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Abstract

We present in this paper novel accelerated fully first-order methods in Bilevel Optimization

(BiO). Firstly, for BiO under the assumption that the lower-level functions admit the typical

strong convexity assumption, the (Perturbed) Restarted Accelerated Fully First-order methods

for Bilevel Approximation ((P)RAF2BA) algorithm leveraging fully first-order oracles is proposed,

whereas the algorithm for finding approximate first-order and second-order stationary points

with state-of-the-art oracle query complexities in solving complex optimization tasks. Secondly,

applying as a special case of BiO the nonconvex-strongly-convex (NCSC) minimax optimization,

PRAF
2
BA rediscovers perturbed restarted accelerated gradient descent ascent (PRAGDA) that achieves

the state-of-the-art complexity for finding approximate second-order stationary points. Addition-

ally, we investigate the challenge of finding stationary points of the hyper-objective function in

BiO when lower-level functions lack the typical strong convexity assumption, where we identify

several regularity conditions of the lower-level problems that ensure tractability and present hard-

ness results indicating the intractability of BiO for general convex lower-level functions. Under

these regularity conditions we propose the Inexact Gradient-Free Method (IGFM), utilizing the

Switching Gradient Method (SGM) as an e�cient sub-routine to find an approximate stationary

point of the hyper-objective in polynomial time. Empirical studies for real-world problems are

provided to further validate the outperformance of our proposed algorithms.

1 Introduction

Bilevel optimization (BiO) has received increasing attention owing to its remarkable capability
in addressing crucial machine learning tasks by revealing the inner structure of many (other-
wise oblique) machine learning optimization problems, such as meta-learning [FFS+18, BHTV19,
JLLP20, RL17, HAMS21], hyperparameter optimization [FFS+18, Ped16, FH19, SCHB19, GFPS20,
AM22a], continual learning [PLSS21], out-of-distribution learning [ZLP+22], adversarial train-
ing [GPAM+20, SND18, WCJ+21, LJJ20a, LJJ20b, WL20], composite optimization [GHZY21], re-
inforcement learning [KT99, HWWY23, KZH+21, SZB20], causal learning [JV22, LSR+22, ABGLP19],
neural architecture search [LSY19, WGS+22, ZL17, ZSP+21], etc. Formally, BiO aims to optimize
the upper-level (UL) function f(x, y) under the constraint that y is minimized with respect to
the lower-level (LL) function g(x, y) on a closed convex set Y ✓ Rdy . Mathematically, it can be
formulated as

min
x2Rdx ,y2Y ⇤(x)

f(x, y) where Y ⇤(x) , argmin
y2Y

g(x, y) is the LL solution mapping (1)

Let LL value function be g⇤(x) , miny2Y g(x, y). Problem (1) can be transformed via hyper-
objective approaches [Dem02, DZ20, LMY+20, LLZZ21]

min
x2Rdx

⇢
'(x) , min

y2Y ⇤(x)
f(x, y)

�
(2)
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where '(x) is called the hyper-objective function of BiO problem (1). It transforms the problem
into the composition of a simple BiO [SS17] w.r.t. the LL variable y and an unconstrained single-
level optimization w.r.t. the UL variable x. This reformulation naturally leads to two foundational
questions. The first question involves

P1: Find an optimal LL variable by 2 Y ⇤(bx) such that '(bx) = f(bx, by) for a given bx

The second question involves

P2: Find a UL variable bx that is a stationary point of '(x)

BiO with LLSC. When the LL function is strongly convex, both questions previously pro-
posed are relatively easy to solve. The lower-level strong convexity (LLSC) ensures Y ⇤(x) to be
a singleton, and therefore simplifies (2) into '(x) = f(x, y⇤(x)), where the LL optimal solution
y⇤(x) = argminy2Y g(x, y) can be found via gradient descent on g. For simplicity we assume in the
LLSC case Y = Rdy . In this case, (1) is translated into

min
x2Rdx

'(x) , f(x, y⇤(x))

s.t. y⇤(x) = arg min
y2Rdy

g(x, y)
(3)

where the UL function f(x, y) is smooth and possibly nonconvex, and the LL function g(x, y) is
smooth and (strongly) convex with respect to y for any given x. In this case, the implicit function
theorem indicates

r'(x) = rxf(x, y
⇤(x))�r2

xyg(x, y
⇤(x))

⇥
r2

yyg(x, y
⇤(x))

⇤�1ryf(x, y
⇤(x)) (4)

Then one can apply the gradient step with r'(x) to find a UL stationary point. This forms the
basis of the classical hyper-objective approaches for BiO with LLSC [JYL21].

Our goal is to establish the theoretical convergence guarantee to this problem, with access to
fully first-order oracles of f(x, y) and g(x, y) in the sense that there is no access to second-order
information such as Jacobian- or Hessian-vector-product oracle, where we will be assuming g(·, y)
is µ-strongly convex for some µ > 0 which is shared across all y 2 Rdy . Additional smoothness
conditions posed on f and g capture the smoothness of the overall hyper-objective function '(x).

Minimax Optimization. An important special case of the BiO problem (3)—the problem
of minimax optimization, where g = �f in the LL problem (3)—has been extensively studied
in the literature [LLC22, LJJ20a]. Seemingly the first in literature, we are able to show that
PRAF

2
BA rediscovers perturbed restarted accelerated gradient descent ascent (PRAGDA) recently pro-

posed by [YLL+23] that achieves the state-of-the-art complexity for finding approximate second-
order stationary points in nonconvex-strongly-concave (NCSC) minimax optimization, where the
parameter flexibility of the algorithm enhances its adaptability to diverse problem settings.

BiO without LLSC. In many machine learning applications, however, the LLSC condition
our accelerated methods heavily relied upon may not hold, and it is hence interesting to further
investigate in BiO without LLSC, but only LL convexity. We formulate the LL optimality and
UL stationarity as valid criteria for BiO without LLSC, which are necessary for an optimistic
optimal solution [DKK06]. Further, we prove that when the LL function satisfies either the gradient
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dominance condition or the weak sharp minimum condition, the hyper-objective '(x) is Lipschitz
and thus Clarke di↵erentiable [§4.1]. We provide hardness results to show that BiO without LLSC
is generally intractable. Our analysis highlights the importance of sharpness in LL functions [§4.2].
We propose novel polynomial time algorithms for BiO with LL convexity under either the gradient
dominance or the weak sharp minimum condition [§4.3].

1.1 Contributions

This paper provides a comprehensive study of BiO with and without the LLSC assumption.

(i) For BiO with LLSC, we illustrate that our acceleration framework can be e↵ectively incorpo-
rated into the idea of fully first-order methods, improving the dependency on ✏ from ✏�2 to
✏�1.75. The (Perturbed) Restarted Accelerated Fully First-order methods for Bilevel Approx-
imation ((P)RAF2BA) introduced in this paper aims at solving (nonconvex-strongly-convex)
BiO problems with e↵ectiveness and e�ciency. By leveraging fully first-order oracles and
incorporating acceleration techniques, (P)RAF2BA algorithm finds approximate first-order sta-
tionary points and second-order stationary points of the hyper-objective function at improved
oracle query complexities [§2].

(ii) For NCSC minimax optimization, PRAF2BA rediscovers PRAGDA that achieves the state-of-the-
art complexity for finding approximate second-order stationary points, where the parameter
flexibility of the algorithm enhances its adaptability to diverse problem settings [§3].

(iii) For BiO without LLSC, we compare the tractability and intractability results under di↵erent
assumptions on the LL function. In particular, we introduce several key regularity condi-
tions that can confer tractability, without which we provide hardness results to show the
intractability of this problem. Novel algorithms with non-asymptotic convergence are also
proposed [§4].

(iv) Using real-world datasets, we conduct empirical results including tasks of hyperparameter
optimization, data hypercleaning and adversarial training, support our theoretical results
and showcasing the superiority of our methods [§A].

1.2 Related Works

For BiO with LLSC, representative methods include approximate implicit di↵erentiation (AID) [Dom12,
GW18, Ped16, FFS+18, GFPS20, JYL21] and iterative di↵erentiation (ITD) [GFC+16, FDFP17,
SCHB19, BLPSF21] that have non-asymptotically convergence to a UL stationary point. In partic-
ular, Ghadimi and Wang [GW18] introduced a convergence rate for the AID approach under convex
f(x, y), analyzing a gradient descent-based accelerated algorithm. Due to their popularity, many
improvements to AID and ITD have also been proposed [CSXY22, HWWY23, KZH+21, YJL21,
JL23, JYL21, JLLY22, DAVM22]. Among them, Ji et al. [JYL21, JLLY22] improved upon this with
their iterative di↵erentiation (ITD) method, refining complexity analysis and providing insights into
a randomized version. Hong et al. [HWWY23] proposed the TTSA algorithm, o↵ering a single-loop
solution for alternating variable updates, notably applicable to randomized reinforcement learning
scenarios. For stochastic bilevel problems, various methods like BSA [GW18], TTSA [HWWY23],
SUSTAIN [KZH+21], stocBiO [JYL21], and ALSET [CSY21] have been proposed, pushing the
frontier with variance reduction and momentum techniques [JL23, LHH22, KKWN23]. While
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much focus has been on first-order stationary points in BiO, the pursuit of second-order station-
ary points remains largely underexplored. Until recently, Huang et al. [HJML22] introduced a
perturbed algorithm to find approximate second-order stationary points, combining gradient de-
scent with conjugate gradient methods. The algorithm utilizes gradient descent to approximate
the solution of the LL minimization problem and employs conjugate gradient to solve for Hessian-
vector products, with gradient descent applied in the outer loop. Indeed for classical optimization
problems, second-order methods such as those proposed in [NP06, CRS17] have been employed
to achieve ✏-accurate second-order stationary points (SOSPs) in single-level optimization with a
complexity of O(✏�1.5)—however, computationally expensive operations such as estimating the in-
verse of Hessian matrices are involved—and recent literature has focused on first-order methods
to obtain an approximate

�
✏, O(2.5

p
✏)
�
-SOSP where  denotes the condition number specified in

§2, achieving a best-known complexity of Õ(✏�1.75) in terms of gradient and Hessian-vector prod-
ucts [AAZB+17, CDHS18, CDHS17, JGN+17, JNJ18, LL23]. For more recent progress on BiO
under nonsmooth LL function, we refer the readers to [LM23, LM24]. For more on second-order
analysis for bilevel optimization, we refer to [SYL+23, DSAP22].

For BiO problem in the absence of LLSC, [AM22b] showed that one can extend AID by replacing
the inverse in (4) with the Moore-Penrose inverse under the Morse-Bott condition on the manifold�
y 2 Rdy : ryf(x, y) = 0

 
. [LLZZ21, LMY+20] extended ITD by proposing various methods to

update the LL variable. However, all the methods mentioned above are limited to asymptotic
convergence to an LL optimal solution and lack analysis for finding a UL stationary point. Due to
the challenge of directly optimizing the hyper-objective, some concurrent works [LYW+22, SJGL22]
reformulate Problem (1) via the value-function approach and show non-asymptotic convergence
to the KKT points of this equivalent problem. However, since classical constraint qualifications
provably fail for the reformulated problem [YZ95], the KKT condition is not even a necessary
condition for a local minimum.1 In contrast, a UL stationary point is always a necessary condition.
More related works on this thread include [LLY+21, SC23, XLC23].

Minimax optimization as an important special case of bilevel optimization is pivotal in machine
learning applications like GAN training [GPAM+20, ACB17], adversarial learning [GSS14, SND18],
and optimal transport [LFH+20, HML21], has garnered attention. Nouiehed et al. [NSH+19], Jin
et al. [JNJ20] explored the complexity of Multistep Gradient Descent Ascent (GDmax), while Lin
et al. [LJJ20a], Lu et al. [LTHC20] provided the first convergence analysis for the gradient descent
ascent (GDA) algorithm. Luo et al. [LYHZ20] extended stochastic variance reduction techniques,
achieving optimal complexity bounds in specific cases. Recent work by Luo et al. [LLC22] and Chen
et al. [CHL+23] introduced cubic-regularized Newton methods for local minimax point convergence.
Despite these strides, non-asymptotic convergence rates for local minimax points remain relatively
unexplored, presenting a compelling area for future work.

Notation. For A being a real symmetric matrix, let �max(A) (resp. �min(A)) denote its largest
(resp. smallest) eigenvalue, and also (A) = �max(A)/�min(A) denote its condition number. For real
asymmetric matrix A0, let �max(A0) to be the largest singular value and �+min(A

0) the smallest non-
zero singular value. Let k·k denote either the spectral norm of matrices, or the Euclidean `2-norm
of a vector, and z[j] denote the j-th coordinate of vector z. Denote B�(z) = {z0 : kz0 � zk  �} the

closed Euclidean ball centered at z with radius �, and B� , B�(0) the ball centered at the origin.
Denote Gc(f, ✏), JV (f, ✏) and HV (f, ✏) as the oracle complexities of gradients, Jacobian-vector
products and Hessian-vector products corresponding to function f , respectively. For two positive

1See, e.g., Example D.1 in §D.2.
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sequences {an} and {bn} we denote an = ⌦(bn) (resp. an = O(bn)) if an � Cbn (resp. an  Cbn)
for all n, and also an = ⇥(bn) if both an = ⌦(bn) and an = O(bn) hold for some absolute constant
C > 0, and eO(·) or e⌦(·) is adopted in turn when C incorporates a polylogarithmic factor in problem
parameters.

2 Accelerated Fully First-Order Bilevel Optimization with LLSC

In this section, we present a new algorithm member for accelerating first-order methods for BiO,
namely the (Perturbed) Restarted Accelerated Fully First-order methods for Bilevel Approximation,
abbreviated as (P)RAF2BA. Recent work [KKWN23] considers the first-order approximation for BiO
problem (3) where they introduce the auxiliary function as follows

L�(x, y) , f(x, y) + �

✓
g(x, y)� min

z2Rdy
g(x, z)

◆
(5)

where � > 0 is the regularization parameter. Under proper smoothness condition, taking � � 2
where  , `/µ to be specified later in Assumption 1 leads to L�(x, y) being strongly convex in
y for any given x, which implies that the function L⇤

�(x) , miny2Rdy L�(x, y) is smooth [Dan12].
By setting � appropriately—often growing with inverse precision ✏—the approximate first-order
(FOSP) and second-order stationary points (SOSP) of the objective '(x) , f(x, y⇤(x)) in the BiO
problem (3) are su�ciently close to the corresponding stationary points. This implies that we can
address the BiO problem by considering the minimization problem

min
x2Rdx

⇢
L⇤
�(x) , min

y2Rdy
L�(x, y)

�
(6)

The expression of L�(x, y) in (5) suggests we can solve problem (6) by only accessing the first-
order oracles of f(x, y) and g(x, y). Based on this idea, [KKWN23] proposed, among many other
methods, a nonstochastic fully first-order method for finding ✏-first-order stationary points of '(x)
with a first-order oracle complexity of ✏�3.

