
Exploiting cone approximations in an augmented

Lagrangian method for conic optimization

Mituhiro Fukuda∗ Walter Gómez† Gabriel Haeser‡ Leonardo M. Mito§

June 2, 2024

Abstract

We propose an algorithm for general nonlinear conic programming which does not require the
knowledge of the full cone, but rather a simpler, more tractable, approximation of it. We prove that
the algorithm satisfies a strong global convergence property in the sense that it generates a strong
sequential optimality condition. In particular, a KKT point is necessarily found when a limit point
satisfies Robinson’s condition. We conduct numerical experiments minimizing nonlinear functions
subject to a copositive cone constraint. In order to do this, we consider a well known polyhedral
approximation of this cone by means of refining the polyhedral constraints after each augmented
Lagrangian iteration. We show that our strategy outperforms the standard approach of considering
a close polyhedral approximation of the full copositive cone in every iteration.

Keywords: nonlinear conic programming, sequential optimality condition, augmented Lagrangian
method, nonlinear copositive programming

MSC 2020: 90C30, 49M37, 90C26

1 Introduction

We study a very general class of optimization problems, sometimes referred to as nonlinear conic pro-
gramming (NCP), which can be stated in the form:

Minimize
x∈Rn

f(x),

subject to g(x) ∈ K,
(NCP)

where f : Rn → R and g : Rn → E are continuously differentiable, E is a finite-dimensional vector space
equipped with an inner product ⟨·, ·⟩, and K ⊂ E is a nonempty closed convex cone. We will denote the
feasible set of (NCP) by Ω, which is assumed to be nonempty, and the Lagrangian function of (NCP) is
defined as L(x, µ) = f(x) + ⟨g(x), µ⟩.

Despite its generality and simplicity of representation, studies on practical methods for solving (NCP)
and even some of its particular cases are somewhat rare in the current literature, in comparison with
the cases when K is polyhedral, i.e., nonlinear programming (NLP); or when g is affine, i.e., conic
programming (CP). This is no surprise, in view of the fact that evaluating feasibility in (N)CP may be
computationally expensive or even NP-Hard, such as in the particular case of copositive programming
(COP). For such intricate problems, some authors have found sequences of polyhedral approximations
of K and used them to compute bounds for the solutions of the original problems – see, for instance,
[5, 7, 8] and references therein for additional information on COP. A particularly interesting algorithmic
approach for solving COP problems was presented in Bundfuss and Dür [6] and also in Yıldırım [16], which
consists of computing increasingly better polyhedral approximations of K and solving the approximate
problems induced by them to generate a sequence of approximate solutions for the original problem. Both
works [6, 16] present great numerical results, using distinct approximations of K.

∗Center for Mathematics, Computing and Cognition, Federal University of ABC, Santo André, São Paulo, Brazil. E-
mail: mituhiro.f@ufabc.edu.br; Department of Computer Science, University of São Paulo, São Paulo, Brazil; Department
of Mathematical and Computing Science, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan

†Departamento de Ingenieŕıa Matemática, Universidad de la Frontera, Temuco, Chile. E-mail: walter.gomez@ufrontera.cl
‡Departamento de Matemática Aplicada, Universidade de São Paulo, São Paulo, Brazil. E-mail: ghaeser@ime.usp.br
§Departamento de Matemática Aplicada, Universidade de São Paulo, São Paulo, Brazil. E-mail: leonardom-

mito@gmail.com

1

Recently, Andreani et al. [1] extended the so-called “sequential optimality conditions” from NLP to
the NCP world. In summary, sequential optimality conditions are parametric perturbed forms of the
traditional Karush-Kuhn-Tucker (KKT) conditions with three distinguishing properties:

1. They are always fulfilled at local minimizers, even for degenerate problems;

2. They are equivalent to the standard KKT condition in the presence of a constraint qualification;

3. They are naturally satisfied by all feasible accumulation points of the output sequence of at least
one practical algorithm.

The interested reader may check the earlier texts on sequential conditions in NLP [2, 4] and an
extension to nonlinear semidefinite programming (NSDP) [3] for more details. All these works use an
augmented Lagrangian method to illustrate item 3 of the list above, but one of the most critical disadvan-
tages of it in the conic context is the need of a very expensive projection onto K that must be computed
several times per iteration. In this paper, we will study the effects of replacing K with increasingly
better polyhedral approximations of it, and the novelty in our proposal is the possibility of improving
approximation mid-execution. As far as we are concerned, there is no previous work that allows this in
the literature. Our first concern is to build a solid convergence theory for our method, which is done by
means of a modified variant of a sequential optimality condition called approximate gradient projection
(AGP), first introduced in [12] for NLP and then extended to the conic framework in [1].

To illustrate the behavior of our method, we use it for solving a nonlinear COP problem via Yıldırım’s
approximations [16].

2 General framework

We study situations where the cone K can be approximated by a sequence {Kk}k∈N that converges to K
in some sense, such that projecting onto each Kk is relatively easy.

Definition 2.1 (Continuous approximation of K). A sequence {Kk}k∈N of nonempty closed convex cones
is a continuous approximation for K when:

• For every sequence {yk}k∈N → y with yk ∈ Kk for all k ∈ N, we must have y ∈ K. In other words,
lim sup

k∈N
Kk ⊆ K.

• For every y ∈ K, there exists a sequence {yk}k∈N → y with yk ∈ Kk, for all k ∈ N. In other words,
K ⊆ lim inf

k∈N
Kk.

When Definition 2.1 holds, we denote it by lim
k∈N

Kk = K. Let us begin with a technical lemma regarding

continuous cone approximations, which is simply a generalization of some classical results on projections:

Lemma 2.1. Let K and {Kk}k∈N be nonempty closed convex cones in E. Then:

1. If K ⊆ lim inf
k∈N

Kk, then ΠKk(z) → z for every z ∈ K;

2. If lim
k∈N

Kk = K, then ΠKk(zk) → ΠK(z) for every converging sequence {zk}k∈N → z ∈ E.

Proof.

