 1− τµ′ and 1 +
τλn
λn+1

qnµ < 1 + τµ′, ∀ n ≥ N. (3.16)

It follows from (3.12), (3.14), (3.15) and (3.16) that

(1 + τµ′)‖wn − yn‖ ≥ ‖dn‖ ≥ (1− τµ′)‖wn − yn‖, ∀ n ≥ N. (3.17)

If dn 6= 0, then

ηn = q′nδ
〈wn − yn, dn〉
‖dn‖2

≤ q′nδ
‖wn − yn‖
‖dn‖

≤ δ′

1− τµ′
, ∀ n ≥ N.

By (3.12), (3.13), (3.15) and (3.16), we have

ηn = q′nδ
〈wn − yn, dn〉
‖dn‖2

≥ δ 〈wn − yn, dn〉
‖dn‖2

≥ δ 1− τµ′

(1 + τµ′)2
, ∀ n ≥ N. (3.18)

If dn = 0, then δ′

1−τµ′ ≥ ηn ≥ δ
1−τµ′

(1+τµ′)2 hold naturally.

On the other hand, note that (3.17) implies that dn = 0 if and only if wn = yn for all n ≥ N . This

completes the proof. �
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Lemma 3.2 Let the Assumptions 3.1-3.2 hold and limn→+∞ ‖yn − wn‖ = 0. If the sequence {xn} is

bounded and there exists a subsequence {xnk
} of {xn} such that {xnk

} converges weakly to P̄ ∈ H, then

P̄ ∈ V I(C, A).

Proof By the definition of ynk
and Lemma 2.1 (i), we obtain

〈wnk
− τλnk

unk
− ynk

, x− ynk
〉 ≤ 0, ∀ x ∈ C

and

〈wnk
− ynk

, x− ynk
〉 ≤ 〈τλnk

unk
, x− ynk

〉, ∀ x ∈ C. (3.19)

From (3.4), Remark 3.2 and Assumption 3.2, it follows that

lim
n→∞

‖wn − xn‖ = lim
n→∞

αn‖xn − xn−1‖ ≤ lim
n→∞

γn
εn
γn

= 0.

Since the sequence {xn} is bounded and limn→+∞ ‖yn − wn‖ = 0, we know that {wn} and {yn} are

bounded. Furthermore, in view of xnk
⇀ P̄ , we get wnk

⇀ P̄ and ynk
⇀ P̄ as k → +∞. Owing to

Assumption 3.1 (iii), without loss of generality, we can assume that unk
⇀ uP̄ ∈ A(P̄ ) and hence {unk

}
is bounded.

According to limn→∞ ‖yn − wn‖ = 0, Remark 3.3 and (3.19), we can establish

lim inf
k→∞

〈unk
, x− wnk

〉 = lim inf
k→∞

〈unk
, x− (wnk

− ynk
)− ynk

〉

= lim inf
k→∞

〈unk
, x− ynk

〉 − lim
k→∞

〈unk
, wnk

− ynk
〉

= lim inf
k→∞

〈unk
, x− ynk

〉 ≥ 0, ∀ x ∈ C.

(3.20)

Due to (3.20), for each 1
nk

, there exists k0 > 0 such that for all x ∈ C

〈unk
, x− wnk

〉+
1

nk
≥ 0, ∀ k > k0. (3.21)

Now we consider two cases:

Case 1 If there exists a subsequence {unkj
} of {unk

} such that unkj
= 0 for all j ≥ 0. Due to

unkj
∈ A(wnkj

) and wnkj
⇀ P̄ , Assumption 3.1 (iii) implies that uP̄ = 0 ∈ A(P̄ ). Thus, P̄ ∈ V I(C, A).

Case 2 There is not any subsequence {unkj
} of {unk

} such that unkj
= 0 for all j ≥ 0. We can choose

the sequence {uNj
} ⊂ {unk

} with uNj
6= 0. Setting v̄Nj

=
uNj

‖uNj
‖2 , we have 〈uNj

, v̄Nj
〉 = 1. This, along

with (3.21) implies that

〈uNj , x+
1

Nj
v̄Nj − wNj 〉 ≥ 0, ∀x ∈ C , j > k0.

Combining this and the pseudomonotonicity of A, we get

〈u, x+
1

Nj
v̄Nj
− wNj

〉 ≥ 0, ∀x ∈ C, j > k0, u ∈ A(x+
1

Nj
v̄Nj

). (3.22)

Since uNj converges weakly to uP̄ ∈ A(P̄ ), the weakly lower semicontinuity of the norm implies that

0 ≤ ‖uP̄ ‖ ≤ lim inf
j→∞

‖uNj‖.

Then, if uP̄ = 0, then, obviously,

〈uP̄ , x− P̄ 〉 ≥ 0, ∀x ∈ C

and thus we have P̄ ∈ V I(C, A).

Now, if lim infj→∞ ‖uNj
‖ > 0, then

0 ≤ lim sup
j→∞

1

Nj
‖v̄Nj

‖ = lim sup
j→∞

1
Nj

‖uNj
‖
≤

lim supj→∞
1
Nj

lim infj→∞ ‖uNj
‖

= 0. (3.23)
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This means limj→∞
1
Nj
‖v̄Nj

‖ = 0. Given any x ∈ C, for each ux ∈ A(x), set u
Nj
x = PA(x+ 1

Nj
v̄Nj

)(ux).