• Relationship with [YLL
+
23]. Closely related to this part is [YLL+23] by same (extended)

group of authors [YLL+23], which successfully accelerates an alternative family of algorithm—
the inexact hypergradient method—for solving BiO problem with LLSC. We will carefully
point out the connections between the two families, especially on their equivalence in the
minimax optimization setting.

• Key Ingredients due to [CMZ23]. Very recently and concurrent to our work [YLL+23],
Chen et al. [CMZ23] revisits the fully first-order methods of [KKWN23] and improves the
first-order oracle complexity upper bound to eO(4✏�2).2 The key observation is that the
Lipschitz constant of the gradient of L⇤

�(x)—defined as in (6)—can be set to be not de-
pendent on �, as the parameter grows. By further assuming that g(x, y) admits Lipschitz
continuous third-order derivatives, [CMZ23] also provided a perturbed first-order method to
find (✏,O(2.5

p
✏ ))-second-order stationary points of �(x) within eO(4✏�2) first-order oracle

complexity. We illustrate that our acceleration framework can be e↵ectively incorporated into
the idea of fully first-order methods, improving the dependency on ✏ from ✏�2 to ✏�1.75.

2We became aware of the work [CMZ23] around two to three months after the initial arXiv posting of [YLL+23].

5



In §2.1 we conduct the technical overview and establish the basic notions, assumptions and
algorithmic subroutines for the problem setting. §2.2 presents the (P)RAF2BA algorithm with theo-
retical complexity bounds for accelerated fully first-order methods, highlighting the improvements
in convergence rates and algorithmic frameworks compared to existing approaches. We delegate a
complete proofs of theorems with detailed analysis presented in this section to §2.3, §2.4, §B.

2.1 Technical Preliminaries

In this subsection, we proceed to present the notation and assumptions necessary for our prob-
lem setting. Immediately afterward, we establish convergence of the algorithmic subroutine of
accelerated gradient descent (AGD).

We first revisit the formal definition of an ✏-first-order stationary point as well as an (✏, ⌧)-
second-order stationary point of a twice di↵erentiable function '(x) for any prescribed ✏, ⌧ > 0, as
follows:

Definition 1 (Approximate first-order stationary point). Call x an ✏-first-order stationary point
of '(x) if kr'(x)k2  ✏.

Definition 2 (Approximate second-order stationary point). Call x an (✏, ⌧)-second-order station-
ary point of '(x) if kr'(x)k2  ✏ and �min(r2'(x)) � �⌧ .

We turn to introduce some basic lemmas as follows. First and foremost, we introduce the
following list of assumptions, which is core for our theoretical guarantees to hold:

Assumption 1. The UL function f(x, y) and LL function g(x, y) satisfy the following conditions:

(i) Function g(x, y) is three times di↵erentiable and µ-strongly convex with respect to y for any
fixed x

(ii) Function f(x, y) is twice di↵erentiable and M -Lipschitz continuous with respect to y

(iii) Gradient rf(x, y) and rg(x, y) are `-Lipschitz continuous with respect to x and y

(iv) The Jacobians r2
xyf(x, y), r2

xyg(x, y) and Hessians r2
xxf(x, y), r2

yyf(x, y), r2
yyg(x, y) are

⇢-Lipschitz continuous with respect to x and y

(v) The third-order derivatives r3
xyxg(x, y),r3

yxyg(x, y) and r3
yyyg(x, y) are ⌫-Lipschitz continu-

ous with respect to x and y

We then show that '(x) admits Lipschitz continuous gradients and Lipschitz continuous Hes-
sians, as established in the next lemma:

Lemma 1. Suppose Assumption 1 holds, then

(i) '(x) is eL-gradient Lipschitz continuous; that is, kr'(x) � r'(x0)k  eLkx � x0k for any
x, x0 2 Rdx where eL = O(3)

eL , `+
2`2 + ⇢M

µ
+
`3 + 2⇢`M

µ2
+
⇢`2M

µ3
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(ii) '(x) is e⇢-Hessian Lipschitz continuous; that is, kr2'(x) � r2'(x0)k  e⇢kx � x0k for any
x, x0 2 Rdx , where e⇢ = O(5)

e⇢ ,
✓
⇢+

2`⇢+M⌫

µ
+

2M`⌫ + ⇢`2

µ2
+

M`2⌫

µ3

◆✓
1 +

`

µ

◆

+

✓
2`⇢

µ
+

4M⇢2 + 2`2⇢

µ2
+

2M`⇢2

µ3

◆✓
1 +

`

µ

◆2

+

✓
M⇢2

µ2
+
⇢`

µ

◆✓
1 +

`

µ

◆3

We also introduce the following property for y⇤(x), solution to LL problem of (3):

Lemma 2. Suppose Assumption 1 holds, then y⇤(x) is ̃ , (eL/µ)-Lipschitz continuous; that is,
ky⇤(x)� y⇤(x0)k2  ̃ kx� x0k2 for any x, x0 2 Rdx .

Similar to Condition 10 in [YLL+23, §3] for the analysis of RAHGD, we introduce a condition
that bounds the estimation error of y⇤(wt,k) and z⇤(wt,k) after running AGD for su�cient number
of iterates. Let � > 0 be a regularization parameter that can grow with inverse precision, to be
assigned later.

Condition 1. Let wt,�1 = xt,�1 and denote y⇤(wt,k) = argmin f(wt,k, ·) + �g(wt,k, ·), z⇤(wt,k) =
argmin g(wt,k, ·). Then for some � > 0 and t = 0, 1, 2, . . . , we assume that the estimators yt,k 2 Rdy

and zt,k 2 Rdy satisfy the conditions

kyt,k � y⇤(wt,k)k2 
�

2(1 + �)`
for each k = �1, 0, 1, 2, . . . (7)

and

kzt,k � z⇤(wt,k)k2 
�

2`
for each k = �1, 0, 1, 2, . . . (8)

We then introduce the following gradient approximation that calibrates the inexactness of our
gradient estimate

br'(xk) = rxf(xk, yk)�r2
xyg(xk, yk)vk

where

vk ,
�
r2

yyg(xk, yk)
��1ryf(xk, yk)

and conclude

Lemma 3 (Inexact gradients). Suppose Assumption 1 and Condition 1 hold, then we have

kr'(wk)� br'(wk)k2  �

Finally as an important component of our algorithmic design, we introduce here Algorithm 1,
namely Nesterov’s accelerated gradient descent (AGD) for a given smooth and strongly convex ob-
jective, which achieve optimality among first-order methods in its setting. The method achieve the
following optimal rate [N+18]:3

3One can replace this by any subroutine that achieves essentially the same optimal rate; see, e.g., [Rd17].
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Algorithm 1 AGD(h, z0, T,↵,�), Nesterov’s Acceleration

1: Input: objective h(·); initialization z0; iteration number T � 1; step-size ↵ > 0; momentum
param. � 2 (0, 1)

2: ez0  z0
3: for t = 0, . . . , T � 1 do

4: zt+1  ezt � ↵rh(ezt)
5: ezt+1  zt+1 + �(zt+1 � zt)
6: end for

7: Output: zT

Lemma 4. Running Algorithm 1 on an `h-smooth and µh-strongly convex objective function h(·)
with ↵ = 1/`h and � = (

p
h � 1)/(

p
h + 1) produces an output zT satisfying

kzT � z⇤k22  (1 + h)

✓
1� 1
p
h

◆T

kz0 � z⇤k22

where z⇤ = argminz h(z) and h = `h/µh denotes the condition number of the objective h.

Alternatively, the conjugate gradient (CG) method was often used to further improve the rate
for minimizing quadratic objective of form 1

2q
>Aq� q>b where matrix A 2 Rd⇥d is positive definite

and vector b 2 Rd is arbitrary. The conjugate gradient method is used not in this work but heavily
in [YLL+23] in designing RAHGD and PRAHGD, and we forgo its details. Under slightly di↵erent oracles
the algorithm achieves an accelerated convergence rate with an improved coe�cient. See [NW06]
for more on the details.

2.2 Theoretical Guarantees for Accelerated Fully First-Order Methods

In this subsection, we propose the fully first-order methods for BiO [KKWN23, CMZ23] and draw
connections between our algorithmic framework and theirs. For further analysis we recall our
Assumption 1 which our theoretical result highly relies upon. Here we present some properties of
function L⇤

�(x) and its connection to function '(x) in the following lemma [CMZ23].

Lemma 5. Suppose Assumption 1(i)–(iv) hold and set � � 2, then

(i) |L⇤
�(x)� '(x)|  O(2/�) for any x 2 Rdx

(ii) krL⇤
�(x)�r'(x)k  O(3/�) for any x 2 Rdx

(iii) L⇤
�(x) is L�-gradient Lipschitz, where L� = O(3)

If we further suppose Assumption 1(v) holds, then

(i)
��r2L⇤

�(x)�r2'(x)
��  O(6/�) for any x 2 Rdx

(ii) L⇤
�(x) is ⇢�-Hessian Lipschitz, where ⇢� = O(5)

The detailed expression for error controls krL⇤
�(x)�r'(x)k2, L�, |L⇤

�(x)�'(x)|,
��r2L⇤

�(x)�r2'(x)
��
2

and ⇢� can be found in §B.2.
We propose detailed (Perturbed) Restarted Accelerated Fully First-order methods for Bilevel

Approximation Algorithm 2, or (P)RAF2BA for short. The theoretical guarantees of this algorithm
is presented as follows:
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Algorithm 2 (Perturbed) Restarted Accelerated F
2
BA, (P)RAF2BA

1: Input: initial vector x0,0; step-size ⌘ > 0; momentum parameter ✓ 2 (0, 1); parameters ↵,↵0 >
0, �,�0 2 (0, 1), {Tt,k}, {T 0

t,k} of AGD; iteration threshold K � 1; parameter B for triggering
restarting; perturbation radius r > 0; option Perturbation 2 {0, 1}

2: k  0, t 0, x0,�1  x0,0
3: y0,�1  AGD(f(x0,�1, ·) + �g(x0,�1, · ), 0, T 0

0,�1,↵
0,�0)

4: z0,�1  AGD(g(x0,�1, · ), 0, T0,�1,↵,�)
5: while k < K do

6: wt,k  xt,k + (1� ✓)(xt,k � xt,k�1)
7: zt,k  AGD(g(wt,k, · ), zt,k�1, Tt,k,↵,�)
8: yt,k  AGD(f(wt,k, ·) + �g(wt,k, · ), yt,k�1, T 0

t,k,↵
0,�0)

9: ut,k  rxf(wt,k, yt,k) + �(rxg(wt,k, yt,k)�rxg(wt,k, zt,k))
10: xt,k+1  wt,k � ⌘ut,k
11: k  k + 1
12: if k

Pk�1
i=0 kxt,i+1 � xt,ik2 > B2

then

13: if Perturbation = 0 then

14: xt+1,0  xt,k
15: else

16: xt+1,0  xt,k + ⇠t,k with ⇠t,k ⇠ Unif(Br)
17: end if

18: xt+1,�1  xt+1,0

19: yt+1,�1  AGD(f(xt+1,�1, ·) + �g(xt+1,�1, · ), 0, T 0
t+1,�1,↵

0,�0)
20: zt+1,�1  AGD(g(xt+1,�1, · ), 0, Tt+1,�1,↵,�)
21: k  0, t t+ 1
22: end if

23: end while

24: K0  argminbK
2 ckK�1 kxt,k+1 � xt,kk2

25: Output: bw  1
K0+1

PK0
k=0wt,k

Theorem 2 (RAF2BA finding ✏-FOSP). Suppose Assumptions 1 holds. Let � = '(xint)�minx2Rdx '(x),
0 = (�+ 1)`/(�µ� `), and

⌘ =
1

4L�
B =

r
✏

⇢�
✓ = (⇢�✏⌘

2)1/4 K =
1

✓
↵ =

1

`
� =

p
� 1p
+ 1

� = ⇥
�
max{2/�, 3/✏}

�
↵0 =

1

(�+ 1)`
�0 =

p
0 � 1p
0 + 1

� = ✏2

and assume that O(✏)  L2
�/⇢�. Then our RAF2BA (Algorithm 2) can find an O(✏)-first-order sta-

tionary point of '(x). Additionally, the oracle complexities satisfy Gc(f, ✏) = Gc(g, ✏) = eO(3.25✏�1.75).

When  reduces to 1 the algorithm can be adapted to solve the single-level nonconvex mini-
mization problem, matching the state-of-the-art complexity [CDHS18, AAZB+17, CDHS17, JNJ18,
LL23]. The best-known lower bound in this context is ⌦(✏�1.714) [CDHS21]. Analogous to accel-
erating inexact hypergradient method as in [YLL+23], we have the following perturbed version to
hold:

9



Table 1. Comparison table for nonconvex-strongly-convex BiO algorithms, finding approximate
FOSP (top six rows) and SOSP (bottom four rows)

Algorithm
Complexities

Gc(f, ✏) Gc(g, ✏) JV (g, ✏) HV (g, ✏)

AID-BiO [JYL21, GW18] O(3✏�2) O(4✏�2) O(3✏�2) O(3.5✏�2)

ITD-BiO [JYL21] O(3✏�2) eO(4✏�2) eO(4✏�2) eO(4✏�2)

F2BA [CMZ23, KKWN23] eO(4✏�2) eO(4✏�2) 0 0

RAHGD [YLL+23] eO(2.75✏�1.75) eO(3.25✏�1.75) eO(2.75✏�1.75) eO(3.25✏�1.75)

RAF
2
BA (this work) eO(2.75✏�1.75) eO(3.25✏�1.75) 0 0

Perturbed AID [HJML22] eO(3✏�2) eO(4✏�2) eO(3✏�2) eO(3.5✏�2)

Perturbed F2BA [CMZ23] eO(4✏�2) eO(4✏�2) 0 0

PRAHGD [YLL+23] eO(2.75✏�1.75) eO(3.25✏�1.75) eO(2.75✏�1.75) eO(3.25✏�1.75)

PRAF
2
BA (this work) eO(2.75✏�1.75) eO(3.25✏�1.75) 0 0

• Gc(f, ✏) and Gc(g, ✏): gradient query complexity of f and g • JV (g, ✏): Jacobian-vector-product query

complexity of g • HV (g, ✏): Hessian-vector product query complexity of g • eO(·) omits a polylogarithmic
factor in problem-dependent parameters •  denotes the condition number of LL objective

Theorem 3 (PRAF2BA finding (✏,O(2.5
p
✏))-SOSP). Suppose Assumption 1 holds. Let � =

'(xint)�minx2Rdx '(x), 0 = (�+ 1)`/(�µ� `), and

� = O
✓
log

dx
⇣✏

◆
⌘ =

1

4L�
K =

2�

✓
B =

1

288�2

r
✏

⇢�
✓ =

1

2
(⇢�✏⌘

2)1/4

↵ =
1

`
� =

p
� 1p
+ 1

↵0 =
1

(�+ 1)`
�0 =

p
0 � 1p
0 + 1

r = min

(
L�B2

4C
,
B +B2

p
2

,
✓B

20K
,

r
✓B2

2K

)
� = ⇥

✓
max

⇢
2

�
,
3

✏
,
6p
✏

�◆
� = min

⇢
⇢�B⇣r✓

2
p
dx

, ✏2
�

for some positive constant C and assume that ✏  L2
�/⇢�. Then our PRAF2BA (Algorithm 2 with

Perturbation = 1) can find an (O(✏),O(2.5
p
✏ ))-second-order stationary point of '(x) with proba-

bility at least 1�⇣. Additionally, the oracle complexities satisfy Gc(f, ✏) = Gc(g, ✏) = eO(3.25✏�1.75).