1. Let z ∈ K. By the hypothesis, there exists a sequence {zk}k∈N → z such that zk ∈ Kk for each
k ∈ N. From the definition of projection, ∥ΠKk(z)− z∥ ⩽ ∥zk − z∥, whence follows the result;

2. Since the projection is nonexpansive and 0 ∈ Kk, {ΠKk(z)}k∈N is bounded by ∥z∥. Let N ⊆ N be
any infinite subset of N such that {ΠKk(z)}k∈N converges to, say, w ∈ E. Since lim sup

k∈N
Kk ⊆ K we

obtain w ∈ K. Now, for every y ∈ K, it follows from the previous item that

∥z − w∥ = lim
k∈N

∥z −ΠKk(z)∥ ⩽ lim
k∈N

∥z −ΠKk(y)∥ = ∥z − y∥,

which means w = ΠK(z), hence lim
k∈N

ΠKk(z) = ΠK(z). Now,

∥ΠKk(zk)−ΠK(z)∥ ⩽ ∥ΠKk(zk)−ΠKk(z)∥+ ∥ΠKk(z)−ΠK(z)∥
⩽ ∥zk − z∥+ ∥ΠKk(z)−ΠK(z)∥ → 0,

which completes the proof.

2

To study global convergence of algorithms that benefit from continuous approximations of K, we
propose an adapted version of the sequential optimality condition from [1], called approximate gradient
projection (AGP):

Definition 2.2 (R-AGP). Let {Kk}k∈N be a continuous approximation of K, in the sense of Definition
2.1. We say a feasible point x̄ of (NCP) satisfies the relaxed cone AGP (R-AGP) condition if there exist
sequences {xk}k∈N → x̄ and {µk}k∈N such that µk ∈ (Kk)o for every k ∈ N and

1. ∇L(xk, µk) := ∇f(xk) +Dg(xk)∗[µk] → 0,

2. ⟨µk,ΠKk(g(xk))⟩ → 0,

where ΠKk(g(xk)) is the orthogonal projection of g(xk) onto Kk.

Next, we prove that R-AGP is a necessary optimality condition. For this purpose, we prove the
convergence of a variation of the external penalty algorithm mid-proof. This algorithm, even though
it seems novel, is not highlighted here because R-AGP will be used later for building the convergence
theory of an Augmented Lagrangian algorithm, which is where we intend to focus. For doing so, besides
continuity of the cone approximation, we assume also that locally the original feasible set g−1(K) is
asymptotically included in the approximate feasible set g−1(Kk).

Theorem 2.2. If x̄ is a local minimizer of (NCP), {Kk}k∈N is a continuous approximation of K, and
there is a δ > 0 such that g−1(K) ∩B[x̄, δ] ⊆ lim inf

k∈N
g−1(Kk) ∩B[x̄, δ], then x̄ satisfies R-AGP.

Proof. Let us assume that δ > 0 is small enough such that f(x̄) ≤ f(x) for all x ∈ g−1(K) ∩ B[x̄, δ] and
let {ρk}k∈N → ∞. Consider the regularized penalized subproblem of (NCP):

Minimize
x∈Rn

Pk(x)
.
= f(x) +

ρk
2
∥Π(Kk)o(g(x))∥2 +

1

2
∥x− x̄∥2

subject to ∥x− x̄∥ ⩽ δ.
(RegP-k)

Let {xk}k∈N be a sequence of global minimizers of (RegP-k), which is bounded by the ball centered at
x̄ with radius δ, and let w be an arbitrary limit point of it. Then, by the optimality of xk, we have
Pk(x

k) ⩽ Pk(x̄) for every k ∈ N, which implies

ρk
2
∥Π(Kk)o(g(x̄))∥2 ⩾ f(xk)− f(x̄) +

ρk
2
∥Π(Kk)o(g(x

k))∥2 + 1

2
∥xk − x̄∥2. (1)

Dividing everything by
ρk
2
, we obtain

∥Π(Kk)o(g(x̄))∥2 ⩾
2(f(xk)− f(x̄))

ρk
+ ∥Π(Kk)o(g(x

k))∥2 + ∥xk − x̄∥2

ρk
⩾

2(f(xk)− f(x̄))

ρk
, (2)

for every k ∈ N. Since Π(Kk)o(g(x̄)) = g(x̄)−ΠKk(g(x̄)) → 0 (Lemma 2.1 item 1) and {xk}k∈N is bounded,
and ρk → ∞, we obtain

lim
k→∞

∥Π(Kk)o(g(x
k))∥ = 0, (3)

which means g(w) ∈ K because

∥ΠKo(g(xk))∥ ⩽ ∥g(xk)−ΠKk(g(xk))∥+ ∥ΠKk(g(xk))−ΠK(g(x
k))∥,

given that both terms vanish due to (3) and Lemma 2.1 item 2, respectively.
For every z ∈ g−1(K) ∩B[x̄, δ], there is a sequence {zk}k∈N → z such that zk ∈ g−1(Kk) ∩B[x̄, δ], so

f(xk) + (1/2)∥xk − x̄∥2 ⩽ Pk(x
k) ⩽ Pk(z

k) = f(zk) + (1/2)∥zk − x̄∥2.

Taking limits, we obtain f(w) + (1/2)∥w − x̄∥2 ⩽ f(z) + (1/2)∥z − x̄∥2. Hence, w is a global minimizer
of the following localized problem:

Minimize
x∈Rn

f(x) +
1

2
∥x− x̄∥2

subject to g(x) ∈ K
∥x− x̄∥ ⩽ δ,

(Loc-NCP)

3

but the unique global minimizer of (Loc-NCP) is x̄, which means w = x̄. For k sufficiently large, we have
∥xk − x̄∥ < δ and, by the first-order conditions for (RegP-k), we obtain

∇f(xk) +Dg(xk)∗[ρkΠ(Kk)o(g(x
k))] = −(xk − x̄). (4)

Defining µk .
= ρkΠ(Kk)o(g(x

k)) for every k ∈ N is enough to finish the proof, because of (4) and

⟨µk,ΠKk(g(xk))⟩ = ρk⟨Π(Kk)o(g(x
k)),ΠKk(g(xk))⟩ = 0,

with xk → x̄.

