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Abstract

We consider solving huge-scale instances of (convex) conic linear optimization prob-
lems, at the scale where matrix-factorization-free methods are attractive or necessary.
The restarted primal-dual hybrid gradient method (rPDHG) – with heuristic enhance-
ments and GPU implementation – has been very successful in solving huge-scale linear
programming (LP) problems; however its application to more general conic convex
optimization problems is not so well-studied. We analyze the theoretical and practical
performance of rPDHG for general (convex) conic linear optimization, and LP as a
special case thereof. We show a relationship between the geometry of the primal-dual
(sub-)level sets Wε and the convergence rate of rPDHG. Specifically, we prove a bound
on the convergence rate of rPDHG that improves when there is a primal-dual (sub-)level
set Wε for which (i) Wε is close to the optimal solution set (in Hausdorff distance), and
(ii) the ratio of the diameter to the “conic radius” of Wε is small. And in the special
case of LP problems, the performance of rPDHG is bounded only by this ratio applied
to the (sub-)level set corresponding to the best non-optimal extreme point. Depending
on the problem instance, this ratio can take on extreme values and can result in poor
performance of rPDHG both in theory and in practice. To address this issue, we show
how central-path-based linear transformations – including conic rescaling – can markedly
enhance the convergence rate of rPDHG. Furthermore, we present computational re-
sults that demonstrate how such rescalings can accelerate convergence to high-accuracy
solutions, and lead to more efficient methods for huge-scale linear optimization problems.
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1 Introduction
In this paper, we focus on the following general conic linear program (CLP):

min
x∈Rn

c⊤x s.t. Ax = b, x ∈ Kp , (P)

where Kp ⊆ Rn is a closed convex cone, A ∈ Rm×n is the constraint matrix, b ∈ Rm is
the right-hand side vector, and c ∈ Rn is the objective vector. The family of CLPs has
emerged since the 1990s as a fundamental problem class in convex optimization. CLP includes
standard linear optimization problems (LPs) as a subclass in which Kp is the nonnegative
orthant Rn

+, and the importance of LP cannot be overstated in application domains as varied
as manufacturing [8, 24], transportation [10], economics [22], computer science [11], and
medicine [59] among many others [12]. Second-order cone optimization problems (SOCPs) are
another subclass of CLP where the fundamental cone is a cross-product of second-order cones
Kd+1

soc , with significant applications in finance [30, 39], statistics [57], and others [33]. The
very broad class of semidefinite optimization problems (SDPs), where the underlying cone
is a cross-product of semidefinite cone Sd×d

+ , has also received significant attention, though
more for its overarching breadth of potential applications than for practical industrial usage
[7, 60, 1].

Algorithms for small and medium-size CLP instances have been extensively researched
both theoretically and practically. Virtually all practical LP algorithms since the late 1980s
have been based on simplex/pivoting methods and/or interior-point methods (IPMs). Pivoting
methods were extended to quadratic optimization problems, and IPMs were extended to
SOCPs, SDPs, and others. Today these classic algorithms form the foundation of virtually
all modern solvers and have had a profound impact on optimization quite broadly.

But the success of these two classic algorithms is premised on being able to repeatedly
solve linear equation systems at each iteration, whose operations grow superlinearly with
respect to the size of the data (measured with the dimensions m and/or n of the operators or
the number of nonzero entries nnz in the data A, b, c), which renders the methods impractical
when the problem size is very large-scale. Furthermore, the matrix factorizations are not well
suited to either parallel or distributed computation. In contrast, first-order methods (FOMs)
are emerging as an alternative approach for solving large-scale CLPs, since they require no or
only very few matrix factorizations. Instead, the primary computational cost of FOMs lies
in computing matrix-vector products that are needed to compute (or estimate) gradients.
As such, FOMs are inherently more suitable for exploiting data sparsity, and furthermore
are well suited for parallel and/or distributed computer architecture and modern graphics
processing units (GPUs).

One of the most successful first-order methods for LP is the restarted primal-dual hybrid
gradient method (rPDHG) [4], which directly tackles the saddlepoint formulation of LP, and
automatically detects the infeasibility [3]. An advanced implementation of rPDHG is the
solver PDLP [2], which has outperformed the commercial solver Gurobi on large-scale LP
problems [2]. Recent GPU implementations of PDLP have further enhanced its performance
to the point that its performance has surpassed classic algorithms (simplex methods and
IPMs) on a significant number of problem instances [35, 38]. And most recently, rPDHG
has been embedded in the state-of-art commercial solvers COPT 7.1 and Xpress 9.4 as a
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base algorithm for LP [19, 6] alongside simplex methods and IPMs. Indeed, many problems
that used to be considered too large-scale to be solved are now solvable via rPDHG; for
instance, a distributed version of PDLP has been used to solve practical LP instances with
nnz = 9.2 × 1010, which is a scale far beyond the capabilities of traditional methods [42].
Another example is a representative large-scale benchmark instance called zib03. This
instance solved in 16.5 hours in 2021 [28], and now solves in 15 minutes using PDLP with
GPU architecture [38].

Despite the promising performance of rPDHG on many LP instances, the method can
also perform poorly on certain instances – even very small instances. Figure 1 illustrates the
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Figure 1: The number of iterations
of rPDHG and IPM for solving LP
instances with different numbers of
nonzeros in the constraint matrix.

distribution of the number of iterations required by a stan-
dard rPDHG implementation and a standard IPM im-
plementation for a set of LP instances taken from the
MIPLIB 2017 dataset [21]. While rPDHG, as a first-order
method, enjoys a much lower per-iteration cost than the
IPM, it usually requires orders-of-magnitude more itera-
tions than an IPM, which can offset the advantages of
its per-iteration cost. Moreover, the number of iterations
required by rPDHG can vary significantly across different
instances, even for very small problems with similar size (as
measured by the number of nonzeros nnz). This begs the
question of what instance-specific conditions cause some
LP instances to be more difficult to solve? Answers to this
question lead to the study of traditional as well as novel
condition measures for LP and more generally for CLP.

There has been some recent research focused on different
condition numbers to analyze the complexity of rPDHG
on LP problems. [4] shows that the linear convergence
of rPDHG relies on the sharpness of a “normalized duality gap” for LP and characterizes
the sharpness using a global Hoffman constant of the KKT system. However, the Hoffman
constant is usually overly conservative, and is difficult to analyze, compute, or improve.
[61] connects the sharpness constant to two natural and intuitive condition measures of
LP, namely the “limiting error ratio” near the optimal solution set, and the LP sharpness
(the sharpness of the LP instance). These condition measures are more intrinsically related
to stability of LP under perturbation. Both of the above papers rely on the sharpness of
LP. For CLP instances with zero sharpness – or for LP instances with exponentially small
positive sharpness – the practical performance of rPDHG is usually better than the theory
indicates. This discrepancy suggests that other condition numbers (in addition to sharpness)
play a role in the performance of rPDHG. The identification of these condition numbers –
either theoretically, practically, or both – can result in schemes to improve these condition
numbers so that with these enhancements, rPDHG can achieve more stable and predictable
performance and thus enable solutions of ever-more-challenging CLP instances.

Based on the above discussion, this paper seeks to address the following questions. What
are the condition numbers (beyond sharpness) that impact the performance of rPDHG on
general CLP problems (in theory and in practice)? Is it possible to improve these condition
numbers by applying suitable linear transformations of the problem instance? And can the
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insights gained from answers to these questions be utilized to develop practical improvements
in rPDHG?

1.1 Outline/Overview of Results

In Section 2 we revisit conic linear optimization problems (CLP) and do some elementary
transformations to focus on the space of cone variables for both the primal and dual problems.
We revisit the saddlepoint formulation and the primal-dual hybrid gradient method (PDHG)
of [9], and we revisit fundamental convergence results of PDHG.

In Section 3 we introduce three condition numbers related to the geometry of the primal-
dual sublevel sets of (P), and we use these condition numbers to establish new computational
guarantees for rPDHG. (Here the sublevel set (or level set for short) is the set of feasible
primal-dual solution cone-variable pairs with a duality gap at most a given threshold.) These
condition numbers, which are purely geometric (and are defined using the Euclidean norm),
are the diameter Dδ of the δ-sublevel set, the conic radius rδ of the δ-sublevel set, and the
Hausdorff distance dHδ between the δ-sublevel set and the optimal solution set. Based on
these condition numbers, we derive a new convergence guarantee of rPDHG that applies to
general CLP problems and does not rely on the sharpness of the problem instance.

In Section 4 we present a new global linear convergence guarantee for rPDHG for LP
instances, whose rate bound involves the ratio Dδ/rδ (ratio of the diameter to the conic radius)
of the sublevel set corresponding to the best non-optimal extreme point (the “second-best”
solution point). The slow convergence of rPDHG on certain LP instances can be attributed
to the extreme values of this ratio.

In Section 5 we show how to improve the three condition measures Dδ, rδ, and dHδ through
a rescaling transformation of the primal-dual feasible regions. We show that such a rescaling,
if based on the Hessian of the barrier function of a point on the central path, results in a
rescaled problem with guaranteed bounds on the (newly-rescaled) condition numbers D̄δ, r̄δ,
and d̄Hδ . If such a rescaling is employed, the overall complexity of rPDHG can be significantly
improved. We also present computational experiments that confirm the role of the three
condition numbers in the overall performance – theoretically and practically – and confirm
the effectiveness of our central-path Hessian rescaling methodology.

In Section 6 we develop and test heuristics to adaptively compute a good central-path
rescaling that efficiently trades off the extra computation time to determine the rescaling with
the computational savings using rPDHG on the rescaled problem. We compare our methods
with a standard implementation of rPDHG and with a standard IPM on LP problems from
the MIPLIB 2017 dataset.

1.2 Other related work for large-scale CLP

In addition to the research papers discussed earlier, several other works have also analyzed the
performance of rPDHG and its variants for solving LP problems. [25] presents a worst-case
complexity of rPDHG on totally-unimodular LP instances, that does not rely on any condition
numbers. [36] develops a two-phase theory of the behavior of PDHG without restarts, where
the initial sublinear convergence phase is followed by a linear convergence phase that is
characterized by the Hoffman constant of a reduced system. and [34] shows that the last
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iterate of PDHG without restarts also has a linear convergence rate but it is slower than that
of rPDHG.

Several other first-order methods have been studied for LP and general CLP problems.
[32] proposes an ADMM-based interior-point method that leverages the framework of the
homogeneous self-dual interior-point method and employs ADMM to solve the inner log-
barrier problems. Further enhancements and extension to CLP problems were subsequently
developed by [13]. [49, 48] use ADMM to directly solve the homogeneous self-dual formulation
for the general CLP problem, and [37, 26] study accelerated variants of rPDHG for solving a
convex quadratic programming problem, which itself is special case of SOCP and hence also
of CLP.

1.3 Notation

Throughout this paper, we use the following notation for the most common cone examples:
Rn

+ denotes the nonnegative orthant, Sd×d
+ denotes the semidefinite cone, which is the set of

positive semidefinite symmetric matrices in Rd×d, and Kd+1
soc denotes the second-order cone

{(x, t) : x ∈ Rd, t ∈ R, ∥x∥2 ≤ t}.
For a matrix A ∈ Rm×n, Null(A) := {x ∈ Rn : Ax = 0} denotes the null space of A and

Im(A) := {Ax : x ∈ Rn} denotes the image of A. For any set X ⊂ Rn, PX : Rn → Rn denotes
the Euclidean projection onto X , namely, PX (x) := argminx̂∈X ∥x− x̂∥. If not specified via
definition, ∥ ·∥ in this paper denotes the Euclidean norm. Let B(x, r) denote the ball centered
at x with radius r. For any M ∈ Sn×n

+ , ∥ · ∥M denotes the inner product “norm” induced by
M , namely, ∥z∥M :=

√
z⊤Mz. (Here we allow M to not be strictly positive definite, in which

case ∥z∥M is a semi-norm but not necessarily a norm.) For any x ∈ Rn and set X ⊂ Rn,
the Euclidean distance between x and X is denoted by Dist(x,X ) := minx̂∈X ∥x − x̂∥ and
the M -norm distance between x and X is denoted by DistM (x,X ) := minx̂∈X ∥x− x̂∥M . For
A ∈ Rn×n we use A† to denote the Moore-Penrose inverse of A, and we use σ+

max(A) and
σ+
min(A) to denote the largest and smallest positive singular values of A, respectively. For

x ∈ Rn, we use x+ to denote the positive part of x. For any set X ⊂ Rn, intX denotes the
interior of X . For any affine subspace V , we use V⃗ to denote the associated linear subspace
corresponding to V . For any linear subspace S⃗ in Rn, we use S⃗⊥ to denote the corresponding
complementary linear subspace of S⃗. For any cone K, we use K∗ to denote the corresponding
dual cone of K. The width of a cone K̄ is defined as:

WidthK̄ := max

{
r

∥x∥

∣∣∣∣ B(x, r) ⊂ K̄

}
. (1.1)

(The width of a cone is an intrinsic property of the cone, though it depends on the choice
of norm. Under the Euclidean norm we have WidthRn

+
= 1/

√
n, WidthSd×d

+
= 1/

√
d, and

WidthKd+1
soc

= 1/
√
2, see for example [17].)
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2 Preliminaries: Conic Linear Program, and PDHG

2.1 General conic linear program

In this paper we consider the general conic linear optimization problem (P). Because we
are interested in the setting of huge-scale instances, we do not assume that A has linearly
independent rows, since (i) eliminating linear dependence can be computationally expensive
for truly huge-scale problems, and (ii) the performance of PDHG is agnostic to the presence
of linear dependence in the rows of A. We refer to (P) as the primal problem. Let y be
the multiplier on the equations Ax = b ; then (P) is equivalent to the following saddlepoint
problem of the Lagrangian L(x, y):

min
x∈Kp⊆Rn

max
y∈Rm

L(x, y) := c⊤x+ b⊤y − x⊤A⊤y . (PD)

The corresponding dual problem of (P) is the problem that switches the minimum and maxi-
mum of (PD). The dual problem is also a CLP instance, and can be equivalently written as a
problem whose cone is the dual cone of Kp, namely Kd := K∗

p :=
{
s ∈ Rn : x⊤s ≥ 0 for all x ∈ Kp

}
:

max
y∈Rm,s∈Rn

b⊤y s.t. c− A⊤y = s, s ∈ Kd . (Dy,s)

For any dual feasible solution (ȳ, ŝ) of (Dy,s), let ŷ := (AA⊤)†A(c− ŝ) and then (ŷ, ŝ) is also
dual feasible because c−A⊤ŷ = c−A⊤(AA⊤)†A(c− ŝ) = c−A⊤(AA⊤)†AA⊤ȳ = c−A⊤ȳ = ŝ.
Note that if there exists a solution x0 to the linear system Ax = b, the corresponding dual
objective function values of (ȳ, ŝ) and (ŷ, ŝ) are equal, because b⊤ȳ = x⊤

0 A
⊤ȳ = x⊤

0 (c− ŝ) =
x⊤
0 A

⊤ŷ = b⊤ŷ. It therefore follows that dual feasible solutions with the same s component
have the same objective function values. Furthermore, for any feasible solution (y, s) the
objective function value can be expressed as a linear function of s since

b⊤y = b⊤(AA⊤)†A(c− s) = q0 − b⊤(AA⊤)†As , (2.1)

where q0 = b⊤(AA⊤)†Ac. Let us define q := A⊤(AA⊤)†b, whereby (Dy,s) is equivalent to the
following (dual) problem defined only on the variable s :

max
s∈Rn

−q⊤s+ q0 s.t. s ∈ c+ Im(A⊤), s ∈ Kd . (Ds)

For any feasible ŝ of (Ds), a corresponding feasible (ŷ, ŝ) for (Dy,s) can be recovered by
assigning ŷ := (AA⊤)†A(c− ŝ).

A linear programming problem (“LP”) is an instance of (P) where Kp = Rn
+, and has

the property of strong duality, namely the optimal objective function values of the primal
problem (P) and dual problem (Dy,s) (or the equivalent (Ds)) are identical if both problems
are feasible. Strong duality is not always true for the more general CLP problem, but is
guaranteed if both the primal and dual problem have feasible solutions in the interiors of
their respective cones, which we formally state as follows:

Assumption 1. There exists a primal feasible solution in the interior of Kp and a dual
feasible solution in the interior of Kd.
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Under Assumption 1, both the primal and the dual problems attain their optima, and
there is zero duality gap, see [14]. Furthermore, the Karush-Kuhn-Tucker conditions are
both necessary and sufficient for optimality, whereby the solution (x⋆, s⋆) is optimal for (P)
and (Ds) if and only if (x⋆, s⋆) is primal-dual feasible and the duality gap is zero. Here the
primal-dual feasible set is as follows:

F := V ∩K, where V := {(x, s) ∈ R2n : Ax = b and ∃ y ∈ Rm, s.t. A⊤y+s = c}, and K := Kp×Kd ,
(2.2)

which is the intersection of the affine subspace V and the cone K, both of which are in R2n.
Notice that V is the cross-product of the affine subspaces for the primal and dual solutions:

V = Vp×Vd , where Vp := {x ∈ Rn : Ax = b}, Vd := {s ∈ Rn : ∃ y ∈ Rm, s.t. A⊤y+s = c} .

The duality gap is defined as:

Gap(x, s) := c⊤x+ q⊤s− q0 , (2.3)

which is the difference between the primal and dual objective function values. Let us introduce
w := (x, s) and let W⋆ be the set of optimal solutions w⋆ = (x⋆, s⋆), namely

W⋆ := F ∩ {w ∈ R2n : Gap(w) = 0} . (2.4)

We use Z⋆ to denote the set of optimal solutions (x⋆, y⋆), which is equivalently characterized
as the set of saddlepoints of (PD).

In light of the linear constraint Ax = b, replacing c with any vector in c+ Im(A⊤) does
not change W⋆. Therefore, in certain places in this paper we will presume that c ∈ Null(A).
This condition can be satisfied by replacing c← c− PIm(A⊤)(c), which yields c ∈ PNull(A)(c),
resulting in q0 = 0 and Gap(x, s) = c⊤x + q⊤s. Additionally, when c ∈ Null(A), for any
feasible ŝ, a corresponding dual feasible ŷ can be obtained as ŷ := −(AA⊤)†Aŝ.

2.2 PDHG for Conic LP

The primal-dual hybrid gradient method (PDHG) was introduced in [15, 52] in the context
of solving general convex-concave saddlepoint problems, of which the saddlepoint problem
(PD) is a class of instances. Algorithm 1 describes a single iteration of PDHG for (PD),
which we denote as OnePDHG(x, y), where τ and σ are the primal and dual step-sizes,
respectively. Let z := (x, y) ∈ Rm+n denote the combined primal/dual variables, and then

Algorithm 1: One iteration of PDHG on (x, y) for problem (PD)
1 Function OnePDHG(x, y)
2 x+ ← PKp

(
x− τ

(
c− A⊤y

))
;

3 y+ ← y + σ (b− A (2x+ − x)) ;
4 return (x+, y+) ;

PDHG generates iterates as follows:

zk+1 ← OnePDHG(zk) for k = 0, 1, 2, . . . .
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It should be noted that the convergence guarantees for PDHG rely on the step-sizes τ and σ
being sufficiently small. In particular, if the following condition is satisfied:

M :=

(
1
τ
In −A⊤

−A 1
σ
Im

)
∈ Sm+n

+ , (2.5)

then PDHG’s average iterates will converge to a saddlepoint of the convex-concave problem
[9]. The above requirement is equivalently written as:

τ > 0, σ > 0, and τσ ≤
(

1

σ+
max(A)

)2

. (2.6)

Furthermore, the matrix M defined in (2.5) turns out to be particularly useful in analyzing the
convergence of PDHG through its induced inner product norm defined by ∥z∥M :=

√
z⊤Mz,

which will be used extensively in the rest of this paper.
The main computational effort in executing OnePDHG is in computing the two matrix-

vector products and computing the projection onto Kp. In practice, most CLP problems
of interest are instances where Kp is a cross-product of standard cones, namely Rn

+, Kd+1
soc ,

and Sd×d
+ [45]. These cones all have well-known projection operators [50], among which

only projection onto the semidefinite cone may be computationally challenging because it
involves a full matrix eigendecomposition. Projection onto Rn

+ is given by PRn
+
(v) := v+, and

projection onto Kd+1
soc is given by:

PKd+1
soc

(v, t) :=


0 if ∥v∥ ≤ −t
(v, t) if ∥v∥ ≤ t
1+t/∥v∥

2
· (v, ∥v∥) if ∥v∥ ≥ |t|

.

Furthermore, if Kp is the cross-product of several cones, then each of these projections can
be carried out independently.

2.3 Normalized duality gap for the saddlepoint problem (PD)
To evaluate the quality of a candidate solution z = (x, y), [4] defined the “normalized duality
gap” in the context of the saddlepoint formulation of LP problems. Here we simply extend
this definition to CLP problems and we show that the normalized duality gap provides upper
bounds on the residuals of the optimality conditions of CLP.

Definition 2.1 (Normalized duality gap). For any z = (x, y) ∈ Kp × Rm and r > 0, define

B(r; z) := {ẑ := (x̂, ŷ) : x̂ ∈ Kp and ∥ẑ − z∥M ≤ r} .

The normalized duality gap of the saddlepoint problem (PD) is then defined as

ρ(r; z) :=
1

r
sup

ẑ∈B(r;z)

[
L(x, ŷ)− L(x̂, y)

]
. (2.7)
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The normalized duality gap defined in [4] is just a special case of the above definition when
Kp = Rn

+. Lemma 2.1 below shows that the normalized duality gap yields upper bounds on
the distances to the affine set V and to the cone K of the primal-dual cone variable pair
w = (x, s), and also bounds the duality gap Gap(x, s). This lemma is a generalization of
Lemma 2.2 in [61] in the context of LP instances. Before stating the lemma we need the
following definitions:

λmax := σ+
max (A) , λmin := σ+

min (A) , and κ :=
λmax

λmin

. (2.8)

Lemma 2.1. For any r > 0 and z̄ := (x̄, ȳ) such that x̄ ∈ Kp, and s̄ := c − A⊤ȳ, the
normalized duality gap ρ(r; z̄) provides the following bounds for w̄ := (x̄, s̄):

1. Distance to the affine subspace: Dist(w̄, V ) ≤ 1√
σλmin

· ρ(r; z̄),

2. Distance to the cone: Dist(w̄,K) ≤ 1√
τ
· ρ(r; z̄), and

3. Duality gap: Gap(w̄) ≤ max{r, ∥z̄∥M}ρ(r; z̄).

It follows from the definition of the optimal solution setW⋆ in (2.4) that when the normalized
duality gap is 0, then w̄ ∈ W⋆. Moreover, if max{r, ∥z̄∥M} is not too large, the magnitude of
ρ(r; z̄) also measures how close to optimality the primal-dual solution w̄ is. We will show
later that under some mild initial point conditions, the magnitude of max{r, ∥z̄∥M} in PDHG
is well-controlled by the distance to optimal solutions.