The presented oracle-call query complexities match the state-of-the-art and are almost identical to
those in Theorem 2, di↵ering only by a polylogarithmic factor. This indicates that the perturbed
version incurs essentially no additional cost while enabling the avoidance of saddle points. In
comparison with [YLL+23], the presented query complexities does not invoke any Hessian-vector-
product or Jacobian-vector-product queries, and is hence fully first-order. A detailed comparison
is listed in Table 1.

2.3 Proof of Theorem 2

From Lemma 5, setting � = ⇥
�
max{2/�, 3/✏}

�
leads to

• kr'(x)�rL⇤
�(x)k  O(✏), for any x 2 Rdx

• L⇤
�(xint)�minx2Rdx L⇤

�(x)  O(�)
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Thus, we only need to prove that RAF2BA (in Algorithm 2) can find an ✏-first-order stationary point
of L⇤

�(x) within the desired complexity.
Under Condition 1 and Assumption 1 we have the following lemma.

Lemma 6. Suppose Assumption 1 and Condition 1 hold, then for each k = �1, 0, 1, . . . , and
t = 0, 1, 2, . . . , we have

kut,k �rL⇤
�(wt,k)k2  �

where ut,k is defined in Line 9 in Algorithm 2.

Proof of Lemma 6. Note that

ut,k = rxf(wt,k, yt,k) + �(rxg(wt,k, yt,k)�rxg(wt,k, zt,k))

and
rL⇤

�(wt,k) = rxf(wt,k, y
⇤(wt,k)) + �(rxg(wt,k, y

⇤(wt,k))�rxg(wt,k, z
⇤(wt,k))

Then from Condition 1 and the Lipschitz continuity of gradient of f and g, we have

kut,k �rL⇤
�(wt,k)k  (1 + �)` · �

2(1 + �)`
+ ` · �

2`
= �

proving the lemma.

Note that the only di↵erence of Algorithm 2 and the PRAHGD algorithm proposed in [YLL+23,
Algorithm 2] lies on the constructions of the inexact gradient of the objective functions, i.e.,
rL⇤

�(wt,k) ⇡ ut,k = rxf(wt,k, yt,k) + � (rxg(wt,k, yt,k)�rxg(wt,k, zt,k)) for Algorithm 2 and
r'(wt,k) ⇡ ut,k = rxf(wt,k, yt,k)�r2

xyg(wt,k, yt,k)vt,k for PRAHGD. Thus, we can directly follow the
proof of [YLL+23, Theorem 14] by replacing '(x) by L⇤

�(x) and achieve the following result:

Theorem 4. Suppose that Assumptions 1 and Condition 1 hold. Denote �� = L⇤
�(xint)�minx2Rdx L⇤

�(x)
and 0 = (�+ 1)`/(�µ� `) (recall our choice of � � 2). Let

⌘ =
1

4L�
B =

r
✏

⇢�
✓ = 4(⇢�✏⌘

2)1/4 K =
1

✓
↵ =

1

`
� =

p
� 1p
+ 1

↵0 =
1

(�+ 1)`
�0 =

p
0 � 1p
0 + 1

� = ✏2

and assume that ✏  L2
�/⇢�. Then our RAF2BA in Algorithm 2 terminates within O(��L0.5

� ⇢0.25� ✏�1.75)
iterates, outputting bw satisfying krL⇤

�( bw)k  83✏.

Now we consider the overall inner loop iteration number from the step of AGD to achieve zt,k in
the algorithm. Following the proof of [YLL+23, Lemma 31] (§D.2 therein), we achieve the upper
bound of kz⇤(wt,�1)k2  bCz as follows.

Lemma 7. Consider the setting of Theorem 4, and we run Algorithm 2, then we have

kz⇤(wt,�1)k  bCz

for any t > 0 and some constant C > 0, where bCz = kz⇤(x0,0)k2 + (2B + ⌘� + ⌘C)��
p
⇢�✏�3/2.
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Taking

Tt,k =

8
<

:

l
2
p
 log

⇣
2`
p
+1
�

bCz

⌘m
k = �1

l
2
p
 log

⇣
2`
p
+1
�

�
�
2` + 2B

�⌘m
k � 0

(9)

for Algorithm 2, we can use induction to show Lemma 7 and (8) in Condition 1 hold, which is
similar to the analysis in [YLL+23, §D.2].

Finally, we consider the overall inner loop iteration number from the step of AGD to achieve yt,k
in the algorithm. Following the proof of [YLL+23, Lemma 31] (§D.2 therein), we achieve the upper
bound of ky⇤(wt,�1)k2  bCy as follows.

Lemma 8. Consider the setting of Theorem 4, and we run Algorithm 2, then we have

ky⇤(wt,�1)k  bCy

for any t = 0, 1, 2, . . . and some constant C > 0, where bCy = ky⇤(x0,0)k+(2B+⌘�+⌘C)0��
p
⇢�✏�3/2.

Notice that the condition number of f(x, ·) + �g(x, ·) is 0 = (�+ 1)`/(�µ� `) = O() for any
x 2 Rdx . Analogizing the setting of Tt,k, we take

T 0
t,k =

8
<

:

l
2
p
0 log

⇣
2(1+�)`

p
0+1

�
bCy

⌘m
k = �1

l
2
p
0 log

⇣
2(�+1)`

p
0+1

�

⇣
�

2(�+1)` + 20B
⌘⌘m

k � 0
(10)

for Algorithm 2. We can also use induction to show Lemma 8 and (7) in Condition 1 hold, which
is similar to the analysis in [YLL+23, §D.2].

Combining Theorem 4 with the above settings of Tt,k and T 0
t,k, we conclude that our RAF

2
BA

can find an ✏-first-order stationary point of L⇤
�(x) (also an O(✏)-first-order stationary point of

'(x)) within oracle complexities Gc(f, ✏) = Gc(g, ✏) = eO(3.25✏�1.75), which is similar to the proof
of [YLL+23, Corollary 15] (§D.3 therein).

2.4 Proof of Theorem 3

From Lemma 5, setting � = ⇥
�
max{2/�, 3/✏, 6/

p
✏}
�
leads to

• kr'(x)�rL⇤
�(x)k  O(✏), for any x 2 Rdx

•
��r2'(x)�r2L⇤

�(x)
��  O(

p
✏ ), for any x 2 Rdx

• L⇤
�(xint)�minx2Rdx L⇤

�(x)  O(�)

Now all we need is to show that our PRAF
2
BA can find an (✏, O(2.5

p
✏ ))-second-order stationary

point of L⇤
�(x) within the desired complexity.

Following the proof of [YLL+23, Theorem 16], we have the following theorem.

Theorem 5. Suppose that Assumption 1 and Condition 1 hold. We denote �� = L⇤
�(xint) �

minx2Rdx L⇤
�(x) and 

0 = (�+ 1)`/(�µ� `) and let

� = O
✓
log

dx
⇣✏

◆
⌘ =

1

4L�
K =

2�

✓
B =

1

288�2

r
✏

⇢�
✓ =

1

2
(⇢�✏⌘

2)1/4 � = min

⇢
⇢�B⇣r✓

2
p
dx

, ✏2
�

↵ =
1

`
� =

p
� 1p
+ 1

↵0 =
1

(�+ 1)`
�0 =

p
0 � 1p
0 + 1

r = min

(
L�B2

4C
,
B +B2

p
2

,
✓B

20K
,

r
✓B2

2K

)

12



for some positive constant C, where we assume that ✏  L2
�/⇢�. Then PRAF2BA in Algorithm 2

terminates in at most O
�
��L0.5

� ⇢0.25� �6 · ✏�1.75
�
iterations and the output satisfies krL⇤

�( bw)k  ✏
and �min(r2L⇤

�( bw)) � �1.011
p
⇢�✏ with probability at least 1� ⇣.

Now we set parameters Tt,k and T 0
t,k in a similar way to the counterparts in [YLL+23, §E.2] and

§2.3, that is,

Tt,k =

8
<

:

l
2
p
 log

⇣
2`
p
+1
�

eCz

⌘m
k = �1

l
2
p
 log

⇣
2`
p
+1
�

�
�
2` + 2B

�⌘m
k � 0

(11)

and

T 0
t,k =

8
<

:

l
2
p
0 log

⇣
2(1+�)`

p
0+1

�
eCy

⌘m
k = �1

l
2
p
0 log

⇣
2(�+1)`

p
0+1

�

⇣
�

2(�+1)` + 20B
⌘⌘m

k � 0
(12)

where

eCz = kz⇤(x0,0)k+ (2B +B2 + ⌘� + ⌘C)��
p
⇢�✏

�3/2

and

eCy = ky⇤(x0,0)k+ (2B +B2 + ⌘� + ⌘C)0��
p
⇢�✏

�3/2

We can also use induction to prove that Condition 1 will hold when we choose Tt,k and T 0
t,k as set

in (11) and (12).
Combining Theorem 5 with the above settings of Tt,k and T 0

t,k, we conclude that our PRAF
2
BA can

find an (✏,2.5O(
p
✏ ))-second-order stationary point of L⇤

�(x) (also an (O(✏),2.5O(
p
✏ ))-second-

order stationary point of '(x)) within oracle complexities Gc(f, ✏) = Gc(g, ✏) = eO(3.25✏�1.75),
which is similar to the proof of [YLL+23, Corollary 18] (§D therein).

3 PRAF2BA for Accelerating NCSC Minimax Optimization

This section applies the ideas of PRAF2BA to find an approximate second-order stationary point in
the nonconvex-concave minimax optimization problem of the form

min
x2Rdx

⇢
'̄(x) , max

y2Rdy
f̄(x, y)

�
(13)

where the minimax objective f̄(x, y) is (strongly) concave in y but possibly nonconvex in x. As
is discussed in [YLL+23, §B], minimax problems of form (13) can be regarded as a special case of
our BiO problem (3) with f(x, y) = f̄(x, y) and g(x, y) = �f̄(x, y). We first show in the upcoming
Fact 6 that the derivatives of our minimax objective enjoy tighter Lipschitz constants than the
general BiO problem, as is established in §2.1:

Fact 6 ([LLC22, YLL+23]). Let f̄(x, y) be `-smooth, ⇢-Hessian Lipschitz continuous with respect
to x and y and µ-strongly concave in y but possibly nonconvex in x. Then the hyper-objective '̄(x)
is (+ 1)`-smooth and has (4

p
23⇢)-Lipschitz continuous Hessians.

In comparison with the task of finding approximate second-order stationary point using BiO, one
observes from Fact 6 that the -dependency in the negated Hessian precision is improved from 2.5

to 1.5, and our goal is to find a (more stringent)
�
✏, O(1.5

p
✏ )
�
-second-order stationary point of

'̄(x).
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Algorithm 3 Perturbed Restarted Accelerated Gradient Descent Ascent, PRAGDA

1: Input: initial vector x0,0; step-size ⌘ > 0; momentum param. ✓ 2 (0, 1); params. ↵ > 0,� 2
(0, 1), {Tt,k} of AGD; iteration threshold K � 1; param. B for triggering restarting; perturbation
radius r > 0

2: k  0, t 0, x0,�1  x0,0
3: y0,�1  AGD(�f̄(x0,�1, · ), 0, T0,�1,↵,�)
4: while k < K do

5: wt,k  xt,k + (1� ✓)(xt,k � xt,k�1)
6: yt,k  AGD(�f̄(wt,k, · ), yt,k�1, Tt,k,↵,�)
7: xt,k+1  wt,k � ⌘rxf̄(wt,k, yt,k)
8: k  k + 1
9: if k

Pk�1
i=0 kxt,i+1 � xt,ik2 > B2

then

10: xt+1,0  xt,k + ⇠t,k with ⇠t,k ⇠ Unif(Br)
11: xt+1,�1  xt+1,0

12: k  0, t t+ 1
13: yt,�1  AGD(�f̄(xt,�1, · ), 0, Tt,�1,↵,�)
14: end if

15: end while

16: K0  argminbK
2 ckK�1 kxt,k+1 � xt,kk

17: Output: bw  1
K0+1

PK0
k=0wt,k

Connection between PRAF
2
BA and the perturbed restarted accelerated gradient descent

ascent. We recap the perturbed restarted accelerated gradient descent ascent (PRAGDA) introduced
by [YLL+23] (Algorithm 3 therein) as a special case of their proposed algorithm, PRAHGD. Algo-
rithmic details are provided in Algorithm 3. As we will point out immediately, this is exactly our
Algorithm 2 applied to minimax problem (13).