According to the definition of the projection and Lipschitz continuity of the mapping A, we have

‖uNj
x −ux‖ = inf

y∈A(x+ 1
Nj
v̄Nj

)
‖y−ux‖ ≤ sup

u′x∈A(x)

inf
y∈A(x+ 1

Nj
v̄Nj

)
‖y−u′x‖ ≤ ρ(A(x), A(x+

1

Nj
v̄Nj

)) ≤ L1

Nj
‖v̄Nj

‖

and hence (3.23) implies that

lim sup
j→∞

‖uNj
x − ux‖ ≤ lim sup

j→∞

L1

Nj
‖v̄Nj‖ = 0.

Substituting u := u
Nj
x ∈ A(x+ 1

Nj
v̄Nj

) into (3.22), we get

〈uNj
x , x+

1

Nj
v̄Nj − wNj 〉 ≥ 0, ∀ x ∈ C. (3.24)

Using limj→∞ u
Nj
x = ux, wNj

⇀ P̄ and limj→∞
1
Nj
‖v̄Nj

‖ = 0 in (3.24), we obtain

〈ux, x− P̄ 〉 ≥ 0. (3.25)

For every 1
k ∈ (0, 1], define xk : = 1

kx+ (1− 1
k )P̄ ∈ C. According to (3.25) we have

0 ≤ 〈uk, xk − P̄ 〉 = 〈uk,
1

k
x+ (1− 1

k
)P̄ − P̄ 〉

=
1

k
[〈uk, x− P̄ 〉], ∀ uk ∈ A(xk)

and hence

〈uk, x− P̄ 〉 ≥ 0. (3.26)

Since uk ∈ A(xk) and xk → P̄ as k → ∞, Assumption 3.1 (iii) implies that there exists a subsequence

{ukj} of {uk} converges weakly to ū ∈ A(P̄ ). Taking uk = ukj and k →∞ in (3.26), we obtain

〈ū, x− P̄ 〉 ≥ 0, ∀x ∈ C,

that is, P̄ ∈ V I(C, A). This completes the proof. �

Remark 3.4 In the case that the mapping A is monotone, it is not necessary to impose (iii) of Assumption

3.1 on A. Indeed, it follows from (3.21) and the monotonicity of A that for all x ∈ C and ux ∈ A(x)

〈ux, x− wnk
〉+

1

nk
≥ 0, ∀ k > k0. (3.27)

Letting k → +∞ in (3.27), we have

〈ux, x− P̄ 〉 ≥ 0, ∀ x ∈ C,

and the rest of the proof is the same as Lemma 3.2.

Lemma 3.3 Let {zn} be a sequence generated by Algorithm 3.1 and p ∈ V I(C, A). Then

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖wn − zn −
1

τ
ηndn‖2 + (

1

τ2
− 2

τδ′
)δ2 (1− τµ′)4

(1 + τµ′)4
‖wn − yn‖2, ∀ n ≥ N.

Proof Since yn = PC(wn − τλnun), via Lemma 2.1 (i), we get

〈wn − τλnun − yn, x− yn〉 ≤ 0, ∀ x ∈ C

and thus C ⊂ Tn. Since p ∈ C ⊂ Tn, Lemma 2.1 implies that

‖zn − p‖2 = ‖PTn
(wn − λnηnvn)− PTn

(p)‖2 ≤ 〈zn − p, wn − λnηnvn − p〉

=
1

2
‖zn − p‖2 +

1

2
‖wn − λnηnvn − p‖2 −

1

2
‖zn − wn + λnηnvn‖2

=
1

2
‖zn − p‖2 +

1

2
‖wn − p‖2 − 〈wn − p, λnηnvn〉 −

1

2
‖zn − wn‖2 − 〈zn − wn, λnηnvn〉

=
1

2
‖zn − p‖2 +

1

2
‖wn − p‖2 −

1

2
‖zn − wn‖2 − 〈zn − p, λnηnvn〉.
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Therefore

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖zn − wn‖2 − 2〈λnηnvn, zn − p〉. (3.28)

Since yn ∈ C and p ∈ V I(C, A), there exists up ∈ A(p) such that 〈up, yn − p〉 ≥ 0. The pseudomono-

tonicity of A implies that

〈vn, p− yn〉 ≤ 0.

According to Lemma 3.1 and Remark 3.3, we know that

−2λnτηn〈vn, zn − yn + yn − p〉 = −2λnτηn〈vn, yn − p〉 − 2λnτηn〈vn, zn − yn〉
≤ −2λnτηn〈vn, zn − yn〉, ∀ n ≥ N.

(3.29)

From zn = PTn
(wn − λnηnvn) ∈ Tn, it follows that

〈wn − τλnun − yn, zn − yn〉 ≤ 0

and thus

〈wn − yn − τλn(un − vn), zn − yn〉 = 〈dn, zn − yn〉 ≤ τλn〈vn, zn − yn〉.

This implies that

−2λnτηn〈vn, zn − yn〉 ≤ −2ηn〈dn, zn − yn〉. (3.30)

Combining (3.29) and (3.30), we get

−2λnτηn〈vn, zn − p〉 ≤ −2ηn〈dn, zn − yn〉 = −2ηn〈dn, wn − yn〉+ 2ηn〈dn, wn − zn〉, ∀n ≥ N. (3.31)

Now, we estimate −2 1
τ ηn〈dn, wn − yn〉 and 2 1

τ ηn〈dn, wn − zn〉.
If dn 6= 0, then by the definition of ηn, we have

ηn‖dn‖2 = δq′n〈dn, wn − yn〉.