Proof of Lemma 2.1. The following proof is a variation of the proof of Lemma 2.1 in [61].
Define s̄ = c− A⊤ȳ and w̄ = (x̄, s̄). From the definition of ρ(r; ·) we have:

L(x̄, y)− L(x, ȳ) ≤ rρ(r; z̄) for any z = (x, y) ∈ B(r; z̄) . (2.9)

We first prove item (1.), which is the distance to the affine subspace V . Let u = b− Ax̄
and define y := ȳ +

√
σr · u/∥u∥. Set z := (x̄, y), whereby z ∈ B(r; z̄) and hence from (2.9)

we have
rρ(r; z̄) ≥ L(x̄, y)− L(x̄, ȳ) = (b− Ax̄)⊤(y − ȳ) =

√
σr∥u∥ ,

which means ∥u∥ = ∥Ax̄− b∥ ≤ ρ(r;z̄)√
σ

. Let x̂ ∈ argminx∈Vp ∥x− x̄∥ and hence Dist(x̄, Vp) =

∥x̂− x̄∥. Note from the standard optimality conditions that x̂− x̄ ∈ Im(A⊤). Since

∥Ax̄− b∥ = ∥Ax̄− Ax̂∥ ≥ min
v∈Im(A)

∥Av∥
∥v∥

· ∥x̄− x̂∥ = λmin∥x̄− x̂∥ ,

then it follows that Dist(x̄, Vp) = ∥x̂− x̄∥ ≤ ρ(r;z̄)√
σλmin

. This proves item (1.).
Let us now prove item (2.). It holds trivially from the supposition that x̄ ∈ Kp that

Dist(x̄, Kp) = 0, and hence we only need to prove Dist(s̄, Kd) ≤ 1√
τ
· ρ(r; z̄). Let us denote

ŝ := PKd
(s̄) and d := s̄− ŝ. Then it follows from the optimality conditions of the projection

problem ŝ = argmins∈Kd
∥s − s̄∥ that ŝ ∈ Kd, −d ∈ K∗

d = Kp, and d⊤s̄ = 0. If d = 0 then
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s̄ ∈ Kd and the bound in item (2.) holds trivially. If d ̸= 0 then define x := x̄−
√
τr · d/∥d∥

and set z := (x, ȳ), whereby z ∈ B(r; z̄) and hence from (2.9) we have

rρ(r; z̄) ≥ L(x̄, ȳ)− L(x, ȳ) = (c− A⊤ȳ)⊤(x̄− x) = s̄⊤d ·
√
τr/∥d∥ = (ŝ+ d)⊤d ·

√
τr/∥d∥

≥ d⊤d ·
√
τr/∥d∥ =

√
τr∥d∥ =

√
τr ·Dist(s̄, Kd) ,

(2.10)
where the second inequality follows since ŝ ∈ Kd and d ∈ Kp whereby ŝ⊤d ≥ 0. It therefore
follows that Dist(s̄, Kd) ≤ 1√

τ
· ρ(r; z̄), which proves item (2.).

Lastly, we examine the duality gap Gap(x̄, s̄) = c⊤x̄ − b⊤ȳ, and we consider two cases,
namely z̄ = 0 and z̄ ≠ 0. If z̄ = 0, then Gap(x̄, s̄) = c⊤x̄ − b⊤ȳ = 0, which satisfies the
duality gap bound trivially. If z̄ ̸= 0, then define z := z̄ − min{ r

∥z̄∥M
, 1}z̄, which satisfies

∥z − z̄∥M ≤ r. Substituting this value of z in (2.9) yields:

rρ(r; z̄) ≥ L(x̄, y)−L(x, ȳ) = min

{
r

∥z̄∥M
, 1

}
(c⊤x̄−b⊤ȳ) = min

{
r

∥z̄∥M
, 1

}
(c⊤x̄+q⊤s̄−q0) ,

(2.11)
which after rearranging yields

Gap(w̄) = c⊤x̄+ q⊤s̄− q0 ≤ max{r, ∥z̄∥M}ρ(r; z̄) . (2.12)

This proves the desired bound in item (3.).

For LP instances it is shown in [4] that the normalized duality gap ρ(r; z) can be easily
computed or approximated. In Appendix A we show how to compute ρ(r; z) for more general
CLP instances.

2.4 Sublinear convergence of PDHG for (PD)
Let the k-th iterate of PDHG be denoted as zk, and the average of the first k iterates be
denoted as z̄k := 1

k

∑k
i=1 z

i. The iterates generated by PDHG satisfy the following desirable
distance properties to the set of saddlepoints Z⋆, as stated in the following lemma.

Lemma 2.2. (Nonexpansive property, essentially Proposition 2 of [4]) Suppose that
σ, τ satisfy (2.6). For any saddlepoint z⋆ of (PD), and for all k ≥ 0, it holds that

∥zk+1 − z⋆∥M ≤ ∥zk − z⋆∥M . (2.13)

Therefore under the assignment z := zk or z := z̄k it holds that ∥z − z⋆∥M ≤ ∥z0 − z⋆∥M .

Lemma 2.2 is essentially a restatement of Proposition 2 in [4]. The inequality (2.13), also
known as the nonexpansive property, appears in many other operator splitting methods
[31, 56, 4]. We also will make use of the following lemma, which is a restatement from Lemma
2.7 of [61].

Lemma 2.3. (from Lemma 2.7 of [61]) Suppose za, zb, and zc satisfy the nonexpansive
properties: ∥zb− z⋆∥M ≤ ∥za− z⋆∥M and ∥zc− z⋆∥M ≤ ∥za− z⋆∥M for every z⋆ ∈ Z⋆. Then

max{∥zb − zc∥M , ∥zb∥M} ≤ 2DistM(za,Z⋆) + ∥za∥M . (2.14)
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Using Lemma 2.2, the sublinear convergence of the normalized duality gap has been
demonstrated in [4, 61], among others. Here we directly present a restatement of Corollary
2.4 of [61], which was initially developed for LP problems but in fact holds more broadly for
the more general conic optimization problem (PD).

Lemma 2.4. (Sublinear convergence of PDHG, from Corollary 2.4 of [61]) Suppose
that σ, τ satisfy (2.6). Then for any z0 := (x0, y0) with x0 ∈ Kp, it holds for all k ≥ 1 that

ρ(∥z̄k − z0∥M ; z̄k) ≤ 8DistM(z0,Z⋆)

k
. (2.15)

Combining the results of Lemma 2.1 and Lemma 2.4, we obtain the following corollary
regarding sublinear convergence of PDHG for (PD).

Corollary 2.5. Suppose that σ, τ satisfy (2.6), and PDHG is initiated with z0 = (x0, y0).
For all k ≥ 1, let s̄k := c− A⊤ȳk. Then the following hold for w̄k := (x̄k, s̄k) for all k ≥ 1:

1. Distance to the affine subspace: Dist(w̄k, V ) ≤ 8√
σλmin

· DistM (z0,Z⋆)
k

,

2. Distance to the cone: Dist(w̄k, K) ≤ 8√
τ
· DistM (z0,Z⋆)

k
, and

3. Duality gap: Gap(w̄k) ≤ (16DistM(z0,Z⋆) + 8∥z0∥M) · DistM (z0,Z⋆)
k

.

Proof. The upper bounds for the distances to the affine subspace V and the cone K follow
directly from Lemma 2.1 and Lemma 2.4. To prove item (3.), we apply Lemma 2.3 with
za := z0, zb := z̄k and zc := z0, which then satisfy the nonexpansive properties of Lemma 2.3,
whereby it holds that

max{∥z̄k − z0∥M , ∥z̄k∥M} ≤ 2DistM(z0,Z⋆) + ∥z0∥M .

Then item (3.) of the corollary follows by applying the above inequality to item (3.) of
Lemma 2.1 with r = ∥z̄k − z0∥M .

3 Complexity of restarted-PDHG for Conic LP
In addition to the convergence analysis of PDHG, [4, 61] show that fixed-period and/or
adaptive restarts lead to faster convergence of PDHG for LP problems, in both theory and
practice. Algorithm 2 describes our general restart scheme for PDHG for conic LP, which
is similar to Algorithm 2 in [61] for LP problems. We refer to this algorithm as “rPDHG”
which is short for “restarted-PDHG.”

Here zk+1 ← OnePDHG(zk) is an iteration of PDHG as described in Algorithm 1. For
each iterate zn,k = (xn,k, yn,k), we define sn,k := c − A⊤yn,k and s̄n,k := c − A⊤ȳn,k, and
s̄n,k denotes the average of dual cone variable iterate values. The double superscript on the
variables zn,k, sn,k, and s̄n,k indexes the outer iteration counter followed by the inner iteration
counter, so that zn,k is the k-th inner iteration of the n-th outer loop.

In order to implement Algorithm 2 (rPDHG) it is necessary to specify a (verifiable) restart
condition on the average iterate z̄n,k in Line 8 that is used to determine when to re-start

11



Algorithm 2: rPDHG: restarted-PDHG
1 Input: Initial iterate z0,0 := (x0,0, y0,0), n← 0, and step-size τ, σ satisfying (2.6) ;
2 repeat
3 initialize the inner loop: inner loop counter k ← 0 ;
4 repeat
5 conduct one step of PDHG: zn,k+1 ← OnePDHG(zn,k) ;
6 compute the average iterate in the inner loop. z̄n,k+1 ← 1

k+1

∑k+1
i=1 z

n,i ;
7 k ← k + 1 ;
8 until z̄n,k satisfies some (verifiable) restart condition ;
9 restart the outer loop: zn+1,0 ← z̄n,k, n← n+ 1 ;

10 until Either zn,0 is a saddlepoint or zn,0 satisfies some other convergence condition ;
11 Output: zn,0 ( = (xn,0, yn,0))

PDHG. We will primarily consider Algorithm 2 (rPDHG) using the following restart condition
in Line 8:

ρ(∥z̄n,k − zn,0∥M ; z̄n,k) ≤ β · ρ(∥zn,0 − zn−1,0∥M ; zn,0) , (3.1)

for a specific value of β ∈ (0, 1) (in fact we will use β = 1/e where e is the base of the
natural logarithm). In this way (3.1) is nearly identical to the condition used in [4]. Note
that condition (3.1) essentially states that the normalized duality gap shrinks by the factor β
between restart values z̄n,k and zn,0. (In Appendix A we show that computing the normalized
duality gap can be done efficiently. Also, in practice the restart condition (3.1) does not
need to be checked frequently, so the overall cost of evaluating the restart condition is quite
minor.)

3.1 Condition numbers of the primal-dual sublevel set

In this section we present computational guarantees for rPDHG. Our analysis involves three
condition numbers related to the primal-dual sublevel sets, and all three condition numbers
have a geometric flavor. Recall from Section 2 the definition of the primal-dual optimal
solution set W⋆ in (2.4) in the space of the cone variables w = (x, s).

Definition 3.1. (δ-sublevel set) For any δ ≥ 0, the δ-sublevel set is defined as

Wδ := F ∩ {w : Gap(w) ≤ δ} , (3.2)

which is the set of feasible primal-dual solution w := (x, s) whose duality gap Gap(w) is at
most δ.

Observe that when δ = 0, then W0 =W⋆, and for all δ ≥ 0 we have W⋆ ⊆ Wδ. We now
present the three condition numbers we will use as the basis of our computational guarantees
for rPDHG as follows.

Definition 3.2. (Diameter of Wδ) For any δ, the diameter of Wδ is:

Dδ := max
u,v∈Wδ

∥u− v∥ . (3.3)
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Definition 3.3. (Conic radius and conic center of Wδ) For any δ > 0, the conic center
wδ and the conic radius rδ of Wδ are the optimal solutions of the following problem:

(wδ, rδ) := arg max
w∈R2n,r≥0

r

s. t. w ∈ Wδ, B(w, r) ⊆ K .
(3.4)

The conic center wδ is the point in Wδ of maximum distance to the boundary of K, and rδ is
the distance from wδ to the boundary of K.

Definition 3.4. (Hausdorff distance between Wδ and W⋆) For any δ, let dHδ denote
the Hausdorff distance between Wδ and W⋆, namely

dHδ := DH(Wδ,W⋆) = max
w∈Wδ

Dist(w,W⋆) , (3.5)

where DH(·, ·) denotes the Hausdorff distance. (Note that the second equality above holds
because W⋆ ⊆ Wδ.)

While the condition number rδ is similar in concept to the measure rδ defined in [16], the
difference is that (3.4) is defined on the primal-dual suboptimal solution set Wδ and thus has
quite different properties. The diameter Dδ should not be confused with Rδ defined in [16],
as Rδ refers to the maximum norm of a solution in the primal or dual sublevel sets. From the
definition of dHδ , the smaller δ is then the smaller dHδ is. Furthermore, as δ goes to 0, since
the sublevel sets converge to the set of optimal solutions, then dHδ converges to 0. We also
have the following straightforward observation regarding Dδ, rδ and dHδ .

Lemma 3.1. Under Assumption 1 it holds for all δ > 0 that Dδ ≥ dHδ > rδ > 0 .

Proof. We have

dHδ = max
w∈Wδ

min
w′∈W⋆

∥w − w′∥ ≤ max
w∈Wδ

max
w′∈W⋆

∥w − w′∥ ≤ max
w∈Wδ

max
w′∈Wδ

∥w − w′∥ = Dδ ,

where the second inequality follows since W⋆ ⊆ Wδ. Given (x⋆, s⋆) ∈ W⋆, then since x⋆ ∈ Kp

and s⋆ ∈ Kd = K⋆
p and (x⋆)⊤s⋆ = 0, it follows that either x⋆ ∈ ∂Kp or s⋆ ∈ ∂Kd (or both),

whereby (x⋆, s⋆) ∈ ∂K. Therefore W⋆ ⊂ ∂K and we have:

dHδ = max
w∈Wδ

Dist(w,W⋆) > Dist(wδ,W⋆) ≥ Dist(wδ, ∂K) = rδ ,

where the second inequality follows from W⋆ ⊂ ∂K. In addition, the first inequality holds
strictly because wδ ∈ intK but argmaxw∈Wδ

Dist(w,W⋆) must lie in ∂K. Last of all, under
Assumption 1 and using the convexity of the sublevel sets it follows that there exists
(x, s) ∈ Wδ with (x, s) ∈ intKp × intKd, and hence (x, s) ∈ intK and rδ > 0.

We now develop and state an “error bound” type of result for Wδ involving the quotient
Dδ/rδ that will be useful in later proofs, and that perhaps might be of independent interest.
Let us use the notation F++ to denote the set of strictly feasible solutions in F , namely
F++ := V ∩ intK. Let w ∈ V \F and wint ∈ F++ be given, whereby the line segment from w
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to wint will contain a unique point that lies in ∂K, and let us denote this point by F(w;wint).
More formally we have

F(w;wint) := argmin
w̃
{∥w − w̃∥ : w̃ := λ · wint + (1− λ) · w, w̃ ∈ F} . (3.6)

The following lemma states for the sublevel set Wδ that if the ratio Dδ/rδ is small, then a
point in V ∩ {w : Gap(w) ≤ δ} that is close to K must also be close to Wδ. In this way we
see that Dδ/rδ is in fact an error bound for Wδ.

Lemma 3.2. For any δ > 0 and w ∈ V with Gap(w) ≤ δ, it holds that either Dist(w,K) = 0
and w ∈ Wδ, or

Dist(w,Wδ)

Dist(w,K)
≤ ∥w −F(w;wδ)∥

Dist(w,K)
≤ ∥wδ −F(w;wδ)∥

rδ
≤ Dδ

rδ
. (3.7)

Proof of Lemma 3.2. If Dist(w,K) = 0, then w ∈ Wδ because w ∈ V and Gap(w) ≤ δ by
the hypotheses of the lemma. If w /∈ K, then w /∈ F , and let v := F(w;wδ). Notice that
wδ ∈ Wδ, w ∈ V , and Gap(w) ≤ δ together imply that v := F(w;wδ) ∈ Wδ. Then the first
inequality in (3.7) holds because v ∈ Wδ and so Dist(w,Wδ) ≤ ∥w − v∥ = ∥w −F(w;wδ)∥.
For the third inequality of (3.7) notice that wδ ∈ Wδ and v ∈ Wδ imply that ∥wδ − v∥ =
∥wδ −F(w;wδ)∥ ≤ Diam(Wδ) = Dδ, which yields the third inequality of (3.7).

We now prove the second inequality of (3.7). From the definition in (3.6), because
wδ ∈ F++, there exists λ ∈ (0, 1) for which

v = λ · wδ + (1− λ) · w . (3.8)

Furthermore, since v ∈ ∂K, then there exists a supporting hyperplane H of K that contains
v. It then follows that there exists p ∈ R2n for which H := {ŵ ∈ R2n : p⊤ŵ = 0},
p⊤v = 0, p ∈ K∗, and p⊤w < 0 and p⊤ŵ > 0 for all ŵ ∈ intK and so in particular p⊤wδ > 0.
From (3.8) we have

λ · p⊤wδ + (1− λ) · p⊤w = p⊤v = 0 ,

which can be rearranged to yield the following equalities:

λ

1− λ
=
|p⊤w|
|p⊤wδ|

=
Dist(w,H)

Dist(wδ, H)
. (3.9)

From (3.8) the left side of (3.9) can be further expressed as

λ

1− λ
=
∥w − v∥
∥wδ − v∥

. (3.10)

Also, since K and w are on different sides of the hyperplane H, this implies that

Dist(w,H) ≤ Dist(w,K) . (3.11)

Additionally, because B(wδ, rδ) ⊆ K (from Definition 3.3), we have

Dist(wδ, H) ≥ rδ . (3.12)

Substituting (3.10), (3.11), (3.12) back into (3.9) yields

∥w − v∥
∥wδ − v∥

≤ Dist(w,K)

rδ
, (3.13)

which proves the second inequality in (3.7).
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3.2 Computational guarantees for CLP problems

In this subsection we present our computational guarantees for rPDHG, which are based on
the three geometry-based condition numbers Dδ, rδ and dHδ for sublevel sets Wδ. We consider
the following restart condition rPDHG which is the same as the adaptive restart scheme
introduced in [4] and also used in [61].

Definition 3.5 (β-restart condition). For a given β ∈ (0, 1), the iteration (n, k) satisfies the
β-restart condition if n ≥ 1 and condition (3.1) is satisfied, or n = 0 and k = 1.

We also introduce the following definition of objective function error which separately
considers primal objective error and dual objective error.

Definition 3.6 (Objective function error). Suppose that the primal and dual problems (P)
and (Ds) have the common optimal objective function value f ⋆. For the candidate pair
w := (x, s), the objective function error of w is defined as:

Eobj(w) := |c⊤x− f ⋆|+ |f ⋆ − q0 + q⊤s| . (3.14)

Note that when both x and s are feasible, then the objective error Eobj(w) is equal to
Gap(w) = c⊤x+ q⊤s− q0. However, having a small Gap(w) does not imply that Eobj(w) is
small. For this reason, Eobj(w) is a particularly appropriate measure of the optimality gap of
a proposed solution when w is not primal/dual feasible.

Depending on the specific application, the tolerance requirement of a given candidate
solution w = (x, s) in terms of infeasibility, duality gap, and objective error can be different,
which motivates the following definition of the ε-tolerance requirement.

Definition 3.7. (ε-tolerance requirement) Let w = (x, s) ∈ R2n be given. For the triplet
ε := (εcons, εgap, εobj) ∈ R3

++, the solution w satisfies the ε-tolerance requirement of (P) and
(Ds) if

1. Distances to constraints: max {Dist(w, V ), Dist(w,K)} ≤ εcons,

2. Duality gap: Gap(w) ≤ εgap, and

3. Objective functions tolerance: Eobj(w) ≤ εobj.

In Definition 3.7, ε ∈ R3
++ denotes the tolerance of three kinds of target error requirements,

namely the distance to constraints εcons, duality gap εgap, and objectives error εobj. Recalling
the definitions of λmax, λmin, and κ from (2.8), we now state our main computational guarantee
for Algorithm 2 (rPDHG).

Theorem 3.3. Under Assumption 1, suppose that c ∈ Null(A) and Algorithm 2 (rPDHG) is
run starting from z0,0 = (x0,0, y0,0) = (0, 0) using the β-restart condition with β := 1/e, and
the step-sizes are chosen as follows:

τ =
1

κ
and σ =

1

λmaxλmin

. (3.15)
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Given ε := (εcons, εgap, εobj) ∈ R3
++, let T be the total number of OnePDHG iterations that

are run in order to obtain n for which wn,0 = (xn,0, sn,0) satisfies the ε-tolerance requirement
(Definition 3.7). Then

T ≤ inf
δ>0

Tδ := 190κ · Dδ

rδ
·
[
ln
(
33κ ·Dist(0,W⋆)

)
+ ln

( 1

MErrε

) ]
+

50κ · dHδ
MErrε

, (3.16)

in which MErrε is the following (weighted) minimum of the target tolerance values ε:

MErrε := min

{
εcons,

√
2

4·Dist(0,W⋆)
· εgap, 1

14

(
sup
γ>0

rγ
γ

)
· εobj

}
. (3.17)

In the statement of Theorem 3.3 we define and use the term MErrε purely for expositional
convenience, as otherwise the bound in (3.16) would be more cumbersome to write down. We
note that the three target tolerances have different multipliers inside the minimum in MErrε,
namely 1,

√
2

4·Dist(0,W⋆)
, and 1

14

(
supγ>0

rγ
γ

)
, which affect the overall complexity in (3.16). For

example, if Dist(0,W⋆) is small, then the impact of εgap on the complexity bound is not
as pronounced as it would be if Dist(0,W⋆) is large. And while the term

(
supγ>0

rγ
γ

)
may

look rather opaque at first glance, in fact it has the property of being nearly equal to the
reciprocal of maxw∈W⋆ ∥w∥, namely:

WidthK

maxw∈W⋆ ∥w∥
≤ sup

γ>0

rγ
γ
≤ 1

maxw∈W⋆ ∥w∥
, (3.18)

where WidthK is the width of K defined in (1.1). (The proof of (3.18) is presented in
Appendix B.) Generally speaking, the overall complexity bound is monotone increasing in
the reciprocals of εcons, εgap, and εobj, and (except for the multiplier terms) the structural
effect of each target tolerance requirement is similar. Hence for the purpose of discussion we
will simply refer to them in aggregate as the triplet ε.

Let us now examine the overall dependence on MErrε in (3.16). For any δ > 0, Tδ depends
on MErr−1

ε in two places: one is inside the logarithm term and the other is in the right-most
term, which we will call the “linear term” in MErr−1

ε . When MErrε is not very small, then
the logarithm term is the dominant term, while when MErrε is very small the linear term is
the dominant term. Note in the bound that the logarithm term is multiplied by κDδ

rδ
whereas

the linear term is multiplied by κdHδ , so the notion of “very small” will depend on the relative
magnitudes of Dδ

rδ
and dHδ .

Last of all, observe in (3.16) that T is bounded above by the smallest Tδ over δ > 0. The
constant in front of the linear term in Tδ is O(κ · dHδ ), which decreases to 0 as δ goes to 0.
However, the constant in front of the logarithm term in Tδ is O(κ · Dδ

rδ
), which might go to a

constant as δ goes to 0, or might go to ∞ as δ goes to zero. If lim infδ↘0
Dδ

rδ
<∞ (which can

happen for example if the instance is a linear program and the optimal primal-dual solution
is unique), then Theorem 3.3 implies the following linear convergence complexity.

Corollary 3.4. In the setting of Theorem 3.3, the total number of iterations T is bounded
above by 190κ ·

(
lim infδ↘0

Dδ

rδ

)
·
(
ln(33κ ·Dist(0,W⋆)) + ln

(
1

MErrε

))
.
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Of course Corollary 3.4 might itself be too conservative, especially when the target tolerance
values are not very small.

To illustrate the above discussion, consider the following linear programming family of
instances parameterized by ν ≥ 0:

minx=(x1,x2,x3)∈R3
+

2+ν
10
· x1 + x2 + (1 + ν)x3 s.t. − 10x1 + x2 + x3 = 1 , (Pν)

and here let us choose ν = 10−4. Figure 2 shows the values of the ratio Dδ/rδ and the
Hausdorff distance dHδ as a function of δ for different sublevel set values. Figure 2 illustrates
that both of these measures can exhibit significant variation.

10 810 510 2101
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104
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(a) D /r

10 810 510 2101
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10 3

10 1

101

(b) dH

Figure 2: Values of Dδ/rδ and dHδ as a function of δ for the linear programming instance (Pν)
with ν = 10−4.

