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Abstract

A derivation of so-called “soft-margin Support Vector Machines with kernel” is
presented which does not rely on concepts from functional analysis such as Mercer’s
theorem that is frequently cited in this context, and that leads to a new analysis
of the continuity properties of the kernel functions such as a new self-concordance
condition for the kernel. The derivations are intended for a general audience, requiring
some knowledge of calculus and linear algebra, while more advanced results used from
optimization theory are being introduced in a self-contained form.
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1. Introduction

For the problem of estimating yes-no answers – based on a given data set with known answers
but with unknown structure – so-called “Support Vector Machines” (SVMs) are an approach
that can be applied under weak assumptions.

More precisely, SVMs are methods for the automated classification of new data into
two classes based on a set of old data with corresponding classifications. The data can,
for example, be digitized images of handwritten characters, and the classification involves
deciding whether the pixels of the images represent a given character or not. The old data are
called training data whose classification has been made in some way beforehand, for example
by a human who recognizes the images and manually enters the corresponding characters. If
many different images of handwritten characters have been scanned and classified, the SVM
should automatically recognize new images of handwritten characters without a programmer
first having to enter specifications of the sort “a three has the following characteristics”.

SVMs estimate yes-no decisions; for more complex answers, multiple different SVMs can
potentially be combined; however, in general, other approaches are more appropriate in these
cases. Despite the limited form of the response, SVMs can indeed be a helpful approach for
complicated decision problems.
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1.1 Limitations of SVMs

Applications of SVMs include, for example, automatically classifying images or the task of
determining from a database of patient data whether a new patient falls into a risk group
for a specific disease – or, using another database, deciding whether a customer should be
granted a loan. The last two examples illustrate a problem that has repeatedly occurred in
applications of AI techniques and is described, for example, in [10]. When a SVM is used
to identify risks in patients that might otherwise be overlooked, it serves human well-being;
however, it does not do so when used to deny health insurance or a loan without further
examination.

Another problem arises when the training data itself has been automatically classified.
The classification errors made during this process typically persist in the SVM that is devel-
oped from this training data. The same is true, of course, when the training data has been
incorrectly classified by humans.

Even if the given data has been correctly classified, the quality or quantity of the data
often is not sufficient to derive a clear classification from it. Nevertheless, an SVM generally
does provide some form of classification but without the information how reliable the output
is.

Another problem arises when the training data is not uniformly distributed. If the
handwritten digits from the above example were collected in the USA (where the digits 1
and 7 are written differently than in Germany), an increased error rate can be expected when
an SVM developed in the USA is applied in Germany. (This is a rather harmless example!)

Finally, the limitations of SVMs also concern their applicability to large data sets. When
the data consists of more than m = 5000 data points, the SVM approach presented in this
paper gets increasingly expensive a since optimization problems with dense m×m-matrices
need to be solved. Modifications for solving large scale problems are proposed in [2, 4, 6, 7],
for example.

The following will not further address such modeling and interpretation errors but explain
the mechanism of SVMs.

1.2 Outlook

The basic idea is to assign similar data to the same classification. However, the term “similar
data” is very imprecise. For example, the pixels of two scans of handwritten digits can be
completely different even if the same digit is represented. One problem that SVMs ideally
solve automatically is to derive and utilize an appropriate criterion for “similarity” from the
data.

The basics of SVMs are well-researched and understood, see e.g. [12, 9, 3, 16] and
the references therein. Below, an introductory mathematical summary will be provided.
The chosen presentation is “minimalistic” in the sense that some concepts commonly used
in the consideration of kernel functions are omitted, and also the results from Statistical
Learning Theory are not addressed. In particular, the completeness of the “feature” space
and associated theorems such as Riesz’s representation theorem or Mercer’s theorem are
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not used. Nevertheless, a central property, the continuity of the kernel functions, can be
established and analyzed. Finally, the effect of a normalization of the kernel on the continuity
properties and on the conditioning of the kernel matrix is addressed.

1.3 Notation

A � 0 denotes that A is a symmetric positive semidefinite matrix. Given two matrices
A,B ∈ Rm×n, their Hadamard product A ◦B is defined by component-wise multiplication,

(A ◦B)ij = AijBij for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

For a matrix A, the matrix norm induced by the 2-norm is denoted by ‖A‖2. The symbol
f = o(g) indicates that limg→0 |f |/g = 0. The derivative Df(x) of a differentiable function
f : Rn → Rm is represented as an m× n matrix (the Jacobian), and in the case m = 1, the
gradient ∇f(x) = Df(x)T is a column vector. The vector e := (1, 1, . . . , 1)T always denotes
the all-one-vector with its dimension given by the context.

2. Basic Form of Support Vector Machines

The initial situation is as follows. There are given training data consisting of points x(i) from
a compact convex set Ω ⊂ Rn for 1 ≤ i ≤ m and associated classifications ζi ∈ {−1, 1}.

The simplest case is when there exists a hyperplane {x ∈ Rn | aTx = β} with a fixed
vector a ∈ Rn\{0} and a constant β ∈ R such that

aTx(i) > β ∀ i with ζi = 1 and

aTx(i) < β ∀ i with ζi = −1. (1)

In this case, we also call the hyperplane {x | aTx = β} classifying, as it “correctly separates”
all data points. Thus, the criterion of “similarity” of data reduces here only to whether
aTx > β holds or not.

In the subsequent examination of continuity properties, the scaling of the data also plays
a role. It is obvious that for λ > 0 the transition from

x(i) and β to λx(i) and λβ for 1 ≤ i ≤ m, (2)

leaves the classification (1) invariant. It is therefore assumed later that the data is scaled
such that ‖x‖2 for x ∈ Ω is bounded by a moderate constant. But in this section and the
next, this assumption is irrelevant.

To maximize the “prospect” that the chosen hyperplane correctly classifies new points,
the hyperplane should be chosen so that it correctly separates the given points on the one
hand and is as far away as possible from all points on the other hand - i.e., as few points as
possible are boundary cases that would switch classes under a slight perturbation. Finding
the best hyperplane in this sense should be automated.
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First, we write the conditions (1) equivalently in the compact form

δi := ζi(a
Tx(i) − β) > 0 ∀ i. (3)

If a point x(i) satisfies condition (3) and a number λ ≥ 1/δi is chosen, then x(i) also satisfies
the condition

ζi(λa
Tx(i) − λβ) ≥ 1.

By changing from a to λa and β to λβ, the strict inequalities in (3) can therefore be replaced
by the weak inequalities

ζi(a
Tx(i) − β) ≥ 1 ∀ i. (4)

with the right side 1. Finally, note that the distance of a point x̄ from the hyperplane
{x | aTx = β} is given by |aT x̄−β|/‖a‖2. Maximizing the distance of x̄ from the hyperplane
under the condition that |aTx − β| ≥ 1 is therefore equivalent to minimizing the norm of
a. Thus, the problem of maximizing the minimum distance of all points from a classifying
hyperplane can be written in the form

min
a, β
{ 1

2
‖a‖2

2 | ζi(aTx(i) − β) ≥ 1 ∀ 1 ≤ i ≤ m }. (5)

Here, the standard notation is used, where the term “min” in Problem (5) is to be understood
as “minimize”; if the data is such that there is no separating hyperplane, the minimum does
not exist, but otherwise it is uniquely defined. If a, β now are optimally determined from
(5), then the label ζ̃ for a new point x̃ can be estimated by

ζ̃ := sign(aT x̃− β)

since (x̃, ζ̃) then also satisfies the relationship ζ̃(aT x̃− β) ≥ 0.
In solving (5), many of the constraints ζi(a

Tx(i)−β) ≥ 1 typically prove to be superfluous.
Only the points with the smallest values |aTx(i)−β| are relevant for determining the optimal
hyperplane. Those training points that are not redundant, i.e., that have the minimum
distance to the hyperplane, are called “support vectors,” which explains the name of the
SVM.