When applying to the minimax problem (13), the procedures of Algorithm 2 (with Perturbation =
1) and Algorithm 3 are identical with the appropriate parameters setup. We observe that since
� > 1, the regularized objective L⇤

�(x) is exactly equal to the objective function '̄(x) in minimax
problem (13). Indeed, function L⇤

�(x) can be written as

L⇤
�(x) = min

y2Rdy

✓
f(x, y) + �

✓
g(x, y)� min

z2Rdy
g(x, z)

◆◆

= min
y2Rdy

✓
f̄(x, y) + �

✓
�f̄(x, y)� min

z2Rdy
�f̄(x, z)

◆◆
= min

y2Rdy

✓
(1� �)f̄(x, y) + � max

z2Rdy
f̄(x, z)

◆

= (1� �) max
y2Rdy

f̄(x, y) + � max
z2Rdy

f̄(x, z) = max
y2Rdy

f̄(x, y)

which reduces to the objective function '̄(x) in the minimax problem (13).
Now, careful examination of the algorithm procedures indicates that applying Algorithm 2 to

minimizing L⇤
�(x) with ↵ = ↵0 and � = �0 implies that the yt,k = zt,k always holds, since the

sequences {yt,k} and {zt,k} correspond to the iterations for problems miny2Rdy � f(wt,k, y) and
miny2Rdy � (�� 1)f(wt,k, y), respectively. Hence, Lines 7—8 of Algorithm 2 is identical to Line 7
of Algorithm 3 when ⌘ = ⌘x, proving the equivalence.

Therefore under this setup, utilizing Fact 6 we can take eL = ( + 1)` and e⇢ = 4
p
23⇢ to

conclude an improved oracle complexity upper bounds for finding second-order stationary points

14



Table 2. Comparisons of gradient query complexity for finding approximate SOSP in NCSC minimax
optimization algorithms

Algorithm
Complexities

Gc(f̄ , ✏) HV (f̄ , ✏) JV (f̄ , ✏)

IMCN [LLC22] eO(2✏�1.5) eO(1.5✏�2) eO(✏�2)

PRAGDA ([YLL+23], this work) eO(1.75✏�1.75) 0 0

for this particular problem, indicated by the following statement:

Theorem 7 (Oracle complexity of PRAF
2
BA for accelerating minimax optimization). For solv-

ing (13) under the settings of Fact 6, Algorithm 2 reduces to Algorithm 3 which outputs an�
✏,O(1.5

p
✏)
�
-second-order stationary point of '̄(x) in (13) within eO(1.75✏�1.75) gradient query

complexity of f̄(x, y).

The proof of Theorem 7 is straightforward using the above equivalence, PRAHGD complexity result
as in Theorem 16, Proposition 17 of [YLL+23], and also Fact 6. As is discussed in [YLL+23], this
oracle query complexity achieves the state-of-the-art in this setting; see details in Table 2.

4 Optimality and Stationarity in Bilevel Optimization without
LLSC

In this section we aim to find stationary points of the hyper-objective function, investigating when
LL functions lack the typical strong convexity assumption. First, we will illustrate the intractability
is mainly caused by undesirable flatness, and we identify two regularity conditions of the LL prob-
lems that are su�cient to provably confer tractability to BiO with only LL convexity: the gradient
dominance condition (Assumption 4.1), and the weak sharp minimum condition (Assumption 4.2).

Then we present hardness results illustrating that BiO for general convex LL functions but
without LLSC, for both finding an LL optimal solution and a UL stationary point, is intractable
to solve [§4.2].4 In particular

• We show that '(x) is not computable in finite iterations by proving a lower bound in Propo-
sition 4.4 for general convex functions, and also in Proposition 4.5 for nonsmooth convex LL
functions. [§4.2.1]

• We give a pair of f(x, y) and g(x, y) in Example 4.2 such that the resulting hyper-objective
'(x) is discontinuous and thus intractable to optimize, and prove this generally holds in both
ways in Proposition 4.6. [§4.2.2]

Finally, under the introduced regularity conditions, we propose novel algorithms, namely the In-
exact Gradient-Free Method (IGFM), which uses the Switching Gradient Method (SGM) as an e�cient
sub-routine, to find an LL optimal solution and a UL stationary point as well as an approximate
stationary point of the hyper-objective in polynomial time, with non-asymptotic convergence guar-
antees:

4As the readers will see in §4.2, the construction of the hard instances in the lower bound results relies on the fact
that a general convex LL function can be arbitrarily flat.
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Table 3. An overview of the theoretical results for BiO without LLSC, which is generally intractable
but becomes tractable when the LL function satisfies either the gradient dominance or the weak sharp
minimum condition

Assumption on LL function LL Optimality UL Stationarity Reference

Strongly convex Tractable Tractable Known result
Convex with dominant gradients Tractable Tractable Proved by this work
Convex with weak sharp minimum Tractable Tractable Proved by this work

Only convex Intractable Intractable Proved by this work

• Finding an LL Optimal Solution. We show that both conditions fall into a general class of
the Hölderian error bound condition under which we propose the Switching Gradient Method
(SGM, Algorithm 4) to overcome the di�culty of multiple LL minima and find an LL optimal
solution in polynomial time (Theorem 4.1) [§4.3.1].

• Finding a UL Stationary Point. Under the Lipschitz continuity of '(x), we then pro-
pose the Inexact Gradient-Free Method (IGFM, Algorithm 5) that can provably converge to
a UL stationary point—a Goldstein stationary point [ZLJ+20] of the hyper-objective—by
incorporating SGM as an e�cient sub-routine [§4.3.2].5

§4.1 first identify several regularity conditions of the LL problems that can provably confer
tractability. In §4.2 we present hardness results showing that BiO for general convex LL functions
is intractable to solve. Finally in §4.3 we propose the Inexact Gradient-Free Method (IGFM)—which
uses the Switching Gradient Method (SGM) as an e�cient sub-routine—to find an approximate
stationary point of the hyper-objective in polynomial time. Theoretical proofs and miscellaneous
results are delegated to §4.4, §4.5, §C and §D.

4.1 Su�cient Conditions for Tractability

In this subsection, we provide conditions that are su�cient for tractability. §4.1.1 introduces
the optimality conditions for BiO without LLSC used in this subsection. §4.1.2 introduces two
assumptions corresponding to di↵erent degrees of sharpness of LL functions, which is essential to
ensure the tractability of BiO.

4.1.1 The Optimality Conditions

Firstly, we recall the definition of the optimistic optimal solution [DKK06], which is a standard
optimality condition for the hyper-objective reformulation.

Definition 4.1 (Locally optimistic optimality). A pair of point (x⇤, y⇤) is called a locally optimistic
optimal solution to Problem (1) if y⇤ 2 Y ⇤(x⇤) and there exists � > 0 such that we have '(x⇤) 
'(x) and f(x⇤, y⇤)  f(x⇤, y) for all (x, y) 2 B�(x⇤, y⇤). It is called a globally optimistic optimal
solution if we can let � !1.

A globally optimistic optimal solution is an exact solution to Problem (1), but its computation
is NP-hard since '(x) is generally nonconvex [DDG+22]. A common relaxation is to find a locally
optimistic optimal solution, for which we can derive the following necessary conditions.

5In fact, we will prove that both conditions imply the Lipschitz continuity of the solution mapping Y
⇤(x), which

is proved to be both su�cient and necessary for the Lipschitz continuity of '(x) by Proposition 4.6.
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Proposition 4.1. Suppose f(x, ·) and g(x, ·) are convex, and '(x) is locally Lipschitz. Then
for any locally optimistic optimal solution (x⇤, y⇤), we have @'(x⇤) = 0, f(x⇤, y⇤) = '(x⇤) and
g(x⇤, y⇤) = g⇤(x⇤).

It motivates us to use the following criteria for non-asymptotic analysis

Definition 4.2 (UL Stationarity). Suppose '(x) is locally Lipschitz. We call bx a (�, ")-UL sta-
tionary point if it is a (�, ")-Goldstein stationary point of '(x).

Definition 4.3 (LL Optimality). Fix an x. Suppose f(x, ·) and g(x, ·) are convex. We call by a
(⇣f , ⇣g)-LL optimal solution if we have |f(x, by)� '(x)|  ⇣f and g(x, by)� g⇤(x)  ⇣g.

The main focus of this section is to discuss when and how one can design a polynomial time
algorithm to achieve the above goals for any given positive precision �, ", ⇣f , ⇣g.

Remark 4.1. In Definition 4.2, we assume that '(x) is locally Lipschitz, which is a regular con-
dition to ensure Clarke di↵erentiability. However, it may not hold for BiO without LLSC, and
we will give the su�cient and necessary conditions for it later in Proposition 4.6. Definition 4.2
adopts the Goldstein stationary points since '(x) can be nonconvex nonsmooth such that traditional
stationary points may be intractable, as we will show later in Example 4.1.

4.1.2 Regularity Conditions for Continuity

Our results underscore that the sharpness of LL functions is essential to ensure the tractability
of BiO. This is due in part to that the constructions of the hard instances in this section all rely
on very flat LL functions, as readers will see in §4.2. This observation inspires us to focus on
more restricted function classes that possess sharpness to circumvent the ill-conditioned nature of
BiO without LLSC. Below, we introduce two conditions that correspond to di↵erent degrees of
sharpness.

Assumption 4.1 (Gradient Dominance). Suppose g(x, y) is L-gradient Lipschitz jointly in (x, y),
and there exists ↵ > 0 such that for any x 2 Rdx , y 2 Y we have G1/L(y;x) � ↵ dist(y, Y ⇤(x)).

Assumption 4.2 (Weak Sharp Minimum). Suppose g(x, y) is L-Lipschitz in x, and there exists
↵ > 0 such that for any x 2 Rdx , y 2 Y we have g(x, y)� g⇤(x) � 2↵ dist(y, Y ⇤(x)).

Both conditions are widely used in convex optimization [BF93, DL18]. They are milder condi-
tions than LLSC by allowing Y ⇤(x) to be non-singleton. Despite being more relaxed, we demon-
strate below that either of them can lead to the continuity of Y ⇤(x) and thus '(x). The continuity
of '(x) is crucial for designing algorithms to optimize it.

Proposition 4.2. Under Assumption 4.1 or 4.2, Y ⇤(x) is (L/↵)-Lipschitz. Furthermore, if f(x, y)
is Cf -Lipschitz, then '(x) is (L/↵+ 1)Cf -Lipschtz.

Therefore, the introduced conditions can avoid discontinuous instances such as Example 4.2. It
is worth noting that these conditions fundamentally di↵er from LLSC, as '(x) can be nonsmooth
under these conditions, as exemplified below. The potential nonsmoothness of '(x) further justifies
the rationality of using Goldstein stationarity in Definition 4.2.

Example 4.1. Let f(x, y) = xy, g(x, y) = 0 and Y = [�1, 1]. We obtain a BiO instance satisfying
both Assumptions 4.1 and 4.2. But the resulting '(x) = �|x| is nonsmooth and nonconvex.
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Remark 4.2. One may wonder how to verify the introduced conditions in applications. It is non-
trivial as the value of dist(y, Y ⇤(x)) is unknown. An easy case is Assumption 4.1 with Y = Rdy ,
which reduces to the Polyak- Lojasiewicz condition [Pol63]: kryg(x, y)k2 � 2↵(g(x, y) � g⇤(x)) by
Theorem 2 in [KNS16]. This inequality allows us to identify the following examples that fall into
Assumption 4.1:

Firstly, we can show that Assumption 4.1 strictly covers the LLSC condition.

(i) If g is L-gradient Lipschitz and ↵-strongly convex, then it satisfies Assumption 4.1.

Secondly, the following example that both AID and ITD fail to optimize satisfies Assumption 4.1.

(ii) Consider the hard BiO instance proposed by [LMY+20]

min
x2R,y2Y ⇤(x)

(x� y[2])
2 + (y[1] � 1)2 Y ⇤(x) = arg min

y2R2
y2[1] � 2xy[1]

The LL function satisfies Assumption 4.1 with L = 2 and ↵ = 2.

Thirdly, the BiO with least squares loss studied by [BTTG20] also satisfies Assumption 4.1.6

(iii) Consider the BiO with least squares loss

min
x2Rdx ,y2Y ⇤(x)

1

2n
kAx� yk2 Y ⇤(x) = arg min

y2Rn

1

2n
kAx� yk2M +

�

2n
ky � bk2M

where A 2 Rn⇥dx , b 2 Rn represents the features and labels of the n samples in the dataset,
� > 0 and M is a positive semi-definite matrix that induces the norm kzkM =

p
z>Mz. The

LL function satisfies Assumption 4.1 with L = (�+ 1)�max(M) and ↵ = (�+ 1)�+min(M).

4.2 Hardness Results for Intractability

In this subsection, we provide various hardness results to show the challenges of BiO without LLSC.
It is a natural idea to tackle BiO without LLSC by adding a regularization term to the LL function
and then apply a BiO algorithm designed under LLSC [RFKL19]; however, we will be explaining
in the forthcoming Proposition 4.3 that manually regularize the LL function may lead to a huge
deviation on the hyper-objective, and thereby does not work as a feasible approach.7

Proposition 4.3. Given a pivot by, there exists a BiO instance, where both f(x, y) and g(x, y) are
convex in y, and the resulting hyper-objective '(x) is a quadratic function, but for any � > 0 the
regularized hyper-objective

'�(x) = min
y2Y ⇤

� (x)
f(x, y) Y ⇤

� (x) = argmin
y2Y

g(x, y) + �ky � byk2

is a linear function with |infx2Rdx '�(x)� infx2Rdx '(x)| =1.

This example indicates that even if the regularization is arbitrarily small, the hyper-objective before
and after regularization can be completely di↵erent objectives. Consequently, BiO without LLSC
should be treated as a distinct research topic from BiO with LLSC.

Till the rest of this section, we demonstrate that both the tasks of finding an LL optimal solution
[§4.2.1] and finding a UL stationary point can be intractable for BiO without LLSC [§4.2.2].

6We leave more details of this model and its application in adversarial training in §A.3.
7The regularization transforms Y ⇤(x) from a set to a singleton, thus breaking the original problem structure.
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4.2.1 Can we Find an LL Optimal Solution?

The goal of finding an LL optimal solution for a given x 2 Rdx is to solve the following problem

min
y2Y ⇤(x)

f(x, y) Y ⇤(x) = argmin
y2Y

g(x, y) (14)

This problem is usually called simple BiO [BS14, SS17, KY21] since it involves only one variable
y. However, it is not a simple problem as the forthcoming results show its intractability for general
convex objectives.

Our lower bound is based on the following first-order zero-chain, which is a generic approach
applied extensively in the literature to proving lower bounds for optimization algorithms [NY83,
N+18, CDHS20, CDHS21].