Let us now examine the values of the complexity bound functions Tδ applied to the linear
programming instance (Pν). For a given scalar ε̄ > 0 we can set the required tolerances
uniformly, namely ε = (εcons, εgap, εobj) := (ε̄, ε̄, ε̄), and in this way the required tolerance is
just a function of the scalar ε̄. The value of δ that yields the smallest value of Tδ can be
different depending on the value of the tolerance ε̄. This is illustrated in Figure 3. The left
figure in Figure 3 shows plots of Tδ as a function of ε̄ for δ = 10−1 and δ = 10−8. One can see
that T10−1 is a better bound than T10−8 for ε̄ > 10−5, and that T10−8 is a better bound than
T10−1 for ε̄ < 10−5. The right figure in Figure 3 shows plots of the actual iteration counts of
OnePDHG in running rPDHG on (Pν) with ν = 10−4, and also shows the lower envelope
theoretical bound (3.16), namely infδ>0 Tδ for (Pν) as a function of ε̄. Here we observe that
the theoretical bound infδ>0 Tδ is consistently off by roughly a constant factor of 104. When
the target tolerance is not extremely small, such as ε̄ > 10−5, then infδ>0 Tδ is more similar
to T10−1 than T10−8 , and the actual iteration count is also more closely matched by T10−1 . As
the target tolerance ε̄ becomes smaller, then infδ>0 Tδ is more similar to T10−8 than T10−1 ,
and points to the observation that rPDHG achieves linear convergence after a certain number
of iterations. And although it is tempting to think that the linear convergence result in
Corollary 3.4 is “better” than sublinear convergence, this example shows that this is not
necessarily the case when the target tolerance is not so small. Indeed, the more nuanced
complexity bound infδ>0 Tδ corresponds better to computational practice on this example.

We also point out that dHδ → 0 as δ → 0, and hence dHδ can be made arbitrarily small by
choosing δ sufficiently small. However, the ratio Dδ/rδ might be exceedingly large (especially
for small values of δ) and so might be infδ>0

Dδ

rδ
. Therefore, in such cases, the logarithmic

term might itself be the dominant term in the iteration bound in infδ>0 Tδ.
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Figure 3: (Left) Plots of Tδ for δ = 10−1 and δ = 10−8, as a function of the required tolerance
ε := (εcons, εgap, εobj) := (ε̄, ε̄, ε̄) for the linear programming instance (Pν) for ν = 10−4.
(Right) Plots of the actual iteration counts of OnePDHG, and the lower envelope infδ>0 Tδ.

In the case of linear programming instances, if there are multiple optimal solutions then
limδ↘0

Dδ

rδ
=∞, and Corollary 3.4 does not itself yield a linear convergence bound. (However,

linear convergence is guaranteed through previous analyses; see [4, 61].) Moreover, we will
show a different linear convergence result for linear programming instances using the geometry
of sublevel sets in Section 4.

Note that all terms of the complexity bound (3.16) are linear in κ. This suggests a
strategy where we use a preconditioner D on the linear constraints, replacing Ax = b by
DAx = Db, so that σ+

max(DA)/σ+
min(DA) becomes smaller. Except for κ, such a preconditioner

does not impact any of the quantities in the complexity bound (3.16). For example, using
D = (AA⊤)−1/2 yields κ = 1 without changing any other terms in (3.16). Furthermore,
getting the optimal diagonal preconditioner D is essentially solving a semidefinite program
[53], and a scalable approximation method is available in [18].

Finally, we remark that the step-sizes used in (3.15) are relatively easy to compute
to reasonable accuracy so long as it is inexpensive to estimate the largest and smallest
singular values of A. Furthermore, so long as the step-sizes satisfy (2.6), using step-sizes that
only approximately adhere to (3.15) only moderately changes the computational bounds in
Theorem 3.3.

The proof of Theorem 3.3 is based on demonstrating an upper bound on the number of
OnePDHG iterations needed to ensure a sufficient decrease in the normalized duality gap
(2.7). Towards the proof thereof, we first present the following more general theorem which
shows that the number of OnePDHG iterations of rPDHG can be appropriately bounded
so long as the normalized duality gap provides an upper bound on the distance to optimal
solutions.

Theorem 3.5. Under Assumption 1, suppose that Algorithm 2 (rPDHG) is run starting
from z0,0 = (x0,0, y0,0) using the β-restart condition with β := 1/e. Suppose further that there
exists L ≥ 1 and C ≥ 0 such that

DistM(zn,0,Z⋆) ≤ ρ(∥zn,0 − zn−1,0∥M ; zn,0) · L+ C (3.19)

holds for all n ≥ 1. Let T be the total number of OnePDHG iterations that are run in order
to obtain the first outer iteration N that satisfies ρ(∥zN,0 − zN−1,0∥M ; zN,0) ≤ ε. Then
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T ≤ 23L · ln
(
23DistM(z0,0,Z⋆)

ε

)
+

35C
ε

. (3.20)

Proof. We first derive an upper bound kn on the number of iterations k between two
consecutive restarts zn,0 and zn+1,0. For n = 0, it follows trivially from Definition 3.5 that
k0 := 1. For n ≥ 1 and k ≥ 1 it holds from Lemma 2.4 that

ρ(∥z̄n,k − zn,0∥M ; z̄n,k) ≤ 8DistM(zn,0,Z⋆)

k
. (3.21)

If ρ(∥zn,0 − zn−1,0∥M ; zn,0) = 0 it follows from Lemma 2.1 that zn,0 ∈ Z⋆ which then implies
that zn,k = zn,0 for all k ≥ 1, and so in particular kn = 1. If ρ(∥zn,0 − zn−1,0∥M ; zn,0) ̸= 0,
then dividing both sides of (3.21) by ρ(∥zn,0 − zn−1,0∥M ; zn,0) yields:

ρ(∥z̄n,k − zn,0∥M ; z̄n,k)

ρ(∥zn,0 − zn−1,0∥M ; zn,0)
≤ 8

k
· DistM(zn,0,Z⋆)

ρ(∥zn,0 − zn−1,0∥M ; zn,0)
. (3.22)

Furthermore, (3.19) implies:

DistM(zn,0,Z⋆)

ρ(∥zn,0 − zn−1,0∥M ; zn,0)
≤ L+

C
ρ(∥zn,0 − zn−1,0∥M ; zn,0)

. (3.23)

Let us define: k̄n := 8
β
·
(
L+ C

ρ(∥zn,0−zn−1,0∥M ;zn,0)

)
. It then follows from (3.22) and (3.23) that

the restart condition (3.1) is satisfied for all k ≥ k̄n, whereby

kn :=
8

β
·
(
L+

C
ρ(∥zn,0 − zn−1,0∥M ; zn,0)

)
+ 1 (3.24)

is an upper bound on the number of iterations between the consecutive restarts zn,0 and
zn+1,0.

Next we examine the first outer iteration N that satisfies ρ(∥zN,0 − zN−1,0∥M ; zN,0) ≤ ε.
It follows from the β-restart condition (3.1) for all n ≥ 1 that

ρ(∥zn,0 − zn−1,0∥M ; zn,0) ≤ βn−1 · ρ(∥z1,0 − z0,0∥M ; z1,0) , (3.25)

which in combination with Lemma 2.4 (and using k = 1) yields:

ρ(∥zn,0 − zn−1,0∥M ; zn,0) ≤ 8βn−1 ·DistM(z0,0,Z⋆) . (3.26)

Let us define N̄ := 1 + 1
ln(1/β)

· ln
(

8DistM (z0,0,Z⋆)
ε

)
. It follows from (3.26) that ρ(∥zn,0 −

zn−1,0∥M ; zn,0) ≤ ε for all n ≥ N̄ , from which it follows that

N ≤ 1

ln(1/β)
· ln
(
8DistM(z0,0,Z⋆)

ε

)
+ 2 . (3.27)
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The total number of OnePDHG iterations T satisfies

T ≤
N−1∑
n=0

kn = 1 +
N−1∑
n=1

(
8

β
·
(
L+

C
ρ(∥zn,0 − zn−1,0∥M ; zn,0)

)
+ 1

)

≤ N +
8L(N − 1)

β
+

8C
β
·
N−1∑
n=1

(
1

ρ(∥zn,0 − zn−1,0∥M ; zn,0)

)
.

(3.28)

We have from the definition of N that ρ(∥zN−1,0 − zN−2,0∥M ; zN−1,0) > ε. Also, the β-restart
condition (3.1) implies for all n ≤ N − 2 that:

1

ρ(∥zn,0 − zn−1,0∥M ; zn,0)
≤ β

ρ(∥zn+1,0 − zn,0∥M ; zn+1,0)
≤ · · · ≤ βN−1−n

ρ(∥zN−1,0 − zN−2,0∥M ; zN−1,0)
,

Therefore
N−1∑
n=1

(
1

ρ(∥zn,0 − zn−1,0∥M ; zn,0)

)
<

1

ε
·
(
1 + β1 + β2 + · · ·

)
=

1

ε(1− β)
. (3.29)

Substituting (3.29) into (3.28) yields

T ≤ N +
8L(N − 1)

β
+

8C
β
· 1

ε(1− β)
=

(
1 +

8L
β

)
N − 8L

β
+

8C
β(1− β)

· 1
ε
, (3.30)

and then using (3.27) we arrive at

T ≤
(
1 +

8L
β

)
· 1

ln(1/β)
· ln
(
8DistM(z0,0,Z⋆)

ε

)
+

(
2 +

16L
β

)
− 8L

β
+

8C
β(1− β)

· 1
ε
.

Noting that L ≥ 1 and β = 1/e ≈ 0.3679, the above bound can be relaxed slightly to yield

T ≤ 23L · ln
(
8DistM(z0,0,Z⋆)

ε

)
+ 24L+

35C
ε

. (3.31)

Finally, notice that the middle term above satisfies 24L ≤ 23L · ln
(
e24/23

)
and substituting

it back into (3.31) yields T ≤ 23L · ln
(

8·e24/23·DistM (z0,0,Z⋆)
ε

)
+ 35C

ε
, which then simplifies to

(3.20).

Note that if there exist L < ∞ and C = 0 for which (3.19) holds for all n ≥ 1, then
Theorem 3.5 states that the total number of OnePDHG iterations required to obtain a
normalized duality gap smaller than ε is bounded above by O(L · ln(DistM(z0,0,Z⋆)/ε)).

3.2.1 Some lemmas useful for the proof of Theorem 3.3

In this subsection we present some lemmas that we will use in the proof of Theorem 3.3 in
Section 3.2.2.

Notice that the result in Theorem 3.5 involves the normalized duality gap instead of
more standard optimization tolerance quantities such as KKT error tolerances or distances to
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feasibility sets. In order to prove Theorem 3.3 we will first need to translate between norms
and tolerance metrics. Let

c0 := max

{
1√

σλmin

,
1√
τ

}
. (3.32)

We first prove the following lemma on the relation between two different norms.

Lemma 3.6. Suppose that τ, σ satisfy (2.6). For any convex sets X and S in Rn, let
Y := {y : c − A⊤y ∈ S}. Given any point z := (x, y) ∈ Rn+m, let s := c − A⊤y and
w := (x, s). Then it holds that

DistM(z,X × Y) ≤
√
2c0 ·Dist(w,X × S) . (3.33)

Proof. Define:

∥(x, y)∥N :=

√
1

τ
∥x∥2 + 1

σ
∥y∥2 where N :=

(
1
τ
In

1
σ
Im

)
.

Then 2N −M ∈ Sm+n
+ because 1/(τσ) ≥ λ2

max due to (2.6), and therefore ∥z∥M ≤
√
2∥z∥N

for any z. This means

DistM(z,X ×Y) ≤
√
2 ·DistN(z,X ×Y) =

√
2 ·
√

1

τ
·Dist(x,X )2 + 1

σ
·Dist(y,Y)2 . (3.34)

Next we claim that
Dist(y,Y) ≤ Dist(s,S) · 1

λmin

. (3.35)

Towards establishing (3.35), first observe that:

Dist(s,S) = Dist(c−A⊤y,S) = Dist(c−A⊤y, c−A⊤(Y)) = Dist(A⊤y, A⊤(Y)) = DistAA⊤(y,Y) .

Let AA⊤ = PD2P⊤ denote the thin eigendecomposition of AA⊤, so that P⊤P = I and D is
the diagonal matrix of positive singular values of A, whereby Dii ≥ minj Djj = λmin for each
i. Now let ŷ solve the shortest distance problem from y to Y in the norm ∥ · ∥AA⊤ , hence
ŷ ∈ Y and DistAA⊤(y,Y) = ∥y− ŷ∥AA⊤ , and let us write y− ŷ = u+ v where u ∈ Im(A) and
v ∈ Null(A⊤). Then setting ỹ = ŷ + v and noting that ỹ ∈ Y , we have:

DistAA⊤(y,Y) ≤ ∥y − ỹ∥AA⊤ = ∥u∥AA⊤ . (3.36)

Next notice that since u ∈ Im(A) = Im(AA⊤), there exists π for which u = AA⊤π, and define
λ = D2P⊤π. It then follows that u = Pλ, λ = P⊤u, and ∥u∥ = ∥λ∥. We therefore have:

DistAA⊤(y,Y)2 = (u+ v)⊤AA⊤(u+ v)

= u⊤AA⊤u = λ⊤P⊤PD2P⊤Pλ = λ⊤D2λ ≥ λ2
min∥λ∥2 ,

(3.37)

and hence

Dist(s,S) = DistAA⊤(y,Y) ≥ λmin∥λ∥ = λmin∥u∥ ≥ λminDist(y,Y) ,

21



where the second inequality uses (3.36). This proves (3.35).
Finally, combining (3.34) and (3.35) we obtain

DistM(z,X × Y) ≤
√
2 ·

√
1

τ
·Dist(x,X )2 + 1

σλ2
min

·Dist(s,S)2 ≤
√
2c0 ·Dist(w,X × S) .

(3.38)

Under the property that c ∈ Null(A), we have the following property of the initial iterate
z0,0 = (x0,0, y0,0) := (0, 0).

Proposition 3.7. Suppose that c ∈ Null(A) and the initial iterate is (z0,0) = (x0,0, y0,0) :=
(0, 0), and w0,0 = (x0,0, s0,0) = (0, c− A⊤y0,0). Then

Dist(w0,0,W⋆) ≤ Dist(0,W⋆) . (3.39)

Proof. Let X ⋆ and S⋆ denote the optimal primal and dual optimal solution sets for (P) and
(Ds), respectively. Then (x0,0, y0,0) = (0, 0) implies that w0,0 = (x0,0, s0,0) = (0, c) and hence

Dist(w0,0,W⋆) =
√

Dist(x0,0,X ⋆) + Dist(s0,0,S⋆) =
√

Dist(0,X ⋆) + Dist(c,S⋆) . (3.40)

Let ŝ ∈ argmins∈S⋆ ∥s∥. Then we have

∥ŝ∥2 = ∥(ŝ− c) + c∥2 = ∥(ŝ− c)∥2 + ∥c∥2 ≥ ∥(ŝ− c)∥2 ,

where the second equality follows since ŝ − c ∈ V⃗d and c ∈ V⃗ ⊥
d . Therefore Dist(c,S⋆) ≤

∥c− ŝ∥ ≤ ∥ŝ∥ = Dist(0,S⋆). Substituting this inequality into (3.40) yields

Dist(w0,0,W⋆) ≤
√
Dist(0,X ⋆) + Dist(0,S⋆) = Dist(0,W⋆) . (3.41)

Regarding the objective function error Eobj(w), the following lemma presents a useful
upper bound. Let Fp and Fd denote the feasible regions of (P) and (Dy,s), respectively.

Lemma 3.8. For any w = (x, s) ∈ R2n, it holds that

Eobj(w) ≤ 2

(
max{0,Gap(w)}+ min

x̂∈Fp

|c⊤x− c⊤x̂|+ min
ŝ∈Fd

|q⊤s− q⊤ŝ|
)

. (3.42)

Proof. For ease of exposition, let E(w) denote the right-hand side of (3.42), and let tg, tp, and
td denote the three terms in the large parentheses in (3.42), whereby E(w) = 2(tg + tp + td).
Also, define fp := c⊤x and fd := q0 − q⊤s. Then Gap(w) = fp − fd, and observe:

fp ≤ f ⋆ ⇒ tp = f ⋆ − fp , and fd ≥ f ⋆ ⇒ td = fd − f ⋆ . (3.43)

There are six cases to consider that depend on the ordering of fp, fd, and f ⋆.

1. Suppose fd ≤ f ⋆ ≤ fp. Then Eobj(w) = |fp − f ⋆| + |f ⋆ − fd| = fp − fd = Gap(w) ≤
2Gap(w) ≤ E(w), thus showing (3.42) in this case.
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2. Suppose fp ≤ f ⋆ ≤ fd. It then follows from (3.43) that

Eobj(w) = f ⋆ − fp + fd − f ⋆ = tp + td ≤ 2(tp + td) ≤ E(w) ,

thus showing (3.42) in this case.

3. Suppose fp ≤ fd ≤ f ⋆. Then

Eobj(w) = |fp − f ⋆|+ |f ⋆ − fd| ≤ 2|fp − f ⋆| = 2tp ≤ E(w) ,

where the last equality follows from (3.43), thus showing (3.42) in this case.

4. Suppose fd ≤ fp ≤ f ⋆. Then Gap(w) = fp − fd ≥ 0 and thus tg = max{0,Gap(w)} =
Gap(w) and also tp = f ⋆ − fp (from (3.43)). Therefore

Eobj(w) = |fp−f ⋆|+|f ⋆−fd| ≤ 2|f ⋆−fd| = 2(f ⋆−fd) = 2(f ⋆−fp+fp−fd) = 2(tg+tp) ≤ E(w) ,

thus showing (3.42) in this case.

5. Suppose f ⋆ ≤ fp ≤ fd. Then

Eobj(w) = |fp − f ⋆|+ |f ⋆ − fd| ≤ 2|fd − f ⋆| = 2td ≤ E(w) ,

where the last equality follows from (3.43), thus showing (3.42) in this case.

6. Suppose f ⋆ ≤ fd ≤ fp. Then Gap(w) = fp − fd ≥ 0 and thus tg = max{0,Gap(w)} =
Gap(w) and also td = fd − f ⋆ (from (3.43)). Therefore

Eobj(w) = |fp−f ⋆|+|f ⋆−fd| ≤ 2|f ⋆−fp| = 2(fp−f ⋆) = 2(fp−fd+fd−f ⋆) = 2(tg+td) ≤ E(w) ,

thus showing (3.42) in this last and final case.

By using the above lemma, we now present an upper bound of Eobj(w) using Gap(w) and
max{Dist(w,K),Dist(w, V )}.

Lemma 3.9. Suppose that c ∈ Null(A). For any w = (x, s) ∈ R2n, it holds that

Eobj(w) ≤ 2

(
max{0,Gap(w)}+ 4

(
inf
γ>0

γ

rγ

)
·max{Dist(w,K),Dist(w, V )}

)
. (3.44)

Before proving Lemma 3.9, we state the following simple result that will be used in the proof
thereof.

Proposition 3.10. Let f : [0,∞) 7→ R and g : [0,∞) 7→ R be nonnegative convex functions
for which f(0) = g(0), and suppose that f is linear. If there exists u ≥ 0 such that g(u) ≥ f(u),
then for any v ≥ u it holds that g(v) ≥ f(v).
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Proof. Define F (·) := g(·) − f(·), and note that F : [0,∞) 7→ R is convex since f(·) is a
linear function, also F (0) = 0, and F (u) ≥ 0. From the convexity of F we have for v > u
that (u

v
) · F (v) = (u

v
) · F (v) + (v−u

v
) · F (0) ≥ F

(
(u
v
) · v + (v−u

v
) · 0

)
= F (u) ≥ 0. Hence

g(v)− f(v) ≥ 0 for v > u. And when v = u the result holds trivially.

We now prove Lemma 3.9.

Proof of Lemma 3.9. Let w = (x, s) ∈ R2n be given. In light of Lemma 3.8, it suffices to
prove for all γ > 0 that

min
x̂∈Fp

|c⊤x− c⊤x̂|+ min
ŝ∈Fd

|q⊤s− q⊤ŝ| ≤
(
4γ

rγ

)
·max{Dist(w,K),Dist(w, V )} . (3.45)

Let w̄ = (x̄, s̄) := PV (w), and it follows that x̄ := PVp(x) and s̄ := PVd
(s). Then because

c ∈ Null(A) = V⃗p and q ∈ Im(A⊤) = V⃗d, it follows that c⊤x̄ = c⊤x and q⊤s̄ = q⊤s, whereby
Gap(w̄) = Gap(w).

Let γ > 0 be given. Let us first suppose that w̄ ∈ K, whereby we have Eobj(w) =
Eobj(w̄) = Gap(w̄) ≤ 2max{0,Gap(w)}, from which (3.44) follows directly. We henceforth
assume that w̄ /∈ K.

We first consider the case where γ ≥ Gap(w̄). Let wγ and rγ be the conic center and
conic radius of Wγ (recall Definition 3.3). Then from Lemma 3.2 we have:

∥w̄ −F(w̄;wγ)∥
Dist(w̄,K)

≤ ∥wγ −F(w̄;wγ)∥
rγ

, (3.46)

and let us denote w̃ = (x̃, s̃) := F(w̄;wγ). Since (x̃, s̃) lies in the relative interior of the line
segment between w̄ = (x̄, s̄) and wγ = (xγ, sγ), then if x̄ ̸= xγ it holds that

∥w̄ − w̃∥
∥w̃ − wγ∥

=
∥x̄− x̃∥
∥x̃− xγ∥

. (3.47)

We now establish an upper bound on |c⊤x̄− c⊤x̃|. When x̄ = xγ, then x̄ = x̃ = xγ and
|c⊤x̄ − c⊤x̃| = 0. When x̄ ̸= xγ, then since x̄, x̃ and xγ are all on the same line segment it
holds that

|c⊤x̄− c⊤x̃| = |c⊤xγ − c⊤x̃| · ∥x̄− x̃∥
∥x̃− xγ∥

= |c⊤xγ − c⊤x̃| · ∥w̄ − w̃∥
∥w̃ − wγ∥

(3.48)

where the second equality uses (3.47). Note that because w̃ and wγ are both feasible and
their duality gaps are no larger than γ, then c⊤x̃ and c⊤xγ lie in the interval [f ⋆, f ⋆+γ], from
which it follows that |c⊤xγ − c⊤x̃| ≤ γ. Then (3.48) implies that |c⊤x̄ − c⊤x̃| ≤ γ · ∥w̄−w̃∥

∥w̃−wγ∥ .
And using (3.46) we obtain:

|c⊤x̄− c⊤x̃| ≤ γ · Dist(w̄,K)

rγ
. (3.49)

Using identical logic applied to the dual variable yields:

|q⊤s̃− q⊤s̄| ≤ γ · Dist(w̄,K)

rγ
. (3.50)
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Combining (3.49) and (3.50) we arrive at:

min
x̂∈Fp

|c⊤x̄− c⊤x̂|+ min
ŝ∈Fd

|q⊤s̄− q⊤ŝ| ≤ |c⊤x̄− c⊤x̃|+ |q⊤s̃− q⊤s̄| ≤ 2γ

rγ
·Dist(w̄,K) . (3.51)

Next observe that Dist(w̄,K) ≤ Dist(w,K)+∥w− w̄∥ ≤ 2max{Dist(w,K),Dist(w, V )}, and
also recall that c⊤x̄ = c⊤x and q⊤s̄ = q⊤s, which then implies with (3.51) that

min
x̂∈Fp

|c⊤x− c⊤x̂|+ min
ŝ∈Fd

|q⊤s− q⊤ŝ| ≤ 4γ

rγ
·max{Dist(w,K),Dist(w, V )} , (3.52)

thus demonstrating (3.45), and hence (3.44), in the case when γ ≥ Gap(w).
We now turn our attention to the case when γ < Gap(w), and here we will invoke

Proposition 3.10 to complete the proof. Let w⋆ = argminŵ∈W⋆ ∥ŵ − w∥ and define wt :=
w⋆ + t · (w − w⋆) for t ∈ [0,∞). Then define the following functions of t :

f(t) := Eobj(wt) , and g(t) := 2

(
max{0,Gap(wt)}+

4γ

rγ
·max{Dist(wt, K),Dist(wt, V )}

)
.