If dn = 0, then ηn‖dn‖2 = δq′n〈dn, wn − yn〉 holds obviously.

Thus
−2ηn

2‖dn‖2

τδq′n
= −2

1

τ
ηn〈dn, wn − yn〉. (3.32)

In addition, we note that

2
1

τ
ηn〈dn, wn − zn〉 = 2〈1

τ
ηndn, wn − zn〉

= −‖wn − zn −
1

τ
ηndn‖2 + ‖wn − zn‖2 +

1

τ2
η2
n‖dn‖2.

(3.33)

It follows from (3.31), (3.32) and (3.33) that

−2λnηn〈vn, zn − p〉 ≤ −‖wn − zn −
1

τ
ηndn‖2 + ‖wn − zn‖2 + (

1

τ2
− 2

τδq′n
)η2
n‖dn‖2, ∀n ≥ N. (3.34)

It follows from (3.16) and τ ∈ ( δ
′

2 ,
1
µ′ ) that 1

τ2 − 2
τδq′n

< 1
τ2 − 2

τδ′ < 0, ∀n ≥ N . In view of Lemma 3.1,

(3.28) and (3.34), we obtain

‖zn − p‖2 ≤ ‖wn − p‖2 − ‖wn − zn −
1

τ
ηndn‖2 + (

1

τ2
− 2

τδ′
)δ2 (1− τµ′)4

(1 + τµ′)4
‖wn − yn‖2.

The proof is completed. �

Next, we give the following main theorem.

Theorem 3.1 If the Assumptions 3.1-3.2 hold, then the sequence {xn} generated by Algorithm 3.1 con-

verges strongly to the unique solution of BMVIPs (1.1)-(1.2).
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Proof Due to Assumption 3.1 and [1,2], we know that BMVIPs (1.1)-(1.2) have a unique solution, which

is denoted by p.

Since F : H → H is β-strongly monotone and L2-Lipschitz continuous, we have

β‖x− y‖2 ≤ 〈F (x)− F (y), x− y〉 ≤ ‖F (x)− F (y)‖‖x− y‖ ≤ L2‖x− y‖2, ∀ x, y ∈ H.

Hence

L2 ≥ β and 1− (γγn)
1
2 (2β − (γγn)

1
2L2

2) ≥ (1− (γγn)
1
2 β)2.

Furthermore, we know that

‖(I − (γγn)
1
2F )(zn)− (I − (γγn)

1
2F )(p)‖2

= ‖zn − p‖2 + γγn‖F (zn)− F (p)‖2 − 2(γγn)
1
2 〈F (zn)− F (p), zn − p〉

≤ ‖zn − p‖2 + γγnL2
2‖zn − p‖2 − 2β(γγn)

1
2 ‖zn − p‖2

= (1− (γγn)
1
2 (2β − (γγn)

1
2L2

2))‖zn − p‖2.

According to limn→∞(γγn)
1
2 = 0, we deduce that there exists a positive integer N1 such that

(γγn)
1
2 < min{1, 2β

L2
2

}, ∀ n ≥ N1.

Let’s assume for the sake of convenience N ≥ N1. Thus, for all n ≥ N

‖(I − γγnF )(zn)− (I − γγnF )(p)‖

≤ (γγn)
1
2 ‖(I − (γγn)

1
2F )(zn)− (I − (γγn)

1
2F )(p)‖+ (1− (γγn)

1
2 )‖zn − p‖

≤ [1− (γγn)
1
2 (1−

√
1− (γγn)

1
2 (2β − (γγn)

1
2L2

2)]‖zn − p‖ = (1− (γγn)
1
2Γn)‖zn − p‖,

(3.35)

where Γn = 1−
√

1− (γγn)
1
2 (2β − (γγn)

1
2L2

2).

We know that for all n ≥ N , (γγn)
1
2 < min{1, 2β

L2
2
} implies that Γn ∈ (0, 1], ∀ n ≥ N . Thanks to

Lemma 3.3, we have

‖zn − p‖ ≤ ‖wn − p‖, ∀ n ≥ N. (3.36)

In view of Assumption 3.2, we know limn→∞(1 − (γγn)
1
2Γn) αn

γγn
‖xn − xn−1‖ = 0 and thus there exists

M > 0 such that

(1− (γγn)
1
2Γn)

αn
γγn
‖xn − xn−1‖ ≤M, ∀ n ≥ N.

It follows from (3.35) and (3.36) that

‖xn+1 − p‖ = ‖zn − γγnF (zn)− p‖
= ‖(I − γγnF )(zn)− (I − γγnF )(p)− γγnF (p)‖
≤ ‖(I − γγnF )(zn)− (I − γγnF )(p)‖+ ‖γγnF (p)‖

≤ (1− (γγn)
1
2Γn)‖zn − p‖+ γγn‖F (p)‖

≤ (1− (γγn)
1
2Γn)‖wn − p‖+ γγn‖F (p)‖

≤ (1− (γγn)
1
2Γn)‖xn − p+ αn(xn − xn−1)‖+ γγn‖F (p)‖

≤ (1− (γγn)
1
2Γn)‖xn − p‖+ [(1− (γγn)

1
2Γn)

αn
γγn
‖xn − xn−1‖]γγn + γγn‖F (p)‖

≤ (1− (γγn)
1
2Γn)‖xn − p‖+ γγnM + γγn‖F (p)‖

= (1− (γγn)
1
2Γn)‖xn − p‖+ (γγn)

1
2Γn

(γγn)
1
2

Γn
(M + ‖F (p)‖)

≤ max{‖xn − p‖,
(γγn)

1
2

Γn
(M + ‖F (p)‖)}, ∀ n ≥ N.