3. Soft Margin SVM

Often, the situation arises where the given data cannot be exactly separated by a hyperplane
because, for example, not all training data points were correctly classified. In this case, one
can use a so-called “soft margin” SVM, where the restrictions (4) are relaxed to ζi(a

Tx(i) −
β) ≥ 1− si with si ≥ 0, and minimize1 the expression

1

2
‖a‖2

2 + C

m∑
i=1

si (6)

1Another formulation of the soft margin is discussed, for example, in [3].

4



for a fixed “penalty parameter” C > 0. For a large value C, higher priority is given to min-
imizing the “tolerated error terms” si ≥ 0 (hoping that only the incompatible, misclassified
data points x(i) retain positive values si > 0) and lower priority is given to minimizing the
norm of a, whose inverse describes the distance of the support vectors from the separating
hyperplane. The sum in (6) is given by

∑m
i=1 si = eT s, and the overall the soft margin SVM

problem becomes: Find µ∗ and a, β, s with

µ∗ = min
a, β, s

{ 1

2
‖a‖2

2 + CeT s | ζi(aTx(i) − β) ≥ 1− si, ∀ 1 ≤ i ≤ m, s ≥ 0}. (7)

The solution to (7) can be reformulated as follows. Let L be the so-called Lagrangian for
(7), i.e.,

L((a, β, s), (u, v)) :=
1

2
‖a‖2

2 + CeT s+
m∑
i=1

ui (1− si + ζiβ − ζiaTx(i))︸ ︷︷ ︸
≤0 in (7)

+vT (−s)︸︷︷︸
≤0 in (7)

for so-called Lagrange multipliers u, v ≥ 0. The motivation for defining the Lagrangian
function is that problem (7) can be written as

µ∗ = inf
a, β, s

(
sup

u≥0, v≥0
L((a, β, s), (u, v))

)
because when forming the infimum, only those (a, β, s) are selected for which the supremum
is finite, and those are exactly the ones for which the constraints from (7) are satisfied.

(For example, if si < 0 for some i, then taking the limit ui → ∞ for this i would
result in the inner supremum having the value +∞. Therefore, only vectors s ≥ 0 are
considered when forming the infimum. Similarly, only (a, β, s) are considered for which
1− si + ζiβ − ζiaTx(i) ≤ 0.)

Problem (7) is a convex problem, and since only linear constraints are present, the so-
called Slater condition is trivially satisfied, and the “Lagrange duality” holds, i.e.

inf
a, β, s

sup
u≥0, v≥0

L((a, β, s), (u, v)) = sup
u≥0, v≥0

inf
a, β, s

L((a, β, s), (u, v)). (8)

(The fact that the left side in (8) is greater than or equal to the right follows from elementary
calculations; and that both sides are equal is a standard result of convex optimization, see,
for example, [15].) The inner problem on the right (the formation of the infimum) now has
no more constraints and due to convexity it can be solved explicitly (for given u, v ≥ 0).

Rewriting the Lagrangian equivalently as

L((a, β, s), (u, v)) =
1

2
‖a‖2

2 −

(
m∑
i=1

uiζix
(i)

)T

a+

(
m∑
i=1

uiζi

)
β + (Ce− u− v)T s+ eTu
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we consider the minimizer of the inner infimum problem on the right in (8). By setting the
derivatives with respect to (a, β, s) to zero it follows that

a =
m∑
i=1

uiζix
(i),

m∑
i=1

uiζi = 0, and Ce− u− v = 0 (9)

must be satisfied. With these conditions, the terms

(
m∑
i=1

uiζi)β + (Ce− u− v)T s

vanish in the Lagrangian, and the first equation in (9) states that the first two terms in the
Lagrangian reduce to

1

2
‖a‖2

2 − (
m∑
i=1

uiζix
(i))Ta = −1

2
‖

m∑
i=1

uiζix
(i)‖2

2,

where the variable a has been eliminated.
The conditions (9) are equivalent to forming the inner infimum of the right side of (8)

and can therefore be formulated as constraints on the supremum problem,

µ∗ = sup
u≥0, v≥0

{
−1

2
‖

m∑
i=1

uiζix
(i)‖2

2 + eTu | uT ζ = 0, Ce− u− v = 0

}
(10)

where ζ ∈ Rm is the vector with components ζi. The “slack vector” v ≥ 0 simply indicates
that Ce−u ≥ 0 holds. It can be eliminated above and with a change of sign in the objective
function, one obtains

−µ∗ = inf
u∈Rm

{
1

2
‖

m∑
i=1

uiζix
(i)‖2

2 − eTu | uT ζ = 0, Ce ≥ u ≥ 0

}
. (11)

(The constraint u ≥ 0 from the term “supu≥0” in (10) is explicitly listed on the right in (11)
again.) Problem (11) is also called the dual problem to (7).

In general, similar as for problem (5), many data points x(i) are also unnecessary in the
original soft-margin formulation (7), i.e., for many indices i, one obtains ζ i(aTx(i) − β) > 1
in any optimal solution a, β, s of (7). These x(i) and the corresponding si can then simply be
omitted in the Lagrangian, or the corresponding multipliers ui can be fixed to zero. And these
x(i) are then also unnecessary in the equivalent transformation (11), i.e., the corresponding
multipliers ui in an optimal solution of Problem (11) are zero. Let B denote the indices for
which ui > 0 holds in the given optimal solution. It follows from (9) that

a =
∑
i∈B

uiζix
(i). (12)
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The set B defines the support vectors, {x(i)}i∈B. Now, if a is calculated as above from the
solution of (11), the corresponding β can be determined based on (7): For a given β and a,
the corresponding optimal s in (7) is given by solving

min CeT s | si ≥ 1 + ζi(β − aTx(i)) ∀ 1 ≤ i ≤ m, s ≥ 0.

Setting b ∈ Rm the vector with components bi := 1− ζiaTx(i), the above inequalities on the
variables si can be written as si ≥ 1 − ζiaTx(i) + βζi = bi + βζi. Therefore, for a given β
(and a) the optimal s ∈ Rm in (7) is explicitly representable as

s(β) = max{b+ βζ, 0},
where the maximum is applied component-wise. The mapping

β 7→ eT s(β) = eT (max{b+ βζ, 0}) =: σ(β)

is piecewise linear, as a maximum of linear functions it is also convex, and the value of β
that minimizes eT s(β) thus solves (7),

β = argminβ̂∈Rσ(β̂) = argminβ̂∈R {e
T max{b+ β̂ζ, 0}}. (13)

Minimizing the convex, piecewise linear function σ : R → R is possible with low computa-
tional effort. The classification of a new data point x̃ can then be obtained as

ζ̃ := sign(x̃Ta− β) = sign(x̃T (
∑
i∈B

uiζix
(i))− β) = sign((

∑
i∈B

uiζix̃
Tx(i))− β).

For the derivation the Kernel SVM, a reformulation of the objective function in (11)
is presented next. Let Z := Diag(ζ) be the diagonal matrix with diagonal ζ ∈ Rm. The
quadratic term in the objective function of (11) can then be written as

‖
m∑
i=1

uiζix
(i)‖2

2 = uT (ZQZ)u (14)

with the matrix Q having entries Qi,j = (x(i))Tx(j). As a Gram matrix, i.e.,

Q = (x(1), . . . , x(m))T (x(1), . . . , x(m)) ∈ Rm×m, (15)

the matrix Q is symmetric positive semidefinite, Q � 0.