Definition 4.4 (Zero-chain). We call function h(z) : Rq ! R a first-order zero-chain if for any
sequence {zk}k�1 satisfying z0 = 0 and

zi 2 Span {@h(z0), . . . , @h(zi�1)} i � 1 (15)

it holds that zi,[j] = 0, i+ 1  j  q.

We remark that in the construction of a zero-chain, we can always assume z0 = 0 without loss of
generality. Otherwise, we can translate the function to h(z � z0). Below, we introduce the convex
zero-chain from [N+18, §2.1.2].

Since the subgradients may contain more than one element, we also say h(z) is zero-chain
whenever there exists some adversarial subgradient oracle. This would also provide a valid lower
bound [N+18].

Definition 4.5 (Gradient Lipschitz Worst-case Zero-chain). Consider the family of functions

hq(z) =
1

8
(z[1] � 1)2 +

1

8

q�1X

j=1

(z[j+1] � z[j])
2

The following properties hold for any hq(z) with q 2 N+:

(i) It is a first-order zero-chain

(ii) It has a unique minimizer z⇤ = 1

(iii) It is 1-gradient Lipschitz

In bilevel problems, it is crucial to find a point y that is close to Y ⇤(x), instead of just achieving
a small optimality gap g(x, y)�g⇤(x). However, it is di�cult for any first-order algorithms to locate
the minimizers of the function class in Definition 4.5

Proposition 4.4. Fix an x. For any K 2 N+, there exists dy 2 N+ such that for any y0 2 Rdy ,
there exists a pair of functions f(x, ·), g(x, ·) that are both convex and 1-gradient Lipschitz, for
any first-order algorithm A which initializes from y0 2 Y with dist(y0, y⇤(x))  1 and generates a
sequence of test points {yk}Kk=0 with

yk 2 y0 + Span {ryf(x, y0),ryg(x, y0), · · · ,ryf(x, yk�1),ryg(x, yk�1)} k � 1

it holds that |f(x, yk)� '(x)| � 1/4, where y⇤(x) is the unique solution to miny2Y ⇤(x) f(x, y).
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The key idea in the proof is to construct the LL function using the worst-case convex zero-chain
[N+18], such that any first-order algorithm will require a large number of steps to approach the
vicinity of the LL solution mapping Y ⇤(x).

Next, we prove analogously a lower bound also holds for Lipschitz nonsmooth convex LL func-
tions, using the following function class, which appears in [N+18], §3.2.1.

Definition 4.6 (Lipschitz Zero-chain). Consider the family of functions

hq(z) =

p
q

2 +
p
q
max
1jq

z[j] +
1

2(2 +
p
q)
kzk2

The following properties hold for any hq(z) with q 2 N+:

(i) It is a first-order zero-chain

(ii) It has a unique minimizer z⇤ = �1/pq

(iii) It is 1-Lipschitz in the unit Euclidean ball B(z⇤) , {z : kz � z⇤k  1}

Analogous to Proposition 4.4, we can show the following result.

Proposition 4.5. Fix an x. For any K 2 N+, there exists dy 2 N+ such that for any y0 2 Rdy ,
there exist there exists a pair of functions f(x, ·), g(x, ·) that are both convex and 1-Lipschitz on
B(y⇤(x)), such that for any first-order algorithm A which initializes from y0 2 B(y⇤(x)), and
generates a sequence of test points {yk}Kk=0 with

yk 2 y0 + Span {@yf(x, y0), @yg(x, y0), . . . , @yf(x, yk�1), @yg(x, yk�1)} k � 1

there exists some subgradients sequence {@yf(x, y0), @yg(x, y0), . . . , @yg(x, yk�1)} to make |f(x, yk)�
'(x)| � 1/4 for all k, where y⇤(x) is the unique solution to miny2Y ⇤(x) f(x, y).

4.2.2 Can we Find a UL Stationary Point?

Besides the di�culty in finding an LL optimal solution, the goal of finding a UL stationary point
is also challenging. Below, we show that the hyper-objective '(x) can be discontinuous without
LLSC. Since continuity is one of the basic assumptions for almost all numerical optimization schemes
[NW06], our hard instance indicates that '(x) may be intrinsically intractable to optimize for BiO
without LLSC.

Example 4.2. Consider a BiO instance given by

min
x2R,y2Y ⇤(x)

x2 + y Y ⇤(x) = arg min
y2[�1,1]

� xy

It is straightforward to obtain Y ⇤(x) = sign(x) and hence the hyper-objective '(x) = x2 + sign(x),
which is discontinuous at x = 0.

In the above example, the discontinuity of '(x) comes from the discontinuity of Y ⇤(x) = sign(x).
Below, we prove that this statement and its reverse generally holds.

Proposition 4.6. Suppose the solution mapping Y ⇤(x) is non-empty and compact for any x 2 Rdx .

(i) If f(x, y) and Y ⇤(x) are locally Lipschitz, then '(x) is locally Lipschitz
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Algorithm 4 SGM(x, y0,K0,K, ⌧, ✓)

1: Initialize: I = ;, by0 = y0
2: for k = 0, 1, . . . ,K0 � 1 do

3: byk+1 = PY [byk � ⌧@yg(x, byk)]
4: end for

5: bg⇤(x) = g(x, byK0)
6: for k = 0, 1, . . . ,K � 1 do

7: if g(x, yk)� bg⇤(x)  2✓ then

8: yk+1 = PY [yk � ⌧@yf(x, yk)]
9: I = I [ {k}

10: else

11: yk+1 = PY [yk � ⌧@yg(x, yk)]
12: end if

13: end for

14: yout =
1
|I|
P

k2I yk
15: Output: yout

(ii) Conversely, if '(x) is locally Lipschitz for any locally Lipschitz function f(x, y), then Y ⇤(x)
is locally Lipschitz

(iii) If f(x, y) is Cf -Lipschitz and Y ⇤(x) is -Lipschitz, then '(x) is C'-Lipschitz with coe�cient
C' = (+ 1)Cf

(iv) Conversely, if '(x) is C'-Lipschitz for any Cf -Lipschitz function f(x, y), then Y ⇤(x) is -
Lipschitz with coe�cient  = C'/Cf

Local Lipschitz continuity ensures UL stationary points (Definition 4.2) are well-defined, while
global Lipschitz continuity enables uniform complexity bounds for non-asymptotic analysis (as we
will use in §4.3.2). According to the above theorem, ensuring the continuity of Y ⇤(x) is the key to
obtaining the desired continuity of '(x). This motivates us to focus on well-behaved LL functions
that confer continuity of Y ⇤(x).

4.3 The Proposed Methods

In this subsection, we propose novel polynomial time algorithms for BiO under Assumption 4.1 and
4.2. We first borrow ideas from switching gradient methods to overcome the di�culty of multiple
LL minima [§4.3.1], and then propose a method motivated by gradient-free optimization that can
provably converge to a UL stationary point [§4.3.2].

4.3.1 Finding LL Optimality via Switching Gradient Method

In (14), the LL constraint y 2 Y ⇤(x) is equivalent to an inequality constraint g(x, y)  g⇤(x). Based
on this observation, we generalize Polyak’s Switching Gradient Method [Pol67] for the functional
constrained problems to Algorithm 4 when the following assumptions hold.

Assumption 4.3. Suppose that

(i) both f(x, y) and g(x, y) are convex in y
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Algorithm 5 IGFM(x0, y0, ⌘, T, �,K0,K, ⌧, ✓)

1: Input: Sub-routine A can estimate e'(x) ⇡ '(x) for any x 2 Rdx

2: for t = 0, 1, . . . , T � 1 do

3: Sample ut 2 Rdx uniformly from the unit sphere @B1 in Rdx

4: Estimate e'(xt + �ut) and e'(xt � �ut) by sub-routine A
5: brt =

dx
2� (e'(xt + �ut)� e'(xt � �ut))ut

6: xt+1 = xt � ⌘ brt

7: end for

8: Output: xout uniformly chosen from {xt}T�1
t=0

(ii) Y is compact with diameter R

(iii) f(x, y) is Cf -Lipschitz on Rdx ⇥ Y

(iv) g(x, ·) is Cg-Lipschitz on Y for any x 2 Rdx

(v) either Assumption 4.1 or 4.2 holds for g(x, y)

Under the above assumptions, we can prove the following result.

Theorem 4.1. Fix an x. Under Assumption 4.3, Algorithm 4 with appropriate parameters can
ouput a point yout satisfying |f(x, yout) � '(x)|  ⇣ and g(x, yout) � g⇤(x)  ⇣ with O(poly(1/⇣))
first-order oracle calls from g.

The corresponding proof and specific parameters of the algorithm can be found in §4.4 and §C.

4.3.2 Finding UL Stationarity via Gradient-Free Method

Without LLSC, the hyper-gradient r'(x) may not have an explicit form as (4). To tackle this
challenge, we propose the Inexact Gradient-Free Method (IGFM) in Algorithm 5. The algorithm is
motivated by recent advances in nonsmooth nonconvex gradient-free optimization [LZJ22]. Our
(zeroth-order) oracle query e'(x) ⇡ '(x) is inexact since it is an approximation from a sub-routine
A. Below, we show that when A can guarantee su�cient approximation precision, IGFM provably
finds a Goldstein stationary point of a Lipschitz hyper-objective function '(x).

Assumption 4.4. Suppose that

(i) '(x) is C'-Lipschitz

(ii) A ensures |e'(x)� '(x)|  O(�"2/(dxC')) for any x 2 Rdx

Theorem 4.2. Given any " . Cf . Suppose the hyper-objective '(x) = miny2Y ⇤(x) f(x, y) has
a finite minimum value denoted by '⇤ = infx2Rdx '(x) > �1, and let � = '(x0) � '⇤. Under
Assumption 4.4, set

T = O
 
d3/2x

 
C4
'

"4
+

�C3
'

�"4

!!
⌘ = ⇥

 s
�(� + �C')

d3/2x C3
'T

!
(16)

Then Algorithm 5 can output a point xout that satisfies Emin{ksk : s 2 @�'(xout)}  ".
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Now it remains to verify Assumption 4.4. Note Assumption 4.4(i) can be verified by Proposi-
tion 4.6, while Assumption 4.4(ii) can be verified by Theorem 4.1. Therefore we have the following
result. To the best of our knowledge, it is among the first theoretical analysis that shows the
non-asymptotic convergence to a UL stationary point for BiO without LLSC:

Corollary 4.1. Suppose Assumption 4.3 holds. Set A as the SGM Algorithm 4. Then Algorithm 5
with appropriate parameters can output a (�, ✏)-Goldstein stationary point of '(x) in expectation
within O(poly(dx, 1/", 1/�)) zeroth-order and first-order oracle calls from f and g.

4.4 Proof of Theorem 4.1

To prove Theorem 4.1 we first prove that the proposed Switching (sub)Gradient Method in Algo-
rithm 4 can find an LL optimal solution under the following Hölderian error bound condition.

Assumption 4.5. We suppose the LL function g(x, ·) satisfies the r-th order Hölderian error
bound condition on set Y with some coe�cient ⌫ > 0, that is

⌫

r
dist(y, Y ⇤(x))r  g(x, y)� g⇤(x) 8y 2 Y

Note that this condition is also used by [JAMH23] and they show the following result

Lemma 4.1 (Proposition 1 in [JAMH23]). Suppose that Assumption 4.5 holds, f(x, ·) is convex
and f(x, y) is Cf -Lipschitz. If a point y satisfies

f(x, y)� '(x)  ⇣ g(x, y)� g⇤(x)  ⌫

r

✓
⇣

Cf

◆r

(17)

then we have |f(x, y)� '(x)|  ⇣.

(17) can be achieved by the SGM, then we can show the following result for finding an LL optimal
solution the Hölderian error bound condition.

Theorem 4.3. Under Assumptions 4.3 and 4.5 we let

✓ = min

⇢
⇣,
⌫

4r

✓
⇣

Cf

◆r�
K0 = K =

&
4R2max{C2

f , C
2
g}

✓2

'
⌧ =

R

max{Cf , Cg}
p
K

(18)

then Algorithm 4 can output a point yout satisfying |f(x, yout)� '(x)|  ⇣ within O
✓

r2 max{C2
f ,C

2
g}C2r

f R2

⌫2⇣2r

◆

first-order oracle complexity.

We introduce next Lemma 4.3 which relies on the following standard lemma for subgradient
descent.

Lemma 4.2 (Subgradient Descent). Suppose h is a L-Lipschitz convex function. For any y, z 2 Y,
if we let y+ = PY [y � ⌧@h(y)], then it holds that

h(y)� h(z)  1

2⌧

�
ky � zk2 � ky+ � zk2

�
+
⌧L2

2

Proof of Lemma 4.2. See Theorem 3.2 in [B+15].
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Using this lemma, we then show the following result.

Lemma 4.3. Under the setting of Theorem 4.3, the output of Algorithm 4 satisfies

f(x, yout)� '(x)  ✓ g(x, yout)� g⇤(x)  4✓

Hence, Theorem 4.3 follows naturally by combining Lemma 4.1 and Lemma 4.3.

Proof of Lemma 4.3. By Theorem 3.2 in [B+15], the initialization step ensures bg⇤(x)� g⇤(x)  2✓.
Pick any y⇤(x) 2 argminy2Y ⇤(x) f(x, y) and denote C = max{Cf , Cg}. According to Lemma 4.2
we obtain

f(x, yk)� '(x) 
1

2⌧

�
kyk � y⇤(x)k2 � kyk+1 � y⇤(x)k2

�
+
⌧C2

2
k 2 I

g(x, yk)� g⇤(x)  1

2⌧

�
kyk � y⇤(x)k2 � kyk+1 � y⇤(x)k2

�
+
⌧C2

2
k 2 Ic

Combing them together yields

1

K

X

k2I
f(x, yk)� '(x) +

1

K

X

k2Ic

g(x, yk)� g⇤(x)  R2

2⌧K
+
⌧C2

2
=

RCp
K

(19)

With (19) in hand, it su�ces to show the result. Firstly, we show that I 6= ;, and thus yout is
well-defined. Otherwise, we would have the following contradiction

2✓  1

K

K�1X

k=0

g(x, yk)� bg⇤(x) 
1

K

K�1X

k=0

g(x, yk)� g⇤(x)  RCp
K
 ✓

2

Secondly, we show that the output will not violate the constraint too much by

g(x, yout)� g⇤(x)  1

|I|
X

k2I
(g(x, yk)� bg⇤(x)) + (bg⇤(x)� g⇤(x))  4✓

Thirdly, we show that f(x, yout) � '(x)  ✓. It is trivial when
P

k2I f(x, yk) � '(x)  0 since
it is an immediate result of Jensen’s inequality. Therefore we can only focus on the case whenP

k2I f(x, yk)� '(x) > 0. In this case, we can show that |I| � K/2, otherwise we would have

✓ <
1

K

X

k2Ic

g(x, yk)� bg⇤(x) 
1

K

X

k2Ic

g(x, yk)� g⇤(x)  RCp
K
 ✓

2

which also leads to a contradiction. Hence we must have |I| � K/2, therefore, we obtain

f(x, yout)� '(x) 
1

|I|
X

k2I
f(x, yk)� '(x) 

2

K

X

k2I
f(x, yk)� '(x) 

2RCp
K
 ✓

This completes our proof.