(3.37)
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By the definition of Γn and Assumption 3.2, we get

lim
n→∞

(γγn)
1
2

Γn
= lim
n→∞

(γγn)
1
2

1−
√

1− (γγn)
1
2 (2β − (γγn)

1
2L2

2)

= lim
n→∞

[1 +
√

1− (γγn)
1
2 (2β − (γγn)

1
2L2

2)]

2β − (γγn)
1
2L2

2
=

1

β
,

(3.38)

which implies that there exists M2 > 0 such that 0 < (γγn)
1
2

Γn
< M2. This, together with (3.37), yields

‖xn+1 − p‖ ≤ max{‖xn − p‖,M2(M + ‖F (p)‖)} ≤ · · · ≤ max{‖xN − p‖,M2(M + ‖F (p)‖)}. (3.39)

This implies that the sequence {xn} is bounded.

By the definition of wn, we get

‖wn − p‖2 = ‖xn + αn(xn − xn−1)− p‖2

≤ ‖xn − p‖2 + 2αn‖xn − xn−1‖‖xn − p‖+ α2
n‖xn − xn−1‖2.

(3.40)

By using Lemma 2.2, (3.35), (3.36) and (3.40), we have

‖xn+1 − p‖2 = ‖zn − γγnF (zn)− p‖2

= ‖(I − γγnF )(zn)− (I − γγnF )(p)− γγnF (p)‖2

≤ ‖(I − γγnF )(zn)− (I − γγnF )(p)‖2 + 2γγn〈F (p), p− xn+1〉

≤ (1− (γγn)
1
2Γn)2‖zn − p‖2 + 2γγn〈F (p), p− xn+1〉

≤ (1− (γγn)
1
2Γn)2‖wn − p‖2 + 2γγn〈F (p), p− xn+1〉

≤ (1− (γγn)
1
2Γn)2(‖xn − p‖2 + αn‖xn − xn−1‖(2‖xn − p‖+ αn‖xn − xn−1‖))

+ 2γγn〈F (p), p− xn+1〉

≤ (1− (γγn)
1
2Γn)‖xn − p‖2 + (γγn)

1
2Γn[Q

αn

(γγn)
1
2Γn
‖xn − xn−1‖

+ 2
(γγn)

1
2

Γn
〈F (p), p− xn+1〉], ∀ n ≥ N,

(3.41)

where Q = supn{2‖xn − p‖+ αn‖xn − xn−1‖} > 0.

Set ψn = ‖xn − p‖2, βn = (γγn)
1
2Γn and bn = Q αn

(γγn)
1
2 Γn

‖xn − xn−1‖ + 2 (γγn)
1
2

Γn
〈F (p), p − xn+1〉.

From (3.41) it follows that

ψn+1 ≤ (1− βn)ψn + βnbn, ∀ n ≥ N.

According to (3.38), we have

lim
n→∞

γn
βn

= lim
n→∞

γn

(γγn)
1
2Γn

= lim
n→∞

(γγn)
1
2

γΓn
=

1

γβ
.

Thus
∑∞
n=1 γn =∞ implies that

∑∞
n=1 βn =∞.

In addition, since (γγn)
1
2 < min{1, 2β

L2
2
} and Γn ∈ (0, 1], ∀ n ≥ N , we have for all n ≥ N , βn ∈ (0, 1).

Let {ψnk
} be a subsequence of {ψn} such that lim infk→∞(ψnk+1 − ψnk

) ≥ 0.
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Utilizing Lemmas 2.2 and 3.3, (3.35), (3.40) and (3.41), we have

‖xn+1 − p‖2 = ‖zn − γγnF (zn)− p‖2

= ‖(I − γγnF )(zn)− (I − γγnF )(p)− γγnF (p)‖2

≤ ‖(I − γγnF )(zn)− (I − γγnF )(p)‖2 + 2γγn〈F (p), p− xn+1〉

≤ (1− (γγn)
1
2Γn)2‖zn − p‖2 + 2γγn‖F (p)‖‖p− xn+1‖

≤ ‖zn − p‖2 + γnQ1

≤ ‖wn − p‖2 − ‖wn − zn −
1

τ
ηndn‖2 + (

1

τ2
− 2

τδ′
)δ2 (1− τµ′)4

(1 + τµ′)4
‖wn − yn‖2 + γnQ1

≤ ‖xn − p‖2 + αn‖xn − xn−1‖Q− ‖wn − zn −
1

τ
ηndn‖2

+ (
1

τ2
− 2

τδ′
)δ2 (1− τµ′)4

(1 + τµ′)4
‖wn − yn‖2 + γnQ1, ∀ n ≥ N,

(3.42)

where Q1 = supn{2γ‖F (p)‖‖p − xn+1〉‖} > 0. Combining (3.42) and the assumptions δ′ ∈ (0, 2
µ′ ) and