It is not true that the continuity of g together with the fact {Kk}k∈N is a continuous approximation of
K implies that g−1(K) ⊆ lim inf g−1(Kk), even if all sets involved are closed convex cones. For example,
take

g(x)
.
=

(
x+ 1
x2

)
and K .

= cone((1, 0)) and Kk .
= cone((1,−1/k)), ∀k ∈ N.

In this case, we have Kk → K, but g−1(K) = {(1, 0)} and g−1(Kk) = ∅ for every k ∈ N. In order to ensure
the validity of this inclusion, we will consider from now on that {Kk}k∈N is an outer approximation of
K; that is, if K ⊆ Kk for every k ∈ N, then of course g−1(K) ⊆ g−1(Kk) for every k ∈ N, whence follows
that g−1(K) ⊆ lim inf

k∈N
g−1(Kk).

2.1 An Augmented Lagrangian variant with projections onto Kk

Given a positive scalar sequence {ρk}k∈N, a continuous approximation {Kk}k∈N of K, a compact set B
such that B ∩ (Kk)o ̸= ∅ for every k ∈ N together with a sequence {µ̂k}k∈N ⊂ B, let Lρk,µ̂k : Rn → R be
an augmented Lagrangian function with a cone approximation, defined as

Lρk,µ̂k(x)
.
= f(x) +

ρk
2

∥∥∥∥Π(Kk)o

(
g(x) +

µ̂k

ρk

)∥∥∥∥2 − 1

2ρk

∥∥µ̂k
∥∥2 . (5)

Now, consider the Algorithm 1.

Algorithm 1 General framework: Augmented Lagrangian

Inputs: a sequence {εk}k∈N ⊂ R++ of scalars such that εk → 0; a nonempty bounded set B ∩ Ko ̸= ∅;
real parameters τ > 1, σ ∈ (0, 1), and ρ0 > 0; V −1 ∈ E; and initial points (x−1, µ̂0) ∈ Rn × B ∩ (K0)o.
For every k ∈ N:

1. Compute some point xk such that
∥∇Lρk,µ̂k(xk)∥ ≤ εk, (6)

using an iterative method starting from xk−1;

2. Update the multiplier

µk .
= ρkΠ(Kk)o

(
g(xk) +

µ̂k

ρk

)
, (7)

and define µ̂k+1 as the projection of µk onto B ∩ (Kk)o; for the standard choice of B as the ball of

radius R around the origin, take µ̂k+1 .
=

min{∥µk∥, R}
∥µk∥

µk;

3. Define

V k .
=

µ̂k

ρk
−Π(Kk)o

(
g(xk) +

µ̂k

ρk

)
; (8)

4. If ∥V k∥ ≤ σ∥V k−1∥, set ρk+1
.
= ρk. Otherwise, choose some ρk+1 ≥ τρk.

4

Note that Steps 3 and 4 imply that either ρk → ∞ or there is some k0 ∈ N such that ρk = ρk0

for every k > k0 and V k → 0. With this in mind, we proceed by showing that Algorithm 1 generates
sequences whose limit points satisfy R-AGP.

Theorem 2.3. Let x̄ be a feasible limit point of a sequence {xk}k∈N generated by Algorithm 1, for any
given choice of parameters {µ̂k}k∈N and {ρk}k∈N conforming to Steps 2 and 3. Then, x̄ satisfies R-AGP.

Proof. First, let us assume for simplicity that xk → x̄. Let {µk}k∈N be as in (7) and observe that
∇Lρk,µ̂k(xk) = ∇xL(x

k, µk) → 0. If ρk → ∞, then

⟨ΠKk(g(xk)), µk⟩ = ρk

〈
ΠKk(g(xk))−ΠKk

(
g(xk) +

µ̂k

ρk

)
,Π(Kk)o

(
g(xk) +

µ̂k

ρk

)〉
which implies (using Cauchy-Schwarz inequality and the nonexpansiveness of the projection) that

|⟨ΠKk(g(xk)), µk⟩| ⩽ ρk

∥∥∥∥ΠKk(g(xk))−ΠKk

(
g(xk) +

µ̂k

ρk

)∥∥∥∥∥∥∥∥Π(Kk)o

(
g(xk) +

µ̂k

ρk

)∥∥∥∥
⩽ ρk

∥∥∥∥ µ̂k

ρk

∥∥∥∥∥∥∥∥Π(Kk)o

(
g(xk) +

µ̂k

ρk

)∥∥∥∥
but due to Lemma 2.1 item 2, since ρk → ∞ we know that ∥Π(Kk)o(g(x

k)+ µ̂k/ρk)∥ → ∥ΠKo(g(x̄))∥ = 0,

so ⟨ΠKk(g(xk)), µk⟩ → 0. If ρk = ρk0
for some k0 and every k ≥ k0, then using the fact

µk = µ̂k − ρkV
k

we have that
⟨ΠKk(g(xk)), µk⟩ = ⟨ΠKk(g(xk)), µ̂k⟩ − ⟨ΠKk(g(xk)), ρkV

k⟩,

but for any convergent subsequence of {µ̂k}k∈N, which we will assume to be itself, so {µ̂k}k∈N → µ̄, we
recall that V k → 0 and ρk → ρk0

to obtain that

⟨ΠKk(g(xk)), µk⟩ → ⟨ΠK(g(x̄)), µ̄⟩ = ⟨g(x̄), µ̄⟩ = 0,

which follows from V k → 0, since it implies µ̄ = ΠKo(ρk0
g(x̄) + µ̄), which in turn holds if, and only if,

µ̄ ∈ Ko, g(x̄) ∈ K, and ⟨g(x̄), µ̄⟩ = 01. Thus, x̄ satisfies R-AGP.