We want to use Theorem 4.3 to prove Theorem 4.1. The only di↵erence between them relies
upon the assumption. The following proposition shows that both Assumptions 4.1 and 4.2 imply
Assumption 4.5 when g(x, y) is convex in y. Therefore, the function class studied in Theorem 4.1
is contained in the function class studied in Theorem 4.3
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Proposition 4.7. If g(x, ·) is convex, then either Assumption 4.1 or 4.2 implies Assumption 4.5.

Proof of Proposition 4.7. According to Corollary 3.6 in [DL18], Assumption 4.1 implies Assump-
tion 4.5 with any ⌫ < ↵ under the convexity of g(x, ·). For Assumption 4.2, it is clear that it is
equivalent to Assumption 4.5 with r = 1.

Theorem 4.1 naturally follows by combining Theorem 4.3 and Proposition 4.7.

4.5 Proof of Theorem 4.2

In order to show Theorem 4.2, we let '� , Ev⇠Pv ['(x+ �v)] where Pv is a uniform distribution on
a unit ball in `2-norm. Then, we define

rt ,
dx
2�

('(xt + �ut)� '(xt � �ut))ut (20)

According to Lemma D.1 in [LZJ22], rt satisfies the following properties

Eut [rt | xt] = r'�(xt) Eut [krtk2 | xt]  16
p
2⇡dxC

2
'

Then we know that

Eut [krt � brtk | xt] 
dx⇣

�
Eutkutk =

dx⇣

�
 c4"2

C'
(21)

and
Eut [kbrtk2 | xt]  2Eut [krtk2 | xt] + 2Eut [krt � brtk2 | xt]

 2Eut [krtk2 | xt] +
2d2x⇣

2

�2
Eutkutk2  32

p
2⇡dxC

2
' +

2d2x⇣
2

�2
 c1dxC

2
'

(22)

for some positive constant c1, c4 > 0. Then we use the results of (21), (22) as well as the standard
analysis of gradient descent to obtain

E ['�(xt+1) | xt]  '�(xt)� ⌘
D
r'�(xt),E[brt | xt]

E
+

c2⌘2C'
p
dx

2�
E[kbrtk2 | xt]

 '�(xt)� ⌘kr'�(xt)k2 +
⌘C'dx⇣

�
+

c2⌘2C'
p
dx

2�
E[kbrtk2 | xt]

 '�(xt)� ⌘ kr'�(xt)k2 +
c3⌘2C3

'd
3/2
x

�
+ ⌘c4"

2

where we use Proposition 2.3 in [LZJ22] that '� is di↵erentiable and C'-Lipschitz with the (c2C'
p
dx/�)-

Lipschitz gradient where c2 > 0 is a positive constant and we define c3 = 2c1c2. Telescoping for
t = 0, 1, . . . , T , we obtain

E kr'�(xout)k2 
� + �C'

⌘T
+

c3⌘C3
'd

3/2

�
+ c4"

2

where we use |'�(x)� '(x)|  �C' for any x 2 Rdx by Proposition 2.3 in [LZJ22].
Lastly, plugging the value of ⌘, T with a su�ciently small constant c4 and noting thatr'(xout) 2

@�'(xout) by Theorem 3.1 in [LZJ22], we arrive at the conclusion.
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5 Conclusion

In significance, our proposed algorithms in optimizing bilevel optimization (BiO) problems with or
without LLSC is underscored by its state-of-the-art convergence rates and computational e�ciency.

For BiO with LLSC, we have presented the (P)RAF2BA algorithm that leverages fully first-order
oracles to find approximate stationary points in nonconvex-strongly-convex BiO, enhancing oracle
complexity for e�cient optimization. Theoretical guarantees for finding approximate first-order
stationary points and second-order stationary points with state-of-the-art query complexities have
been established, showcasing their e↵ectiveness in solving complex optimization tasks. In particular
when applied to minimax optimization problem, we recovered PRAGDA that achieves the state-of-
the-art in finding approximate second-order stationary point of the hyper-objective objective.

For BiO without LLSC, we first identified several regularity conditions of the LL problems that
can provably confer tractability. Then we presented hardness results showing that BiO for general
convex LL functions is intractable to solve. Finally we proposed IGFM, which uses SGM as an e�cient
sub-routine to find an approximate stationary point of the hyper-objective in polynomial time.

Although this paper focuses primarily on the theoretical level, we expect our results can shed
light on e�cient algorithm design for BiO applications in practice. We also hope our work can be
a good starting point for non-asymptotic analysis for more challenging BiO problems, such as BiO
with nonconvex LL functions or BiO with intertwined inequality constraints h(x, y)  0.
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[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Ha↵ner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[LFH+20] Tianyi Lin, Chenyou Fan, Nhat Ho, Marco Cuturi, and Michael Jordan. Projection robust
Wasserstein distance and Riemannian optimization. Advances in neural information processing
systems, 33:9383–9397, 2020.

[LHH22] Junyi Li, Feihu Huang, and Heng Huang. Local stochastic bilevel optimization with momentum-
based variance reduction. arXiv preprint arXiv:2205.01608, 2022.

[LJJ20a] Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave
minimax problems. In International Conference on Machine Learning, pages 6083–6093.
PMLR, 2020.

[LJJ20b] Tianyi Lin, Chi Jin, and Michael I Jordan. Near-optimal algorithms for minimax optimization.
In Conference on Learning Theory, pages 2738–2779. PMLR, 2020.

[LL23] Huan Li and Zhouchen Lin. Restarted nonconvex accelerated gradient descent: No more
polylogarithmic factor in the O(✏�7/4) complexity. Journal of Machine Learning Research,
24(157):1–37, 2023.

[LLC22] Luo Luo, Yujun Li, and Cheng Chen. Finding second-order stationary points in nonconvex-
strongly-concave minimax optimization. Advances in Neural Information Processing Systems,
35:36667–36679, 2022.

[LLY+21] Risheng Liu, Xuan Liu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A value-function-
based interior-point method for non-convex bi-level optimization. In International conference
on machine learning, pages 6882–6892. PMLR, 2021.

[LLZZ21] Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel
optimization with non-convex followers and beyond. Advances in Neural Information Processing
Systems, 34:8662–8675, 2021.

[LM23] Zhaosong Lu and Sanyou Mei. A first-order augmented Lagrangian method for constrained
minimax optimization. arXiv preprint arXiv:2301.02060, 2023.

[LM24] Zhaosong Lu and Sanyou Mei. First-order penalty methods for bilevel optimization. SIAM
Journal on Optimization, 34(2):1937–1969, 2024.

[LMY+20] Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A generic first-order
algorithmic framework for bi-level programming beyond lower-level singleton. In International
conference on machine learning, pages 6305–6315. PMLR, 2020.

30



[LSR+22] Lars Lorch, Scott Sussex, Jonas Rothfuss, Andreas Krause, and Bernhard Schölkopf. Amortized
inference for causal structure learning. Advances in Neural Information Processing Systems,
35:13104–13118, 2022.

[LSY19] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Di↵erentiable architecture search.
In International Conference on Learning Representations, 2019.

[LTHC20] Songtao Lu, Ioannis Tsaknakis, Mingyi Hong, and Yongxin Chen. Hybrid block successive
approximation for one-sided non-convex min-max problems: algorithms and applications. IEEE
Transactions on Signal Processing, 68:3676–3691, 2020.

[LYHZ20] Luo Luo, Haishan Ye, Zhichao Huang, and Tong Zhang. Stochastic recursive gradient de-
scent ascent for stochastic nonconvex-strongly-concave minimax problems. Advances in Neural
Information Processing Systems, 33:20566–20577, 2020.

[LYW+22] Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. BOME! bilevel optimization
made easy: A simple first-order approach. Advances in neural information processing systems,
35:17248–17262, 2022.

[LZJ22] Tianyi Lin, Zeyu Zheng, and Michael Jordan. Gradient-free methods for deterministic and
stochastic nonsmooth nonconvex optimization. Advances in Neural Information Processing
Systems, 35:26160–26175, 2022.

[MDA15] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter opti-
mization through reversible learning. In International conference on machine learning, pages
2113–2122. PMLR, 2015.

[N+18] Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

[NP06] Yurii Nesterov and Boris T Polyak. Cubic regularization of Newton method and its global
performance. Mathematical Programming, 108(1):177–205, 2006.

[NSH+19] Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn.
Solving a class of non-convex min-max games using iterative first order methods. Advances in
Neural Information Processing Systems, 32, 2019.

[NW06] Jorge Nocedal and Stephen J Wright. Numerical Optimization. Springer-Verlag, New York,
2nd edition, 2006.
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A Empirical Studies

In this section we conduct selective empirical studies to validate the outperformance of algorithms
proposed in this work. For BiO with LLSC, we validate the e↵ectiveness and e�ciency of our
proposed algorithms—RAF

2
BA and PRAF

2
BA—by applying them to several machine learning tasks:

hyperparameter optimization of logistic regression (20 News Group dataset) data, data hyper-
cleaning (MNIST dataset), as well as a W -shaped synthetic example for minimax optimization.
For BiO without LLSC, we compare IGFM with several baselines including AID with conjugate
gradient [MDA15], ITD [JYL21], BGS [AM22b], BDA [LMY+20], BOME [LYW+22], and IA-
GM [LLZZ21] in the application of adversarial training. Our experiments demonstrate that algo-
rithms presented in this paper outperform established baseline algorithms such as BA, AID-BiO,
ITD-BiO, PAID-BiO as well as RAHGD, PRAHGD proposed in the recent work [YLL+23], and (in syn-
thetic minimax problem) the outperformance of our PRAGDA algorithm in comparison with IMCN
proposed by [LLC22], exhibiting improved convergence rates.

A.1 Hyperparameter Optimization

The goal of hyperparameter optimization [GFPS20] is to find the optimal hyperparameter in mini-
mizing the losses on the validation dataset. It can be cast to the BiO of form

min
�2Rp

1

|Dval|
X

(xi,yi)2Dval

L(w⇤(�);xi, yi)

s.t. w⇤(�) = arg min
w2Rc⇥p

1

|Dtr|
X

(xi,yi)2Dtr

L(w;xi, yi) +
1

2cp

cX

j=1

pX

k=1

exp(�k)w
2
jk

where Dtr = {(xi, yi)} is training dataset, Dval = {(xi, yi)} is validation dataset, L is cross-entropy
loss function, c = 20 is number of topics, and p = 130, 170 is dimension of features. As suggested
in our theoretical part we use the conjugate gradient (CG) descent method to approximate the
Hessian-inverse-vector product for PRAHGD, and fully first-order method for (P)RAF2BA.

For a logistic regression problem on 20 News group dataset [GFPS20], we compare the perfor-
mance of our algorithms with the baseline algorithms listed in Table 1. The dataset consists of
18,846 news items divided into 20 topics and features include 130,170 tf-idf sparse vectors. The
data are divided into three parts: |Dtr| = 5, 657 samples for training, |Dval| = 5, 657 samples for
validation and 7,532 samples for testing.

For algorithms listed in Figure 1, we tune both inner-loop and outer-loop learning rates from
{0.001, 0.01, 0.1, 1, 10, 100, 1000}, where the iteration number of gradient descent or AGD steps are
chosen from {5, 10, 30, 50}, and the iteration number of CG step chosen from {5, 10, 30, 50}. For BA-
CG we choose the iteration number of gradient descent steps from {dc(k+1)1/4e : c 2 {0.5, 1, 2, 4}},
as is adopted by [GW18]. For RAF2BA and PRAF

2
BA, we tune � (in (5)) from {100, 300, 500, 700}.

The results are depicted in Figure 1, where we observe that our RAHGD, PRAHGD, RAF2BA and PRAF
2
BA

evidently converge faster than rival algorithms.

A.2 Data Hypercleaning

In data hypercleaning [FDFP17, SCHB19] we have a dataset with label noise, and aim to train a
model while cleaning up a subset of noisy data at limited time and/or cost. It is an application
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(a) testing accuracy vs. running time (b) testing loss vs. running time

(c) testing accuracy vs. number of oracle calls (d) testing loss vs. number of oracle calls

Figure 1. Comparison of a variety of bilevel algorithms on logistic regression on 20 Newsgroup
dataset. Figures (a) and (b) depict the results of testing accuracy and testing loss vs. running time,
respectively. Figures (c) and (d) depict the results of testing accuracy and testing loss vs. number of
oracles calls, respectively.

example of BiO where one treats the cleaned data as the validation set and the remaining data as
the training set:

min
�2R|Dtr|

f(W ⇤(�),�) , 1

|Dval|
X

(xi,yi)2Dval

� log(y>i W
⇤(�)xi)

s.t. W ⇤(�) = arg min
W2Rdy⇥dx

g(W,�) , 1

|Dtr|
X

(xi,yi)2Dtr

��(�i) log(y>i Wxi) + CrkWk2
(23)

where Dtr = {(xi, yi)} is training dataset, Dval = {(xi, yi)} is validation dataset, W is weight of
the classifier, �i 2 R, �(·) is the sigmoid function, and Cr is regularization parameter. We choose
Cr = 0.001 following [SCHB19] and [JYL21].

We conducted an experiment on MNIST [LBBH98], which has dx = 785 and dy = 10 for
problem (23). The training set contains |Dtr| = 20, 000 images, a significant portion of which have
their labels randomly disrupted. We denote for image data the ratio of disrupted labels as the
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(a) Corruption rate p = 0.2 (b) Corruption rate p = 0.4

Figure 2. Comparison of various bilevel algorithms for data hypercleaning at di↵erent corruption
rates

corruption rate p. The validation set consists of |Dval| = 5, 000 images with correct labels; the
testing set of 10,000 images.