Then f(t) is a nonnegative linear function on [0,∞), and f(0) = 0, and g(t) is a nonnegative
convex function on [0,∞), and g(0) = 0. In addition, because Gap(·) is a linear function and
Gap(wt) = t ·Gap(w), then setting u := γ/Gap(w) < 1 we obtain Gap(wu) = u ·Gap(w) = γ.
We can then invoke (3.44) using wu in the place of w, which shows that g(u) ≥ f(u). Now it
follows from Proposition 3.10 with v = 1 > u that g(1) ≥ f(1) which is

Eobj(w) ≤ 2

(
max{0,Gap(w)}+ 4γ

rγ
·max{Dist(w,K),Dist(w, V )}

)
. (3.53)

This inequality proves the result in the case when γ < Gap(w), completing the overall
proof.

Lemma 3.11. Suppose the step-sizes τ, σ satisfy (2.6) and the starting point is z0,0 =
(x0,0, y0,0) := (0, 0) and so w0,0 = (x0,0, s0,0) = (0, c). Then for any outer iteration value n ≥ 1
it holds that:

max
{
Dist(wn,0, V ),Dist(wn,0, K)

}
≤ c0 · ρ(∥zn,0 − zn−1∥M , zn,0) ; (3.54)

Gap(wn,0) ≤ 2
√
2c0 ·Dist(0,W⋆) · ρ(∥zn,0 − zn−1∥M ; zn,0) , and (3.55)

Eobj(w
n,0) ≤ 14c0 ·

(
inf
γ>0

γ

rγ

)
· ρ(∥zn,0 − zn−1∥M ; zn,0) , (3.56)

where c0 is defined in (3.32).

Proof. The inequality (3.54) follows directly from items (1.) and (2.) of Lemma 2.1. Towards
the proof of (3.55), note that za := z0,0, zb := zn,0, and zc := zn−1,0 satisfy the nonexpansive
conditions of Lemma 2.3 whereby it follows from Lemma 2.3 that

max{∥zn,0 − zn−1,0∥M , ∥zn,0∥M} ≤ 2 ·DistM(z0,0,Z⋆) + ∥z0,0∥M = 2 ·DistM(z0,0,Z⋆) ,
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where the equality follows since z0,0 = 0. And applying Lemma 3.6 with X := X ⋆ and
Y := Y⋆, together with Proposition 3.7, we obtain

DistM(z0,0,Z⋆) ≤
√
2c0 ·Dist(w0,0,W⋆) ≤

√
2c0 ·Dist(0,W⋆) .

Inequality (3.55) then follows directly from the above two inequalities and (3.) of Lemma 2.1
using r := ∥zn,0 − zn−1,0∥M .

Substituting (3.54) and (3.55) into (3.44) of Lemma 3.9 yields

Eobj(w
n,0) ≤

(
4
√
2c0 ·Dist(0,W⋆) + 8c0 · inf

γ>0

γ

rγ

)
· ρ(∥zn,0 − zn−1∥M ; zn,0) .

Then applying the second inequality of (3.18), we obtain Dist(0,W⋆) ≤ maxw∈W⋆ ∥w∥ ≤ γ/rγ
for any γ > 0, from which (3.56) follows since 4

√
2 + 8 ≤ 14, which completes the proof.

The next lemma states that the distance to optimal solutions can be bounded by terms
involving the distance to constraints and the Hausdorff distance dHδ .

Lemma 3.12. Suppose that c ∈ Null(A). For any w = (x, s) ∈ R2n, and any δ > 0, it holds
that

Dist(w,W⋆) ≤ 3Dδ

rδ
·max{Dist(w, V ),Dist(w,K)}+ dHδ

δ
·max{Gap(w), δ} . (3.57)

Proof. We first consider the case where δ ≥ Gap(w). Define ŵ := PV (w), whereby ∥w− ŵ∥ =
Dist(w, V ). Then because c ∈ Null(A) = V⃗p and q ∈ Im(A⊤) = V⃗d, then Gap(w) = Gap(ŵ),
therefore Gap(ŵ) ≤ δ as well. We have:

Dist(w,W⋆) ≤ Dist(ŵ,W⋆) + ∥ŵ − w∥ = Dist(ŵ,W⋆) + Dist(w, V ) , (3.58)

and from the definition of dHδ we also have:

Dist(ŵ,W⋆) ≤ Dist(ŵ,Wδ) + dHδ . (3.59)

Since ŵ ∈ V and Gap(ŵ) ≤ δ, from Lemma 3.2 it follows that Dist(ŵ,Wδ) in (3.59) can be
bounded as follows:

Dist(ŵ,Wδ) ≤
Dδ

rδ
·Dist(ŵ,K) ≤ Dδ

rδ
· (∥w − ŵ∥+Dist(w,K))

≤ 2Dδ

rδ
·max{Dist(w, V ),Dist(w,K)} .

(3.60)

Then combining (3.60), (3.59), and (3.58) yields

Dist(w,W⋆) ≤ 2Dδ

rδ
·max{Dist(w, V ),Dist(w,K)}+Dist(w, V ) + dHδ .

Last of all note that Dδ ≥ rδ from Lemma 3.1, from which the above inequality then implies
(3.57).
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Let us now consider the case where δ ≤ Gap(w). Here we will make use of Proposition
3.10 to complete the proof. Let w⋆ = PW⋆(w) = argminw̄∈W⋆ ∥w̄ − w∥ and define wt :=
w⋆ + t · (w − w⋆) for t ∈ [0,∞). Then define the following functions of t :

f(t) := Dist(wt,W⋆) , and g(t) :=
3Dδ

rδ
·max{Dist(wt, V ),Dist(wt, K)}+dHδ

δ
·max{Gap(wt), δ} .

Then f(t) is a nonnegative linear function on [0,∞), and f(0) = 0. And g(t) is convex and
nonnegative on [0,∞), and g(0) = 0. In addition, because Gap(·) is a linear function and
Gap(wt) = t · Gap(w), then setting u := δ/Gap(w) we obtain Gap(wu) = u · Gap(w) = δ.
We can then invoke (3.57) using wu in the place of w, which yields g(u) ≥ f(u). Now it
follows from Proposition 3.10 with v := 1 ≥ u that g(1) ≥ f(1), which is precisely (3.57) in
the case δ ≤ Gap(w), and completes the proof.

Lemma 3.13. Suppose that c ∈ Null(A). Under Assumption 1, suppose that Algorithm 2
(rPDHG) is run starting from z0,0 = (x0,0, y0,0) = (0, 0), and the step-sizes σ and τ satisfy
the step-size inequality (2.6). Then for all n ≥ 1 and any δ > 0, it holds that

DistM(zn,0,Z⋆) ≤ 8.25 · c20 ·
Dδ

rδ
· ρ(∥zn,0 − zn−1,0∥M ; zn,0) +

√
2c0d

H
δ . (3.61)

Proof. Applying Lemmas 3.6 and 3.12 directly yields:

DistM(zn,0,Z⋆) ≤
√
2c0 ·Dist(wn,0,W⋆)

≤ 3
√
2c0Dδ

rδ
·max{Dist(wn,0, V ),Dist(wn,0, K)}+

√
2c0d

H
δ

δ
·max{Gap(wn,0), δ} .

(3.62)
We consider two cases, depending on whether δ ≥ Gap(wn,0) or δ < Gap(wn,0). We first
consider the case where Gap(wn,0) ≥ δ. From Lemma 3.11 and (3.62) it follows that

DistM(zn,0,Z⋆) ≤

(
3
√
2c20Dδ

rδ
+

4c20d
H
δ

δ
·Dist(0,W⋆)

)
· ρ(∥zn,0 − zn−1∥M ; zn,0) . (3.63)

Furthermore, applying the second inequality of (3.18) yields Dist(0,W⋆) ≤ maxw∈W⋆ ∥w∥ ≤
δ/rδ for any δ > 0, and substituting this into (3.63) yields

DistM(zn,0,Z⋆) ≤

(
3
√
2c20Dδ

rδ
+

4c20d
H
δ

rδ

)
· ρ(∥zn,0 − zn−1∥M ; zn,0) . (3.64)

We can also have dHδ ≤ Dδ and 3
√
2+ 4 ≤ 8.25, which when combined with (3.64) shows that

DistM(zn,0,Z⋆) ≤ 8.25 · c20 ·
Dδ

rδ
· ρ(∥zn,0 − zn−1,0∥M ; zn,0) , (3.65)

which proves the result in this case.
Let us now consider the case where Gap(wn,0) < δ. From Lemma 3.11 and (3.62) it

follows that

DistM(zn,0,Z⋆) ≤ 3
√
2c20 ·

Dδ

rδ
· ρ(∥zn,0 − zn−1,0∥M ; zn,0) +

√
2c0d

H
δ , (3.66)

which proves the result in this case. Depending on the case, we obtain either (3.65) or (3.66),
either of which implies (3.61).
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3.2.2 Proof of Theorem 3.3

At last we prove Theorem 3.3.

Proof of Theorem 3.3. From Lemma 3.11 it follows that wn,0 satisfies the ε-tolerance require-
ment (Definition 3.7) if

ρ(∥zn,0 − zn−1∥M ; zn,0) ≤ min

εcons
c0

,
εgap

2
√
2c0 ·Dist(0,W⋆)

,
εobj

14c0 · infγ>0

(
γ
rγ

)
 . (3.67)

Now notice that the right-hand-side term is equal to MErrε
c0

where MErrε is defined in (3.17).
Also, it follows from the choice of step-sizes in the theorem and the definition of c0 in (3.32)
that c0 =

√
κ.

In the proof of Lemma 3.13 we see that (3.61) holds for any δ > 0, so Theorem 3.5 can be
applied since the condition (3.19) is satisfied using (3.61) with L =

8.25c20Dδ

rδ
and C =

√
2c0d

H
δ .

Therefore it follows from Theorem 3.5 that T satisfies

T ≤ 23

(
8.25 · c20 ·

Dδ

rδ

)
· ln
(
23c0 ·DistM(z0,0,Z⋆)

MErrε

)
+

35
√
2c20d

H
δ

MErrε

= 23

(
8.25 · κ · Dδ

rδ

)
· ln
(
23
√
κ ·DistM(z0,0,Z⋆)

MErrε

)
+

35
√
2 · κ · dHδ
MErrε

≤ 23

(
8.25κ · Dδ

rδ

)
· ln

(
23
√
2κ ·Dist(0,W⋆)

MErrε

)
+

35
√
2κ · dHδ

MErrε
,

(3.68)

where the equality substitutes in the values of c0, and the second inequality uses DistM (z0,0,Z⋆) ≤√
2c0 ·Dist(w0,0,W⋆) ≤

√
2c0 ·Dist(0,W⋆) =

√
2κ ·Dist(0,W⋆) from Lemma 3.6 and Proposi-

tion 3.7. Last of all, notice that 23×8.25 ≤ 190, 23
√
2 ≤ 33 and 35

√
2 ≤ 50, and substituting

this back into (3.68) yield (3.16) and completes the proof.

4 Linear Convergence of rPDHG for Linear Programming
In the case of linear programming problems (namely instances of (P) wherein Kp = Rn

+) we
now show a global linear convergence bound that structurally improves on the bound in [61].
Our analysis uses the “best suboptimal extreme point gap” δ̄ whose formal definition we now
state.

Definition 4.1 (Best suboptimal extreme point gap). Let EF denote the set of extreme points
of F . The best suboptimal extreme point gap δ̄ is defined as follows:

δ̄ :=

{
min{Gap(w) : w ∈ EF \W⋆} if EF \W⋆ ̸= ∅
+∞ if EF \W⋆ = ∅ . (4.1)
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We now present our global linear convergence result for rPDHG for linear programming
problem instances.

Theorem 4.1. Suppose that (P) is a linear programming instance (Kp = Rn
+) and c ∈ Null(A),

and let δ̄ be as defined in (4.1). Under Assumption 1, suppose that Algorithm 2 (rPDHG) is
run starting from z0,0 = (x0,0, y0,0) = (0, 0) using the β-restart condition with β := 1/e, and
the step-sizes are chosen as follows:

τ =
1

κ
and σ =

1

λmaxλmin

. (4.2)

Given ε := (εcons, εgap, εobj) ∈ R3
++, let T be the total number of OnePDHG iterations that

are run in order to obtain n for which wn,0 = (xn,0, sn,0) satisfies the ε-tolerance requirement
(Definition 3.7). Then

T ≤ 255κ ·
(
min
0<δ≤δ̄

Dδ

rδ

)
·
[
ln
(
33κ ·Dist(0,W⋆)

)
+ ln

(
1

MErrε

)]
, (4.3)

in which MErrε is the weighted minimum of the target tolerance values ε:

MErrε := min

{
εcons,

√
2

4·Dist(0,W⋆)
· εgap, 1

14

(
sup
γ>0

rγ
γ

)
· εobj

}
. (4.4)

Similar to Theorem 3.3, in Theorem 4.1 we still use MErrε for expositional convenience,
and MErrε defined in (4.4) is identical to that defined in (3.17). But unlike the bound in
Theorem 3.3, the computational bound (4.3) in Theorem 3.3 depends on MErr−1

ε only in the
logarithm term. This means that if there exists a δ-sublevel set for some δ ∈ (0, δ̄] such that
the corresponding ratio Dδ

rδ
is not too large, then rPDHG will have fast linear convergence for

that LP instance. Appendix C contains the proof of Theorem 4.1.
Theorem 4.1 provides a stronger linear convergence guarantee than Corollary 3.4 because(

min0<δ≤δ̄
Dδ

rδ

)
<∞ (which follows from Assumption 1) even if there exist multiple optimal

solutions. Consider as an example the LP problem (Pν) with ν = 0. This instance has
multiple primal optimal solutions, namely x⋆ = (0, α, 1−α) is primal optimal for all α ∈ [0, 1].
The left plot in Figure 4 shows the iteration upper bounds from Theorems 3.3 and 4.1, and
the actual number of iterations of rPDHG that were needed to satisfy the (ε̄, ε̄, ε̄)-tolerance
requirement, for the LP problem (Pν) with ν = 0. The right plot of Figure 4 shows the
same results for the LP problem (Pν) with ν = 10−4. Examining the LP problem (Pν) with
ν = 0 and the left plot in the figure, we observe that the bound in Theorem 3.3 itself is
not revealing linear convergence, as a consequence of the fact that (Pν) has multiple primal
optimal solutions for ν = 0. Examining the LP problem (Pν) with ν = 10−4 and the right plot
in the figure, we observe the linear convergence rate in Theorem 4.1. But also observe that
the linear convergence rate does not correspond to the early-stage performance of rPDHG
in practice, and for the early stage in fact the bound in Theorem 3.3 much more closely
corresponds to the actual performance of rPDHG for this instance.

It follows from (3.18) that rδ ≤ δ
maxw∈W⋆ ∥w∥ for any δ > 0, so the term min0<δ≤δ̄

Dδ

rδ
in

(4.3) has the following lower bound:

min
0<δ≤δ̄

Dδ

rδ
≥ min

0<δ≤δ̄

Dδ ·maxw∈W⋆ ∥w∥
δ

. (4.5)
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Figure 4: Plots of the guaranteed bounds on the number of iterations of rPDHG and the
actual number of iterations of rPDHG for LP problem (Pν) with ν = 0 (left) and ν = 10−4

(right).

Now notice that both sides of the above inequality are decreasing in the value of δ̄. Therefore
the iteration bound in Theorem 4.1 is smaller when the value of the best suboptimal extreme
point gap δ̄ is larger. This is consistent with what we observe in computational practice for
the LP instances (Pν) with ν = 0 and ν = 10−4. Table 1 shows the values of δ̄ as well as
several other quantities of interest for these two LP instances. Notice that δ̄ is much larger in
(Pν) with ν = 0 compared to its value in (Pν) with ν = 10−4. Furthermore, the two problems
have fairly similar values of Dδ̄ and maxw∈W⋆ ∥w∥ both of which contribute to the bound Dδ̄

rδ̄

being much larger for (Pν) with ν = 10−4. This is also reflected in the bounds and the actual
iteration counts in Figure 4.

κ δ̄ Dδ̄ rδ̄
Dδ̄

rδ̄
maxw∈W⋆ ∥w∥

ν = 0 1.0e0 1.0e0 1.1e1 9.1e-2 1.2e2 1.0e1
ν = 10−4 1.0e0 1.0e-4 1.4e0 8.9e-6 1.6e5 1.0e1

Table 1: Values of some quantities of interest for LP instances (Pν) with ν = 0 and ν = 10−4.

Moreover, a small value of δ̄ implies that the best suboptimal extreme point is nearly
optimal and so the problem is “close to” having more optimal solutions (say, under small
data perturbation). In this sense, Theorem 4.1 can be interpreted as indicating that the
performance of rPDHG is hurt when the problem is close to having more optimal solutions.
However, unlike Theorem 3.3, having multiple optimal solutions does not necessarily hurt
the linear convergence rate of rPDHG. This is similar to the observation of [36] on the
performance of PDHG without restarts, where they show that degeneracy in LP instances
does not hurt the convergence rate, but being close to degeneracy does hurt the convergence
rate. One difference between the computational guarantees in Theorem 4.1 and in [36] is
that the bound in [36] depends on quantities involving the limiting points of the iterates of
PDHG, which is not necessarily an inherent property of the problem instance as it might
depend on the initial point.

We note that Theorem 4.1 is not the first result of the linear convergence of PDHG on
LP problems. [4] uses the Hoffman constant of the KKT system to characterize the linear
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convergence, but the global Hoffman constant is often overly conservative and hard to analyze
[36, 61]. [36] studies PDHG without restarts applied to LP problems and uncovers a very
nice “two-phase” behavior. Although the second phase yields linear convergence based on
the Hoffman constant of a reduced system, the duration of the first phase is still not well
understood. [61, 62] provide computational guarantees with linear convergence based on
two condition measures of LP problems, “limiting error ratios” and LP sharpness. These
condition measures are closely related to the inherent natural properties of the LP instances,
but they can still take extreme values and lead to poor performance of PDHG in theory
and in practice. In contrast, in addition to the simplicity of the linear convergence rate
in Theorem 4.1, the bound in Theorem 4.1 is based on the condition numbers related to
sublevel-set geometry – diameter, conic radius, and Hausdorff distance. As we will show in
Section 5, the sublevel-set geometry can be improved by rescaling transformations, and in
this way the theory in Theorem 4.1 can lead to practical algorithm enhancements that can
significantly improve the overall performance of rPDHG.

5 How to Bound the Sublevel-Set Geometry using Central-
Path Hessian-based Rescaling

In this section we show how to bound (and generally improve) the primal-dual sublevel-set
geometry condition numbers – Dδ, rδ and dHδ – by doing a “rescaling” linear transformation
of the variables based on Hessian information from a point on the central path of a self-
concordant barrier. (Here the word “rescaling” is borrowed from the lexicon of interior-point
literature for LP where nonnegative individual variables are rescaled.) A brief overview is
as follows. From the theory of interior-point methods [44, 54], it is known that the Hessian
matrix of a point on the central path yields an ellipsoid that contains a given primal-dual
sublevel set, and whose center is suitably interior to the feasible region. Using a linear
transformation based on the Hessian, one then can transform the primal-dual sublevel sets to
easily bound the resulting sublevel-set geometry condition numbers in the transformed space,
in such a way that sublevel-set geometry condition numbers in the transformed space only
depend on the complexity value ϑ of the barrier and the duality gap of the central path point.
After rescaling, one can then apply rPDHG to the transformed problem, whose sublevel set
condition numbers are more bounded/improved, yielding an improved iteration bound on
rPDHG via Theorems 3.3 and 4.1.

We begin by recalling some essential properties of self-concordant barrier functions and
central-path solutions.

5.1 Self-concordant barriers and central-path solutions

A self-concordant barrier function for a cone Kp is a special class of barrier functions defined on
intKp. This class of barrier functions plays a crucial role in Newton’s method and in interior-
point methods for convex optimization, see [54]. Examples of (logarithmically homogeneous)
self-concordant barrier functions include: f(x) := −

∑n
i=1 log(xi) (whose complexity value is

ϑf = n) for Kp = Rn
+, f(x) := − ln(x2

d+1 − ∥x1:d∥2) (whose complexity value is ϑf = 2) for
Kp = Kd+1

soc , and f(X) := − ln(det(X)) (whose complexity value is ϑf = d) for Kp = Sd×d
+ . A
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review of the definitions of (logarithmically homogeneous) self-concordant barrier functions is
provided in Appendix D.

Let f be a self-concordant barrier function for Kp, and let Hf (x) denote its Hessian at x.
The local norm of f at x is defined as ∥u∥x := ∥u∥Hf (x) =

√
⟨u,Hf (x)u⟩ and the local-norm

ball of radius r centered at x is Bx(x, r) := {x̂ : ∥x̂− x∥x ≤ r}. Let f ∗ denote the following
conjugate function of f defined by f ∗(s) := − infx∈Kp{s⊤x+f(x)} (which is a slight variation
of the standard definition of the conjugate function). Then f ∗ is a self-concordant barrier
function for the dual cone Kd, and F (w) := f(x) + f ∗(s) for w = (x, s) is a self-concordant
barrier function on the product cone K. We define the primal-dual central path on K as
follows.

Definition 5.1 (Primal-Dual Central path). For η > 0 define w(η) as follows:

w(η) := arg min
w∈R2n

η ·Gap(w) + F (w) s. t. w ∈ Vp × Vd, w ∈ intKd × intKp , (PDη)

and the primal-dual central path is defined to be the set of parameterized solutions {w(η) :
η > 0}.

Because F (w) = f(x) + f ∗(s), (PDη) can be separated into primal and dual barrier problems,
whose solutions x(η) and s(η) form the primal central path and dual central path, respectively,
and w(η) = (x(η), s(η)). The following are useful properties of f , f ∗, and F (see [54] for
proofs):

Fact 5.1. The following properties hold for f , f ∗ and F :

1. For any x ∈ intKp it holds that Bx(x, 1) ⊂ Kp.

2. f ∗ is a self-concordant barrier function for the dual cone Kd. Furthermore, if f is
logarithmically homogeneous, then f ∗ is logarithmically homogeneous, and ϑf∗ = ϑf .

3. F (w) is a self-concordant barrier function for K := Kp ×Kd, and ϑF = ϑf + ϑf∗ .

Additionally, central-path solutions have the following useful properties.