The proof above is an adaptation of the proof of [1, Theorem 4.1]. Moreover, it is easy to show that
if x̄ satisfies R-AGP and Robinson’s CQ:

0 ∈ int(Im(Dg(x̄)) +K − g(x̄)),

then x̄ must also satisfy the KKT conditions. This is a consequence of the boundedness of {µk}k∈N in
the presence of Robinson’s CQ. Indeed, if {µk}k∈N is not bounded, then we may take a subsequence such
that ∥µk∥ → ∞, so

lim
k→∞

∇f(xk)

∥µk∥
+Dg(xk)∗

[
µk

∥µk∥

]
= lim

k→∞
Dg(xk)∗

[
µk

∥µk∥

]
= 0

but on the other hand we also have〈
ΠKk(g(xk)),

µk

∥µk∥

〉
→ 0 and ΠKk(g(xk)) → ΠK(g(x̄)) = g(x̄)

by Lemma 2.1 item 2. Define H
.
= Im(Dg(x̄)) +K− g(x̄) and the above reasoning tells us that any limit

point µ̃ ̸= 0 of {µk/∥µk∥}k∈N must belong to Ho = Ker(Dg(x̄)) ∩ Ko ∩ {g(x̄)}⊥. However, since Ho is
a cone, this also means that αµ̃ ∈ Ho for every α > 0. On the other hand, by Robinson’s CQ, we also
have that αµ̃ ∈ H for every α > 0 small enough, implying that µ̃ = 0, which is a contradiction.

1In general, for any closed convex cone K ⊆ E and any y, z ∈ E, note that z = ΠKo (y + z) implies that ΠK(y + z) =
y + z −ΠKo (y + z) = y.

5

3 Continuous (polyhedral) approximation of the cone of copo-
sitive matrices

Now, we illustrate a continuous approximation of K (Definition 2.1) by polyhedra through a concrete
example.

The cone of copositive matrices and its dual, the cone of completely positive matrices, are well
studied closed convex cones. It is known that many NP -hard problems can be formulated as convex
problems employing these cones [6, 7, 8, 15]. Among several inner and outer hierarchical and asymptotic
approximations of these cones, we consider the polyhedral approximation proposed by Yıldırım [16], due
to its simplicity and cheap orthogonal projection onto.

For integers m ≥ 1 and r ≥ 0, consider the discrete set of vectors in Rm formed by regular grids of
rational points on the unit simplex:

δmr
.
=

r⋃
k=0

{z ∈ ∆m : (k + 2)z ∈ Nm},

where ∆m
.
= {y ∈ Rm : eT y = 1} is the (m − 1)-dimensional unit simplex. Let ℓmr := |δmr | be the

number of elements in δmr , which can be roughly upper bounded by m2(mr+1 − 1)/(m− 1) [16].
Let Sm be the set of m×m symmetric matrices. For each r = 0, 1, . . ., we define the following closed

convex cones, which in fact are polyhedra:

Om
r

.
= {y ∈ Sm : dT yd ≥ 0,∀d ∈ δmr }

and its dual

(Om
r)

∗ .
=

∑
d∈δmr

λddd
T : λd ≥ 0

 , (9)

which give an outer approximation of the closed convex cone of copositive matrices

Cm .
= {y ∈ Sm : uT yu ≥ 0,∀u ∈ Rm

+}

and an inner approximation of the closed convex cone of completely positive matrices

(Cm)
∗ .
=

{
k∑

i=1

(vi)(vi)
T : k ≥ 1, vi ∈ Rm

+

}
,

respectively.
It can be shown [16] that

(Om
0)∗ ⊆ (Om

1)∗ ⊆ · · · ⊆ (Cm)∗ ⊆ Sm
+ ∩Nm ⊆ Sm

+ ⊆ Sm
+ +Nm ⊆ Cm ⊆ · · · ⊆ Om

1 ⊆ Om
0 ,

cl

(⋃
r∈N

(Om
r)∗

)
= (Cm)∗, and

⋂
r∈N

Om
r = Cm for Nm := {y ∈ Sm : yij ≥ 0,∀i, j = 1, . . . ,m} where

Sm
+ (Sm

−) is the cone of m ×m positive (negative) semidefinite symmetric matrices. Moreover (Cm)∗ =
Sm
+ ∩Nm, Cm = Sm

+ +Nm for m ≤ 4, and {Om
r }r∈N is a continuous approximation of Cm (Definition 2.1).

An advantage of employing these polyhedral approximations is that we can obtain an orthogonal
projection onto them relatively inexpensive. Namely, for y ∈ Sm, let us compute its orthogonal projection
onto the polar cone of Kk := {y ∈ Sm : dTi ydi ≥ 0, ∀di ∈ Kk} ⊇ Om

r̄ for some r̄ ≥ 0 and ∅ ≠ Kk ⊆ δmr̄ .
Since Π(Kk)o(y) = −Π(Kk)∗(−y), we need to solve the following optimization problem to obtain the
orthogonal projection −z of y: {

min ∥ − y − z∥2F
subject to z ∈ (Kk)∗.

Using the definition of Kk, the above problem is in fact a convex quadratic program with |Kk| non-
negative variables: {

min λTRλ+ 2sTλ

subject to λ ∈ R|Kk|
+

(10)

6

for Rij = (dTi dj)
2 and si = dTi ydi, where di ∈ Kk for (i, j = 1, 2, . . . , |Kk|). This is due to the fact that

if we display all vectors of Kk as rows of a larger matrix

D
.
=


dT1
dT2
...

dT|Kk|

 ,

the matrix R will be the self Hadamard product of the Gram matrix DDT , which is positive semidefinite.
Thus, R = (DDT) ◦ (DDT) is also positive semidefinite.

As we can observe, other closed convex cones such as exponential, hyperbolicity [10] or any other cone
can be treated in a similar manner as long as we have a continuous approximation of them by polyhedra.
This will permit us to minimize nonlinear functions over these cones by our proposed algorithm.