The experimental results are depicted in Figure 2. Analogous to §A.1, we continue to use the
CG to approximate the Hessian-inverse-vector product for PRAHGD, and fully first-order method
for (P)RAF

2
BA. For the BA algorithm proposed by [GW18], we also use CG descent method to

compute the Hessian-inverse-vector product (note this was not specified in their work), namelly
BA-CG in Figure 2. For all algorithms we tune the inner-loop and outer-loop learning rates
from {0.001, 0.01, 0.1, 1, 10}, and the iteration number of CG step from {3, 6, 12, 24}. Except
for BA, we choose for all algorithms the iteration number of gradient descent or AGD steps from
{50, 100, 200, 500, 1000}; for BA algorithm, as adopted by [GW18] we choose the iteration num-
ber of gradient descent steps from {dc(k + 1)1/4e : c 2 {0.5, 1, 2, 4}}. For RAF

2
BA and PRAF

2
BA

we choose � (in (5)) from {100, 300, 500, 700}. We observe that our RAHGD, PRAHGD, RAF2BA and
PRAF

2
BA evidently converge faster than rival algorithms.

A.3 Adversarial Training

[BS11] proposed modeling adversarial training via BiO. In this model, the learner aims at find-
ing the optimal parameter x, subject to data y being modified by an adversarial data provider.

Table 4. MSE (mean ± std) achieved by di↵erent algorithms on the abalone dataset in adversarial
training.

Method MSE

AID 1.781 ± 0.418
ITD 0.982 ± 0.015
BGS 0.995 ± 0.259
BDA 0.976 ± 0.014
BOME 0.999 ± 0.140
IA-GM 0.992 ± 0.013

IGFM (Ours) 0.936 ± 0.015
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Figure 3: W-shape function [TSJ+18]

Like [BTTG20, WCJ+21, WHJ+22], we use least squares loss for both f and g as in Remark 4.2(iii).
In the LL loss, we use a diagonal matrix M to assign di↵erent weights to each sample, and a
ridge term ky � bk2M to penalize the data provider when manipulating the original labels b. We
set half the diagonal elements of M evenly in [�+min,�max] and the rest zero. We let � = 1,
�max = 1 and �+min = 10�9. For BDA, we choose su = sl = 1, ↵k = µ/(k + 1) and tune µ
from {0.1, 0.5, 0.9} as [LMY+20]. For BOME, we choose the default option for �k and ⌘ from
{0.9, 0.5, 0.1} as [LYW+22]. For IGFM, we choose � = 10�3 and tune ✓ from {10�1, 10�2, 10�3}. For
all algorithms, we tune the learning rates in {102, 101, 100, 10�1, 10�2, 10�3, 10�4, 10�5}. We run
all the algorithms for 500 UL iterations, with 10 LL iterations per UL iteration. Table 4 compares
the mean squared error (MSE), measured by the value of '(x), achieved by the algorithms on the
abalone dataset from LIBSVM [CL11]. AID has poor performance because it requires taking the
inverse of r2

yyg(x, y), which is ill-conditioned in this experiment. Among all the algorithms, the
IGFM achieves the lowest mean value of MSE, and its variance is also maintained at a relatively low
level.

A.4 W -Shaped Synthetic Minimax Example

We construct the following nonconvex-strong-concave minimax problem

min
x2R3

max
y2R2

f(x, y) = w(x3)� 10y21 + x1y1 � 5y22 + x2y2

where x = [x1, x2, x3]> and y = [y1, y2]> and

w(x) =

8
>>>>>>><

>>>>>>>:

p
✏(x+ (L+ 1)

p
✏ )2 � 1

3(x+ (L+ 1)
p
✏ )3 � 1

3(3L+ 1)✏3/2 x  �L
p
✏

✏x+ ✏3/2

3 �L
p
✏ < x  �

p
✏

�
p
✏x2 � x3

3 �
p
✏ < x  0

�
p
✏x2 + x3

3 0 < x 
p
✏

�✏x+ ✏3/2

3

p
✏ < x  L

p
✏p

✏(x� (L+ 1)
p
✏ )2 + 1

3(x� (L+ 1)
p
✏ )3 � 1

3(3L+ 1)✏3/2 L
p
✏ < x

(24)

is the W-shape-function [TSJ+18] and we set ✏ = 0.01, L = 5 in our experiment. w(·) is depicted
in Figure 3.
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(a) Initial point (x1, y1) (b) Initial point (x1, y1) (c) Initial point (x1, y1)

(d) Initial point (x2, y2) (e) Initial point (x2, y2) (f) Initial point (x2, y2)

Figure 4. A selection of empirical results with convergence measured by the function value gap,
gradient norm and minimum eigenvalue of Hessian (in absolute value), applied on the task of synthetic
minimax problem (13). The scale is in semi-log except for the absolute minimum Hessian eigenvalue.

It is straightforward to verify that [x0; y0] = [[0, 0, 0]>; [0, 0]>] is a saddle point of f(x, y).
We propose our numerical experiments with the following two di↵erent initial points: [x1; y1] =⇥
[10�3, 10�3, 10�16]>; [0, 0]>

⇤
and [x2, y2] =

⇥
[0, 0, 1]>; [0, 0]>

⇤
. Note [x1; y1] is relatively close to

initialization [x0; y0] while [x2; y2] relatively distant. We numerically compare our PRAGDA with
IMCN [LLC22] and classical GDA [LJJ20a] algorithms. The results are depicted in Figure 4 where
we adopted a grid search in choosing the inner-loop learning rates of AGD steps, GDA, and outer-
loop learning rates of PRAGDA. The learning rates are tuned from {c⇥ 10i : c 2 {1, 5}, i 2 {1, 2, 3}}
and momentum parameters from {c⇥ 0.1 : c 2 {1, 2, 3, 4, 5, 6, 7, 8, 9}}.

We plot the results in Figure 4 the number of oracle calls versus '(x) � '(x⇤), kr'(x)k, and
�min(r2'(x)). Observing from the curves corresponding to initial point (x2, y2), all the three
algorithms converge to the minimum when the initial point is relatively distant from the strict
saddle point. However, our PRAGDA converges much faster than IMCN and GDA. When the initial
point is relatively closer to the strict saddle Figure 4(b) depicts that the GDA algorithm can get
stuck at saddles of the hyper-objective ' where the minimum eigenvalue of the Hessian is strictly
negative. In contrast, our PRAGDA and IMCN can reach the points that admit positive Hessian
minimum eigenvalues of the hyper-objective ', whereas PRAGDA evidently converges faster than
IMCN.
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B Delegated Proofs of §2

B.1 Proofs of Basic Lemmas in §2.1

Proof of Lemma 1. Recall that

r'(x) = rxf(x, y
⇤(x))�r2

xyg(x, y
⇤(x))

�
r2

yyg(x, y
⇤(x))

��1ryf(x, y
⇤(x))

We denote H1(x) = rxf(x, y⇤(x)), H2(x) = r2
xyg(x, y

⇤(x)), H3(x) =
�
r2

yyg(x, y
⇤(x))

��1
and

H4(x) = ryf(x, y⇤(x)), then

r'(x) = H1(x)�H2(x)H3(x)H4(x)

We first consider H1(x),H2(x) and H4(x). For any x, x0 2 Rdx , we have

kH1(x)�H1(x
0)k  `(kx� x0k+ ky⇤(x)� y⇤(x0)k)  `(1 + )kx� x0k

where we use triangle inequality in the first inequality and Lemma 2 in the second inequality.
We also have

kH2(x)�H2(x
0)k  ⇢(kx� x0k+ ky⇤(x)� y⇤(x0)k)  ⇢(1 + )kx� x0k

and

kH4(x)�H4(x
0)k  `(kx� x0k+ ky⇤(x)� y⇤(x0)k)  `(1 + )kx� x0k

We next consider H3(x). For any x, x0 2 Rdx , we have

kH3(x)�H3(x
0)k =
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��1
���

 1

µ2
⇢
�
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�
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µ2
kx� x0k

We also have

kH2(x)k  ` kH3(x)k 
1

µ
and kH4(x)k M

for any x 2 Rdx . Then for any x, x0 2 Rdx we have

kr'(x)�r'(x0)k  kH1(x)�H1(x
0)k+ kH2(x)H3(x)H4(x)�H2(x

0)H3(x
0)H4(x

0)k
 `(1 + )kx� x0k+ kH2(x)H3(x)H4(x)�H2(x)H3(x)H4(x
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0)�H2(x)H3(x
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0)H4(x
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0)k
+ kH2(x)kkH4(x

0)kkH3(x)�H3(x
0)k

+ kH3(x
0)kkH4(x

0)kkH2(x)�H2(x
0)k

 `(1 + )kx� x0k+ `2
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(1 + )kx� x0k+ `⇢M
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µ
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+
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◆
kx� x0k

This completes the proof of the first part. For the second part see the detailed proof associated
with [HJML22, Lemma 2.4].
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Proof of Lemma 2. Recall that y⇤(x) = argminy2Rdy g(x, y). The optimality condition leads to

ryg(x, y
⇤(x)) = 0

for each x 2 Rdx . Taking a further derivative with respect to x on both sides and some algebra
gives

r2
yxg(x, y

⇤(x)) +r2
yyg(x, y

⇤(x))
@y⇤(x)

@x
= 0

The smoothness and strong convexity of g in y immediately indicate

@y⇤(x)

@x
= �

�
r2

yyg(x, y
⇤(x))

��1r2
yxg(x, y

⇤(x))

Thus we have
����
@y⇤(x)

@x

���� =
���
�
r2

yyg(x, y
⇤(x))

��1r2
yxg(x, y

⇤(x))
��� 

`

µ
= 

where the inequality is based on the fact that g(x, y) is `-smooth with respect to x and y and
µ-strongly convex with respect to y for any x. Therefore, we proved that y⇤(x) is -Lipschitz
continuous.

Proof of Lemma 3. Recall that

r'(x) = rxf(x, y
⇤(x))�r2

xyg(x, y
⇤(x))

�
r2

yyg(x, y
⇤(x))

��1ryf(x, y
⇤(x))

We define

r̄'(xk) = rxf(xk, yk)�r2
xyg(xk, yk)

�
r2

yyg(xk, yk)
��1ryf(xk, yk)

then we have

kr'(wk)� br'(wk)k2 = kr'(wk)� r̄'(wk) + r̄'(wk)� br'(wk)k2
 kr'(wk)� r̄'(wk)k2 + kr̄'(wk)� br'(wk)k2

 eLkyk � y⇤(wk)k2 + `
���vk �

�
r2

yyg(wk, yk)
��1ryf(wk, yk)

���
2
 �

where we use the triangle inequality in the first inequality, Lemma 1 and Assumption 1(iii) in the
second inequality and Condition 1 in the last inequality.

B.2 Full Version of Lemma 5

Here we present the detailed expression of the upper bounds in Lemma 5. We refer readers to the
cited reference for proof details.

Lemma 9. [CMZ23, §B, §C] Suppose Assumption 1(i)–(iv) hold and set � � 2, then

(i) |L⇤
�(x)� '(x)|  D0/� for any x 2 Rdx , where

D0 =

✓
M +

M`

2µ

◆
M

µ
= O(2)
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(ii) krL⇤
�(x)�r'(x)k  D1/�, where
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(iii) L⇤
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If we further suppose Assumption 1(v) holds, then
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C Delegated Proofs of §4

C.1 Proof of Proposition 4.1

Proof of Proposition 4.1. By the definition that y⇤ 2 Y ⇤(x), we know that g(x⇤, y⇤) = g⇤(x⇤).
When g(x, ·) is convex, we know that Y ⇤(x) is also a convex set for any given x. Then the problem
miny2Y ⇤(x) f(x, y) is a convex problem with respect to y, where a local minimum is also a global
minimum. This indicates that '(x⇤) = f(x⇤, y⇤). Finally, the first-order necessary optimality
condition for a local minimum of '(x) implies that @'(x⇤) = 0 (Theorem 8.4 by [Cla17]).

C.2 Proof of Proposition 4.2

Proof of Proposition 4.2. We show that Y ⇤(x) is Lipschitz, and then '(x) is also Lipschitz by
Proposition 4.6.

Under Assumption 4.1, for any y1 2 Y ⇤(x1), there exists y2 2 Y ⇤(x2) such that

↵ky1 � y2k 
��G1/L(y1;x2)� G1/L(y1;x1)

��

= L

����PY


y1 �

1

L
ryg(x2, y1)

�
� PY


y1 �

1

L
ryg(x1, y1)

�����

 kryg(x2, y1)�ryg(x1, y1)k  Lkx1 � x2k

where we use G1/L(y1;x1) = 0 [DL18] and Assumption 4.1 in the second line; the third line follows
from the definition of the generalized gradient; the fourth line uses the non-expansiveness of pro-
jection operator by Corollary 2.2.3 in [N+18]; and the last line uses the smoothness property of the
LL function.

41



Under Assumption 4.2, for any y1 2 Y ⇤(x1), there exists y2 2 Y ⇤(x2) such that

2↵ky1 � y2k  g(x2, y1)� g(x2, y2)

 g(x1, y1)� g(x1, y2) + 2Lkx1 � x2k  2Lkx1 � x2k

where the last line uses g(x1, y1)  g(x1, y2).

C.3 Proof of Proposition 4.3

Proof of Proposition 4.3. We distinguish two di↵erent cases by whether we have by[1] = 0.

When by[1] 6= 0, we consider the problem given by

min
x2R,y2Y ⇤(x)

y2[1] � 2xy[1] Y ⇤(x) = arg min
y2R2

(y[2] � by[2])2

After adding regularization, we have Y ⇤
� (x) = {by} and '�(x) = by2[1] � 2xby[1].

When by[1] = 0, we instead consider the problem given by

min
x2R,y2Y ⇤(x)

(y[1] + 1)2 � 2x(y[1] + 1) Y ⇤(x) = arg min
y2R2

(y[2] � by[2])2

And after adding regularization we have Y ⇤
� (x) = {0} and '�(x) = 1� 2x. However, for both the

two cases the original hyper-objective is the quadratic function '(x) = �x2.

C.4 Proof of Proposition 4.4

Proof of Proposition 4.4. Without loss of generality, we assume y0 = 0. Let dy = q = 2K,� = 1/
p
q

and

f(x, y) =
1

2

qX

j=K+1

y2[j] g(x, y) = �2hq
⇣ y
�

⌘

where hq(y) follows Definition 4.5. It is clear from the construction that both f(x, ·), g(x, ·) are
convex and 1-gradient Lipschitz. Moreover, both of them are zero-chains. Then the property of
zero-chain leads to

yk,[j] = 0 8k + 1  j  q 0  k  K

Therefore f(x, yk) remains zero for all 0  k  K.