τ ∈ ( δ
′

2 ,
1
µ′ ), we infer that

lim sup
k→∞

[‖wnk
− znk

− 1

τ
ηnk

dnk
‖2 − (

1

τ2
− 2

τδ′
)δ2 (1− τµ′)4

(1 + τµ′)4
‖wnk

− ynk
‖2]

≤ lim sup
k→∞

(‖xnk
− p‖2 − ‖xnk+1 − p‖2) + lim sup

k→∞
(αnk

‖xnk
− xnk−1‖Q+ γnk

Q1)

≤ −lim inf
k→∞

(ψnk+1 − ψnk
) + lim sup

k→∞
(
γnk

εnk

γnk

Q+ γnk
Q1) ≤ −lim inf

k→∞
(ψnk+1 − ψnk

) ≤ 0,

which implies

limk→∞ ‖wnk
− znk

− 1
τ ηnk

dnk
‖ = 0 and limk→∞ ‖wnk

− ynk
‖ = 0.

Since the sequence {xnk+1} is bounded, there exists a subsequence {xnkj
+1} of {xnk+1} such that

xnkj
+1 ⇀ x∗ as j →∞ and

lim sup
k→∞

〈F (p), p− xnk+1〉 = lim
j→∞
〈F (p), p− xnkj

+1〉 = 〈F (p), p− x∗〉. (3.43)

Lemma 3.2 and limk→∞ ‖wnk
− ynk

‖ = 0 imply that x∗ ∈ V I(C, A). From (3.43) and the assumption p

is the unique solution of BMVIPs (1.1)-(1.2), it follows that

lim sup
k→∞

〈F (p), p− xnk+1〉 = lim
j→∞
〈F (p), p− xnkj

+1〉 = 〈F (p), p− x∗〉 ≤ 0. (3.44)

Using (3.38), the assumption limn→∞
εn
γn

= 0 and the definition of αn, we have

lim
n→∞

Q
αn

(γγn)
1
2Γn
‖xn − xn−1‖ ≤ lim

n→∞
Q

εn

(γγn)
1
2Γn

= lim
n→∞

Q
(γγn)

1
2

Γn

εn
γγn

= 0.

This, together with (3.38) and (3.44) implies that

lim sup
k→∞

bnk
≤ lim
k→∞

Q
εnk

(γγnk
)

1
2Γnk

+ lim sup
k→∞

2
(γγnk

)
1
2

Γnk

〈F (p), p− xnk+1〉 ≤ 0.

Thus Lemma 2.3 ensures that the sequence {xn} converges strongly to p. The proof is completed. �

Proposition 3.1 Suppose that A = A1 is a single-valued mapping, the Assumptions 3.2-3.3 hold, and

{wn} and {yn} are sequences generated by Algorithm 3.1. If lim
n→∞

‖wn − yn‖ = 0 and {wn} converges

weakly to some P̄ ∈ H, then P̄ ∈ V I(C,A1).

Proof This proof is the same as in Lemma 3.7 of [37], and we omit it.
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Corollary 3.1 Let H, C, F and A1 be the same as the above statement. Choose x0, x1 ∈ H, µ, µ′ ∈ (0, 1)

with µ < µ′, δ, δ′ ∈ (0, 2
µ′ ) with δ < δ′, α ∈ (0, 1), τ ∈ ( δ

′

2 ,
1
µ′ ), γ > 0 and λ1 > 0. Suppose that

Assumptions 3.2 and 3.3 hold. Let {xn} be a sequence generated by

wn = xn + αn(xn − xn−1),

yn = PC(wn − τλnA1(wn)),

Tn = {x ∈ H|〈wn − τλnA1(wn)− yn, x− yn〉 ≤ 0},
zn = PTn

(wn − λnηnA1(yn)),

dn = wn − yn − τλn(A1(wn)−A1(yn)),

xn+1 = zn − γγnF (zn),

(3.45)

where {αn} and {ηn} are defined in Algorithm 3.1, and

λn+1 =

min{µqn ‖wn−yn‖
‖A1(wn)−A1(yn)‖ , λn + pn}, if ‖A1(wn)−A1(yn)‖ 6= 0,

λn + pn, otherwise.

Then the sequence {xn} converges strongly to the unique solution of BVIPs (3.1)-(3.2).

Proof Replacing Lemma 3.2 with Proposition 3.1 and taking A = A1, un = A1(wn) and vn = A1(yn) in

Lemmas 3.1 and 3.3, and Theorem 3.1, the desired conclusion holds.

Remark 3.5 We compare Corollary 3.1 with corresponding results in recent literature.

• Corollary 3.1 improves Theorem 3.1 of [20] in the following aspects: (i) we require that the mapping

A1 satisfies the condition ”for any {xn} ⊂ H with xn ⇀ w∗, one has ‖A1w
∗‖ ≤ lim infn→∞ ‖A1xn‖”,

which is strictly weaker than the sequentially weakly continuous assumption, see [36,37]; (ii) the step

size τλn is used to compute the yn, which can improve the convergence efficiency of the algorithm, see

[21]; (iii) Instead of just relaxing µ, we relax the parameters µ and δ by using the sequences {qn} and

{q′n}, respectively, to get the larger step sizes; (iv) the iterative scheme (3.45) owns the inertial term

wn = xn +αn(xn−xn−1), which often accelerates prominently convergence speed of numerical methods,

see [11,17,18,21–23].