4 Numerical Experiments

4.1 Test problems

As of our knowledge, there is no benchmark problems or reported computational results on minimizing
nonlinear objective functions on difficult convex cones such as the copositive one. Therefore, we created
a set of 14 (NCP) test problems in order to verify the performance of the proposed algorithm. Our test
problems will have the (NCP) structure

Minimize
x∈Rn

f(x),

subject to g(x) ∈ K,

with f(x) a selected nonlinear objective functions from [13, 11, 14] (see Table 1) and g(x) = Q0+

n∑
i=1

xiQi

a randomly selected linear matrix conic constraint. The function g(x) is taken linear just to simplify the
random generation, but for the algorithm this is not a critical issue. In any case, the considered constraint
g(x) ∈ K is not linear in its nature, and hard due to the difficulty already compressed in the cone K.

We set K = Cm and generated g(x) for a given nonlinear objective function f : Rn → R by the
following procedure:

• Fix a known local minimal solution x∗ ∈ Rn of the objective f (see Table 1).

• Choose a randomly generated vector x̄ ∈ Rn where each component is from uniformly distributed
samples on the interval [10, 100].

• Select two positive semidefinite symmetric matrices, P1 and P2, whose eigenvalues are from uni-
formly distributed samples on the interval [0, 1].

• Set the matrix variables Q0, Q1, . . . , Qn ∈ Sm as a solution of the following semidefinite program

min
Q0,...,Qn∈Sm

tr(Q0 +

n∑
i=1

x̄iQi)

subject to Q0 +

n∑
i=1

x∗
iQi + P1 ∈ Sm

−

Q0 +

n∑
i=1

x̄iQi − P2 ∈ Sm
+ .

The above procedure guarantees that g(x)
.
= Q0 +

n∑
i=1

xiQi is such that g(x∗) and g(x̄) have non-

positive and non-negative eigenvalues, respectively. Therefore, g(x∗) /∈ K and g(x̄) ∈ K. Cvxpy ver-
sion 1.3.1 was used to solve the above semidefinite program.

7

Table 1: Nonlinear objective functions f(x) for (NCP).

function’s name function f(x) known local min. solutions

convex quadratic (cq) x2
1 + x2

2 (0, 0)

fractional convex (fc) x2
1/(1 + |x1|) + x2

2/(1 + |x2|) (0, 0)

extended Rosenbrock (eR) [14]

n−1∑
i=1

(1− xi)
2 + 100(xi+1 − x2

i)
2 (1, 1, . . . , 1)

Freudenstein and Roth (FR) [−13 + x1 + ((5− x2)x2 − 2)x2]
2 (5, 4) and

[14] +[−29 + x1 + ((x2 + 1)x2 − 14)x2]
2 (11.41 . . . ,−0.8968 . . .)

Powell badly scaled (Pbs) [14] (104x1x2 − 1)2 + (e−x1 + e−x2 − 1.0001)2 (1.098 . . . · 10−5, 9.106 . . .)

Beale (B) [14] [1.5− x1(1− x2)]
2 + [2.25− x1(1− x2

2)]
2 (3, 0.5)

+[2.625− x1(1− x3
2)]

2

Powell singular (Ps) [14] (x1 + 10x2)
2 +

√
5(x3 − x4)

2 + (x2 − 2x3)
4 (0, 0, 0, 0)

+10(x1 − x4)
4

Wood (W) [14] 100(x2 − x2
1)

2 + (1− x1)
2 + 90(x4 − x2

3)
2 (1, 1, 1, 1)

+(1− x3)
2 + 10(x2 + x4 − 2)2 + (x2 − x4)

2/10

quartic polynomial (qp)
n∑

i=1

(xi − 1)2 +

[
n∑

i=1

i(xi − 1)

]2

+

[
n∑

i=1

i(xi − 1)

]4

(1, 1, . . . , 1)

Luenberger-Ye (LY) [11] x2
1 − 5x1x2 + x4

2 − 25x1 − 8x2 (20, 3)

ex4 1 5 [13] 2x2
1 − 1.05x4

1 +
5

30
x6
1 − x1x2 + x2

2 (0, 0) and

† (±1.74755,±0.97378)

ex8 1 4 [13] 12x2
1 − 6.3x4

1 + x6
1 − 6x1x2 + 6x2

2 (0, 0)

ex8 1 5 [13] 4x2
1 − 2.1x4

1 +
1

3
x6
1 + x1x2 − 4x2

2 + 4x4
2 (0, 0) and

(0.08984,−0.71266)

ex8 1 6 [13] [0.1 + (x1 − 4) + (x2 − 4)2]−1 (1.0004, 1.0004) and

−[0.2 + (x1 − 1)2 + (x2 − 1)2]−1 (3.99995, 3.99995)

−[0.2 + (x1 − 8)2 + (x2 − 8)2]−1

† Not reported in [13].

4.2 Details of the implementation

Algorithm 1 computes an approximate local optimal solution when ∥∇Lρk,µ̂k(xk)∥ and ∥V k∥ are small
enough since they correspond to the norms of derivatives of the safeguarded augmented Lagrangian
function Lρ,µ̂(x) in relation to xk and µ̂k, respectively. Therefore, {xk}k∈N and {µk}k∈N computed by
Algorithm 1 are sequences which define a limit point x̄ satisfying R-AGP according to Theorem 2.3.

Simple schemes were sought to define {εk}k∈N and {Kk}k∈N in Algorithm 1. Among others, the em-
pirical choice εk

.
= min{ε0, ∥V k∥max} seemed to provide fast convergence, where ∥V ∥max = max

1≤i,j≤m
|Vij |.

This strategy revealed to be superior than a conventional choice εk
.
= ηkε0 for 0 < η < 1 which guarantees

εk → 0. Although our strategy may not guarantee εk → 0, it appears to be reasonable when we expect
that ∥V k∥max → 0, whenever we succeed to compute xk satisfying (6) at every iteration.

The strategy to choose {Kk}k∈N has more variations and after some tests, we decided that the best
strategy was to fix first the positive integers rmax, which defines Om

rmax
⊇ Cm (see Section 3), and

ζ < |δmrmax
| − |δm0 |. Then, we order all vectors in δmrmax

such that the first ℓm0 = |δm0 | elements are
the vectors in δm0 (in any order), followed by the vectors in δm1 \δm0 (in any order), until the vectors in
δmrmax

\δmrmax−1 (in any order). Set K0 .
= δm0 in Kk = {y ∈ Sm : dTi ydi ≥ 0, ∀di ∈ Kk}, and Kk .