Fact 5.2. The following properties hold for central-path solutions w(η) = (x(η), s(η)) defined
in (PDη):

1. For every w ∈ F satisfying Gap(w) ≤ Gap(w(η)) it holds that w ∈ Bw(η)(w(η), ϑF +
2
√
ϑF ) [44, Theorem 5.3.8].

2. If f is logarithmically homogeneous, then Gap(w(η)) = ϑf/η [54, Section 3.4 and
Equation (2.9)].

It follows from Fact 5.1 that Bw(η)(w(η), 1) is an inscribed ellipsoid of K centered at w(η), and
from Fact 5.2 that Bw(η)(w(η), ϑF+2

√
ϑF ) circumscribes the sublevel setWGap(η). Importantly,

these two ellipsoids have the same center w(η) and shape matrix Hf (w(η)), and only differ in
their scaling. To somewhat ease the notational burden, we use Hw(η) := HF (w(η)) to denote
the Hessian of F at w(η). We have the following bounds on the condition numbers of the
primal-dual sublevel set Wα.
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Remark 5.1. For α = Gap(w(η)), the diameter Dα and the Hausdorff distance dHα are at
most as large as the diameter of Bw(η)(w(η), ϑF + 2

√
ϑF ), and the conic radius rα is at least

as large as the radius of Bw(η)(w(η), 1). Therefore

dHα ≤ Dα ≤
2ϑF + 4

√
ϑF√

σ+
min(Hw(η))

, and rα ≥
1√

σ+
max(Hw(η))

. (5.1)

(The first inequality in (5.1) follows from Lemma 3.1, and the second and third inequalities
are derived from the fact that the diameter and radius of the ellipsoid Bw(η)(w(η), r) are

2r√
σ+
min(Hw(η))

and r√
σ+
max(Hw(η))

, respectively.)

Remark 5.1 indicates that large values of σ+
max(Hw(η)) and small values of σ+

min(Hw(η))
might lead to a large ratio Dα/rα and a large Hausdorff distance dHα , and thus to worse
iteration bounds in Theorems 3.3 and 4.1. Contrapositively, suppose that we have (or can
easily construct) a linear transformation ϕ : R2n 7→ R2n mapping primal-dual sublevel set
Wα to W̃α = ϕ(Wα) so that after transformation to the new variables w̃ = ϕ(w) we have
σ+
max(Hw̃(η)) = σ+

min(Hw̃(η)) = α. Then from Remark 5.1 the bounds on the condition numbers
of the transformed primal-dual sublevel sets will only involve ϑF and α and hence the iteration
bounds in Theorems 3.3 and 4.1 will be similarly controlled. Such a linear transformation
ϕ is of course easily constructed from Hw(η) itself, which we present in detail in the next
subsection.

5.2 “Rescaling” linear transformation to improve the geometry of
primal-dual sublevel sets

Let f be a logarithmically homogeneous self-concordant barrier function for Kp. Given
a point w(η) on the central path, we define the linear transformation (“rescaling”) ϕ of
w = (x, s) ∈ R2n as follows:

w̃ = (x̃, s̃) := ϕη(w) :=
(

1
η
·Hw(η)

)1/2
w =

(
1√
η
·H1/2

x(η)

1√
η
·H1/2

s(η)

)(
x
s

)
=

(
1√
η
·H1/2

x(η)x
1√
η
·H1/2

s(η)s

)
,

(5.2)
where we use M1/2 to denote the symmetric square root of a symmetric positive semi-definite
matrix M . Let α denote the duality gap of w(η), whereby α := Gap(w(η)) = ϑf/η from item
(2.) of Fact 5.2. Under the linear transformation ϕη in (5.2), we study the geometry of the
rescaled sublevel sets and related objects:

W̃α := ϕη (Wα) , W̃⋆ := ϕη (W⋆) , and K̃ := ϕη(K) . (5.3)

Theorem 5.2. Let f be a logarithmically homogeneous self-concordant barrier function for
Kp, and let α := Gap(w(η)) = ϑf/η. Under the linear transformation (5.2) and following
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the notation (5.3), the following bounds hold:

D̃α := max
u,v∈W̃α

∥u− v∥ ≤
4ϑf + 4

√
2ϑf√

η
(5.4)

r̃α :=

(
maxw∈R2n, r≥0 r

s. t. w ∈ W̃α, B(w, r) ⊆ K̃

)
≥ 1
√
η

(5.5)

d̃Hα := DH(W̃α, W̃⋆) := max
w∈W̃α

Dist(w, W̃⋆) ≤
4ϑf + 4

√
2ϑf√

η
(5.6)

Dist(0, W̃⋆) ≤
2ϑf + 3

√
2ϑf√

η
, and (5.7)

D̃α

r̃α
≤ 4ϑf + 4

√
2ϑf . (5.8)

Theorem 5.2 states that the condition numbers of the rescaled sublevel set W̃α have upper
or lower bounds that only involve ϑf and η. Note that all these condition number bounds
are decreasing in η. Moreover, the ratio D̃α

r̃α
remains bounded above by 4ϑf + 4

√
2ϑf , which

is likely to be significantly smaller than the original ratio Dα

rα
(which could be arbitrarily

large). So long as η is not itself too small, the rescaled sublevel set W̃α may have better
geometry than the original sublevel set Wα. (Of course, if the original ratio Dα/rα is already
sufficiently small, then the rescaling transformation may not be beneficial.) The proof of
Theorem 5.2 is presented in Appendix D.

Furthermore, it follows from the barrier calculus of self-concordant functions that the
linear map ϕη can be expressed quite simply using just the Hessian of f as is shown in the
following proposition, whose proof is presented in Appendix D.

Proposition 5.3. Let f be a logarithmically homogeneous self-concordant barrier function
for Kp, and define D1 :=

√
η ·H−1/2

x(η) . For w = (x, s), ϕη(w) can be expressed as

ϕη(w) =
(
D−1

1 x,D1s
)
. (5.9)

Using Proposition 5.3 we define K̃ = ϕη(K) = K̃p × K̃d := D−1
1 ·Kp ×D1 ·Kd, and notice as

well that K̃p and K̃d are indeed dual cones. Note also that W̃α = ϕη(Wα), so we can write
W̃α =
(
D−1

1 x,D1s
)
:

Ax = b,
∃ y ∈ Rm s.t. A⊤y + s = c,
x ∈ Kp, s ∈ Kd

c⊤x− b⊤y ≤ α

 =

(x̃, s̃) :

AD1x̃ = b,
∃ y ∈ Rm s.t. D⊤

1 A
⊤y + s̃ = D⊤

1 c,

D1x̃ ∈ Kp, D−1
1 s̃ ∈ Kd

(D⊤
1 c)

⊤x− b⊤y ≤ α


where the equality substitutes

(
D−1

1 x,D1s
)

with (x̃, s̃). Note that here D−1
1 ·Kp = K̃p and

D1 ·Kd = K̃d.
Additionally, let D2 ∈ Rm×m be a given full-rank matrix. Since any full-rank row

transformation of the linear constraints does not change the feasible sets of x and s, it follows
that W̃α is the α-sublevel set of the following primal and dual paired problems:

(Primal) min
x∈Rn

(D⊤
1 c)

⊤x s. t. D2AD1x = D2b, x ∈ K̃p (P̃)
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(Dual) max
y∈Rm,s∈Rn

(D2b)
⊤y s. t. (D2AD1)

⊤y + s = D⊤
1 c, s ∈ K̃d . (D̃y,s)

Therefore the favorable geometry described in Theorem 5.2 can be equivalently achieved by
the appropriate rescaling of the problem data, which we state formally as follows.

Fact 5.3. Let D2 ∈ Rm×m be a given full-rank matrix, and define:

D1 :=
√
η ·H−1/2

x(η) . (5.10)

Then the α-sublevel sets, the optimal solution sets, and the underlying primal-dual cone of
(P̃) and (D̃y,s) are W̃α, W̃⋆ and K̃, and satisfy the bounds in Theorem 5.2.

Despite the potential improvement in condition numbers as shown in Theorem 5.2, it might
be the case that Algorithm 2 (rPDHG) cannot be easily applied to (P̃) because projections
onto the rescaled cone K̃p might be more expensive as compared to projections onto the
original cone Kp. However, the following classic result (from Section 3.5 of [54], based on
[46]) states that if Kp is a self-scaled cone, the rescaled cone K̃p coincides with Kp and so
projections to K̃p are no more cumbersome than projections onto Kp.

Lemma 5.4. If Kp is a self-scaled cone, then Kp = K̃p = Kd = K̃d.

Hence, if Kp is self-scaled, the rescaled cone K̃p is identical to the original cone Kp, and
projections onto K̃p are the same as projections onto Kp. Although the family of self-scaled
cones is in some sense limited [23], it includes the three most important cones in practice,
namely Rn

+, Kd+1
soc , and Sd×d

+ and their Cartesian products [23, 54].
We denote the affine subspaces of the rescaled primal/dual problem by Ṽp and Ṽd,

respectively. Similarly, let Ṽ := Ṽp × Ṽd and F̃ := Ṽ ∩ K̃.
In summary up to this point, we have shown after the rescaling the sublevel-set condition

numbers can be nicely bounded, and the complexity of doing projections onto the rescaled cone
K̃p remains unchanged if Kp is self-scaled. In the next subsection we present a computational
guarantee for obtaining a solution of the original problem (P) by first solving the rescaled
problem (P̃) using rPDHG and then transforming back to (P).

5.3 Complexity of rPDHG via solving the rescaled problem

Algorithm 3 describes our overall scheme for using a central-path Hessian rescaling of the
original problem (P) and then using rPDHG to solve the rescaled problem (P̃), and then
transforming the solution back to the original problem (P). In Line 2 the rescaled problem (P̃)
is constructed based on the Hessian matrix D1 and also D2 as inputted from Line 1. In Line
3 the rescaled problem is solved using rPDHG, and in Line 4 the solution w̃n,0 = (x̃n,0, s̃n,0)
of (P̃) is transformed back to the original problem (P) using wn,0 := (D1x̃

n,0, D−1
1 s̃n,0).

Line 5 describes an alternate way to transform w̃n,0 = (x̃n,0, s̃n,0) back to the original
problem, namely by first projecting x̃n,0 onto Ṽp using x̂n,0 := PṼp

(x̃n,0), and then applying:
wn,0 := (D1x̂

n,0, D−1
1 s̃n,0). This alternative version is used in our complexity analysis in

Theorem 5.5 as it leads to a more streamlined bound and a more streamlined proof.
Theorem 5.5 below describes our computational guarantee for the rescaling scheme

(Algorithm 3). Before presenting the theorem, we first go over some notational and related
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Algorithm 3: Scheme for Hessian rescaling and applying rPDHG to (P̃)
1 Input: Hessian matrix Hx(η) of a central-path solution w(η) = (x(η), s(η)) of a

logarithmically homogeneous self-concordant barrier function f for Kp, and a
full-rank matrix D2 ∈ Rm×m . Define α := Gap(w(η)) = ϑf/η ;

2 Construct the rescaled problem (P̃) with D1 =
√
η ·H−1/2

x(η) and D2 as given in Line 1 ;
3 Apply Algorithm 2 (rPDHG) to the rescaled problem (P̃) for n outer iterations to

obtain w̃n,0 = (x̃n,0, s̃n,0) ;
4 Transform solution to the original problem: wn,0 := (D1x̃

n,0, D−1
1 s̃n,0) ;

5 (Alternate pre-projection version) First project x̃n,0 onto Ṽp using x̂n,0 := PṼp
(x̃n,0),

and then transform to the original problem: wn,0 := (D1x̂
n,0, D−1

1 s̃n,0) ;
6 Output: wn,0

matters. First, note that any translation of the objective function vector D⊤
1 c of the rescaled

problem (P̃) along a direction in the space of Im(D⊤
1 A

⊤D⊤
2 ) does not change the optimal

solution set W̃⋆. Therefore, similar to the setting of Theorem 3.3, we will presume that
D⊤

1 c ∈ Null(D2AD1). This condition can be satisfied by replacing D⊤
1 c with its projection c̄

onto Null(D2AD1), namely c̄ := argminĉ∈Null(D2AD1) ∥ĉ−D⊤
1 c∥.

For the rescaled problem (P̃) we define the notation λ̃max := σ+
max (D2AD1), λ̃min :=

σ+
min (D2AD1), and κ̃ := λ̃max

λ̃min
. We denote the iterates of rPDHG on the rescaled problem as

z̃n,k = (x̃n,k, ỹn,k) and w̃n,k =
(
x̃n,k, s̃n,k := c̄− (D2AD1)

⊤ỹn,k
)
.

Theorem 5.5. Under Assumption 1, suppose that the rescaled objective function vector
c̄ := D⊤

1 c satisfies D2AD1c̄ = 0, and that Algorithm 3 is applied using Line 5 to transform
solutions back to the original problem. Furthermore assume rPDHG is implemented in Line
3 of Algorithm 3 using the same set-up as in Theorem 3.3, and let α := Gap(w(η)) = ϑf/η.
Given ε := (εcons, εgap, εobj) ∈ R3

++, let T be the total number of OnePDHG iterations that
are run in Line 3 of Algorithm 3 in order to obtain n for which wn,0 satisfies the ε-tolerance
requirement of (P). Then it holds that

T ≤ κ̃(ϑf +
√

2ϑf ) ·
{
760 ln

(
33κ̃

(
2ϑf + 3

√
2ϑf

))
+ 760 ln

(
1

MErrαε

)
+

200

MErrαε

}
, (5.11)

where MErrαε is the following (weighted) minimum of the target tolerance values ε:

MErrαε := min

{
εcons√
2 ·Dα

,
εgap
14α

,
εobj
14α

}
. (5.12)

Furthermore, in the case where Kp = Rn
+, then

T ≤ κ̃
(
n+
√
2n
)
·max

{
1,

α

δ̄

}
· 1020

[
ln
(
33κ̃

(
2n+ 3

√
2n
))

+ ln

(
1

MErrαε

)]
, (5.13)

where δ̄ is the best suboptimal extreme point gap defined in (4.1).
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The proof of Theorem 5.5 is presented in Appendix D. In practice, it is likely more
efficient to use Line 4 rather than Line 5 of Algorithm 3 to determine the solution wn,0 for
the original problem, as the pre-projection operation might itself be expensive for very large
problem instances. Depending on the practical usefulness of the pre-projection, it could be
implemented using the conjugate gradient method. Similar remarks hold for the projection
of D⊤

1 c onto Null(D2AD1).
The error tolerance quantity MErrαε is a weighted minimum of the three target tolerances

in Theorem 5.5, and plays a similar role as MErrε did in Theorem 3.3. Here the different
multipliers inside the minimum in the expression for MErrαε are 1√

2·Dα
, 1

14α
, and 1

14α
, where

α = Gap(w(η)) = ϑf/η. Furthermore, if we use D2 := (AD2
1A

⊤)−1/2 then κ̃ = 1, then
the smaller Gap(w(η)) is, the larger the required MErrαε is, resulting in a smaller overall
complexity bound. Furthermore, unlike the bounds in (3.17) or (4.4), the multipliers on εgap
and εobj in MErrαε are the same, which means that achieving a small objective function error
now here is no more difficult than achieving a small duality gap (at least in theory).

In Appendix D we actually prove a stronger result than what is stated in Theorem 5.5.
One can observe from our proof in Appendix D that the solution wn,0 is guaranteed to
satisfy Dist(wn,0,F) ≤ εcons, which is a (potentially significantly) stronger statement than
max{Dist(wn,0, K),Dist(wn,0, V )} ≤ εcons.

Comparing (5.11) to (3.16), we see that the geometric condition numbers (which for some
instances might be extremely large) have been replaced by O(ϑf +

√
2ϑf ). This is significant

as it is better controlled; for instance, it is as small as O(n) for LP problem instances. Also,
the dependence on κ̃ suggests that if not too expensive one should construct D2 to decrease
κ̃ as much as possible.

We also remark on the overall dependence on MErrαε in (5.13) for LP problem instances.
Notice that the constant in the front of the logarithm term in (5.13) is O

(
κ̃ · n ·max

{
1, α

δ̄

})
,

and therefore smaller α leads to a lower iteration bound. Furthermore, for appropriate choice
of D1 and D2, it holds that rPDHG achieves linear convergence as follows.

Corollary 5.6. When Kp = Rn
+, let w(η) have a sufficiently small duality gap, namely

Gap(w(η)) ≤ δ̄. Then setting D1 =
√
η ·H−1/2

x(η) and D2 = (AD2
1A

⊤)−1/2 yields

T ≤
(
n+
√
2n
)
· 1020

[
ln
(
33
(
2n+ 3

√
2n
))

+ ln

(
1

MErrαε

)]
.

We point out that some classic interior-point methods, such as long-step barrier methods,
have an overall iteration complexity of O(n · ln(1/ε)) [54] iterations. Corollary 5.6 states that
with a suitable rescaling scheme, rPDHG also achieves O(n · ln(1/ε)) iterations. However,
since the per-iteration cost of rPDHG is significantly lower than that of an IPM, the overall
complexity of rPDHG with a central-path Hessian rescaling is therefore much lower than the
corresponding IPM.

Last of all, we note that the central-path solution can be obtained using a first-order
version of an IPM, namely where the linear equations solved to yield the Newton step are
solved using first-order methods on an auxiliary least-squares optimization problem. Such
first-order versions of interior-point methods have been studied and implemented, see for
example [32] which develops an ADMM-based interior-point method, and [13] which shows it
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is as competitive as rPDHG in computing a solution of moderate accuracy for LP instances.
Although they are not as competitive as rPDHG in solving the problem itself, these other
first-order method schemes can produce a central-path solution that is of good enough quality
for the purposes of doing Hessian-based rescaling. In Section 6, we will present a scheme
for determining a central-path Hessian by using the conjugate gradient method to solve the
central path equations.

5.4 Computational Effectiveness of Central-path Hessian Rescaling

Theorem 5.5 shows that (at least in theory) the central-path Hessian rescaling scheme
(Algorithm 3) can improve the worst-case computational burden of rPDHG for solving a
conic linear optimization problem instance. Theorem 5.5 also shows that (in theory) using a
Hessian scaling based on a point further along the central path (namely with lower duality
gap α) further improves the worst-case computational burden. This naturally leads to two
computational questions: (i) is the actual performance of rPDHG improved by using the
Hessian scaling?, and if so (ii) is the actual performance of rPDHG enhanced by using a
Hessian rescaling further along the central path? In this subsection we present numerical
experiments designed to answer these two questions, and we find that the answers to both
questions are affirmative.

We conducted experiments on LP instances from the LP relaxations of the MIPLIB 2017
[21] dataset, which is a collection of 1065 mixed-integer programs derived from real-world
applications. In line with the experimental set-ups in [2] and [38], we first applied the presolver
PaPILO [20] (an open-source presolving library) to all instances, which performs a variety
of computations to identify inconsistent bounds, eliminate empty rows and columns of the
constraint matrix, and remove variables with identical lower and upper bounds. All problems
were then converted to standard-form (re)-formulation as in (P). We use the relative error:

Er(x, y) := max

{
∥Ax+ − b∥
1 + ∥b∥

,
∥(c− A⊤y)−∥

1 + ∥c∥
,
|c⊤x+ − b⊤y|

1 + |c⊤x+|+ |b⊤y|

}
(5.14)

as the tolerance metric of solutions, which is standard in solver software [38, 2, 43]. We
studied two settings which we now describe.

• rPDHG (Central-δ): In this setting we run rPDHG on (P̃) with D1 constructed using
the central-path Hessian D1 := η ·H−1/2

x(η) (as in Theorem 5.5) using an endogenously
determined value of η for which the relative error satisfies Er(x(η), y(η)) ≊ δ. The
diagonal entries of D1 are then clipped so that they are in the range [10−5, 105] to
avoid numerical issues. Here we test δ = 0.5, 0.1, and 0.01. Then D2 is set to
D2 := (AD2

1A
⊤)−1/2 which yields κ̃ = 1. This is done in order to isolate the role of the

rescaling matrix D1 on the performance of rPDHG by nullifying any effect of κ̃.

• rPDHG (EasyColumn): In this setting we run rPDHG on (P̃) with D1 constructed
as the diagonal matrix whose diagonal entries are the reciprocals of the ℓ∞ norms of
the columns of A. We set D2 := (AD2

1A
⊤)−1/2.
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We refer to the choice of D2 := (AD2
1A

⊤)−1/2 as the “complete preconditioner”. All
computations were performed on the MIT Engaging Cluster, allocated with one Intel E5-
2690 v4 CPU and 16GB RAM per task. All algorithms were implemented in Julia 1.8.5.
The central-path points were computed using the conic optimization solver of Mosek [43].
In alignment with Theorem 5.5, the objective vector D⊤

1 c of (P̃) was replaced with its
projection c̄ := argminĉ∈Null(D2AD1) ∥ĉ − D⊤

1 c∥. Using the complete preconditioner for D2

yields λ̃max = λ̃min = 1 and the step-sizes in Theorem 5.5 are both equal to 1. Instead of using
these step-sizes, we selected the step-sizes of rPDHG more conservatively as τ = σ = 0.8
which made it easier to compute the approximate normalized duality gap, see Appendix A for
further details. Additionally, we adopted the “flexible adaptive restart” strategy as developed
in [4] with the β = 1/e-restart condition. (The flexible restart ends an inner loop of rPDHG
if the normalized duality gap of either (a) the current iterate or (b) the average of the loop’s
iterates, satisfies the β-restart condition [4].) The initial iterates of rPDHG were chosen
as x0,0 = 0 and y0,0 = 0. For each instance, we set the time limit of rPDHG to be 10,000
seconds.

Figure 5 illustrates the performance of the Hessian rescaling for two different points on
the central path, namely δ = 0.5 and δ = 0.01, in comparison to using the EasyColumn
rescaling, on three representative problem instances, namely ab72-40-100, 30n20b8, and
sct32. The plots are in log-log scale, with the number of iterations of OnePDHG on the
horizontal axis and the relative error Er(x, y) on the vertical axis. For these three instances
we see that rPDHG converges faster using a central-path Hessian rescaling than using the
EasyColumn rescaling, and the Hessian rescaling convergence is faster for δ = 0.01 than for
δ = 0.5, which is consistent with our theory (and with intuition). Although rPDHG with
EasyColumn rescaling theoretically achieves linear convergence (Theorem 4.1), such linear
convergence is not observable in the first 10,000 iterations for instance ab72-30-100, which
indicates that the corresponding constant factor for the linear convergence rate is quite large
for this instance. And for this instance we see a large improvement in the convergence from
using a central-path Hessian rescaling. For the problem instance 30n20b8, we observe that
the EasyColumn rescaling yields sublinear-like convergence performance in the early stages
followed by linear convergence after around 106 iterations, in synch with Theorem 3.3. The
two central-path Hessian rescalings lead to faster linear convergence on this problem as well.
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Figure 5: Performance comparison of rPDHG (Algorithm 2) using different column rescalings
(and using complete preconditioner for D2), for the problem instances ab72-40-100, 30n20b8,
and sct32.
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For problem instance sct32, none of the three methods reach the linear convergence stage
within 107 iterations, but the central-path Hessian rescalings still have significant speedups
over the EasyColumn rescaling. This is in synch with Theorem 5.5 which indicates that a
central-path Hessian rescaling yields improved convergence in both the sublinear and linear
convergence stages.