3.1 Summary, Soft Margin SVM

Given Q as in (15) and a diagonal matrix Z with diagonal entries ζi solve (11), i.e.

min
u∈Rm

{
1

2
uTZQZu− eTu | uT ζ = 0, Ce ≥ u ≥ 0

}
,

set b = e− ZQZu, find β as in (13), and classify a new point x̃ via

ζ̃ := sign((
∑
i∈B

uiζix
(i))T x̃− β)

where B the set set of components i with ui > 0. The steps for the classification via kernel
SVM in the next section are quite similar when replacing Q with some other matrix K � 0.
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4. Kernel SVM

Now, there are also many applications where the data, in the given form, cannot generally
be separated by a hyperplane, i.e., the “border” that separates the two classes is not a
hyperplane, but rather a somewhat more complex nonlinear boundary. In these cases, a
nonlinear mapping is sought

φ : Ω→W ,

which maps the x(i) ∈ Ω to a scalar product space W that is typically higher-dimensional
(it can also be a function space) with scalar product 〈., .〉W and induced norm ‖ . ‖W , so
that the images φ(x(i)) of the two classes can be separated by a hyperplane. On the one
hand, the choice of φ should preserve the “similarity” of data mentioned earlier i.e., φ should
satisfy certain continuity properties, and on the other hand, the unknown “separation” into
two classes should be made possible. By maintaining the “soft margin”, one then obtains
the problem to find

µ∗ = min
ã∈W, β, s≥0

{ 1

2
‖ã‖2

W + CeT s | ζi
(
〈ã, φ(x(i))〉W − β

)
≥ 1− si, ∀ 1 ≤ i ≤ m} (16)

instead of (7), where the vectors ã now lie in the higher-dimensional image space W of
φ. (That the minimum actually exists is established below.) Due to the nonlinearity of
the mapping φ, the linear separation in the image space of φ translates into a nonlinear
separation in the original data space with the data x(i).

When the optimal solution ã, β from (16) is given, the label ζ̃ for a new data point x̃ is
estimated by

ζ̃ := sign
(
〈 ã, φ(x̃)〉W − β

)
. (17)

Even if the dimension of W should be infinite, problem (16) is still a finite-dimensional
optimization problem, as will be explained briefly:

To this end, let M := Span{φ(x(i))}1≤i≤m ⊂ W (the linear hull of the φ(x(i)) for 1 ≤
i ≤ m). Then 〈., .〉W is also a scalar product on M and thus, for any fixed ã ∈ W , the
function ψ : M → R with ψ(x) := ‖ã− x‖2

W is strictly convex. As a convex function on the
finite-dimensional space M , ψ is also continuous on M . Furthermore, for x̄ ∈ M the level
set {x ∈ M | ψ(x) ≤ ψ(x̄)} is bounded. Thus, ψ has a unique minimizer on M , which is
denoted by ãM . (This statement does not require the completeness of W .) For λ ∈ R and
fixed i ∈ {1, . . . ,m} it follows from the definition of M and ãM that

‖ã− ãM‖2
W ≤ ‖ã− ãM + λφ(x(i))‖2

W = ‖ã− ãM‖2
W + 2λ〈ã− ãM , φ(x(i))〉W + λ2‖φ(x(i))‖2

W ,

i.e., 0 ≤ 2λ〈ã− ãM , φ(x(i))〉W + λ2‖φ(x(i))‖2
W for λ ∈ R. Setting

λ :=

{
−〈ã− ãM , φ(x(i))〉W if ‖φ(x(i))‖2

W = 0,
−〈ã− ãM , φ(x(i))〉W/‖φ(x(i))‖2

W otherwise,

the assumption that 〈ã−ãM , φ(x(i))〉W 6= 0, leads to a contradiction. So, 〈ã− ãM , φ(x(i))〉W = 0.
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Setting ãM⊥ := ã− ãM it follows

〈ãM⊥ , φ(x(i))〉W = 0 (1 ≤ i ≤ m), and therefore also 〈ãM⊥ , ãM〉W = 0. (18)

Now let ã be feasible for (16), then from (18) it follows that

‖ã‖2
W = ‖ãM⊥ + ãM‖2

W = ‖ãM‖2
W + ‖ãM⊥‖2

W

and 〈ã, φ(x(i))〉W = 〈ãM , φ(x(i))〉W for all i, i.e., ãM is also feasible for (16) and the objective
function value is smaller or equal, so that (16) is equivalent to

min
ãM∈M, β, s≥0

{ 1

2
‖ãM‖2

W + CeT s | ζi
(
〈ãM , φ(x(i))〉W − β

)
≥ 1− si, ∀ 1 ≤ i ≤ m}. (19)

This problem is finite-dimensional and has the same structure as problem (7).2 It can
therefore be reformulated analogously to (11) with the objective function from (14), whereby
the dual problem results in finding

−µ∗ = inf
u∈Rm

{
1

2
uTZKZu− eTu | uT ζ = 0, Ce ≥ u ≥ 0

}
, (20)

with the term uTZKZu in place of the term uTZQZu in (14). The entries of K are given by
Ki,j = 〈φ(x(i)), φ(x(j))〉W . Just like the above matrix Q ∈ Rm×m, also K ∈ Rm×m is a Gram
matrix and thus positive semidefinite, K � 0, and K does not depend on the dimension
of the image space W — but on the number of support points m. When φ is the identity
mapping then K = Q and problem (20) coincides with problem (11).

To determine a suitable function φ, the so-called kernel trick is applied: instead of the
transformation φ, only a symmetric continuous mapping

κ : Rn × Rn → R

is defined in such a way that κ(x, y) could be interpreted as κ(x, y) = 〈φ(x), φ(y)〉W for a
function φ. To do this, it is required that for all m ∈ N and all x(1), . . . , x(m) from Ω, the
matrices K ∈ Rm×m with entries Ki,j = κ(x(i), x(j)) for 1 ≤ i, j ≤ m always satisfy K � 0.
In this case, κ is called a3

positive definite kernel. (21)

In summary, the matrix K is formed with Ki,j := κ(x(i), x(j)) for 1 ≤ i, j ≤ m and (20)
is solved. As in (12), the optimal solution u of (20) defines the set B := {i | ui > 0} as well
as the optimal solution ã =

∑
i∈B uiζiφ(x(i)) of (16). However, the vector ã is not required

2Because the scalar product 〈 . , . 〉W in (17) is applied to arbitrary x̃ ∈ Ω, it is reasonable to formulate
problem (16) over the general space W and not to restrict oneself to the finite-dimensional formulation (19)
to begin with.

3At this point, the notation “positive semidefinite kernel” would be appropriate. The fact that the kernel
defines a norm in a certain space justifying for the notation “positive definite kernel” will be provided later
in (27).
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explicitly (i.e., the function φ is not evaluated explicitly). The classification of a new data
point x̃ is performed according to the rule

ζ̃ = sign(〈ã, φ(x̃)〉W − β) = sign(〈
∑
i∈B

uiζiφ(x(i)), φ(x̃)〉W − β) = sign(
∑
i∈B

uiζiκ(x(i), x̃)− β),

(22)
where β is obtained by exploiting 〈ã, φ(x(i))〉W =

∑
j∈B ujζjκ(x(i), x(j)) as with the soft-

margin SVM: First, ζ ∈ Rm is set to the vector with components ζi and b ∈ Rm as the vector
with components 1− ζi

∑
j∈B ujζjκ(x(i), x(j)). Then, again

β = argmin {eT max{b+ β̂ζ, 0} | β̂ ∈ R}.