=

Kk−1∪{first ζ vectors (whenever possible) in δmrmax
which are not in Kk−1 in the above order}. That is,

at every iteration of Algorithm 1, Kk is defined by |Kk| vectors which has exactly ζ more vectors than
|Kk−1|, unless 0 < |δmrmax

\Kk−1| < ζ. In our numerical experiments (see Section 4.3), we considered
test problems for m = 3 and rmax = 15 which gives ℓmrmax

= 901, and m = 5 and rmax = 7 which gives
ℓmrmax

= 1816. Notice that in order for our approximation of K = Cm to be continuous as in Definition 2.1,
we would need to keep approximating the sets δmr for r > rmax, however this is numerically intractable.

Another detail apparently hidden in the implementation of Algorithm 1 is the “size” of the bounded
set B which we set as the ball of radius R, {x ∈ Rn : ∥x∥∞ ≤ R}. At every iteration, we need to project
µk onto B at step 2 and R should be large enough to not bound the real size of the Lagrange multiplier
µ̂k+1 ∈ B ∩ (Kk)◦. In the numerical experiments, we set R = 1012.

Finally, a scaling of the safeguarded augmented Lagrangian function Lρk,µ̂k(x) is effective, specially
because some objective functions f(x) are badly scaled. We divided the function Lρk,µ̂k(x) (5) by the

average of the first five iterations of max{1, ∥∇Lρk,µ̂k(xk−1)∥∞, ∥∇f(xk−1)∥∞}.

8

4.3 Numerical results

All numerical experiments were performed on Intel Core i7-10700 (2.90GHz, 8 cores) processor with 8GB
of memory running python 3.9.16. Since the function (5) is only once differentiable [9], scipy.optimize
function with option “method=’BFGS’ ” was used to solve it with “gtol=εk”. This option was the best
choice to have less failure to compute an approximate xk satisfying (6), which seems to be the achilles
heel of the algorithm. The convex quadratic problem (10) on the other hand was solved by mosek 10.0.43.

We adopted the following stopping criterion for Algorithm 1. The algorithm stops successfully if
∥∇Lρk,µ̂k(xk)∥ ≤ εL, ∥V ∥max ≤ εV , and r = rmax. We forcefully stop the algorithm whenever we fail
to compute (6) in overall of 20% of iterations, respecting a minimum of 14 iterations, since we observed
that Algorithm 1 fails to converge whenever we cannot compute xk satisfying (6) in some consecutive
iterations.

The following parameter values were set for Algorithm 1: each coordenate of x−1 ∈ Rn randomly

chosen from interval [−100, 100], V −1 =
µ̂0

ρ0
− Π(K0)o

(
g(x−1) +

µ̂0

ρ0

)
, µ̂0 = RI, R = 1012, σ = 0.9,

τ = 2.0, εV = εL = 10−5; and ρ0 = 0.1, ε0 = 1.0 for m = 3, and ρ0 = 1.0, ε0 = 0.1 for m = 5,
respectively. I is the m×m identity matrix.

Our first experiment aims to determine the parameter ζ, which is the number of vectors to add at
every iteration to form Kk from Kk−1 (see Section 3). Figures 1 and 2 show the performance profile
in terms of wall-clock time when solving the 14 test problems described in Subsection 4.1 for matrix
orders m = 3 and m = 5, respectively. We can conclude that, in fact, there is a clear preference for the
parameter ζ and it depends on the matrix sizes in this particular setting. Therefore, we fix ζ = 45 and
ζ = 70 for the problems with matrix orders m = 3 and m = 5, respectively, in the main part of the
numerical experiments.

2 4 6 8 10 12 14
τ

0.2

0.4

0.6

0.8

ρ s
(τ
)

Performance profile for wall-clock time, m=3 and 15 ≤ ζ ≤ 45

45
35
25
15

1 2 3 4 5
τ

0.2

0.4

0.6

0.8

ρ s
(τ
)

Performance profile for wall-clock time, m=3 and 45 ≤ ζ ≤ 75

45
55
65
75

Figure 1: Performance profile for m = 3 when solving 14 problems by the “proposed” method for values
of ζ = 15, 25, 35, 45, 55, 65, and 75. It shows that ζ = 45 is the best choice.

In order to measure the effectiveness of our proposal in practice, we compared our algorithm to the
standard augmented Lagrangian method applied to (NCP) where we just considered K0 = K1 = · · · =
δmrmax

. That is, the Kk is fixed to the best approximation from the first iteration. We refer to this approach
as “standard” in our numerical results in contrast to “proposed” for our proposal.

Table 2 details the numerical results for 14 problems when m = 3 and m = 5. The numbers of third
and fourth columns are in boldface when they meet the stopping criterion as well as the column for r.
The values of this column should be equal to 15 (when m = 3) and 7 (when m = 5), which correspond
to the rmax fixed beforehand. Observe that in problems such as “fc”, “proposed” stops without attaining
the pre-defined approximation for K, where r should be 15 and 7 (instead of 14 and 5) due to excessive
failure (4 out of 17 iterations and 10 out of 14 iterations) to satisfy (6), respectively. The column “fails”
indicates the number of times (6) is not met for the current εk among all iterations at “it.”

We also computed min
y∈Sm

+ +N n
∥g(xk)− y∥F that gave values between 3.6e-15 to 6.9e-02, omitted from

the table. If this value is close to zero, we can understand that g(xk) ∈ K = Cm, since Sm
++Nm ⊆ Cm, with

equality holding for m ≤ 4 (see Section 3). For instance for problem “Pbs” with m = 3 and “proposed”,
we obtained this smallest value, indicating that g(xk) ∈ C3, while for problem “LY” with m = 5, both

9

100 200 300 400 500 600
τ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

ρ s
(τ
)

Performance profile for wall-clock time, m=5 and 30 ≤ ζ ≤ 110

30
50
70
90
110

Figure 2: Performance profile for m = 5 when solving 14 problems by the “proposed” method for values
of ζ = 30, 50, 70, 90, and 110. It shows that ζ = 70 is preferred.

for “proposed” and “stardard”, we obtained this largest value indicating that g(xk) ̸∈ S5
+ +N 5, but not

certain whether g(xk) ∈ C5.
In general, the gradual polyhedral approximation of the closed convex cone K = Cm, which we

are proposing, seems superior than considering a standard augmented Lagrangian method with fixed
approximation Kk from the beginning. This can be easily concluded from Figure 3, which show the
performance profile for the wall-clock time in Table 2, when m = 3 and m = 5, respectively. Observe
that some instances could not be solved at all by neither of methods, specially for the case m = 5, showing
that some nonlinear functions can be challenging for these type of algorithms.