• The mapping A1 may be pseudomonotone and the iterative scheme (3.45) has inertial acceleration.

Thus Corollary 3.1 improves Theorem 1 of [19].

• Compared with Theorem 3.1 of [18], Theorem 2.2 of [21] and Theorems 3.1 and 3.2 of [22], though

A1 is Lipschitz continuous, the step sizes of the iterative scheme (3.45) are updated at each iteration by a

cheap computation without any linesearch procedure. Since we relax the parameters µ and δ by using the

sequences {qn} and {q′n}, respectively, the step sizes of the iterative scheme (3.45) are larger than ones

in Algorithm 2.1 of [21] and Algorithm 3.1 of [23]. Especially, we only assume that the parameter γ > 0,

other than γ ∈ (0, 2β
L2

2
) as in [15–18,21–23]. Thus we do not need the prior information of the Lipschitz

constant and strong monotonicity coefficient of F .

Let ρ′ be a constant such that ρ′ ∈ (0, 1) and f : H → H be a ρ′-contraction mapping. It is easy to

know that F (x) = x− f(x), ∀ x ∈ H is (1 + ρ′)-Lipschitz continuous and (1− ρ′)-strongly monotone. By

Corollary 3.1, we can get the following corollary.

Corollary 3.2 Let H, C and A1 be the same as Corollary 3.1, and f : H → H be a ρ′-contraction

mapping. Take x0, x1 ∈ H, µ, µ′ ∈ (0, 1) with µ < µ′, δ, δ′ ∈ (0, 2
µ′ ) with δ < δ′, α ∈ (0, 1), τ ∈ ( δ

′

2 ,
1
µ′ ),

γ > 0, ρ′ ∈ (0, 1) and λ1 > 0. Suppose that (i) and (ii) of Assumption 3.3 and Assumption 3.2 hold. Let

{xn} be a sequence generated by

wn = xn + αn(xn − xn−1),

yn = PC(wn − τλnA1(wn)),

Tn = {x ∈ H|〈wn − τλnA1(wn)− yn, x− yn〉 ≤ 0},
zn = PTn

(wn − λnηnA1(yn)),

dn = wn − yn − τλn(A1(wn)−A1(yn)),

xn+1 = (1− γγn)zn + γγnf(zn),

(3.46)
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where {αn} and {ηn} are defined in Algorithm 3.1, and

λn+1 =

min{µqn ‖wn−yn‖
‖A1(wn)−A1(yn)‖ , λn + pn}, if ‖A1(wn)−A1(yn)‖ 6= 0,

λn + pn, otherwise.

Then the sequence {xn} converges strongly to P̄ ∈ V I(C,A1) and P̄ = PV I(C,A1)(f(P̄ )).

Remark 3.6 We only require ρ′ ∈ (0, 1), other than ρ′ ∈ (0,
√

5 − 2). In addition, the parameter γ can

equal 1. Thus Corollary 3.1 improves Corollary 2.1 of [21].

Taking F (x) = x− f(x) for all x ∈ H in Theorem 3.1, we can get the following corollary.

Corollary 3.3 Let H, C and A be the same as Theorem 3.1, and f : H → H be a ρ′-contraction

mapping. Take x0, x1 ∈ H, µ, µ′ ∈ (0, 1) with µ < µ′, δ, δ′ ∈ (0, 2
µ′ ) with δ < δ′, α ∈ (0, 1), τ ∈ ( δ

′

2 ,
1
µ′ ),

γ > 0, ρ′ ∈ (0, 1) and λ1 > 0. Suppose that (i)-(iii) of Assumption 3.1 and Assumption 3.2 hold. Let

{xn} be a sequence generated by

wn = xn + αn(xn − xn−1), un ∈ A(wn)

yn = PC(wn − τλnun), vn = PA(yn)(un)

Tn = {x ∈ H|〈wn − τλnun − yn, x− yn〉 ≤ 0},
zn = PTn(wn − λnηnvn),

dn = wn − yn − τλn(un − vn),

xn+1 = (1− γγn)zn + γγnf(zn),

(3.47)

where {αn}, λn and {ηn} are defined in Algorithm 3.1. Then the sequence {xn} converges strongly to

P̄ ∈ V I(C,A) and P̄ = PV I(C,A)(f(P̄ )).

Remark 3.7 Corollary 3.3 extends Theorem 3.9 of [12] in the following aspects.

(i) The iterative scheme (3.47) has inertial acceleration (wn = xn + αn(xn − xn−1)), which has been

widely uesd to increase the convergence rate of algorithms, see [11,17,18,21–23].

(ii) The step sizes of the iterative scheme (3.47) are updated at each iteration without any prior

information of Lipschitz constants, while the step sizes of the Algorithm 3.1 of [12] must satisfy λn ∈
(0, 1

L ), where L is a Lipschitz constant of the mapping A. In some cases, the value of the Lipschitz constant

may be very large, which leads to a very small step size of the algorithm and reduces the convergence speed

of Algorithm 3.1 of [12]. Furthermore, the Lipschitz constant is sometimes not obtainable in practical

applications, see [32].