To compare the different rescalings on a broad set of problem instances we chose the subset
of the MIPLIB 2017 LP relaxation instances for which (i) Mosek can successfully compute
central-path points, (ii) the problem instance is not too small, namely mn ≥ 107, and (iii) the
problem instance is not too large, namely mn ≤ 5× 108 (so that we have a sufficiently large
family of instances that are solved in the 10,000 seconds time limit). This yielded 222 problem
instances, which we solved using different rescalings. We consider a problem instance to be
solved if it achieves a relative error satisfying Er(x, y) ≤ 10−8, which is a standard threshold
for LP applications but is an extremely strict threshold in the context of first-order methods.
Figure 6 shows the fraction of the solved problems (among the 222 instances) on the horizontal
axis, and the maximum iterations (leftmost plot) and the maximum runtime (rightmost plot)
to achieve the fraction of the problems solved. We observe that the central-path Hessian
rescaling markedly reduces the iteration counts and the runtime, in comparison with the
EasyColumn rescaling. For example, rPDHG (Central-0.5) requires 100 times fewer iterations
to solve 60% of the problem instances, compared to rPDHG with EasyColumn rescaling.
Also, smaller value of δ (which corresponds primarily to a smaller duality gap on the central
path) yields a larger fraction of problems solved. And if obtaining a low-accuracy point on
the central-path is not computationally expensive, this suggests that minor efforts to obtain
a central-path point have the potential to greatly improve the computational performance of
rPDHG. This last point is further developed and tested in Section 6.
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Figure 6: Performance comparison of rPDHG (Algorithm 2) using different column rescalings
(and using complete preconditioner for D2), on the 222 LP relaxation problem instances from
the MIPLIB 2017 dataset

In this subsection we have illustrated how to alleviate rPDHG’s dependence on the
sublevel set geometry by using central-path Hessian rescalings. While in one sense Figures
5 and 6 show this rather nicely, in another sense it ignores two important aspects, namely
(i) it does not account for the computational cost of computing a point on the central path,
and (ii) it presumes that the problem is pre-conditioned using the complete preconditioner
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D2 := (AD2
1A

⊤)−1/2, which is likely to be computationally burdensome for very large-scale
problem instances. Moreover, many problem instances do not satisfy Assumption 1 and thus
the central path does not exist. In Section 6, we develop a solution scheme that uses the
conjugate gradient method to solve the IPM Newton steps and so compute a “reasonably
good” interior-point solution that can be used to construct an approximate central-path
Hessian rescaling, which will form the basis of a practical rescaling scheme for rPDHG for
conic linear optimization problem instances.

6 An Adaptive Hessian Rescaling Scheme for rPDHG and
its Experimental Evaluation

Both the theory and the computational experiments in Section 5 show that it can be very
valuable to utilize a central-path Hessian rescaling transformation and then run rPDHG on
the rescaled problem (P̃). The same theory and computational experiments also show that
the Hessian rescaling of points further along the central path yields better performance for
rPDHG both in theory and in actual computation time. However, a practical incorporation of
such a Hessian rescaling must address at least two challenges, namely (i) which target point
on (or near) the central path to compute?, and (ii) how to most efficiently compute the target
point? Regarding the choice of the target point, there are various strategies one can develop
for determining where to aim for in computing a point near the central path. For example,
a very simple heuristic is to fix η at some predetermined value, say η := 0.1/ϑ, and then
approximately compute w(η). A more complicated heuristic would be to first run rPDHG for
a certain number of iterations (or for a certain amount of time) and then somehow use the
information from iterates of rPDHG to choose a suitable value of η and then compute w(η).

Even if one has a clear strategy for determining which target point w(η) to try to compute,
it is still a significant challenge to efficiently compute a good approximation of w(η). In
order for rPDHG to be competitive with the best methods for linear programming instances
(pivoting methods and IPMs), the scheme for approximately computing a specific w(η) should
involve some form of Newton step computation, but should not use a direct method for solving
linear equations (such as Cholesky factorization). However, computation with IPMs where
iterative methods are used for solving the associated Newton step – such as the conjugate
gradient method – are not numerically reliable for computing points far along the central
path (i.e., with very small duality gap), see [27, 40].

We address these two challenges directly in this section. To address the first challenge, we
present in Section 6.1 a practical scheme for adaptively computing a good Hessian rescaling
that is designed to efficiently balance the extra computation time to determine a good rescaling
with the computational savings from using rPDHG on the rescaled problem. To address
the second challenge, in Section 6.2 we describe our implementation of a Newton-step-based
algorithm that is designed to compute a low-accuracy point on the central path (namely,
a point that is not very far along the path) where the conjugate gradient method (CGM)
is used to approximately solve for the Newton step. We call this method CP-CGM since
it computes a point on the central path using the conjugate gradient method (to solve the
Newton step equations). In Section 6.3 we present a comparison of our method with two
standard methods for LP, namely an implementation of rPDHG using the scaling technique
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developed in PDLP [2], and an implementation of a standard IPM for LP almost exactly as
in [47]. We test all three methods on LP problem instances from the MIPLIB 2017 dataset,
and note that all computational experiments in this section follow the same general setup as
in Section 5.4 except as otherwise noted.

6.1 Scheme for rPDHG with adaptive Hessian rescaling

Algorithm 4 describes our scheme for running rPDHG with adaptive Hessian rescaling, which
we denote as rPDHG-AHR. Before doing a line-by-line explanation of Algorithm 4, we first
explain the underlying strategy at a more informal level. The strategy is to start by first
spending a small amount of time t (we set t = 0.5 seconds) to compute a very low-accuracy
approximate central path point using CP-CGM. (Recall that CP-CGM denotes the method
that computes a point on the central path using the conjugate gradient method to solve
the Newton step equation system, the details of which are further described in Section
6.2 and Appendix E.) We then use the approximate central path point to construct the
rescaling transformation and then run rPDHG on the rescaled problem for ωt seconds (we
used ω = 6.0). We then test to determine if our current rescaling is good enough or not, and
proceed accordingly as follows:

• If the relative error of the current rPDHG solution is not too much larger than the
target relative error, we declare the current rescaling to be good enough, and we keep
running rPDHG until we achieve the target accuracy.

• If the relative error of the current rPDHG solution is worse than the relative error
of the previous round of rPDHG (using the previous rescaling), and if the previous
relative error itself was reasonably good enough, we discard the current rescaling, and
we declare the previous rescaling to be good enough. We then keep running rPDHG
using the previous rescaling until we achieve the target accuracy.

• If neither of the above two conditions is satisfied, we replace t← 2t and run (or continue
running) CP-CGM for an additional t seconds, and repeat all of the above.

We continue to use the notation of previous sections of this paper for iteration k solutions
of rPDHG, namely zk, wk, xk, yk, sk, etc. To distinguish between these iterates and central
path solutions produced by CP-CGM that are used in the rescaling transformation, we use a
different font and let zk, wk, xk, yk, sk, etc., denote the corresponding objects at iteration k
of CP-CGM. With this notation in mind, we now do a line-by-line explanation of Algorithm
4. In Line 1 the initial point for rPDHG is set to z0, and the initial point for CP-CGM is set
to w0. In addition to the target relative error ε, the input is also composed of two adaptivity
parameters ε̂ and ε̄ that will play a role in the logic of Line 7 and will be explained later. For
now, it is best to think of ε̂ and ε̄ as tolerance values that are larger than ε, and in fact we
use ε̄ =

√
ε, ε̂ = 5

√
ε in our implementation. In Line 3 we run (or continue running) CP-CGM

starting from wk for t seconds to produce wk+1 = (xk+1, sk+1). In Line 4, we construct the
rescaled problem (P̃)k+1 using the Hessian of the solution xk+1 and an additional rescaling
from a certain pair of D̄1 and D̄2 designed to balance the geometry condition numbers as well
as κ̃. In Line 5 we run rPDHG on the new rescaled problem for ωt seconds, and we output
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the transformed solution zk+1 and its associated relative error εk+1 := MErrε(x
k+1, yk+1). In

Line 6 the counter is updated and the time parameter is doubled. This entire process is then
repeated unless certain conditions are satisfied, which are denoted condition (a) or condition
(b) in Line 7.

Condition (a) in Line 7 tests if the current output of rPDHG has “reasonably good”
relative error (at most ε̄), in which case we declare the current rescaled (P̃)k has a good
enough rescaling, and so in Line 8 we permanently fix the new rescaling and continue running
rPDHG until we attain the target relative error ε.

Condition (b) in Line 7 tests if the current output of rPDHG is sufficiently poor compared
to the previous output from rPDHG (εk > εk−1), and if also the previous output from rPDHG
has “fairly good” relative error (εk−1 ≤ ε̂) then we declare the previous rescaling is good
enough, and so in Line 9 we permanently fix the rescaled problem to its previous form (P̃)k−1

and continue running rPDHG until we attain the target relative error ε.
The overall design strategy in Algorithm 4 is to minimize the time invested in obtaining

a reasonably effective rescaling and the time spent utilizing the rescaling in running rPDHG.

Algorithm 4: Scheme for rPDHG with Adaptive Hessian Rescaling (rPDHG-AHR)
1 Input: Initial iterate z0 := (x0,0, y0,0), initial point w0 for CP-CGM, time parameter
t, time multiplier ω, target relative error ε, and adaptivity error parameters ε̂ and ε̄.
Define k := 0, ε0 := +∞ ;

2 repeat
3 Run (or continue running) CP-CGM from wk for t seconds. Output wk+1 ;
4 Construct new rescaled problem: define ηk+1 := (sk+1)⊤xk+1, D̃1 :=

√
ηk+1H

−1/2

xk+1

and D̃2 = I. Optionally do further rescaling by introducing D̄1 and D̄2, and
setting D1 := D̄1D̃1 and D2 := D̄2D̃2. Then construct the new rescaled problem
(P̃)k+1 using D1 and D2 ;

5 Run rPDHG on rescaled problem (P̃)k+1 for ωt seconds. Output the transformed
solution zk+1 and the relative error εk+1 := MErrε(x

k+1, yk+1) ;
6 k ← k + 1 and t← 2t ;
7 until either (a) εk ≤ ε̄, or (b) εk > εk−1 and εk−1 ≤ ε̂ ;
8 If (a) holds, then fix the new rescaling: run rPDHG on (P̃)k until a solution z = (x, y)

is computed for which MErrε(x, y) ≤ ε ;
9 If (b) holds, then revert to and fix the previous rescaling: run rPDHG on (P̃)k−1 until

a solution z = (x, y) is computed for which MErrε(x, y) ≤ ε ;

6.2 CP-CGM: An interior-point method for computing a point on
the central path utilizing the conjugate gradient method

CP-CGM is an implementation of the practical IPM presented in Nocedal and Wright [47,
Section 14.2], and which itself is based on and is similar to Mehrotra’s classic predictor-
corrector primal-dual path-following method [41]. At each iteration, the IPM performs one
Newton step to decrease the barrier parameter and another Newton step to return to the
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central path. Computing the two Newton steps requires solving two linear systems at each
iteration. The method works very well in practice, although no good convergence guarantee
exists for this particular (and practical) IPM.

CP-CGM differs from the practical IPM in [47, Section 14.2] in two ways. First, unlike
the practical IPM which directly solves the two linear equation systems at each iteration
using matrix factorization, instead CP-CGM uses an “inner” iterative method (at each “outer”
iteration) to solve the (reduced) normal equations [47, (14.44)]. The normal equation matrices
are of the form AD2A⊤ for an iteration-dependent positive diagonal matrix D. CP-CGM
uses the Jacobi preconditioned CGM [5] to solve the normal equations at each iteration.
This approach allows CP-CGM to avoid formulating and factorizing AD2A⊤; and therefore
the primary computational burden of CP-CGM is the (many) matrix-vector multiplications
within the CGM. The CGM stops when either (i) it reaches a sufficiently large number of
iterations, or (ii) the corresponding original linear system [47, (14.41)] is appropriately solved.

The second way that CP-CGM differs from the practical IPM in [47, Section 14.2] has to
do with pre-scaling. At the outset, CP-CGM runs 10 iterations of the Ruiz scaling method
[55] before commencing with the interior-point steps. This rescaling is designed with the
aim of controlling the condition number of the matrix A and related linear systems. More
details on the differences between the practical IPM in [47, Section 14.2] and CP-CGM are
described in Appendix E.

We note that CP-CGM is just one type of simple first-order implementations of a classic
IPM. Improved preconditioners for the CGM for IPMs have been studied as early as [27, 40].
Moreover, there are other more recent matrix-factorization-free approaches for computing
a point near the central path; for example, [32, 13] develops an ADMM-based IPM that
is as competitive as PDLP in obtaining a solution of moderate accuracy, and [58] studies
the complexity of an IPM based on quasi-Newton iterations. We chose to use CP-CGM
in our experiments because CP-CGM is sufficiently representative of the classic first-order
implementations of IPMs and it in fact demonstrates some of the benefits of central-path
Hessian rescaling that is tied to general IPMs.

6.3 Computational comparison of methods

We present computational experiments where we compare rPDHG-AHR (Algorithm 4) with
two standard methods for LP – namely rPDHG and a standard interior-point method – and
so we compare three methods in all as follows:

• rPDHG-AHR: This is Algorithm 4, where we set t = 0.5, ω = 6, ε̄ =
√
ε, and

ε̂ = 5
√
ε, where ε = 10−8 is the relative error tolerance. We performed the optional

“further scaling” (Line 4 of Algorithm 4) using the rescaling methods of Ruiz [55] and
Pock-Chambolle [51] as implemented in [2].

• rPDHG(RuizPC): This an implementation of rPDHG using the scaling technique
developed in PDLP [2] which itself incorporates the scaling methods of Ruiz [55] and
Pock-Chambolle [51].

• PIPM: This is an implementation of the Practical Interior Point Method for LP
exactly as in [47] that uses Cholesky factorization to solve the Newton step equations.
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In synch with the setup of Theorem 5.5, we replace the objective function vector D⊤
1 c

of (P̃) with its projection c̄ onto Null(D2AD1), namely c̄ := argminĉ∈Null(D2AD1) ∥ĉ−D⊤
1 c∥.

This is done before each time when rPDHG is run (either as a subroutine in rPDHG-AHR or
in rPDHG(RuizPC)). The projection is computed by running a maximum of 1, 000 iterations
of CGM. Regarding the setting of the step-sizes σ and τ in rPDHG, since λ̃min is not easily
computable, we use the heuristic in [4, 61] to learn a reasonably good ratio τ/σ when running
rPDHG. We consider five possible step-sizes pairs: (τ, σ) =

(
10ℓ/2λ̃max, 10

−ℓ/2λ̃max

)
for

ℓ = −2,−1, 0, 1, 2. For each of these step-size pairs we run rPDHG for 10,000 iterations from
the same initial point (hence 50,000 iterations in total), and then we choose which of the five
step-sizes to use based on the smallest relative error it achieves. Last of all, to better take
advantage of the solution wk+1 of CP-CGM when running rPDHG-AHR, we use wk+1 as a
warm start for rPDHG in Line 5 of rPDHG-AHR.

For our implementation of PIPM we solve the normal equations via sparse Cholesky
factorization using the CHOLMOD library in SuiteSparse. Whenever numerical issues occur
in solving the normal equations, the diagonal entries of the matrix are shifted by 10−10, 10−9,
10−8, and so forth, until no numerical issues are present.

Finally, we note that both rPDHG and PIPM can be augmented and amended to include
various other heuristics and advanced implementations that could potentially significantly
enhance their practical performance. We intentionally limited our comparison to the most
basic heuristics because our primary goal is to understand the general potential of rPDHG
using central-path Hessian rescaling.

The computational environment is mostly the same as described in Section 5.4, except
in the choice of which problem instances are chosen from the MIPLIB 2017 dataset. Unlike
in Section 5.4, we chose all MIPLIB 2017 LP relaxation instances that were not too small
(mn ≥ 106) but were not too dense (the number of non-zeroes nnz satisfies nnz ≤ 105). This
yielded 413 instances in total for which almost all methods execute a sufficiently large number
of iterations. (Also note that these 413 problems do not necessarily satisfy Assumption 1.)
For each problem instance and each method we set a time limit of 5 hours. As in Section
5.4, we consider a problem instance to be solved if it achieves a relative error satisfying
Er(x, y) ≤ 10−8.

Figure 7 shows the fraction of solved instances (among the 413 problem instances) on the
horizontal axis, and the maximum number of matrix-vector products (leftmost plot) and the
maximum runtime (rightmost plot) to achieve the fraction of the problems solved. Since the
main computational expense of PIPM is not the matrix-vector products, the left plot omits
the information for PIPM. From Figure 7 we observe that the performance of rPDHG-AHR
dominates that of rPDHG(RuizPC) and all the more so for the more challenging problems.
We also see that PIPM dominates rPDHG-AHR except for the easiest and the hardest
problems, but that the trend indicates that rPDHG-AHR outperforms PIPM on the harder
problems. Overall, these results demonstrate that the Hessian rescaling has benefits even if
the problem does not satisfy Assumption 1.

(Additionally, we also ran some experiments using CP-CGM and we observed that CP-
CGM solved fewer than 70% of the problem instances, which indicates that CP-CGM alone is
far less competitive than rPDHG, and indeed the advantages of rPDHG-AHR mainly derive
from the rescaling and not from the advanced starting point provided by CP-CGM.)

We present more detailed comparisons between rPDHG-AHR and rPDHG(RuizPC) in
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Figure 7: Performance of the three different methods on the 413 problem instances from the
MIPLIB 2017 dataset.

Table 2 and Figure 8, and between rPDHG-AHR and PIPM in Table 3 and Figure 9. From
Table 2 we see that rPDHG-AHR solved 95.2% of the instances compared with 89.4% for
rPDHG(RuizPC). The computational bottleneck for both methods is the matrix-vector
products, either within the conjugate gradient method or in the OnePDHG iterations.
Therefore in Figure 8 we use the ratio of matrix-vector products required by rPDHG(RuizPC)
to those required by rPDHG-AHR as a measure of the speedup ratio achieved by rPDHG-
AHR. Of the 362 instances solved by both methods, Figure 8 shows that the advantage of
rPDHG-AHR over rPDHG(RuizPC) is greater for problems requiring more matrix-vector
products, and the ratio is generally greater than 1.0 for the more difficult problems, and
grows to 102 − 104.

rPDHG-AHR
Solved Not Solved

rPDHG
(RuizPC)

Solved 87.7% 1.7%
Not Solved 7.5% 3.1%

Table 2: Fraction of the 413 problem in-
stances solved and not-solved by rPDHG-
AHR and rPDHG(RuizPC).
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Figure 8: Speedup ratio of rPDHG-AHR com-
pared with rPDHG(RuizPC) for the 362 problem
instances solved by both methods.

From Table 3 we see that rPDHG-AHR solved 95.2% of the instances compared with
94.4% for PIPM, so the two methods have nearly identical performance on this metric. In
Figure 9 we use the ratio of the runtime required by rPDHG(RuizPC) to that required
by rPDHG-AHR as a measure of the speedup ratio achieved by rPDHG-AHR over PIPM.
Of the 384 instances solved by both methods, Figure 9 shows that PIPM is dominant on
the easier problems, that the two methods are competitive on the intermediate-difficulty
problems, and that rPDHG-AHR dominates PIPM generally for problems requiring at least
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100 seconds of runtime by PIPM. This suggests in the very least that rPDHG-AHR is
competitive with PIPM. We also mention that none of the 413 problems are huge-scale, and
in fact are actually classified as “small problems” in the PDHG implementation [35]. It is
therefore reasonable to expect that rPDHG-AHR will exhibit more advantages over PIPM
when applied to larger-scale problems.

rPDHG-AHR
Solved Not solved

PIPM
Solved 93.0% 1.5%

Not Solved 2.2% 3.4%

Table 3: Fraction of the 413 problem in-
stances solved and not-solved by rPDHG-
AHR and PIPM.
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Figure 9: Speedup ratio of rPDHG-AHR com-
pared with PIPM for the 384 problem instances
solved by both methods.

6.4 An “ideal” central-path Hessian rescaling

By its design, rPDHG-AHR (Algorithm 4) heuristically tries to balance the cost of obtaining
a good rescaling with the benefit of computational savings when running rPDHG. As such,
rPDHG-AHR is one of many different strategies that might be used to better (or best)
achieve such balance of cost/benefit. In this subsection we aim to demonstrate what we
might expect from a better (or ideal) heuristic for balancing the cost/benefit. Specifically, we
investigate using a Hessian rescaling for rPDHG that ideally balances the computational cost
of CP-CGM and the computational benefit for rPDHG. To do so, we first run CP-CGM for t
seconds, for a variety of different values of t = t1, t2, . . . , tM , yielding M different candidate
Hessian-rescaled problems. Then, for each i = 1, . . . ,M we run rPDHG for the associated
rescaled problem, and we record the time t̂i = t̂1, t̂2, . . . , t̂M used to a obtain a solution with
relative error at most 10−8. Last of all, we choose the value of ti that achieves the best overall
runtime ti + t̂i. Here is the description of our method, which we denote as rPDHG-Ideal.

• rPDHG-Ideal: This is essentially Algorithm 4 modified to have a single outer loop
that calls CP-CGM to run for ti seconds, where ti = 2i/4 for i = 1, . . . ,M . Then we
continue with Line 4 of Algorithm 4 after choosing the Hessian rescaling associated
with the value of ti that achieves the shortest overall runtime (for running CP-CGM
and then running rPDHG) to obtain a solution with relative error at most 10−8. As in
rPDHG-AHR, we perform the optional “further scaling” using the rescaling methods of
Ruiz [55] and Pock-Chambolle [51] as implemented in [2].

Additionally, rPDHG-Ideal uses other logic just as in rPDHG-AHR. For examples, rPDHG-
Ideal replaces the objective vector with the projection onto Null(D2AD1) and uses the same
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logic as in rPDHG-AHR to learn a reasonably good ratio between τ and σ when running
rPDHG.

By selecting the “best” value of ti in rPDHG-Ideal, we aim to get a sense of what is
the limit of what a good/better heuristic might achieve. We note that by its intention
rPDHG-Ideal is not a practical method. However, it does allow us to gauge the potential
performance of a possible improved heuristic for central-path Hessian rescaling.

Figure 10 shows the fraction of solved instances using rPDHG-Ideal (among the same 413
problem instances tested in Section 6.3) on the horizontal axis, and the maximum runtime to
achieve the fraction of the problems solved. From Figure 10 we observe that an “ideal” choice
of the central-path Hessian rescaling is consistently 2 to 3 times faster than rPDHG-AHR.
There is thus room for improving rPDHG-AHR to close this performance gap. Furthermore,
rPDHG-Ideal also consistently outperforms PIPM in terms of the computation time (on most
problems) and the number of problems solved. This result shows the potential significant
benefits of central-path Hessian rescaling if one can further improve the balance between the
cost of computing the rescaling and the benefit of shortening the runtime of rPDHG.
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Figure 10: Performance of rPDHG-Ideal, rPDHG-AHR, and PIPM on the 413 problem
instances from the MIPLIB 2017 dataset.

7 Final Remarks, Questions, and Research Directions
In this paper we have extended the theoretical, algorithmic, and practical performance of
rPDHG for general CLP, and we have performed computational experiments for the special
case of LP. For the lens of theory, we have presented three geometric condition numbers of the
primal-dual sublevel setWδ: the diameter Dδ, the conic radius rδ, and the Hausdorff distance
to the optimal solution set dHδ , and we have shown how these condition numbers inform
the convergence rate of rPDHG both in theory and in practice. For the lens of algorithmic
development, we have proposed to use central-path Hessian rescaling transformations to
improve the geometry of the primal-dual sublevel sets with the overarching aim of improving
the convergence rate of rPDHG – both in theory and practice. Last of all, we have presented
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computational results that verify the theory and and demonstrate how such central-path
Hessian rescaling can significantly improve the performance of rPDHG for LP in practice.

We end this paper with a short list of open questions for further investigation:
1. Extensions to other primal-dual algorithms. We expect that the use of the

sublevel set geometric condition numbers for informing convergence is not limited to just
PDHG. Indeed, the only properties of rPDHG that we used were those in Lemmas 2.2, 2.3
and 2.4. Similar properties also hold for other primal-dual first-order algorithms such as
ADMM and EGM [4, 56]. For this reason we expect that much of our analysis should extend
to these other primal-dual first-order methods as well.

2. Condition numbers and analysis for more general nonlinear programs. In
this paper we studied conic linear problems (CLP) which are a (rather important) subclass
of constrained convex optimization. It would be interesting to explore how the sublevel-set
geometry influences the convergence rate of first-order methods for more general convex and
nonconvex constrained optimization, which might also lead to methods for improving the
sublevel set geometry as we have done here.

3. Condition numbers and analysis for the infeasibility detection problem. It
has been shown in [3] that rPDHG can also be used to detect infeasibility for LP problem
instances. It would be interesting to study how the geometry of the problem informs the speed
of infeasibility detection, and how to possibly improve the geometry to enhance practical
algorithm performance.