In Table 2, the last column gives the average wall-clock time per iteration, which starts at iteration
0. These values are only reference values since each iteration requires different amount of time, and more
time is required when fail occurs due to increasing BFGS iterations to minimize (5). As we can observe, in
general, “standard” requires more time per iteration than “proposed”, because it needs to solve a larger
problem with K0 = δmmax from the first iterations, that is, larger problems to minimize in the projection
(10). In the “proposed” method, K0 is set to δm0 and gradually increased. There are few exceptions, “B”
for m = 5, “Ps” for m = 3, and “W” for m = 3, even removing the cases when “proposed” has more
failed iterations than “standard”. We believe that these are due to the averaging of the computational
time since all these cases have a higher number of iterations than other cases.

1.0 1.5 2.0 2.5 3.0 3.5
τ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ρ s
(τ

)

Performance profile for wall-clock time, m=3 and ζ=45

proposed method
standard method

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
τ

0.30

0.35

0.40

0.45

0.50

ρ s
(τ

)

Performance profile for wall-clock time, m=5 and ζ=70

proposed method
standard method

Figure 3: Performance profile for m = 3 (left) and m = 5 (right) when solving 14 problems by the
“proposed” method and the “standard” augmented Lagrangian method.

In conclusion, the “proposed” method can save computation time per iteration in the first iterations
and a careful (and maybe conservative) update of the method seems to avoid the failure of satisfying
∥∇Lρk,µ̂k(xk)∥ ≤ εk (6) in later iterations as it happens for the “standard” method.

10

Table 2: Numerical results for 14 problems when solving by the proposed method (“proposed”) and the
“standard” augmented Lagrangian method with order of matrices m = 3 and m = 5. It is considered
solved whenever ∥∇Lρk,µ̂k(xk)∥ ≤ εL, ∥V k∥max ≤ εV and r = rmax (which are in bold); rmax = 15 for
m = 3 and rmax = 7 for m = 5; “fails” means # of iterations (6) was not satisfied.

problem strategy ∥∇Lρk,µ̂
k (x

k)∥ ∥V k∥max r it. fails wall time (s) time/it. (s)

cq (m = 3) proposed 4.197e-06 3.590e-07 15 30 2 148.17 4.78
standard 4.203e-06 3.928e-06 15 29 1 170.45 5.68

cq (m = 5) proposed 6.079e-07 3.702e-06 7 31 5 1621.38 50.67
standard 6.836e-07 3.141e-06 7 26 1 1251.94 46.37

fc (m = 3) proposed 1.272e-02 4.045e-03 14 17 4 94.74 5.26
standard 1.225e-02 4.155e-03 15 17 4 221.83 12.32

fc (m = 5) proposed 4.005e-02 4.167e-04 5 14 10 170.68 11.38
standard 9.934e-03 5.303e-02 7 14 9 2920.29 194.69

eR (m = 3) proposed 1.432e-07 1.107e-08 15 45 1 235.02 5.11
n = 5 standard 3.528e-08 9.324e-11 15 43 0 201.86 4.59

eR (m = 5) proposed 3.068e-07 7.386e-09 7 36 1 2763.04 74.68
n = 5 standard 9.626e-06 2.278e-07 7 35 0 1663.28 46.20

FR (m = 3) proposed 9.131e-06 7.198e-07 15 37 0 56.19 1.48
standard 1.323e-08 9.427e-09 15 37 0 150.44 3.96

FR (m = 5) proposed 3.925e-06 4.340e-07 7 33 1 258.59 7.61
standard 4.008e-06 1.848e-10 7 33 0 1036.54 30.49

Pbs (m = 3) proposed 2.467e-15 2.014e-10 15 20 0 16.04 0.76
standard 1.779e-10 3.332e-10 15 1 0 28.27 14.14

Pbs (m = 5) proposed 9.794e-06 1.352e-06 7 48 2 1369.89 27.96
standard 1.429e-05 5.431e-06 7 60 12 4753.46 77.93

B (m = 3) proposed 5.611e-08 8.549e-08 15 79 0 228.36 2.85
standard 2.299e-09 8.696e-07 15 79 0 237.34 2.97

B (m = 5) proposed 1.129e-03 2.099e-03 7 84 17 8708.77 102.46
standard 2.757e-03 2.714e-04 7 82 17 8407.61 101.30

Ps (m = 3) proposed 7.449e-06 3.722e-06 15 43 5 617.06 14.02
standard 1.964e-04 2.181e-06 15 55 11 693.93 12.39

Ps (m = 5) proposed 8.866e-06 1.422e-05 7 37 8 2787.54 73.36
standard 1.111e-05 1.584e-05 7 40 8 4178.89 101.92

W (m = 3) proposed 9.936e-06 5.948e-06 15 45 1 345.71 7.52
standard 8.095e-06 8.633e-06 15 43 2 274.10 6.23

W (m = 5) proposed 2.418e-04 1.629e-04 7 49 10 6986.63 139.73
standard 5.245e-05 8.211e-05 7 50 10 7367.50 144.46

qp (m = 3) proposed 9.756e-06 9.944e-06 15 34 1 134.30 3.84
n = 5 standard 1.210e-05 1.464e-06 15 47 10 608.66 12.68

qp (m = 5) proposed 2.375e-07 9.955e-07 7 34 1 1098.84 31.40
n = 5 standard 1.564e-06 9.912e-09 7 34 0 959.36 27.41