4 Numerical experiments

In this section, we report some numerical experiments to show the numerical behaviors of the proposed

algorithm, namely Algorithm 3.1 (shortly, Alg3.1), and also compare them with several other well known

algorithms including the Halpern projection algorithm 3.1 (HPM3.1) in [12], the Subgradient extragra-

dient algorithm (SEA1) in [15], the projection and contraction methods 1 and 2 (PCM1, PCM2) in

[20] and the modified subgradient extragradient algorithms 2.1 and 2.2 (MSE2.1, MSE2.2) in [21], the

Relaxed forward-backward splitting method (RFBSM) in [40], the inertial Mann-type Tseng algorithm

3.3 (IMTT3.3) [41], and the new iterative proximal algorithm (NIPA) [42]. If the solution of the bilevel

pseudomonotone multivalued variational inequality problem is unknown, then we use the function

Dn(x) = ‖xn − xn−1‖2

to measure the error of the n-th iteration. Otherwise, when the solution x∗ of the bilevel pseudomonotone

multivalued variational inequality problem is known, we use the function

E(x) = ‖x− x∗‖2

to show the efficiencies of aforementioned algorithms.
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All the programs are written in MATLAB 2021a on an AMD Ryzen 5 3600 6-Core Processor (12

CPUs), 3.6Hz computer with RAM 16.00GB. We denote by ”Iter.” the number of iterations.

Example 4.1 Assume that the operator

F (x) := Mx+ q,

where M is a symmetric and positive-definite matrix of size 5×5 and q ∈ <5 with their entries generated

randomly in (−2, 2). It is clear that F is β- strongly monotone and L2-Lipschitz continuous with β =

min{eig(M)}, L2 = max{eig(M)}. The feasible set is C = {x ∈ <5 : 1 ≤ xi ≤ 3, i = 1, 2, · · · , 5}.
Consider the following fractional programming problem

min
x∈C

f(x) =
x>Qx+ a>x+ a0

b>x+ b0
,

where a = (1, 2,−1,−2, 1)>, b = (1, 0,−1, 0, 1)>, a0 = −2, b0 = 20, and

Q =


5 −1 2 0 2

−1 6 −1 3 0

2 −1 3 0 1

0 3 0 5 0

2 0 1 0 4


It is easy to verify that Q is symmetric and positive definite and f is pseudo-convex, see [19]. Setting

A(x) := ∇f(x) =
(b>x+ b0)(2Qx+ a)− b>(x>Qx+ a>x+ a0)

(b>x+ b0)2
,

thus A is pseudo-monotone. The exact solution of our problem is x∗ = (1, 1, 1, 1, 1)>. The starting point

is x0 = x1 = (2, 2, 2, 2, 2)>. In Example 4.1, the parameters are taken as

• Alg3.1: α = 0.4, εn = 1
(n+1)2 , τ = 0.8, λ1 = 1, δ = 1.2, µ = 0.9, µ′ = 0.95, δ′ = 1.5, γ = 10−7,

γn = 1
n+1 , pn = 1

(n+1)1.1 , qn = 1 + 1
n+1 , q′n = 1 + 1

n+1 ;

•MSE2.1: θ = 0.4, τ = 0.8, δ = 1.5, γ = 1.7β
L2

2
, λ1 = 0.5, µ = 0.1, θn = 1

(n+1)2 , αn = 1
n+1 , ξn = 1

(n+1)1.1 ;

• MSE2.2: θ = 0.4, τ = 0.8, δ = 1.5, γ = 1.7β
L2

2
, µ = 0.1, θn = 1

(n+1)2 , αn = 1
n+1 , ξn = 1

(n+1)1.1 , σ = 2,

` = 0.5;

• PCM1: λ1 = 1, δ = 1.5, µ = 0.9, µ′ = 0.95, αn = 10
n+10 , pn = 1

(n+1)1.1 , qn = 1 + 1
n+1 ;

• PCM2: λ1 = 1, δ = 1.5, µ = 0.9, µ′ = 0.95, αn = 10
n+10 , pn = 1

(n+1)1.1 , qn = 1 + 1
n+1 ;

• SEA1: γ = 1.7β
L2

2
, µ = 0.1, λ1 = 0.5, αn = 1

n+1 .

The numerical results are shown in Fig. 1.

Example 4.2 Suppose H = L2([0, 1]) is an infinite-dimensional Hilbert space with inner product

〈x, y〉 :=

∫ 1

0

x(t)y(t)dt, ∀ x, y ∈ H,

and the induced norm

‖x‖ := (

∫ 1

0

|x(t)|2dt) 1
2 , ∀ x ∈ H.

Assume r and R are two positive real numbers such that R/(k + 1) < r/k < r < R for some k > 1. Let

C = {x ∈ H : ‖x‖ ≤ r}. The mapping A : H → H is defined by

A(x) = (R− ‖x‖)x, ∀x ∈ H.

Taking R = 1.5, r = 1, k = 1.1, we can verify that the operator A is pseudo-monotone rather than

monotone (see [39], Section 4). Let F : H → H be defined by (Fx)(t) = 1
2x(t), t ∈ [0, 1]. Thus the

mapping F is 1
2 -strongly monotone and 1

2 -Lipschitz continuous. The parameters of all algorithms are the

same as in Example 4.1 except γ = 27 of Alg3.1.
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Fig. 1: Numerical results for Example 4.1
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(a) x0 = x1 = cos(2t)
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(b) x0 = x1 = 4t2

Fig. 2: Numerical results for Example 4.2

The solution of this problem is x∗(t) = 0. The maximum number of iterations 100 is used as a common

stopping criterion. Fig. 2 shows the numerical behaviors of E(x) = ‖x− x∗‖2 of all algorithms with two

starting points x0(t) = x1(t). In Fig. 3, we give performances of Algorithm 3.1 for different values of γ in

Example 4.2. This means that γ > 2β
L2

2
may be better than the case with γ ∈ (0, 2β

L2
2
), where β = L2 = 1

2 .