In the next paragraph, the question is considered whether for a given positive definite
kernel κ : Ω × Ω → R, there also is a function φ : Ω → W such that for given data points
x(i) ∈ Ω for 1 ≤ i ≤ m, the relationship

κ(x(i), x(j)) = 〈φ(x(i)), φ(x(j))〉W for 1 ≤ i, j ≤ m (23)

holds true. Since the number of equations in (23) to be satisfied by φ increases with m and
no upper bound is set for m, it is natural to allow an infinite value for the degrees of freedom
of φ, i.e., for the dimension of W .

4.1 Interpretation in the Feature Space W
The image space W of the above function φ is also called the “feature space”; it is the
space where the linear separation of the two classes is performed. For a given κ, neither the
mapping φ nor its image spaceW is unique. The existence and desirable properties of φ will
be considered below.

4.1.1 Existence

If the order of reasoning in (23) is reversed, and for a given κ and for points x(i) that are given
“first”, a function φ is sought, then the existence of φ can be established easily: For K � 0,
there exists an eigenvalue decomposition, K = UTDU with an orthogonal matrix U with
columns u(i) and a diagonal matrixD. Setting ũ(i) := D1/2u(i), it holds thatKi,j = (ũ(i))T ũ(j).
Thus, a mapping φ : Rn → Rm =: W can be defined arbitrarily, so that for 1 ≤ i ≤ m,
the interpolation conditions φ(x(i)) = ũ(i) are fulfilled, and thus also the desired relationship
Ki,j = 〈φ(x(i)), φ(x(j))〉W holds true with 〈., .〉W being the standard 2-norm scalar product.
(This reasoning uses the fact that the dimension of W was assumed to be chosen at will.)
However, compared to (23), the order is reversed here: The points x(i) are used to define the
function φ without requiring any form of continuity of φ. The reason why such approach is
problematic will be explained below using a simple example.
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4.1.2 Overfitting

For example, if many measurements (xi, yi) of a function f : R→ R, x 7→ y are given, which
approximately lie on a straight line, and if the value of f at a “new” point x̃ needs to be
estimated, one could on the one hand define a line g : x 7→ ax + b so that g approximates
the measurements in a certain sense as accurately as possible. This leads, for example,
to the so-called least squares problem for determining the two parameters a, b ∈ R, and
to the approximation f(x̃) ≈ g(x̃). However, one could also determine a polynomial p
of high degree such that all measurements are exactly interpolated, and then approximate
f(x̃) ≈ p(x̃). Typically, such a polynomial oscillates strongly, and therefore provides a very
unreliable prediction of f(x̃). The higher number of adjustable parameters in p compared to
just two parameters in g does not provide a more reliable approximation. This well-known
fact is also called overfitting.

For support vector machines, often there are also many data points available, and the
separation into two classes is to be made based on unknown “similarity properties”. As
in the example above, here as well, the approach of constructing a function φ so that all
training data can be correctly separated does not guarantee a reliable classification by itself.
The goal is to find a mapping φ that, on the one hand, does not depend on the specific choice
of x(i) (these only determine the separating hyperplane in the space W) and, on the other
hand, is chosen so that φ does not behave “too chaotically” (does not “oscillate too much”)
but rather possesses certain continuity properties that preserve the assumed but unknown
“similarity properties” of the original data points.

4.1.3 Cross-validation

The so-called cross-validation provides an approach to estimate the reliability of the classi-
fication. A simple approach to cross-validation is as follows: Assume that the training data
were generated randomly and independently. Then one can randomly divide the training
data into two parts, e.g., 70% in one part and the rest in the other, and then calculate the
separation using only the 70%. The 30% that were not used in generating the SVM but for
which the classification is known, are then used to estimate which percentage of the data
points that are classified correctly, and this can be used as an estimated error rate for
the separation. The actual separation can then be performed using all training data. By
monotonicity of the separation quality with increasing size of the training data the “70%
estimator” can serve as an estimate of the overall error rate – but only for the error rate for
new data generated from the same distribution.

4.1.4 Example: Gaussian Kernel

Definition 1 Let a constant c > 0 be given. The function κ : Ω× Ω→ R with

κ(x, y) := e−c‖x−y‖
2
2

is referred to as the Gaussian kernel, inspired by the Gaussian distribution curve.
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The associated kernel matrix K has the entries Ki,j = κ(x(i), x(j)) := e−c‖x
(i)−x(j)‖22 . In Section

7.1 in the appendix, it is briefly explained that the above K is always positive semidefinite.
However, it is not immediately obvious how to determine the scalar product 〈., .〉W and a
mapping φ such that

〈φ(x), φ(y)〉W ≡ e−c‖x−y‖
2
2

always holds. If such a mapping φ exists, it immediately follows that

‖φ(x)‖2
W = 〈φ(x), φ(x)〉W = κ(x, x) = e0 = 1

for all x ∈ Ω.

Definition 2 In the following we call κ with ‖φ(x)‖2
W = κ(x, x) ≡ 1 an

iso-normalized kernel.

Any kernel for which κ(x, x) > 0 ∀x ∈ Ω holds true can be scaled diagonally in the
manner described in Section 7.1, such that it is iso-normalized. The scaling is typically
nonlinear and thus also alters the separation properties.

4.2 Determination of φ and 〈., .〉W
The construction of a map φ and associated scalar product 〈., .〉W that is more suitable than
the motivation given in Section 4.1.1 is based on [5]: Let a continuous, symmetric positive
definite kernel κ be given on the compact convex set Ω ⊂ Rn. For a fixed x ∈ Ω, we define
the mapping φ(x) := Kx : Ω→ R as follows:

Kx := κ(x, . ), i.e., φ(x)[z] ≡ Kx(z) ≡ κ(x, z) for z ∈ Ω.

To avoid confusion regarding the fact that φ(x) itself is a function, we use the more intuitive
notation Kx instead of φ(x). The finite linear combinations of such functions Kx then form
the space

W := Span({Kx | x ∈ Ω}) = {f | ∃k ∈ N, x(i) ∈ Ω, αi ∈ R (1 ≤ i ≤ k) : f =
k∑
i=1

αiKx(i)}.

Furthermore, for f, g ∈ W with f :=
∑k

i=1 αiKx(i) and g :=
∑`

j=1 βjKx(j) let the mapping
〈., .〉 : W ×W → R be defined as follows:

〈f, g〉 :=
k∑
i=1

∑̀
j=1

αiβjκ(x(i), x(j)). (24)

It is shown next that 〈., .〉 indeed is a scalar product: First, we need to justify that 〈., .〉 is
well-defined: Since it is not assumed that all Kx(i) are linearly independent, there could be
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different representations for a given function g ∈ W . However, the above mapping 〈., .〉 is
independent of the representation of g since from (24) it follows that

〈f, g〉 =
k∑
i=1

αi

(∑̀
j=1

βjκ(x(i), x(j))

)
︸ ︷︷ ︸

=
∑`

j=1 βjKx(j)
(x(i))=g(x(i))

=
k∑
i=1

αig(x(i)).

The right-hand side does not depend on the chosen coefficients x(j) and βj for the represen-
tation of g, but only on the function values g(x(i)). In addition, the right-hand side is linear
in g. Analogously, it follows that the mapping is also independent of the representation
of f and linear in f , i.e., 〈f, g〉 is bilinear – and, like κ, also symmetric. Finally, positive
semidefiniteness is inherited:

〈f, f〉 =
k∑
i=1

k∑
j=1

αiαjκ(x(i), x(j)) ≥ 0

according to the definition of a positive definite kernel. Therefore, the Cauchy-Schwarz
inequality also holds, 〈f, g〉2 ≤ 〈f, f〉〈g, g〉 (with the usual proof4).