LY (m = 3) proposed 9.260e-07 4.750e-06 15 37 3 206.93 5.45
standard 1.892e-06 2.072e-06 15 40 5 437.75 10.68

LY (m = 5) proposed 3.497e-04 1.375e-05 7 39 8 3110.35 77.76
standard 2.615e-05 3.067e-06 7 39 8 3712.36 92.81

ex4 1 5 (m = 3) proposed 4.855e-06 1.588e-06 15 34 4 246.38 7.04
standard 8.450e-07 7.721e-06 15 33 1 187.79 5.52

ex4 1 5 (m = 5) proposed 7.883e-07 4.096e-06 7 26 0 394.90 14.63
standard 5.657e-06 8.653e-07 7 25 1 1456.68 56.03

ex8 1 4 (m = 3) proposed 5.602e-06 2.281e-06 15 46 6 367.15 7.81
standard 7.500e-06 5.508e-06 15 50 10 552.55 10.83

ex8 1 4 (m = 5) proposed 8.105e-04 1.535e-04 7 35 7 2393.85 66.50
standard 1.346e-03 2.285e-05 7 35 7 3237.19 89.92

ex8 1 5 (m = 3) proposed 4.909e-06 2.280e-07 15 31 1 151.47 4.73
standard 3.230e-10 5.899e-06 15 29 0 174.64 5.82

ex8 1 5 (m = 5) †proposed 4.751e-11 1.929e-08 7 26 1 570.25 21.12
standard 3.946e-09 1.736e-06 7 21 0 1336.28 60.74

ex8 1 6 (m = 3) proposed 2.048e-08 7.997e-08 15 20 2 80.90 3.85
standard 7.126e-09 5.140e-11 15 18 0 60.59 3.19

ex8 1 6 (m = 5) proposed 3.858e-08 7.980e-09 6 23 5 861.55 35.90
standard 2.909e-08 1.500e-09 7 15 1 974.65 60.92

† indicates mosek could not solve (10) properly in some iterations, but it did not affect the final results.

11

5 Concluding Remarks

The general optimization problem of minimizing a nonlinear function subject to nonlinear conic con-
straints has received increasing attention in the recent years. General algorithms for dealing with such
generality are still under development. The linear case is of particular interest considering that in many
applications the nonlinearities of the problem may be concentrated to lie in the cone itself. However,
when it is not clear how to project onto the cone, a practical implementation is usually out of hand.
In contrast, most algorithms require that one is able to deal with the full cone in every iteration of the
method. In this paper we proposed an augmented Lagrangian algorithm that considers the possibility
of iteratively approximating the cone in each iteration, without hindering well established global conver-
gence results. Numerical experiments are conducted with the copositive cone and its polyhedral outer
approximation where we demonstrate in a small collection of problems that our strategy is superior than
the alternative one of considering the full cone in each iteration.

Acknowledgements

This work was partially supported by grants 2018/24293-0, 2020/04585-7, 2020/07421-5, and 2023/08706-
1 from the São Paulo Research Foundation (FAPESP) and grants 302000/2022-4 and 407147/2023-3 from
CNPq.

References

[1] R. Andreani, W. Gómez, G. Haeser, and L.M. Mito, On optimality conditions for nonlinear conic
programming, Mathematics of Operations Research 47 (2022), pp. 2160–2185.

[2] R. Andreani, G. Haeser, and J.M. Mart́ınez, On sequencial optimality conditions for smooth con-
strained optimization, Optimization 60 (2011), pp. 627–641.

[3] R. Andreani, G. Haeser, and D.S. Viana, Optimality conditions and global convergence for nonlinear
semidefinite programming, Mathematical Programming 180 (2020), pp. 203–235.

[4] R. Andreani, J.M. Mart́ınez, and B.F. Svaiter, A new sequencial optimality condition for constrained
optimization and algorithmic consequences, SIAM Journal of Optimization 20 (2010), pp. 3533–3554.

[5] A. Berman, M. Dür, and N. Shaked-Monderer, Open problems in the theory of completely positive
and copositive matrices, Electronic Journal of Linear Algebra 29 (2015), pp. 45–58.

[6] S. Bundfuss and M. Dür, An adaptive linear approximation algorithm for copositive programs, SIAM
Journal on Optimization 20 (2009), pp. 30–53.

[7] M. Dür, Copositive programming – a survey, M. Diehl, F. Glineur, E. Jarlebring, and W. Michiels,
eds. Springer, Berlin, Heidelberg, 2010, pp. 3–20.

[8] M. Dür and F. Rendl, Conic optimization: A survey with special focus on copositive optimization
and binary quadratic problems, EURO Journal on Computational Optimization 9 (2021), 100021.

[9] G. Haeser, and D.O. dos Santos, A simple proof of existence of Lagrange multipliers, preprint (2024),
arXiv:2402.05335v2, 9 Feb 2024.

[10] B.F. Lourenço, V. Roshchina, and J. Saunderson, Hyperbolicity cones are amenable, Mathematical
Programming 204 (2024), pp. 753–764.

[11] D.G. Luenberger and Y. Ye, Linear and Nonlinear Programming, 3rd ed., Springer, New York, 2007.

[12] J.M. Mart́ınez and B.F. Svaiter, A practical optimality condition without constraint qualifications for
nonlinear programming, Journal of Optimization Theory and Applications 118 (2003), pp. 117–133.

[13] MINLPLib (A Library of Mixed-Integer and Continuous Nonlinear Programming Instances).
https://www.minlplib.org/. Accessed December 26, 2023.

[14] J.J. Moré, B.S. Garbow, and K.E. Hillstrom, Testing unconstrained optimization software, ACM
Transactions on Mathematical Software 7 (1981), pp. 17–41.

12

[15] N. Shaked-Monderer, and A. Berman, Copositive and Completely Positive Matrices, World Scientific,
Singapore, 2021.

[16] E.A. Yıldırım, On the accuracy of uniform polyhedral approximations of the copositive cone, Opti-
mization Methods and Software 27 (2012), pp. 155–173.

13