However, we know that Y ⇤(x) = {�1}. Therefore

'(x) =
1

2

qX

j=K+1

�2 =
K�2

2
=

1

4

which indicates that any first-order algorithm A has a constant sub-optimality gap.
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C.5 Proof of Proposition 4.5

Proof of Proposition 4.5. Without loss of generality, we assume y0 = 0. Let dy = q = 2K and

f(x, y) =
qX

j=K+1

 (y[j]) g(x, y) = hq(y)

where hq(y) follows Definition 4.6 and  (y) the Huber function defined by

 (y) =

8
><

>:

�y � 1
2y

2 y � �
1
2y

2 �� < y < �

��y + 1
2y

2 y  ��

Since | 0(y)|  �, we know f(x, ·) is (pq�)-Lipschitz since
������

qX

j=K+1

 (y[j])�
qX

j=K+1

 (y0[j])

������


qX

j=K+1

��� (y[j])�  (y0[j])
���  �

qX

j=K+1

���y[j] � y0[j]

���  �
p
q
��y � y0

��

Let � = 1/
p
q then f(x, ·) is 1-Lipschitz. And g(x, ·) is 1-Lipschitz on B(y⇤(x)).

Note that f always returns a zero subgradient at the origin, while g is a zero-chain. We have

yk,[j] = 0 8k + 1  j  q 0  k  K

Therefore f(x, yk) remains zero for all 0  k  K.
However, we know that Y ⇤(x) = {�1/pq}. So it can be calculated that

'(x) =
qX

j=K+1

 

✓
� 1
p
q

◆
= �K

2q
= �1

4

indicating that any first-order algorithm A has a constant sub-optimality gap.

We remark that projection onto the ball centered at the origin B(0) will not produce additional
nonzero entries. Therefore, the possible projection operation in the algorithm will not distort the
zero-chain structure.

C.6 Proof of Proposition 4.6

Proof of Proposition 4.6. Note that we can replace sup and inf with max and min in Definition D.3
due to the compactness of Y ⇤(x). Below we prove each part of the proposition, item-by-item:

Proof of (i). Since Y ⇤(x1), Y ⇤(x2) are nonempty compact sets, we can pick

y1 2 arg min
y2Y ⇤(x1)

f(x1, y) y2 2 arg min
y2Y ⇤(x2)

f(x2, y)

Then the Lipschitz continuity of Y ⇤(x) implies there exist y01 2 Y ⇤(x1) and y02 2 Y ⇤(x2) such that

'(x1)� '(x2)  f(x1, y
0
1)� f(x2, y2)  Cf

�
kx1 � x2k+ ky2 � y01k

�
 (+ 1)Cfkx1 � x2k

'(x2)� '(x1)  f(x2, y
0
2)� f(x1, y1)  Cf

�
kx1 � x2k+ ky1 � y02k

�
 (+ 1)Cfkx1 � x2k

This establishes the Lipschitz continuity of '.
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Proof of (ii). It su�ces to bound the following term for any x1, x2

max

8
>>><

>>>:
max

y22Y ⇤(x2)
min

y12Y ⇤(x1)
ky1 � y2k

| {z }
(I)

, max
y12Y ⇤(x1)

min
y22Y ⇤(x2)

ky1 � y2k
| {z }

(II)

9
>>>=

>>>;
(26)

Without loss of generality, we assume Cf = 1, otherwise we can scale f(x, y) by Cf to prove the
result. We let f(x, y) = �miny12Y ⇤(x1) ky � y1k, then

(I) = '(x1)� '(x2)  C'kx1 � x2k

Next, we let f(x, y) = maxy12Y ⇤(x1) ky � y1k, then

(II)  '(x2)� '(x1)  C'kx1 � x2k

Together, recalling the definition of (I) and (II) in (26), we know that

dist(Y ⇤(x1), Y
⇤(x2))  C'kx1 � x2k 8x1, x2 2 Rd

Proposition 4.6(iii) and Proposition 4.6(iv) replace the global Lipschitz continuity with local Lips-
chitz continuity. The proofs are similar, with additional care for the local argument.

Proof of (iii). We use N�(·) to denote the open neighborhood ball with radius �. For a vector
z, we define N�(z) , {z0 : kz0 � zk < �}. For a set S, we define N�(S) , {z0 : dist(z0, S) < �}.
For a given x1 2 Rd and any y 2 Y ⇤(x1), the local Lipschitz continuity of f(·, ·) implies that there
exists �y > 0 and Ly > 0 such that f(·, ·) is Ly-Lipschitz in N�y(x1) ⇥ N�y(y). Note that the

set S , Sy

�
N�y(x1)⇥N�y(y)

 
forms an open cover of the set x1 ⇥ Y ⇤(x1). The compactness of

set Y ⇤(x1) guarantees the existence of a finite subcover
Sn

k=0

n
N�yk

(x1)⇥N�yk
(yk)

o
. Therefore,

we can conclude that there exists �1 > 0 such that f(·, ·) is L1-Lipschitz in the neighborhood
N�1(x1)⇥N�1(Y

⇤(x1)), where L1 = maxk Lyk .
Next, the local Lipschitz continuity of Y ⇤(·) implies the existence of �2 > 0 and L2 > 0 such

that Y ⇤(·) is L2-Lipschitz in N�2(x1). Take � = min{�1, �2, �1/L2}. The choice of � ensures
(x2, y2) 2 N�1(x1) ⇥N�1(Y

⇤(x1)) for any x2 2 N�(x1) and y2 2 Y ⇤(x2). For any x2 2 N�(x1), we
pick

y1 2 arg min
y2Y ⇤(x1)

f(x1, y) y2 2 arg min
y2Y ⇤(x2)

f(x2, y)

The Lipschitz continuity of f(·, ·) in N�1(x1) ⇥N�1(Y
⇤(x1)) and the Lipschitz continuity of Y ⇤(·)

in N�2(x1) implies there exist y01 2 Y ⇤(x1) and y02 2 Y ⇤(x2) such that

'(x1)� '(x2)  f(x1, y
0
1)� f(x2, y2)  L1

�
kx1 � x2k+ ky2 � y01k

�
 (L2 + 1)L1kx1 � x2k

'(x2)� '(x1)  f(x2, y
0
2)� f(x1, y1)  L1

�
kx1 � x2k+ ky1 � y02k

�
 (L2 + 1)L1kx1 � x2k

hold for any x2 2 N�(x1), implying the locally Lipschitz property of '(·).
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Proof of (iv). We again use the function f(x, y) in the proof of (ii) to bound (I) and (II) defined
in (26) Let f(x, y) = �miny12Y ⇤(x1) ky � y1k, then there exist �1 > 0 and L1 > 0 such that

(I) = '(x1)� '(x2)  L1kx1 � x2k 8kx1 � x2k  �1

Let f(x, y) = maxy12Y ⇤(x1) ky � y1k, then there exist �2 > 0 and L2 > 0 such that

(II)  '(x2)� '(x1)  L2kx1 � x2k 8kx1 � x2k  �2

Together, taking � = min{�1, �2} and L = max{L1, L2} and recalling the definition of (I) and (II)
in (26), we can show that there exists some � > 0 such that it holds

dist(Y ⇤(x1), Y
⇤(x2))  Lkx1 � x2k 8kx1 � x2k  �

which implies the local Lipschitz property of Y ⇤(·).

D Miscellaneous for BiO without LLSC

D.1 Backgrounds

Here we provide some necessary backgrounds to readers

Constrained Optimization. To tackle the possible constraint in y, we introduce the definitions
of projection and generalized gradient [N+18] as follows.

Definition D.1 (Projection). We define the projection onto a set Y by PY(·) , argminy2Y ky�·k.

Definition D.2 (Generalized Gradient). For a L-gradient Lipschitz function g(x, y) with y 2 Y,
we define the generalized gradient with respect to y by G⌘(y;x) , (y�PY(y� ⌘ryg(x, y)))/⌘ with
some 0 < ⌘  1/L.

Note that the generalized gradient reduced to ryg(x, y) when Y = Rdy .

Set-Valued Analysis. A classic notion of distance in set-valued analysis is the Hausdor↵ dis-
tance [RW09], formally defined as follows.

Definition D.3 (Hausdor↵ Distance). The Hausdor↵ distance between two sets S1, S2 is defined
as

dist (S1, S2) = max

⇢
sup
x12S1

inf
x22S2

kx1 � x2k, sup
x22S2

inf
x12S1

kx1 � x2k
�

This allows us to define the Lipschitz continuity of set-valued mappings as follows.

Definition D.4. We call a set-valued mapping S(x) : Rd1 ◆ Rd2 locally Lipschitz if for any
x 2 Rd1, there exists � > 0 and L > 0 such that for any x0 2 Rd1 satisfying kx0 � xk  �, we have
dist(S(x), S(x0))  Lkx� x0k. We call S(x) Lipschitz if we can let � !1.

Note that the above definition generalizes the Lipschitz continuity for a single-valued mapping.
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Nonsmooth Analysis. The following Clarke subdi↵erential [Cla90] generalizes both the gradi-
ents of di↵erentiable functions and the subgradients of convex functions.

Definition D.5 (Clarke Subdi↵erential). The Clarke subdi↵erential of a locally Lipschitz function
h(x) : Rd ! R at a point x 2 Rd is defined by

@h(x) , Conv
n
s 2 Rd : 9xk ! x,rh(xk)! s s.t. rh(xk) exists for all k

o

It can be proved that finding a point with a small Clarke subdi↵erential is generally in-
tractable for a nonsmooth nonconvex function [ZLJ+20]. So we need to consider the following
relaxed definition of stationarity for non-asymptotic analysis in nonsmooth nonconvex optimiza-
tion [ZLJ+20, TZS22, DDL+22, JKL+23, KS21, LZJ22, CMO23, KS24].

Definition D.6 (Approximate Goldstein Stationary Point). Given a locally Lipschitz function
h(x) : Rd ! R, we call x 2 Rd a (�, ")-Goldstein stationary point if min {ksk : s 2 @�h(x)}  ",
where @�h(x) , Conv

�
[x02B�(x)@h(x

0)
 
is the Goldstein subdi↵erential [Gol77].

D.2 Limitations of Value-Function Approach

In contrast to the hyper-objective approach adopted in this section that pursues a UL stationary
point such that kr'(x)k  ", existing non-asymptotic analysis [LYW+22, SJGL22] for BiO without
LLSC relies on following value-function reformulation for Problem (1)

min
x2Rdx ,y2Rdy

f(x, y) s.t. g(x, y)� g⇤(x)  0 (27)

These value-function approaches show convergence to the following KKT points.

Definition D.7 (KKT point). Suppose that g⇤(x) is Clarke subdi↵erentiable. We call (x, y) an
"-KKT point of Problem (27) if there exists a scalar � � 0 such that

(i) (Stationary in x) krxf(x, y) + �(rxg(x, y)� @g⇤(x))k  "

(ii) (Stationary in y) kryf(x, y) + �ryg(x, y)k  "

(iii) (Feasibility) g(x, y)� g⇤(x)  "

(iv) (Complementary Slackness) |�(g(x, y)� g⇤(x))|  "

We call (x, y) a KKT point if " = 0.

Remark D.1. In Definition D.7 we assume that g⇤(x) is Clarke di↵erentiable. It can be easily
satisfied under some mild conditions. For instance, when g(x, y) is L-gradient Lipschitz, g⇤(x)
is provably L-weakly concave, and thus Clarke di↵erentiable [RW09]. In the unconstrained case
that Y = Rdy , under LLSC or more generally under Assumption 4.1, g⇤(x) is provably di↵eren-
tiable [NSH+19] and the Clarke subdi↵erential @g⇤(x) reduces to the classical gradient rg⇤(x).

Unfortunately, classical constraint qualifications provably fail for the value-function-based re-
formulation [YZ95]. For this reason, we can easily construct a BiO instance whose KKT points do
not contain the optimal solution even under LLSC.
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Example D.1. Consider a BiO instance given by

min
x2R,y2R

� xy s.t. (x+ y � 2)2  0

where the LL function is strongly convex in y. For this example

(i) The stationary point of '(x) is exactly the global solution x⇤

(ii) However, the KKT points by Definition D.7 do not include any solution to this problem

Proof. We know that the LL constraint is y = 2�x, so the problem is equivalent to minx2R x2�2x
with the unique solution (x⇤, y⇤) = (1, 1). However, if we rewrite the problem by

min
x2R,y2R

� xy s.t. (x+ y � 2)2  0

The KKT condition is 8
>>>><

>>>>:

y � 2�(x+ y � 2) = 0
x� 2�(x+ y � 2) = 0
�(x+ y � 2)2 = 0
(x+ y � 2)2  0
� � 0

When � > 0 there is no (x, y) that satisfies the KKT condition. When � = 0, the KKT condition
is only satisfied by (x, y) = (0, 0), but it is not the solution to this problem.

One may argue that when relaxing the goal into finding an "-KKT point, Slater’s constraint
qualification can be satisfied since we allow the constraint g(x, y)�g⇤(x)  0 to be violated slightly.
However, we give a concrete example indicating that an "-KKT point may be far away from the
solution set, even when the hyper-objective '(x) is strongly convex.

Example D.2. Given 0 < "  1. Suppose '(x) is µ-strongly convex with a unique solution x⇤.

(i) Whenever a given point x satisfies kr'(x)k  ", we have kx� x⇤k  "/µ

(ii) However, there exists a BiO instance with a convex LL function such that the resulting '(x) is
strongly convex, but there is an infinite number of 2"-stationary points (x, y) by Definition D.7
such that kx� x⇤k = 1

Proof. Below we prove the two parts in order.

Proof of (i). Strong convexity ensures that µkx� x⇤k  kr'(x)k

Proof of (ii). Consider the bilevel problem given by

min
x2R,y2R

x2 � 2"xy s.t. y 2 argmin
y2R

"3y2

where the LL problem is convex in y and the global solution is x⇤ = 0. It can be verified that
(x, y) = (1, "�1) is an "-KKT point with any multiplier satisfying 0 < �  1 by

8
<

:

g(x, y)� g⇤(x) = "3y2 = "
|rxf(x, y) + � (rxg(x, y)�rg⇤(x))| = 2(x� "y) = 0
|ryf(x, y) + �ryg(x, y)| = 2

�
"x� �"3y

�
 2"

But we know that kx� x⇤k = 1.
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