Now for x ∈ Ω, f =
∑k

i=1 αiKx(i) ∈ W , and g := Kx in (24), we also have

〈f, κ(., x)〉 = 〈f,Kx〉
(24)︸︷︷︸
=

k∑
i=1

αiκ(x(i), x) =
k∑
i=1

αiKx(i)(x) = f(x), (25)

a central property known as the “reproducing Kernel” property. Now let x, z ∈ Ω and
g := κ(., z), then we also have

〈Kx, Kz〉 = 〈κ(., x), κ(., z)〉 = 〈κ(., x), g〉 = 〈g, κ(., x)〉
(25)︸︷︷︸
= g(x) = κ(x, z). (26)

Using (25) and the Cauchy-Schwarz inequality, for f ∈ W and x ∈ Ω, we further have

f(x)2 = (〈κ(., x), f〉)2 ≤ 〈κ(., x), κ(., x)〉〈f, f〉 = κ(x, x)〈f, f〉,

where the last equation follows from (26). Therefore, if 〈f, f〉 = 0, then f(x) ≡ 0 for x ∈ Ω,
i.e.,

〈., .〉W := 〈., .〉 is a scalar product, (27)

4Due to bilinearity and semidefiniteness, we have 0 ≤ 〈f−λg, f−λg〉 = 〈f, f〉−2λ〈f, g〉+λ2〈g, g〉 for λ ∈ R.
So 2λ〈f, g〉 ≤ 〈f, f〉 + λ2〈g, g〉 for all λ. If 〈g, g〉 = 0, this implies 〈f, g〉 = 0, i.e., 〈f, g〉2 = 0 ≤ 〈f, f〉〈g, g〉,
and if 〈g, g〉 > 0, then with the choice λ := 〈f, g〉/〈g, g〉 we get

2 〈f,g〉2
〈g,g〉 ≤ 〈f, f〉+ 〈g, g〉 〈f,g〉

2

〈g,g〉2 i.e., 〈f,g〉2
〈g,g〉 ≤ 〈f, f〉 or 〈f, g〉2 ≤ 〈f, f〉〈g, g〉.
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which induces a norm ‖ . ‖ on W )5. In general, W is not complete with respect to this
norm. What is important, as motivated earlier, is the continuity of φ : Ω → W , which is
discussed in Section 5.1. But first, the existence of a separation is addressed.

4.2.1 Separability in the Feature Space

In the case where κ is chosen so that the functions φ(x(1)), . . . , φ(x(m)) are linearly indepen-
dent6, the existence of a separating hyperplane can be established explicitly even without a
soft margin:

To do this, we consider the problem (19) and use the notation

ãM =
m∑
i=1

αiφ(x(i)) =
[
φ(x(1)), . . . , φ(x(m))

]
α

and fix C =∞, i.e., s = 0. Then (19) is given by

min
ãM∈M, β

{ 1

2
‖ãM‖2

W | ζi
(
〈ãM , φ(x(i))〉W − β

)
≥ 1, ∀ 1 ≤ i ≤ m} (28)

= min
α∈Rm, β

{ 1

2
αTKα | ZKα− βζ ≥ e},

where the entries of the matrix K are again given by Ki,j = 〈φ(x(i)), φ(x(i))〉W . Since K is
invertible by assumption, and Z = Z−1, the latter problem has the feasible solution β = 0
and α = K−1Ze. Together with s := 0 this is also feasible for (19) with objective value
1
2
eTZK−1Ze. This feasible solution generally is not optimal, but it can be seen that the

corresponding objective value generally increases as the smallest eigenvalues of K approach
zero, an observation that often also applies to the optimal solution of (28).

If one chooses a kernel for which the φ(x(i)) are always linearly independent for pairwise
different x(i), i.e., for which an exact separation of the data is always achievable, then the
problem of overfitting from Section 4.1.2 arises again. Therefore, it is also usually advisable
to choose an approach with a soft margin for such kernels.

4.3 Summary, Kernel SVM

Choose a kernel function κ : Rn × Rn → R so that the matrix K with entries Ki,j =
κ(x(i), x(j)) satisfies K � 0, and let Z be the diagonal matrix with diagonal entries ζi. Solve

min
u∈Rm

{
1

2
uTZKZu− eTu | uT ζ = 0, Ce ≥ u ≥ 0

}
, (29)

5The property of being a norm may seem surprising at first, since the Kx(i) were not assumed to be
linearly independent and only K � 0 was demanded, but for linearly dependent Kx(i) , the space W is also
smaller. On W, the scalar product is (strictly) positive definite.

6For the Gaussian kernel, for example, this assumption is always fulfilled.
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set b = e−ZKZu, find β as in (13), i.e. as the minimizer of “eT max{b+ β̂ζ, 0}” for β̂ ∈ R,
and classify a new point x̃ via

ζ̃ := sign((
∑
i∈B

uiζiκ(x(i), x̃))− β)

where B := {i | ui > 0}.

5. Kernel Properties

5.1 Relative Lipschitz Condition

In the following, it is assumed that the data space has been rescaled beforehand, such that
the maximum norm of the data from Ω is on the order of 1 and that the similarity of data
from Ω ⊂ Rn can be measured in the 2-norm. The latter assumption depends on the specific
application.

Since “similar data” generally should be classified similarly and the separation of the
data in the kernel approach is done via the scalar product 〈., .〉W , we are now looking for a
mapping φ such that for small ‖x−y‖2, also ‖φ(x)−φ(y)‖W is small. A stronger requirement
regarding continuity of φ (e.g., a global Lipschitz property that holds for large ‖x − y‖2 as
well) generally cannot be justified for the common SVM approach.

When considering the continuity properties of φ in (16), it should also be noted that φ and
β as in (2) can be multiplied by an arbitrary factor λ > 0 without changing the separation
properties. However, if φ were, for example, locally Lipschitz continuous, then multiplication
by λ would also change the Lipschitz constant by a factor of λ. Therefore, the Lipschitz
constant should be considered relative to the norm of φ. As one possible requirement on the
kernel, the (local) relative Lipschitz condition can be considered

‖φ(x)− φ(y)‖W
‖φ(x)‖W

≤ γ‖x− y‖2 (30)

for small ‖x − y‖2 with a local relative Lipschitz constant γ > 0. This condition implies
φ(x) 6= 0 for x ∈ Ω, a requirement that is always fulfilled for iso-normalized mappings. By
construction, it is invariant under the transition from φ( . ) to λφ( . ), but not under a scaling
of the data, i.e., under the transition from φ( . ) to φ(λ( . )). Therefore, it was assumed
above that the maximum norm of the elements in Ω is on the order of 1.

Small values of γ in (30) guarantee “high data consistency” in the sense that closely
neighboring data points x, y will have closely neighboring images φ(x), φ(y), while larger
values allow more flexibility in the form of separation.

The following theorem holds:

Theorem 1 If the function φ is given by a thrice continuously differentiable positive definite
kernel κ (see (21)) and the relative Lipschitz condition (30) holds for some constant γ > 0,

‖φ(x)− φ(y)‖W
‖φ(x)‖W

≤ γ‖x− y‖2 for small ‖x− y‖2,
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then, for the mixed second derivative of κ at z ∈ Ω:

‖Dx(∇yκ(x, y))|x=z, y=z‖2 ≤ γ2κ(z, z). (31)

Conversely, if (31) is satisfied, then the condition (30) holds in the following form:

‖φ(x)− φ(y)‖W
‖φ(x)‖W

≤ eγ‖x−y‖2 − 1 (≈ γ‖x− y‖2 for small ‖x− y‖2).