4. Other methods for improving the geometry of sublevel sets. In this paper we
have used CP-CGM to obtain a good Hessian rescaling, but of course one can devise many
other types of schemes to obtain good/better Hessian rescalings. It would be interesting to
see if there are other methods that can find a good Hessian rescaling faster than CP-CGM
or achieve a better balance between the cost of computing the rescaling and the benefit of
improving the runtime of rPDHG. Perhaps other types of rescalings and associated problem
transformations may improve the geometry and enhance the convergence rate of rPDHG,
especially for cones (symmetric or not) for which we do not have logarithmically homogeneous
self-concordant barriers.
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Appendix

A Computing the Normalized Duality Gap
We first show in Section A.1 a methodology for computing the normalized duality gap ρ(r; z).
In Section A.2 we modify this methodology by changing the norm from the M -norm ∥ · ∥M to
a different norm ∥ · ∥N which we call the N -norm, and whose associated normalized duality
gap is denoted by ρN(r; z). Throughout this appendix we assume that σ, τ satisfy (2.6),
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which then implies that M ⪰ 0 (2.5). The strategy presented herein for computing and
approximating ρ(r; z) is a generalization of the method developed by [4] for the particular
case of LP.

A.1 Computing the normalized duality gap

Computing ρ(r; z) for z ∈ K̄ := Kp × Rm and r > 0 is basically equivalent to solving the
following convex optimization problem:

max
ẑ=(x̂,ŷ): x̂∈Kp,∥ẑ−z∥M≤r

[L(x, ŷ)− L(x̂, y)] =

(
maxẑ h⊤(ẑ − z)
s. t. ẑ ∈ K̄, ∥z − ẑ∥2M ≤ r2

)
(A.1)

in which z = (x, y) and h =

(
h1

h2

)
:=

(
A⊤y − c
b− Ax

)
∈ Rn+m. Suppose that ẑ⋆ is an optimal

solution of (A.1); then ρ(r; z) is obtained by

ρ(r; z) =
h⊤(ẑ⋆ − z

)
r

.

We now show how to construct an optimal solution of (A.1). Consider the following
parameterized optimization problem over the parameter t ≥ 0, with optimal solution z(t) :

z(t) := argmax
z̃∈K̄

t · h⊤(z̃ − z)− ∥z̃ − z∥2M . (A.2)

This problem essentially replaces the norm constraint ∥ẑ − z∥2M ≤ r2 in (A.1) with a penalty
term −∥ẑ−z∥2M

t
in the objective function. The following lemma shows that solving (A.1) is

essentially a root-finding problem of the univariate function f(t) := ∥z − z(t)∥M − r defined
on t ∈ [0,∞).

Lemma A.1. Suppose t⋆ satisfies t⋆ > 0 and f(t⋆) = 0. Then z(t⋆) is an optimal solution of
(A.1).

Based on this lemma, we consider using the bijection method to find the root of f(t) in the
region t ∈ (0,∞). Notice that f(0) < 0. We can compute f(t) for an increasing sequence of
values of t, for example tk := 2k for k = 1, 2, . . ., until we obtain k for which f(tk) ≥ 0. Let
K denote the first value of k for which f(tk) ≥ 0. Then f(tK−1) has a different sign than
f(tK), and so [tK−1, tK ] contains a root of f(t) which can be computed using the bijection
method. In the special case that none of the tk satisfy f(tk) ≥ 0, the following lemma shows
that h⊤(z(tk)−z)

r
itself converges to ρ(r; z) at a conveniently bounded rate.

Lemma A.2. If t > 0 and f(t) < 0, then
∣∣∣h⊤(z(t)−z)

r
− ρ(r; z)

∣∣∣ ≤ r
t

.

The main computational bottleneck of the above scheme is solving (A.2). If M is full-rank
(i.e., (2.6) holds strictly), the objective function of (A.2) is strongly convex and smooth.
Furthermore, let us presume that the task of computing the projection onto K̄ under the
Euclidean norm is reasonable (as it is for the nonnegative orthant and the cross-product
of second-order cones for example). Then the projected gradient descent method and its
accelerated versions can be applied to (A.2) with linear convergence rates, see [29]. Moreover,
since the restart condition does not need to be checked frequently in practice, the cost of
computing the normalized duality gap can be further reduced if not computed very often.
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A.1.1 Proofs of Lemmas A.1 and A.2

We now proceed with the proofs of Lemmas A.1 and A.2. We first recall the optimality
conditions for problems (A.1) and (A.2). Since strong duality holds for (A.2), for each t ≥ 0
the optimal solution z(t) of (A.2) must satisfy the following conditions:

z(t) ∈ K̄, s := 2Mz(t)− 2Mz − t · h ∈ K̄∗, and (z(t))⊤s = 0 . (A.3)

Regarding problem (A.1), ẑ⋆ is an optimal solution of (A.1) if there exists a scalar multiplier
λ⋆ that together with ẑ⋆ satisfy the KKT optimality conditions:

Inclusions: ẑ⋆ ∈ K̄, s⋆ := 2λ⋆Mẑ⋆−2λ⋆Mz−h ∈ K̄∗, λ⋆ ≥ 0, ∥z− ẑ⋆∥2M ≤ r2, and (A.4)

Complementarity: (ẑ⋆)⊤s⋆ = 0, and λ⋆ ·
(
r2 − ∥z − ẑ⋆∥2M

)
= 0 . (A.5)

Proof of Lemma A.1. If t⋆ > 0 and ∥z−z(t⋆)∥M = r, then it follows from (A.3) and f(t⋆) = 0
that z⋆ := z(t⋆) and λ⋆ := 1

t⋆
satisfy the optimality conditions (A.4) and (A.5), and therefore

z(t⋆) is an optimal solution of (A.1).

Proof of Lemma A.2. We first suppose that M is positive definite, in which case using a
standard Lagrangian construction one can derive the following dual problem of (A.1):

min
λ≥0, s∈K̄∗

1

4λ
∥s+ h∥2M−1 + z⊤s+ λr2 (A.6)

Now define λ := 1
t

and s := 2λMz(t)− 2λMz − h, whereby from (A.3) it follows that (λ, s)
is feasible for (A.6). Also, since f(t) < 0 we have z(t) is feasible for (A.1) and the duality
gap of this pair of primal and dual solution works out to be exactly λ(r2 − ∥z − z(t)∥2M) =
r2−∥z−z(t)∥2M

t
which can be verified by simple arithmetic manipulation. Let the optimal

objective value of (A.1) be g⋆; then |h⊤(z(t)− z)− g⋆| ≤ r2−∥z−z(t)∥2M
t

, from which it follows

that
∣∣∣h⊤(z(t)−z)

r
− ρ(r; z)

∣∣∣ = ∣∣∣h⊤(z(t)−z)
r

− g⋆

r

∣∣∣ ≤ r2−∥z−z(t)∥2M
rt

≤ r2

rt
= r

t
. This proves the result

for the case when M is positive definite.
If M is not positive definite, then under the assumption that σ, τ satisfy (2.6) we have

M ⪰ 0 (2.5). In this case the dual problem of (A.1) no longer has the very convenient
expression (A.6), but all of the properties of the proof in the previous paragraph follow
nevertheless.

Note that the proofs of Lemmas A.1 and A.2 are also valid if we replace M by another
positive semidefinite matrix M̃ to define a M̃ -norm, and let us denote the normalized duality
gap using the M̃ -norm as ρM̃ (r; z). In Section A.2 we will show that with a proper choice of
M̃ that ρM̃(r; z) will provide a good approximation of ρM(r; z) but with significantly lower
computational cost of solving (A.2) .
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A.2 Approximating the normalized duality gap

In Section A.1 we showed that computing ρ(r; z) can be accomplished by parametrically
solving the optimization problem (A.2), which is equivalent to a certain projection onto
the cone K̄ = Kp × Rm in the M -norm. Although PDHG is premised on the notion that
Euclidean projections onto K̄ are simple to compute (see Lines 2 and 3 of OnePDHG in
Algorithm 1), projections onto K̄ under the M -norm might be significantly more difficult. In
this subsection we describe how to efficiently approximate ρ(r; z) by working with a different
matrix norm, namely the N -norm which was introduced in the proof of Lemma 3.6, and for
which the equivalent optimization problem (A.2) works out to be a Euclidean projection onto
Kp.

The N -norm is the matrix norm ∥z∥N in which N :=
(

1
τ
In

1
σ
Im

)
, which was introduced

in the proof of Lemma 3.6. Let ρN(r; z) denote the corresponding normalized duality gap
function in N -norm. We now show that in the N -norm, solving z(t) of (A.2) is simply a
Euclidean projection onto Kp. Because K̄ = Kp×Rm and ∥z∥2N = 1

τ
∥x∥2 + 1

σ
∥y∥2, (A.2) can

be separated into two independent problems:

z(t) = (x(t), y(t)) =
(
argmax

x̃∈Kp

t · h⊤
1 x̃− 1

τ
∥x̃− x∥2, arg max

ỹ∈Rm
t · h⊤

2 ỹ − 1
σ
∥ỹ − y∥2

)
=
(
PKp

(
x+ tτ

2
· h1

)
, y + tσ

2
· h2

)
.

(A.7)

Hence the primary computational cost of computing z(t) in the N -norm is just the Euclidean
projection onto Kp, which is no more of a computational burden than Line 2 of OnePDHG
in Algorithm 1, and might be considerably easier than the M -norm projection onto K̄.

Furthermore, the following proposition shows that ρN (r; z) is equivalent to ρ(r; z) up to a
constant factor so long as the step-sizes are chosen a bit conservatively.

Proposition A.3. If τ, σ satisfy (2.6) strictly, then for any z ∈ K̄ and r > 0 it holds that:

1√
2
· ρN (r; z) ≤ ρ(r; z) ≤ 1√

1−
√
τσλmax

· ρN (r; z) . (A.8)

For example, if
√
στ = 1

2λmax
, then (A.8) becomes 1√

2
· ρN (r; z) ≤ ρ(r; z) ≤

√
2 · ρN (r; z). In

practice we have used ρN (r; z) instead of ρ (r; z) to evaluate the restart condition, and it can
be proven that a computational guarantee of rPDHG still holds. This technique has also
been used in [4, 2].

The proof of Proposition A.3 uses the following two lemmas.

Lemma A.4. (Proposition 2.8 of [61]) If τ, σ satisfy (2.6), then for any z ∈ Rn+m it
holds that

√
1−
√
τσλmax · ∥z∥N ≤ ∥z∥M ≤

√
2∥z∥N .

Lemma A.5. (Proposition 5 of [4]) It holds for any z that ρN(r; z) is a monotonically
non-increasing for r ∈ [0,∞).

Proof of Proposition A.3. From Lemma A.4 we have
{
ẑ : ∥ẑ−z∥N ≤ r√

2

}
⊆ {ẑ : ∥ẑ − z∥M ≤ r} ⊆{

ẑ : ∥ẑ − z∥N ≤ r√
1−

√
τσλmax

}
, which leads to

r√
2
· ρN

(
r√
2
; z
)
≤ r · ρ(r; z) ≤ r√

1−
√
τσ
· ρN

(
r√

1−
√
τσλmax

; z
)

(A.9)
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for any r and z, because of the inclusion relationship between the feasible sets of the
corresponding optimization problems. Finally, applying Lemma A.5 to (A.9) yields (A.8).

B Proof of (3.18)
We prove the following lemma regarding lower and upper bounds on supγ>0

rγ
γ

.

Lemma B.1. Under Assumption 1, it holds that

WidthK

maxw∈W⋆ ∥w∥
≤ sup

γ>0

rγ
γ
≤ 1

maxw∈W⋆ ∥w∥
, (B.1)

in which WidthK is the width of the cone K := Kp ×Kd defined in (1.1).

Before presenting the proof we first discuss a related result. For the general primal and
dual problems (P) and (Ds), [16] proves a geometric relationship between the primal and
dual sublevel sets of (P) and (Ds) which we now describe. Under Assumption 1 the problems
(P) and (Ds) have a common optimal objective value f ⋆. Then for any ε, δ ∈ R+, define

R̄ε :=

 max
x

∥x∥
s. t. x ∈ Vp ∩Kp

c⊤x ≤ f ⋆ + ε

 and r̄δ :=

 max
s

max
r:B(s,r)⊆Kd

r

s. t. s ∈ Vd ∩Kd

−q⊤s+ q0 ≥ f ⋆ − δ

 . (B.2)

Recall the definition of the width WidthK of cone K in (1.1), and then the product of R̄ε

and r̄δ has both lower bound and upper bounds.

Lemma B.2. (Geometric relationship between primal and dual sublevel sets,
Theorem 3.2 of [16]) Under Assumption 1, for any ε, δ ∈ R+ it holds that

WidthKd
·min{δ, ε} ≤ r̄δR̄ε ≤ δ + ε . (B.3)

Lemma B.2 leads directly to the following corollary regarding the conic radius rδ of the
sublevel set Wδ:

Corollary B.3. For any ε, δ ∈ R+, it holds that

WidthK ·min{δ, ε} ≤ rδ ·
(
max
w∈Wε

∥w∥
)
≤ δ + ε . (B.4)

Proof. The idea of the proof is to relate rδ and maxw∈Wε ∥w∥ to the quantities r̄δ and R̄ε

defined in (B.2) for a certain pair of primal and dual problems. Since any change of the
objective vector c in Im(A⊤) does not change the sublevel sets Wδ or Wε, without loss of
generality we presume that c ∈ Null(A). We can combine (P) and (Ds) into a single conic
linear optimization problem of the following form:

min
w∈R2n

z⊤0 w s.t. w ∈ V = V⃗ + w0, w ∈ K = Kp ×Kd , (B.5)
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where z0 := (c, q) ∈ V⃗ and w0 := (q, c), yielding V = V⃗ +w0 = (V⃗p + q)× (V⃗d + c) = Vp × Vd.
Using a similar approach for deriving the dual problem with that in Section 2.1, it is known
that its symmetric dual problem (see also Section 3.1 of [54] for details) is the following
problem:

min
z∈R2n

w⊤
0 z s.t. z ∈ Ṽ := V⃗ ⊥ + z0 , z ∈ K∗ = Kd ×Kp . (B.6)

Note that V⃗ = V⃗p× V⃗d in which V⃗p and V⃗d are orthogonal complementary subspaces of Rn, and
so V⃗d× V⃗p and V⃗p× V⃗d are orthogonal complementary subspaces of R2n and thus V⃗ ⊥ = V⃗d× V⃗p.
Moreover, because Kp and Kd are dual cones of each other, then K∗ = K∗

p ×K∗
d = Kd ×Kp.

Therefore, now we can see the feasible sets of (B.5) and (B.6) are related by simply exchanging
the order of the n-dimensional variable components, namely from w = (x, s) to z = (s, x).
And also the objective vectors z0 and w0 are similarly related by exchanging the order of c
and q.

It thus follows that the quantity r̄δ associated with (B.5) is identical to the quantity rδ
of Wδ, and quantity R̄ε associated with (B.6) is identical to maxw∈Wε ∥w∥. Furthermore,
because K = Kp × Kd and K∗ = Kd × Kp, then τK = τK∗ . Therefore, directly applying
Lemma B.2 on (B.5) and (B.6) yields (B.4).

Furthermore, the following monotonicity result is presented in Remark 2.1 of [16].

Lemma B.4. (Monotonicity of r̄δ/δ) For any δ′ > δ > 0, it holds that r̄δ
δ
≥ r̄δ′

δ′
.

Using Corollary B.3 and Lemma B.4, we now prove Lemma B.1.

Proof of Lemma B.1. We first prove the second inequality of (B.1). According to the second
inequality of (B.4) with ε = 0, it holds that rδ · maxw∈W⋆ ∥w∥ ≤ δ for any δ > 0, which
directly implies the second inequality of (B.1).

As for the first inequality of (B.1), the first inequality of (B.4) yields rδ ·maxw∈Wε ∥w∥ ≥
WidthK ·min{δ, ε} for any δ, ε ∈ R++. Taking ε = δ yields rδ

δ
≥ WidthK

maxw∈Wδ
∥w∥ for any δ > 0.

And using Lemma B.4 we have supδ>0
rδ
δ
= limδ↘0

rδ
δ
≥ limδ↘0

WidthK
maxw∈Wδ

∥w∥ = WidthK
maxw∈W⋆ ∥w∥ ,

which proves the first inequality of (B.1).

C Proof of Theorem 4.1
Linear programming problems enjoy a “sharpness” property that is not guaranteed for
the more general conic optimization problem (P). Similar in spirit to [61] we define the
(primal-and-dual) PD sharpness µ as follows:

µ := inf
w∈F\W⋆

Dist(w, V ∩ {w : Gap(w) = 0})
Dist(w,W⋆)

. (C.1)

Recalling the definition of the best suboptimal extreme point gap δ̄ from Definition 4.1, a
key property that characterizes µ using δ̄ is the following lemma which is taken from [61],
albeit using different notation.
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Lemma C.1. (essentially Theorem 5.5 of [61]) If both (P) and (Ds) have feasible and
nonoptimal solutions, then for any δ ∈ (0, δ̄] it holds that

µ = inf
w∈F∩{w:Gap(w)=δ}

Dist(w, V ∩ {w : Gap(w) = 0})
Dist(w,W⋆)

. (C.2)

The following lower bound of µ using dHδ and rδ is a direct implication of Lemma C.1.

Lemma C.2. Under the hypothesis of Lemma C.1, for any δ ∈ (0, δ̄] it holds that

µ ≥ δ

dHδ
· 1√
∥PV⃗p

(c)∥2 + ∥q∥2
. (C.3)

Proof. For w ∈ V satisfying Gap(w) = δ, the numerator of (C.2) has the closed form

Dist(w, V ∩ {w : Gap(w) = 0}) = δ

∥PV⃗ ([c, q])∥
=

δ√
∥PV⃗p

(c)∥2 + ∥q∥2
.

Also, from the definition of dHδ in Definition 3.4 we have:

dHδ = max
w∈F∩{w:Gap(w)≤δ}

Dist(w,W⋆) ≥ max
w∈F∩{w:Gap(w)=δ}

Dist(w,W⋆) ,

whereby from (C.2) we have for any δ ∈ (0, δ̄] that

µ =
δ√

∥PV⃗ (c)∥2 + ∥q∥2
· inf
w∈F∩{w:Gap(w)=δ}

1

Dist(w,W⋆)
≥ δ√

∥PV⃗ (c)∥2 + ∥q∥2
· 1

dHδ
,

which is exactly (C.3).

Lemma C.3. Suppose that c ∈ Null(A). For any δ ∈ (0, δ̄] and any w := (x, s) it holds that

Dist(w,W⋆) ≤ dHδ
δ
·Gap(w) +

5Dδ

rδ
·max{Dist(w,K),Dist(w, V )} . (C.4)

Proof. We first consider the case when Gap(w) ≤ δ. Let w̄ := PV (w). Then because
c ∈ Null(A) = V⃗p and q ∈ Im(A⊤) = V⃗d, we have Gap(w) = Gap(w̄) and hence Gap(w̄) =
Gap(w) ≤ δ. Let (wδ, rδ) be the conic center and conic radius of Wδ as defined in Definition
3.3. Because w̄ ∈ V , then from Lemma 3.2 we have:

∥w̄ −F(w̄;wδ)∥
Dist(w̄,K)

≤ ∥wδ −F(w̄;wδ)∥
rδ

. (C.5)

Also, because w̄, F(w̄;wδ), and wδ are collinear, it follows that∣∣Gap(w̄)−Gap(F(w̄;wδ))
∣∣ = ∣∣Gap(F(w̄;wδ))−Gap(wδ)

∣∣ · ∥w̄ −F(w̄;wδ)∥
∥F(w̄;wδ)− wδ∥

≤
∣∣Gap(F(w̄;wδ))−Gap(wδ)

∣∣ · Dist(w̄,K)

rδ
≤ δ · Dist(w̄,K)

rδ
,

(C.6)
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where the first inequality uses (C.5) and the second inequality follows since wδ and F(w̄;wδ)
are in Wδ.

Next, because F(w̄;wδ) ∈ Wδ, then from the definition of the PD sharpness µ in (C.1)
and the lower bound on µ from Lemma C.2, we have:

Dist(F(w̄;wδ),W⋆) ≤ Dist(F(w̄;wδ), V ∩ {w : Gap(w) = 0})
µ

=
Gap(F(w̄;wδ))√
∥c∥2 + ∥q∥2 · µ

≤ dHδ
δ
·Gap(F(w̄;wδ)) .

(C.7)

We also have the following bound on Dist(w̄,W⋆):

Dist(w̄,W⋆) ≤ Dist(F(w̄;wδ),W⋆) + ∥F(w̄;wδ)− w̄∥

≤ dHδ
δ
·Gap(F(w̄;wδ)) +

Dδ

rδ
·Dist(w̄,K) .

(C.8)

where the second inequality uses (C.7) as well as the inequality ∥F(w̄;wδ) − w̄∥ ≤ Dδ

rδ
·

Dist(w̄,K) which itself follows from Lemma 3.2.
From (C.6) we have

Gap(F(w̄;wδ)) ≤ Gap(w̄) + δ · Dist(w̄,K)

rδ
, (C.9)

whereby (C.8) implies

Dist(w̄,W⋆) ≤ dHδ
δ
·
(
Gap(w̄) + δ · Dist(w̄,K)

rδ

)
+

Dδ

rδ
·Dist(w̄,K)

≤ dHδ
δ
·Gap(w̄) +

2Dδ

rδ
·Dist(w̄,K) ,

(C.10)

in which the second inequality uses dHδ ≤ Dδ from Lemma 3.1.
Finally, we use the upper bound on Dist(w̄,W⋆) to obtain an upper bound on Dist(w,W⋆):

Dist(w,W⋆) ≤ Dist(w̄,W⋆) + ∥w̄ − w∥ = Dist(w̄,W⋆) + Dist(w, V )

≤ dHδ
δ
·Gap(w) +

2Dδ

rδ
·Dist(w̄,K) + Dist(w, V )

≤ dHδ
δ
·Gap(w) +

2Dδ

rδ
· (Dist(w,K) + Dist(w, V )) + Dist(w, V )

≤ dHδ
δ
·Gap(w) +

5Dδ

rδ
·max{Dist(w,K),Dist(w, V )} ,

(C.11)

where the second inequality uses (C.10) and Gap(w̄) = Gap(w), the third inequality uses
Dist(w̄,K) ≤ Dist(w,K) + ∥w − w̄∥ = Dist(w,K) + Dist(w, V ), and the fourth inequality
uses Dδ ≥ rδ from Lemma 3.1. This proves (C.4) in the case when Gap(w) ≤ δ.
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Let us now consider the case where δ ≤ Gap(w). Here we will make use of Proposition
3.10 to complete the proof. Let w⋆ := PW⋆(w) = argminw̄∈W⋆ ∥w̄ − w∥ and define wt :=
w⋆ + t · (w − w⋆) for t ∈ [0,∞). Then define the following functions of t :

f(t) := Dist(wt,W⋆) , and g(t) :=
dHδ
δ
·Gap(wt) +

5Dδ

rδ
·max{Dist(wt, K),Dist(wt, V )} .

Then f(t) is a nonnegative linear function on [0,∞), and f(0) = 0. And g(t) is convex and
nonnegative on [0,∞), and g(0) = 0. In addition, because Gap(·) is a linear function and
Gap(wt) = t · Gap(w), then setting u := δ/Gap(w) we obtain Gap(wu) = u · Gap(w) = δ.
We can then invoke (C.11) using wu in the place of w, which yields g(u) ≥ f(u). Now it
follows from Proposition 3.10 with v := 1 ≥ u that g(1) ≥ f(1), which is precisely (C.11) in
the case δ ≤ Gap(w), and completes the proof.