Example 4.3 Let [0, 255] be the value range of each pixel, M and N be the width and height of image

pixels, respectively, D = M × N , C = [0, 255]D, and H = <D be a Hilbert space with the standard

Euclidean norm ‖ · ‖2. If we do not consider the effects of noise, then the image deblurring problem is

stated as follows:

find x ∈ C such that y = Kx, (4.1)

where y is the observed image, K denotes the blurring matrix and x is the original image. The problem

(4.1) can be seen as the convex minimization problem:

min
x∈C

h(x) =
1

2
‖Kx− y‖22. (4.2)
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Fig. 3: The performances of Algorithm 3.1 for different values of γ in Example 4.2

Therefore, we can use Corollary 3.2 to solve above problem. Note that A1 = ∇h(x). The signal to noise

ration (SNR) in decibel(dB) is defined by

SNR = 10 log10

‖x̄‖22
‖x− x̄‖22

,

where x̄ denotes the original image and x denotes the recovered image. SNR can measure the efficiency of

different algorithms to restore the image. The larger the SNR value, the better is the image restoration

effectiveness. Let x0 = 1 ∈ <D and x1 = 0 ∈ <D. We consider the Lena (512 × 512) as test image and

use the blurring function of motion blur (”fspecial(’motion’, 45,180)”) from Matlab.

Then Table 1 reports numerical results. Fig. 4 gives the original image, blurred image and recovered

images by using the methods Alg3.1, IMTT3.3, RFBSM, SEA1 and PCM1. Fig. 5 shows the SNR values

of images recovered by the methods Alg3.1, IMTT3.3, RFBSM, SEA1 and PCM1, respectively. The

parameters of algorithms are the same as in Example 4.1 except

• Alg3.1: τ = 0.9, γ = 0.3, f(x) = 0.5x;

• IMTT3.3: θ = 0.5, µ = 0.9, εn = 100
(n+1)2 , λ1 = 1, αn = 1

n+1 , βn = 0.5(1− αn), f(x) = 0.5x;

• RFBSM: α = 0.1, θ = 0.5, λ1 = 1 and µ = 0.7.

Table 1: Numerical comparison for the methods Alg3.1, IMTT3.3, RFBSM, SEA1 and PCM1

Image
SNR(dB)

Iter. Alg3.1 IMTT3.3 RFBSM SEA1 PCM1

Lena
2500 28.1640 23.0983 23.3417 18.7880 25.5059

3000 28.4122 23.5398 23.7863 19.1445 25.8858

Size = 512 × 512 4000 28.7557 24.2262 24.4735 19.7243 26.4382

5000 28.9807 24.7401 24.9829 20.1905 26.8475

Example 4.4 Let N be a matrix of order m, B be an m ×m skew-symmetric matrix, Q be an m ×m
diagonal matrix and

A(x) = {f(t)Mx : t ∈ [0, 1]}, F (x) = 0.1x, ∀x ∈ <m,
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Fig. 4: Comparison of Lena images recovered by using different algorithms
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Fig. 5: Graphs of SNR for the methods Alg3.1, IMTT3.3, RFBSM, SEA1 and PCM1 of Lena image

where M = N ∗N> +B +Q and

f(t) = 3t2 − 2t+ 1, t ∈ [0, 1].

Example 4.4 has been considered in [12]. In this test, the matrices N,B,Q are randomly generated

by using commands N = rand(m,m) ∗ 2 ∗m−m, B = skewdec(m, 1), Q = diag(1 : m). Take C = {x ∈
<m : ‖x‖ ≤ 2} and m = 100. The numerical behaviors of Dn(x) = ‖xn − xn−1‖2 of all algorithms with

initial point x0 = x1 = rand(m, 1) are shown in Fig. 6. In Example 4.4, the parameters are the same as

in Example 4.1 except

• Alg3.1: γ = 27;

• HPM3.1: γ = 1.5, λ1 = 1
8‖M‖+5 , αn = 1

3n+2000 ;

• NIPA: α = 0.5, εn = 1
(n+1)(n+2) , λ1 = 1

8‖M‖+5 .

5 Conclusions

In the paper, we present an adaptive inertial algorithm to approximate the solution of bilevel variational

inequalities with multivalued pseudomonotone operators in real Hilbert spaces. The features of the pro-

posed algorithm are that (1) does not need to know any prior information of the Lipschitz constants and
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Fig. 6: Numerical results for Example 4.4

strong monotonicity coefficients of the associated mappings; (2) requires only one projection per iteration

except computing vn; (3) the operator involved is pseudomonotone and Lipschitz continuous; (4) its step

sizes are updated at each iteration by a cheap computation without any linesearch procedure; (5) the

embedding of the inertial terms speeds up the convergence rate of the algorithm. We prove the strong

convergence of the proposed algorithm under mild conditions, and give several numerical examples to

show the proposed algorithms have competitive advantages in comparison with the known methods in

the literature. The results obtained in this paper improve and extend some corresponding ones in [15–23].
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