A proof is provided in Section 7.3. The condition (31) is slightly more precise than (30), as
the latter does not specify what exactly is meant by “small ‖x− y‖2”. Therefore, (31) will
always be used in the following.

Definition 3 Following [8], a kernel satisfying (31) will also be referred to as7

γ-self-concordant kernel

with a local relative Lipschitz constant γ > 0.

From the representation (31), the following construction guideline for γ-self-concordant
kernels can be derived directly:

Lemma 1 If κ1 and κ2 are kernels that satisfy the conditions of Theorem 1 with Lipschitz
constants γ1 and γ2, respectively, then for ρ > 0, ρκ1 is also a γ1-self-concordant kernel.
Furthermore, κ1 + κ2 is a γ-self-concordant kernel with γ = max{γ1, γ2}. If κ1 and κ2 are
iso-normalized kernels, then γ can be tightened to γ = 1

2
(γ1 + γ2).

5.2 Condition Number of the Kernel Matrix

The condition number of the kernel matrix may play a crucial role for the quality of the
separation: Consider an iso-normalized m×m-kernel matrix K. Then the largest eigenvalue
of K lies in the interval [1,m] but the smallest eigenvalue can be tiny. If the condition number
of K is a moderate number M , a “reasonable” feasible solution of (28) is given by choosing
α = K−1ζ and β = 0. It is feasible because Zζ = e, and a straightforward calculation
shows that the objective value of (28) is bounded by the moderate value Mm/2 independent
of ζ. In this case, a separation with a moderately wide margin is always possible. The
perfect condition number of K (with respect to the 2-norm) is obtained if, and only if8, K
is iso-normalized and

〈φ(x(i)), φ(x(j))〉W = κ(x(i), x(j)) = Ki,j = 0 (32)

7The concept that the derivatives of a function are bounded by constant multiples of other derivatives,
and hence are in “concordance” with themselves, was introduced in [8]. There, Newton’s method for θ-self-
concordant barrier functions is examined. In the case of the kernel functions considered here, a bound of the
mixed second derivatives by the “zeroth” derivative (the function value) is of interest.

8(Because positive multiples of the identity matrix are the only symmetric positive definite matrices with
condition number 1.)
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for all i 6= j.
However, the aim of generating a well conditioned kernel may be in conflict with the

relative Lipschitz condition with a small Lipschitz constant: For data x(i) and x(j) with
small value ‖x(i) − x(j)‖2 the Lipschitz condition requires that also ‖φ(x(i)) − φ(x(j))‖W is
small so that K has two nearly linearly dependent columns and thus K has a small positive
eigenvalue and a large condition number. In such situation a separation with wide margin
is no longer possible for all choices of ζ. (In particular, it is not possible when x(i) ≈ x(j)

but ζi = −ζj.) A relaxation of (32) that is compatible with the γ-self-concordance is the
requirement of choosing κ such that

κ(x(i), x(j)) ≈ 0 whenever ‖x(i) − x(j)‖2 is large. (33)

This requirement is satisfied, for example, for the Gaussian kernel. Thus, with respect to
(33), the Gaussian kernel is nearly optimal, and as shown below, it is also optimal with
respect to the Lipschitz constant.

5.2.1 Effects of Iso-Normalization

The following guidelines hold: Iso-normalization always9 improves the condition number of
all 2 × 2 principal submatrices of K (unless they are already iso-normalized), and by the
interlacing theorem the condition number of K always is at least as large as the largest
condition number of any 2 × 2 principal submatrix. By Theorem 4.1 in [14], when the
dimension n is larger than 2, the iso-normalized scaling is not too far (namely by a factor
at most n) from the optimal scaling. On the other hand, there are examples where the
condition number of an iso-normalized matrix indeed is larger than (n/2− ε)-times the value
of an optimally rescaled matrix, [13]. Summarizing, iso-normalization not only improves the
worst-case bound of the condition number compared to arbitrary scaling, but as shown in
Section 5.4 below, it may also improve the Lipschitz constant γ.

5.3 The Gaussian Kernel

5.3.1 Lipschitz Constant:

Consider again the Gaussian kernel κ(x, y) = e−c‖x−y‖
2
2 . Here, Dyκ(x, y) = 2c(x− y)Tκ(x, y)

and

Dx∇yκ(x, y)|x=y=z ≡ ((4c2(x− y)(x− y)T + 2cI)κ(x, y))|x=y=z = 2cκ(z, z)I.

The requirement of the relative Lipschitz condition is therefore

‖2cI‖2 ≤ γ2,

which means γ =
√

2c can be chosen here. Observe that for this choice of γ, Condition
(31) is satisfied with equality for all z, i.e., the local relative Lipschitz constant γ for φ (in

9The elementary proof for this claim is a (non-trivial) exercise.
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Theorem 1) is equal to the maximum allowed value at all points in Ω. (As will be discussed
below, large values γ allow kernels with lower condition numbers.) Summarizing we obtain
the following lemma:

Lemma 2 The Gaussian kernel κ(x, y) ≡ e−c‖x−y‖
2
2 with c > 0 satisfies the relative Lipschitz

condition uniformly for all x ∈ Ω with Lipschitz constant
√

2c.

For the Gaussian kernel with c > 0, it is shown in Section 7.2 that for any pairwise distinct
x(i), the functions Kx(i) are linearly independent, meaning the dimension ofW is infinite and
that exact separation always is possible. However, the space W depends on the choice of c.
For x ∈ Ω, the function φ(x) has the form

φ(x)[y] ≡ e−c‖x−y‖
2
2 for y ∈ Ω.

As c→∞, the function φ(x) converges to the characteristic function of the point x ∈ Ω, and
the matrix K in Section 4.2.1 converges to the identity matrix for any choice of (pairwise
distinct) data points x(i). On the other hand, for c → 0, φ(x) converges to the constant
function 1 on Ω, and the matrix K tends to the rank-1 matrix eeT . For small c > 0, the
optimal value of (28) generally tends to infinity.

5.3.2 Adjusting the Soft Margin:

In addition to the parameter c in the Gaussian kernel (or the Lipschitz constant γ =
√

2c),
the constant C from the soft-margin approach in (6), which penalizes the violation of the
separation properties, is a freely adjustable parameter when using Gaussian kernels. For
large finite values of C, it may be the case that the optimal solution of (19) leads to a
separation that correctly separates all training data points, but some of the training data
points (i.e. some of the support vectors) are closer to the separating hyperplane (in the space
W) than others. (In the case of separation with C = ∞, within the space W all support
vectors are equidistant from the separating hyperplane, and there are no data points lying
closer.)

The figures below are intended to illustrate the effects of both parameters for an example
where there are no mis-classified data points. The black stars indicate the data points. The
label for each data point was assigned along a 3 × 3 checkerboard pattern with ζ = −1 in
the middle and in the four corners, and ζ = +1 in the remaining fields. 50 data points were
randomly chosen with higher probability to lie near the center. The green areas in the plots
below mark those points that will be assigned the label +1 while red points will be assigned
to −1.
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c = 3 and C = 1, C = 10, C = 100 (C =∞) from left to right.

c = 0.3 and C = 100, C = 1000, C = 105 (C =∞) from left to right.

c = 0.1 and C = 108, C = 1012, C = 1016 from left to right.