Lemma C.4. Suppose that c ∈ Null(A). Under Assumption 1, suppose that Algorithm 2
(rPDHG) is run starting from z0,0 = (x0,0, y0,0) = (0, 0), and the step-sizes σ and τ satisfy
the step-size inequality (2.6). Then for all n ≥ 1 and any δ ∈ (0, δ̄] it holds that

DistM(zn,0,Z⋆) ≤ (5
√
2 + 4) · c20 ·

Dδ

rδ
· ρ(∥zn,0 − zn−1,0∥M ; zn,0) . (C.12)

Proof of Lemma C.4. Directly using Lemmas 3.6 and C.3 we have

DistM(zn,0,Z⋆) ≤
√
2c0 ·Dist(wn,0,W⋆)

≤
√
2c0d

H
δ

δ
·Gap(wn,0) +

5
√
2c0Dδ

rδ
·max{Dist(wn,0, K),Dist(wn,0, V )} ,

(C.13)
and applying Lemma 3.11 yields

DistM(zn,0,Z⋆) ≤

(
5
√
2c20Dδ

rδ
+

4c20d
H
δ

δ
·Dist(0,W⋆)

)
· ρ(∥zn,0 − zn−1,0∥M ; zn,0) . (C.14)

From Lemma B.1 we have rδ ·Dist(0,W⋆) ≤ rδ ·maxw∈W⋆ ∥w∥ ≤ δ, whereby it follows from
(C.14) that

DistM(zn,0,Z⋆) ≤

(
5
√
2c20Dδ

rδ
+

4c20d
H
δ

rδ

)
· ρ(∥zn,0 − zn−1∥M ; zn,0) . (C.15)

Last of all, notice that dHδ ≤ Dδ (from Lemma 3.1), and so (C.12) follows from (C.15).

We now prove Theorem 4.1.

Proof of Theorem 4.1. From Lemma 3.11 it follows that wn,0 satisfies the ε-tolerance require-
ment (Definition 3.7) if

ρ(∥zn,0 − zn−1∥M ; zn,0) ≤ min

εcons
c0

,
εgap

2
√
2c0 ·Dist(0,W⋆)

,
εobj

14c0 · infγ>0

(
γ
rγ

)
 . (C.16)
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Now notice that the right-hand-side term is equal to MErrε
c0

where MErrε is defined in (4.4).
Also, it follows from the choice of step-sizes in the theorem and the definition of c0 in (3.32)
that c0 =

√
κ.

In the proof of Lemma C.4 we see that (C.12) holds for any δ ∈ (0, δ̄], so Theorem 3.5
can be applied since the condition (3.19) is satisfied using (C.12) with L = (5

√
2 + 4) · c20 · Dδ

rδ
and C = 0. Therefore it follows from Theorem 3.5 that T satisfies

T ≤ 23 ·
(
(5
√
2 + 4) · c20 ·

Dδ

rδ

)
· ln
(
23c0 ·DistM(z0,0,Z⋆)

MErrε

)
. (C.17)

Here we have c20 = κ, and DistM(z0,0,Z⋆) ≤
√
2c0 · Dist(w0,0,W⋆) ≤

√
2c0 · Dist(0,W⋆) =√

2κ ·Dist(0,W⋆) from Lemma 3.6 and Proposition 3.7. Additionally, 23 · (5
√
2 + 4) ≤ 255

and 23
√
2 ≤ 33. Therefore (C.17) yields (4.3).

D Proofs of Results in Section 5

D.1 Proof of Theorem 5.2

We first recall definitions of a (logarithmically homogeneous) self-concordant barrier function
f and the complexity value ϑf .

Definition D.1 (Sections 2.3.1 and 2.3.5 of [54]). Let f be a function defined on intKp ⊆ Rn.
The function f is a self-concordant barrier function for Kp if for all x ∈ intKp, the unit local
norm ball Bx(x, 1) satisfies Bx(x, 1) ⊂ Kp and

1− ∥y − x∥x ≤
∥v∥y
∥v∥x

≤ 1

1− ∥y − x∥x
for all y ∈ intBx(x, 1) and v ̸= 0 , and (D.1)

ϑf := sup
x∈intKp

∥∇f(x)∥2x <∞ . (D.2)

Here ϑf denotes the complexity value of f . Additionally, f is a logarithmically homogeneous
self-concordant barrier function if for all x ∈ intKp and all t > 0 it holds that f(tx) =
f(x)− ϑf ln(t).

Logarithmically homogeneous self-concordant barriers have some very special properties, see
[45, 54], among which is the following equality taken from [54, Theorem 2.3.9]:

∥x∥x =
√

ϑf for all x ∈ intKp . (D.3)

(Any self-concordant barrier function for Kp can be expanded to a logarithmically homogeneous
self-concordant barrier function on {(x, t) : t > 0, x ∈ t ·Kp}, see [45, Proposition 5.1.4].)

For simplicity of notation, in this section we use w̃(η) := ϕη(w(η)) to denote the rescaled
central path solution for the parameter η. We now prove Theorem 5.2.

Proof of Theorem 5.2. We first show that the local-norm ball at w(η) maps to a Euclidean
ball under the rescaling transformation ϕη. For any r > 0, the rescaling of the local-norm
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ball ϕη

(
Bw(η)(w(η), r)

)
satisfies

ϕη

(
Bw(η)(w(η), r)

)
=
{

1√
η
H

1/2
w(η) · ŵ :

√
(ŵ − w(η))⊤Hw(η)(ŵ − w(η)) ≤ r

}
=
{
v :
∥∥∥v − 1√

η
H

1/2
w(η) · w(η)

∥∥∥ ≤ r√
η

}
= B

(
w̃(η), r√

η

)
,

(D.4)

where the second equality uses the substitution ŵ =
√
ηH

−1/2
w(η) · v.

Let us first prove (5.4). From item (1.) of Fact 5.2 we haveWα ⊆ Bw(η)(w(η), ϑF +2
√
ϑF ).

From (D.4) we have

W̃α ⊆ ϕη

(
Bw(η)(w(η), ϑF + 2

√
ϑF )
)
= B

(
w̃(η), ϑF+2

√
ϑF√

η

)
, (D.5)

and therefore D̃α ≤ 2ϑF+4
√
ϑF√

η
, which yields (5.4) since logarithmic homogeneity implies

ϑf = ϑf∗ and consequently ϑF = ϑf + ϑf∗ = 2ϑf .
Next observe that (5.6) directly follows from (5.4) by using Lemma 3.1.
Regarding the lower bound on r̃α in (5.5), we note that K ⊇ Bw(η)(w(η), 1) because F is

a self-concordant barrier function on K. Therefore

K̃ = ϕη(K) ⊇ ϕη

(
Bw(η)(w(η), 1)

)
= B

(
w̃(η), 1√

η

)
, (D.6)

where the last equality uses (D.4). And since w̃(η) ∈ W̃α, (D.6) implies that r̃α ≥ 1√
η
, which

proves (5.5).
Concerning the proof of (5.7), we have the following expression for ∥w̃(η)∥:

∥w̃(η)∥ =
∥∥∥ 1√

η
H

1/2
w(η) · w(η)

∥∥∥ = 1√
η
· ∥w(η)∥w(η) =

√
ϑF

η
, (D.7)

where the last equality uses (D.3). Hence

Dist(0, W̃⋆) ≤ ∥w̃(η)∥+Dist(w̃(η), W̃⋆) ≤
√

ϑF

η
+ ϑF+2

√
ϑF√

η
= ϑF+3

√
ϑF√

η
=

2ϑf+3
√

2ϑf
√
η

, (D.8)

where the second inequality uses (D.7) and (D.5), and the last equality uses ϑF = ϑf + ϑf∗ =
2ϑf . Last of all, (5.8) follows immediately from (5.4) and (5.5).

D.2 Proof of Proposition 5.3

The proof actually is nothing more than manipulation of basic barrier calculus. We first state
the following properties of self-concordant barriers as presented in [54].

Fact D.1. The following statements hold for the self-concordant barrier function f for Kp:

1. For all x ∈ Kp it holds that −∇f(x) ∈ K∗
p . Furthermore intK∗

p = {−∇f(x) : x ∈ intKp}
[54, Proposition 3.3.3]. For any x ∈ intKp, let s = −∇f(x), then ∇2f(x) = (∇2f ∗(s))−1

[54, Theorem 3.3.4].

2. If f is logarithmically homogeneous, then for any t > 0, ∇2f(tx) = 1
t2
· ∇2f(x) [54,

Theorem 2.3.9].
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3. Let w(η) = (x(η), s(η)) be the optimal solution of (PDη). If f is logarithmically
homogeneous, then s(η) = − 1

η
∇f(x(η)) [54, Section 3.4].

With these facts in mind, we can now easily prove the proposition.

Proof of Proposition 5.3. It follows from the definition of ϕη in (5.2) and definition of D1 in
the proposition that ϕη(w) = (D−1

1 x, 1√
η
·H1/2

s(η)s), so it suffices to prove that D1 =
1√
η
·H1/2

s(η).
We have

Hs(η) := ∇2f ∗(s(η)) = ∇2f ∗(− 1
η
∇f(x(η))) = η2∇2f ∗(−∇f(x(η))) = η2[∇2f(x(η))]−1 ,

(D.9)
where the second equality uses item (3.) of Fact D.1, the third equality uses item (2.) of Fact
D.1, and the fourth equality uses item (1.) of Fact D.1. Last of all, it follows from (D.9) that

Hs(η) = η2[Hx(η)]
−1 = ηD2

1 ,

which provides the proof after rearranging and taking square roots.

D.3 Proof of Theorem 5.5

The proof of Theorem 5.5 is more involved than simply applying the complexity guarantees of
Theorems 3.3 and 4.1 due to the fact that the ε-tolerance condition for the rescaled problem
(P̃) does not correspond to the ε-tolerance condition of the original problem (P).

We begin with the following affine invariance properties for w ∈ V .

Proposition D.1. Let G̃ap(·) and Ẽobj(·) denote the duality gap and the objective function
error of the rescaled problem (P̃). Then for any w ∈ V and η > 0, it holds that Gap(w) =

G̃ap(ϕη(w)) and Eobj(w) = Ẽobj(ϕη(w)).

Proof. In the proof we will use w̃ = (x̃, s̃) to denote ϕη(w). Since ϕη(w) ∈ ϕη(V ) = Ṽ and
the rescaled affine subspace Ṽ is {x : AD1x = b} × {s : D⊤

1 A
⊤y + s = D⊤

1 c}, there exists
ỹ ∈ Rm such that (D2AD1)

⊤ỹ + s̃ = D⊤
1 c, which means G̃ap(w̃) = (D⊤

1 c)
⊤x̃− (D2b)

⊤ỹ.
Notice that from Lemma 5.3, s̃ = D1s so (D2AD1)

⊤ỹ+D1s = D⊤
1 c and thus A⊤(D⊤

2 ỹ)+s =
c. Therefore, Gap(w) can be written as c⊤x− b⊤(D⊤

2 ỹ).
According to Lemma 5.3, x̃ = D−1

1 x, so substituting this into the expressions of G̃ap(w̃)

and Gap(w) derived above yields G̃ap(w̃) = Gap(w).
Let Ẽobj(·) denote the objective error of the rescaled problem. Because the duality gap

is invariant under the rescaling, and Ẽobj(w̃) = |G̃ap(x̃, s̃⋆)|+ |G̃ap(x̃⋆, s̃)| for (x̃⋆, s̃⋆) ∈ W⋆,
the objective error also remains invariant for w ∈ V , namely Eobj(w) = Ẽobj(ϕη(w)).

Notice that standard measures of feasibility error such as the distances to K and V , are
not generically invariant under the rescaling transformation. We therefore are led to consider
the following new measure of feasibility error, as a means to the end of proving Theorem 5.5.
For any δ > 0 and w ∈ V , the relative feasibility ratio on (P) is defined as

Efeas(w; δ) := min
w̄∈Wδ

∥F(w; w̄)− w∥
∥F(w; w̄)− w̄∥

(D.10)
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where recall the definition of F(w, w̄) in (3.6). The relative feasibility error of w with
respect to Wδ can be interpreted as a measure of the extent to which Wδ can be expanded,
centered at a specific inner point w̄, such that the expanded Wδ encompasses w. Similarly,
the relative feasibility error of the rescaled problem for w̃ ∈ Ṽ is denoted by Ẽfeas(w̃; δ) :=

minŵ∈W̃δ

∥F̃(w̃;ŵ)−w̃∥
∥F̃(w̃;ŵ)−ŵ∥ . Note that

∥F(w; w̄)− w∥
∥F(w; w̄)− w̄∥

=
∥ϕη(F(w; w̄))− ϕη(w)∥
∥ϕη(F(w; w̄))− ϕη(w̄)∥

=
∥F̃(ϕη(w);ϕη(w̄))− ϕη(w)∥
∥F̃(ϕη(w);ϕη(w̄))− ϕη(w̄)∥

holds for any w ∈ V and w̄ ∈ F , because w, F(w; w̄), and w̄ are collinear. Therefore the
relative feasibility ratio is invariant under ϕη, i.e., Efeas(w; δ) = Ẽfeas(ϕη(w); δ) for any w ∈ V
and η > 0.

The following lemma shows that the relative feasibility error can be bounded from above
and below by the distance to K up to certain factors involving Dδ and rδ.

Lemma D.2. Let w be any point in V . For any δ ≥ Gap(w), the following inequalities hold:

Dist(w,F)
Dδ

≤ Efeas(w; δ) ≤
Dist(w,K)

rδ
. (D.11)

Note from (D.11) that a small value of Efeas(w; δ) implies a small value of Dist(w,F), which
then implies a small value of Dist(w,K) since K ⊆ F .

Proof. To prove the first inequality, let w̄ ∈ Wδ be the point that achieves the minimum in
(D.10), so that Efeas(w; δ) =

∥F(w;w̄)−w∥
∥F(w;w̄)−w̄∥ . Then we have

Dist(w,F) ≤ ∥F(w; w̄)− w∥ = ∥F(w; w̄)− w̄∥ · Efeas(w; δ) ≤ Dδ · Efeas(w; δ) ,

where the last inequality follows from the fact that both F(w; w̄) and w̄ belong to Wδ.
To prove the second inequality, let wδ be the conic center ofWδ (defined in Definition 3.3).

By the definition of the relative feasibility error, ∥F(w;wδ)−w∥
∥F(w;wδ)−wδ∥

≥ Efeas(w; δ). Additionally, from
Lemma 3.2 we have ∥F(w;wδ)−w∥

∥F(w;wδ)−wδ∥
≤ Dist(w,K)

rδ
, and combining these two inequalities furnishes

the proof of the second inequality in (D.11).

The following lemma provides criteria for a candidate solution to the rescaled problem to
be transformed back to a suitably nearly-optimal solution to the original problem.

Lemma D.3. Suppose that α := Gap(w(η)) ≥ min{εobj, εgap}. Let w̃ = (x̃, s̃) satisfy x̃ ∈ K̃p

and s̃ ∈ Ṽd, and also

max{Dist(w̃, Ṽ ),Dist(w̃, K̃)} ≤ εcons · r̃α√
2 ·Dα

, and Ẽobj(w̃) ≤ min{εobj, εgap} (D.12)

for the rescaled problems (P̃) and (D̃y,s). Then w := ϕ−1
η (PṼ (w̃)) satisfies

Dist(w,F) ≤ εcons and Eobj(w) ≤ min{εobj, εgap} . (D.13)
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Proof. To ease the notational burden let ŵ := PṼ (w̃) = (PṼp
(x̃), s̃). Then w = ϕ−1

η (ŵ) ∈ V ,
and since D2AD1c̄ = 0, we have G̃ap(w̃) = G̃ap(ŵ) and Ẽobj(w̃) = Ẽobj(ŵ). Furthermore,
since the duality gap and objective error are both invariant under the rescaling ϕη, it follows
that

G̃ap(w̃) = G̃ap(ŵ) = Gap(w) and Ẽobj(w̃) = Ẽobj(ŵ) = Eobj(w) ,

and therefore Eobj(w) = Ẽobj(w̃) ≤ min{εobj, εgap}. This shows the second inequality in
(D.13).

Again because the relative feasibility error is invariant under the rescaling, we have
Ẽfeas(ŵ;α) = Efeas(w;α). Furthermore, since Gap(w) = G̃ap(w̃) ≤ Ẽobj(w̃) ≤ min{εobj, εgap} ≤
α, it follows from Lemma D.2 that

Dist(w,F) ≤ Dα · Efeas(w;α) = Dα · Ẽfeas(ŵ;α) . (D.14)

Note that Dist(ŵ, K̃) ≤ ∥(x̂ − x̃, ŝ − PK̃d
(ŝ))∥ = ∥(x̂ − x̃, s̃ − PK̃d

(s̃))∥ and ∥x̂ − x̃∥ =

Dist(x̃, Ṽp) = Dist(w̃, Ṽ ), and furthermore ∥s̃ − PK̃d
(s̃)∥ = Dist(s̃, K̃d) = Dist(w̃, K̃). It

then follows that Dist(ŵ, K̃) ≤
√
2 · max{Dist(w̃, Ṽ ),Dist(w̃, K̃)} ≤ εcons·r̃α

Dα
. And since

G̃ap(ŵ) ≤ α, it follows using Lemma D.2 that Ẽfeas(ŵ;α) ≤ εcons
Dα

. Finally, substituting this
inequality into (D.14) yields Dist(w,F) ≤ εcons, which completes the proof.

We now present the proof of Theorem 5.5. We remark that the iteration bound in the
theorem yields a solution wn,0 satisfying (D.13), which is a stricter requirement (and might
be significantly stricter) than the ε-tolerance requirement.

Proof of Theorem 5.5. We first consider the general case of CLP. From Lemma D.3, once
w̃n,0 satisfies (D.12), then wn,0 satisfies (D.13) and hence satisfies the ε-tolerance requirement,
since it always holds that Gap(w) ≤ Eobj(w) for any w and hence Gap(wn,0) ≤ Eobj(w

n,0) ≤
min{εgap, εobj} ≤ εgap. Let us directly apply Theorem 3.3 to the rescaled problem (P̃). Then
the number of OnePDHG iterations required in order to obtain a solution w̃n,0 satisfying
(D.12) is at most

T ≤ Tα := 190κ̃ · D̃α

r̃α
·
[
ln
(
33κ̃ ·Dist(0, W̃⋆)

)
+ ln

(
1

M̃Errε

) ]
+

50κ̃·d̃Hδ
M̃Errε

, (D.15)

where
M̃Errε := min

{
εcons · r̃α√
2 ·Dα

, +∞ , 1
14

(
sup
γ>0

r̃γ
γ

)
·min{εgap, εobj}

}
,

where the middle term above is +∞ because (D.12) does not directly require a bound on
G̃ap(w̃). Note that Theorem 5.2 implies the following inequalities:

D̃α

r̃α
≤ 4ϑf + 4

√
2ϑf , Dist(0, W̃⋆) ≤ 2ϑf+3

√
2ϑf

√
η

, r̃α ≥ 1√
η
, and d̃Hα ≤

4ϑf+4
√

2ϑf
√
η

,

(D.16)
which also implies

sup
γ>0

r̃γ
γ
≥ r̃α

α
≥ 1
√
ηα

, (D.17)
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and hence the following bound on T :

T ≤ κ̃ · (ϑf +
√
2ϑf ) ·

(
760

[
ln
(
33κ̃ ·

(
2ϑf + 3

√
2ϑf

))
+ ln

(
1

√
η·M̃Errε

)]
+ 200

√
η·M̃Errε

)
,

(D.18)
and the following lower bound on √η · M̃Errε:

√
η · M̃Errε ≥ min

{
εcons√
2 ·Dα

,
εgap
14α

,
εobj
14α

}
. (D.19)

Denoting the right-hand side of (D.19) by MErrαε , then the bound (5.11) follows directly
from (D.18) and (D.19).

Let us now consider the case where Kp = Rn
+. Since the duality gap is invariant under

the rescaling transformation, δ̄ is the best suboptimal extreme point gap for both (P) and
(P̃), and so from Theorem 4.1 we have

T ≤ 255κ ·
(
min0<δ≤δ̄

D̃δ

r̃δ

)
·
[
ln
(
33κ̃ ·Dist(0, W̃⋆)

)
+ ln

(
1

M̃Errε

) ]
. (D.20)

For α ≥ δ̄ we have D̃δ̄ ≤ D̃α and r̃δ̄ ≥ δ̄
α
· r̃α (using Lemma B.4), and hence min0<δ≤δ̄

D̃δ

r̃δ
≤

D̃δ̄

r̃δ̄
≤ α

δ̄
· D̃α

r̃α
. And for α < δ̄ we have min0<δ≤δ̄

D̃δ

r̃δ
≤ D̃α

r̃α
. Therefore,

min0<δ≤δ̄
D̃δ

r̃δ
≤ max

{
1, α

δ̄

}
· D̃α

r̃α
≤ 4 ·max

{
1, α

δ̄

}
·
(
ϑf +

√
2ϑf

)
where the last inequality uses (D.16). Finally, notice that ϑf = n for the logarithmic barrier
function f(x) = −

∑n
j=1 xj for Kp = Rn

+. Applying (D.16) and (D.19) to (D.20) yields
(5.13).

E Further details of CP-CGM
In this section we discuss some of the ways in which CP-CGM either is identical to or is
different from the practical IPM in [47, Section 14.2].

First, CP-CGM runs on the rescaled problem (P̃), where D1 and D2 are diagonal rescaling
matrices derived from 10 iterations of Ruiz rescaling, as opposed to the original problem.
Upon termination of CP-CGM, solutions are converted back to the original problem.

Second, CP-CGM incorporates all of the heuristics in [47, Section 14.2] that do not require
solving linear systems. These heuristics include the selection of the centering parameter, the
choice of primal and dual step lengths, and the starting point selection. The practical IPM
in [47, Section 14.2] also uses a step-length parameter ηk (using the notation of [47] which is
very different from our notation in Definition 5.1 which refers to the barrier parameter). In
CP-CGM we set ηk := 0.9 . The starting point for CP-CGM involves computing projections of
the primal and dual zero vectors onto Ṽp and Ṽd, and to do so CP-CGM uses 1, 000 iterations
of CGM to approximately compute these projections.

Lastly, each iteration of CP-CGM solves two linear systems, one for the predictor step
and the other for the corrector step. These two linear systems, which are equations (14.30)
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and (14.35) in [47], share the same coefficient matrix and can be described as follows:0 AT I
A 0 0
S 0 X

∆x
∆y
∆s

 =

−rc−rb
−rxs

 , (E.1)

where, rc, rb, and rxs are different for the two systems. We denote the coefficient matrix and
the right-hand side vector of equation (E.1) as Q and q, respectively. Solving equation (E.1)
can be simplified to solving the following normal equation for ∆y:

AD2A⊤∆y = −rb − AXS−1rc + AS−1rxs (E.2)

where D is the diagonal matrix S−1/2X1/2. Once ∆y is computed, then ∆s and ∆x can be
computed using ∆s = −rc − AT∆y and ∆x = −S−1rxs −XS−1∆s. The matrix AD2A⊤ in
(E.2) is always positive semidefinite so the normal equation (E.2) is solved by the Jacobi
preconditioned CGM [5], which is equivalent to the regular CGM for the linear system with
M−1 multiplied on both sides of (E.2), where M is the diagonal matrix composed of the
diagonal entries of AD2A⊤. The CGM stops when it reaches either (i) m iterations (the number
of rows of A), or (ii) when the recovered solution

(
∆x
∆y
∆s

)
satisfies

∥∥∥Q(∆x
∆y
∆s

)
− q
∥∥∥ ≤ 0.1√

k
· ∥q∥ at

iteration k of the interior-point method.
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