Larger values of c generally may lead to a “more curvy” boundary between the two areas,
and lower values of C allow more misclassifications. Also, smaller values of c generally match
larger values of C. In these examples, the parameters c = 0.1 and C = 1016 generated the
best approximation to the 3 × 3 checkerboard that was used to classify the 50 data points
(the small black marks in the plots).

5.3.3 Modifying the Cross-Validation Strategy:

A simple procedure for identifying c and C uses the following approach. If the set of training
data is divided into 3 disjoint parts, then the concept of cross-validation from Section 4.1.3
can be generalized. First, with the first part, several choices of the parameters c and C
can be used to determine the respective SVM. The parameters that best classify the second
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part are then chosen, and with this choice, the error rate is estimated using the third part.
This estimate is kept when ultimately the SVM is formed over all training data points with
these parameters. (This approach is not optimal; there are a number of newer works on
hyper-parameter optimization using repeated cross-validation that are more sophisticated
than outlined here. The outlined approach is intended to demonstrate the basic feasibility
of how hyperparameters10 can be chosen appropriately and to sensitize for the risk of not
using data for error estimation that were already used for the design of the algorithm to be
evaluated.)

5.3.4 Orthogonal Invariance:

Next to Theorem 1, there is often another desirable invariance property: the classification
of the SVM should be invariant when training and test data are all equally reflected at a
hyperplane passing through the origin or rotated about the origin. Since every orthogonal
transformation can be represented by a sequence of reflections and rotations, this require-
ment implies that the classification of the SVM should be invariant under orthogonal linear
transformations. For the Gaussian kernel, κ(x, y) depends only on ‖x− y‖2. It follows that
κ remains unchanged with input x, y and with input U(x), U(y) if U is an orthogonal linear
transformation. Similarly, the calculation of ζ̃ based on the optimal solution of (20) is the
same whether κ(x(i), x̃) or κ(U(x(i)), U(x̃)) is used. Thus, the Gaussian kernel is indepen-
dent of orthogonal transformations of the input. This is noteworthy since the discrete Fourier
transform (DFT), which is frequently used in sound and image processing, is an orthogonal
transformation (up to a constant factor which can be accounted for in the term “c” of the
Gaussian kernel). Hence, it does not matter whether the original data or their DFT are used
as input for the SVM; the separation remains the same!

5.3.5 Preprocessing:

In many real-world applications, preprocessing of the data is a tedious but essential detail,
and this may also be true for SVMs. While a given SVM may be invariant under certain
simultaneous preprocessing of all data points, it may still be useful to transform each indi-
vidual data point to a certain standard form, for example, by translating, rotating, or scaling
it before using it as input for the SVM. This may change the separation significantly. In
case of such preprocessing the input to the SVM should be augmented by the parameters
that were used for each individual transformation, and these parameters should be scaled in
magnitude to conform with the other input data, in particular, if an orthogonally invariant
kernel is used.

For example, consider the task of detecting a given digit in a text. If it is also necessary
to distinguish between the letters | and /, and if the preprocessing includes a rotation that
aligns each new data points before being put into the SVM, then the aligned “/” would

10In general, algorithmic parameters such as step sizes, etc. are referred to as hyperparameters as opposed
to problem parameters like the number of data points.
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resemble a “|”. Hence, the parameters used in the preprocessing (such as parameters for a
possible rotation) should also be provided as input to the SVM.

5.4 Other Commonly Used Kernels

1) A commonly used polynomial kernel κ is given by

κ(x, y) ≡ (xTy + 1)p with p ∈ N. (34)

As noted in Section 7.1, this kernel is also positive definite. Here,

Dyκ(x, y) = pxT (xTy + 1)p−1,

and

Dx(∇yκ(x, y))|x=y=z = Dx(px(xTy + 1)p−1)|x=y=z

= p(p− 1)(zT z + 1)p−2zzT + p(zT z + 1)p−1I

with the identity matrix I. Due to ‖zzT‖2 = zT z the relation (31) then reads as

p(zT z + 1)p−2 ((p− 1)zT z + (zT z + 1)) ≤ γ2(zT z + 1)p.

or
p(pzT z + 1) ≤ γ2(zT z + 1)2. (35)

This requirement shall be satisfied for all z ∈ Ω. When p ≥ 2 this is true for γ = p/
√

2 )11.
Here, φ(x) ∈ W is a polynomial in n variables of maximum degree p, so the dimension of W
is bounded by np+1. Higher values of p improve the separation capabilities at the expense of
a larger Lipschitz constant. Summarizing the following lemma is true:

Lemma 3 The polynomial kernel (34) satisfies the self-concordance condition (31) with the
local relative Lipschitz constant γ = p/

√
2.

2) More generally, one can also consider kernels of the form

κ(x, y) := (xTy + α)p

with a parameter α > 0 and integer p ≥ 2. With the same calculations this results in a
Lipschitz constant of γ = p/

√
2α, i.e., the Lipschitz constant also is a continuously adjustable

hyperparameter. (Large values of α result in a nearly constant kernel comparable to tiny
values of c > 0 in the Gaussian kernel, while large values of p in some form have an opposite

11For z = 0, the requirement (35) states that p ≤ γ2, which is fulfilled with γ := p/
√

2 because p ≥ 2.
Setting t := zT z and ` : R→ R with `(t) := γ2(t+ 1)2 − p(pt+ 1) it suffices to show that `(t) ≥ 0 for t ≥ 0.
Because `′(0) = 2γ2 − p2 = 0 and because ` is a convex quadratic function, it follows that `(t) ≥ `(0) ≥ 0
for t ≥ 0. #
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effect.) When α = 0 this kernel still is a positive definite kernel, but the condition (31) for
this kernel takes the form

p2 ≤ γ2zT z

and (for small ‖z‖2) this cannot be satisfied. (This kernel is also rarely used.)

3) One can also consider kernels κ of the form

κ(x, y) ≡ h(x)h(y)g(xTy) (36)

with smooth functions g : R → R and h : Rn → R. If g can be represented as a power
series with nonnegative coefficients, g(t) ≡

∑∞
j=0 ajt

j with aj ≥ 0 for all j, then (as shown
in Section 7.1) the kernel is positive definite. Condition (31) is then derived as follows:

Dyκ(x, y) = Dy(h(x)h(y)g(xTy)) = h(x)Dh(y)g(xTy) + h(x)h(y)xTg′(xTy),

For Dx∇yκ(x, y)|x=y=z, one obtains

∇h(z)Dh(z)g(zT z)+h(z)∇h(z)zTg′(zT z)+zDh(z)h(z)g′(zT z)+h(z)2(Ig′(zT z)+zzTg′′(zT z)).

By omitting the arguments z or zT z for h or g and their derivatives, the requirement is

‖g∇h∇hT + hg′(∇h zT + z ∇hT ) + h2(g′I + g′′zzT )‖2 ≤ γ2h2g. (37)

For the choice h(z) = g−1/2(zT z), leading to an iso-normalized kernel, the requirement (37)
then is

‖g∇h∇hT + g′

g1/2
(∇h zT + z ∇hT ) + 1

g
(g′I + g′′zzT )‖2 ≤ γ2.

Using ∇h(z) = ∇z(g(zT z)−1/2) = −g(zT z)−3/2g′(zT z)z, we obtain

‖ − 1
g2

(g′)2zzT + 1
g
(g′I + g′′zzT )‖2 ≤ γ2.

For the polynomial kernel (34) with g(t) ≡ (t+ 1)p we obtain for the above choice of h,

‖ − p2

(t+1)2
zzT + p

t+1
I + p(p−1)

(t+1)2
zzT‖2 ≤ γ2

with t = zT z ≥ 0, i.e.,
p‖I − 1

(t+1)
zzT‖2 ≤ γ2(t+ 1),

which is satisfied for γ =
√
p, a significant improvement compared to (35). In addition

to the improvement of the Lipschitz constant, also the matrix K generally is better scaled.
The improvement of the Lipschitz constant compared to Lemma 3 is summarized in the next
lemma.

Lemma 4 For the kernel (36) with g(t) ≡ (t + 1)p as in (34) and h(z) ≡ g(zT z)−1/2 the
local relative Lipschitz constant in (31) can be chosen as γ =

√
p.

4) Other kernels that are used include κ(x, y) = e−c‖x−y‖2 or κ(x, y) = e−c‖x−y‖1 . These
kernels are non-differentiable at x = y, so the above analysis is not applicable.

22



6. Conclusion

A self-contained derivation of SVMs with kernel is given along with a new condition for
evaluating the continuity of the kernel function. It turns out that the Gaussian kernel in
some form is an optimal choice with respect to a given local relative Lipschitz constant
γ > 0 on the one hand and the aim to generate a well conditioned kernel matrix on the other
hand. For more general kernels it is demonstrated that a normalization of the diagonal of the
kernel may improve both, the condition number of the kernel and the local relative Lipschitz
constant.

7. Appendix

To keep this work self-contained, the proofs of two well-known results are repeated below,
followed by an elementary proof of Theorem 1.

7.1 Positive Kernels

Note that the Hadamard product of two positive semidefinite n × n matrices again is
positive semidefinite, because from the decompositions A =

∑
i a

(i)(a(i))T � 0 and B =∑
j b

(j)(b(j))T � 0, it follows that

A ◦B =
∑
i,j

(a(i) ◦ b(j))(a(i) ◦ b(j))T � 0.

By construction, the matrix (x(1) . . . x(m))T (x(1) . . . x(m)) with entries (x(i))Tx(j) at positions
(i, j) is a positive semidefinite Gram matrix.

Thus, Hadamard products of the above Gram matrices are positive semidefinite, and
consequently, so is the exponential function as a sum of such products, i.e., the matrix with
entries ec(x

(i))T x(j) with c > 0 is positive semidefinite. This shows that K with

Ki,j := e−c‖x
(i)−x(j)‖2 = e2c(x(i))T x(j)−c‖x(i)‖2−c‖x(j)‖2

is positive semidefinite, as the terms e−c‖x
(i)‖2 and e−c‖x

(j)‖2 only cause a symmetric diagonal
scaling of the matrix K, i.e., a change from K � 0 to DKD � 0 with a diagonal matrix D.

Analogously, it follows that κ(x, y) ≡ ((xTy) + 1)p ≡
∑p

j=0

(
p
j

)
(xTy)j with p ∈ N is a

positive definite kernel.
Also, if a ∈ R, a > 0 is given and g : [−a, a] → R is a power series with nonnegative

coefficients, then for Ω with supx∈Ω{‖x‖2
2} ≤ a as above, it follows that the kernel κ(x, y) ≡

g(xTy) from Section 5.1 is a positive definite kernel. And since K � 0 implies DKD � 0 for
any diagonal matrix D, it follows that the kernel κ(x, y) ≡ h(x)h(y)g(xTy) from Section 5.1
is a positive definite kernel as well.

Finally, if g(xTx) > 0 for all x ∈ Ω, then κ with the choice h(x) := g(xTx)−1/2 is an
iso-normalized kernel (as defined in Section 4.1.4).
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7.2 Exact Separability with Gaussian Kernels

To prove that the functions x 7→ e−c‖x−x
i‖22 are always linearly independent for pairwise

distinct xi (with 1 ≤ i ≤ m), consider the question to determine a vector α ∈ Rm such that

0 ≡
m∑
i=1

αie
−c‖x−xi‖22 =

∑
i

αie
−c‖x‖22e−c‖x

i‖22e2cxT xi = e−c‖x‖
2
2

∑
i

αie
−c‖xi‖22e2cxT xi ∀x ∈ Rn.

Setting βi := αie
−c‖xi‖22 , this system is equivalent to

0 =
∑
i

βie
2cxT xi ∀x ∈ Rn.

(In particular, βi = 0⇐⇒ αi = 0.) Now choose a vector x̄ such that x̄T (xi − xj) 6= 0 for all
i 6= j, and set x := jx̄ for 0 ≤ j ≤ m− 1 in the above system. It follows that

0 =
∑
i

βie
2cjx̄T xi =

∑
i

βi(ai)
j for 0 ≤ j ≤ m− 1

with ai := e2cx̄T xi . By choice of x̄, the numbers ai are pairwise distinct. The above system
has the only solution β = 0 if the transposed system

0 =
∑
j

β̃j(ai)
j

also has only the solution β̃ = 0. This latter system implies that the polynomial t 7→
∑
β̃jt

j

interpolates the zero function at all points ai. Thus, β̃ = 0 must hold. (By uniqueness of
polynomial interpolation.) As derived above, this implies the desired conclusion α = 0.

7.3 Proof of Theorem 1

Assume that the relative Lipschitz condition (30) is satisfied. Rearranging and squaring
shows that (30) is equivalent to

‖φ(x)− φ(y)‖2
W

‖x− y‖2
2

≤ γ2 ‖φ(x)‖2
W for small ‖x− y‖2. (38)

The expression on the left resembles a finite-difference approximation of a second derivative,
and as shown below, the bound (38) is indeed equivalent to a bound on the “mixed” part of
the second derivative of κ as a function R2n → R.

The numerator of the left-hand side of (38) is

‖φ(x)− φ(y)‖2
W = 〈Kx −Ky, Kx −Ky〉W = κ(x, x) + κ(y, y)− 2κ(x, y). (39)
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Furthermore, assume that κ is three times continuously differentiable. Below, the notation

z for the variable pair x, y, i.e., z :=

(
x
y

)
, and the vectors m := x+y

2
and d := x−y

2
are used.

With these notations, the Taylor expansion yields

κ(x, x) = κ(m,m) +Dzκ(m,m)

[(
d
d

)]
+

1

2
D2
z,zκ(m,m)

[(
d
d

)
,

(
d
d

)]
+ o(‖d‖2),

κ(y, y) = κ(m,m)−Dzκ(m,m)

[(
d
d

)]
+

1

2
D2
z,zκ(m,m)

[(
d
d

)
,

(
d
d

)]
+ o(‖d‖2).

Adding these equations yields

κ(x, x) + κ(y, y) = 2κ(m,m) +D2
z,zκ(m,m)

[(
d
d

)
,

(
d
d

)]
+ o(‖d‖2).

Similarly, from the expansions of κ(x, y) = κ(y, x) around the point (m,m),

κ(x, y) + κ(y, x) = 2κ(m,m) +D2
z,zκ(m,m)

[(
d
−d

)
,

(
d
−d

)]
+ o(‖d‖2).

The last two equations imply

κ(x, x) + κ(y, y)− 2κ(x, y)

= D2
z,zκ(m,m)

[(
d
d

)(
d
d

)]
−D2

z,zκ(m,m)

[(
d
−d

)(
d
−d

)]
+ o(‖d‖2).

The second derivatives with respect to x, x and y, y in the variable vector z cancel each other.
Due to symmetry, D2

x,yκ(m,m) = D2
y,xκ(m,m). Thus, only the mixed terms above remain,

κ(x, x) + κ(y, y)− 2κ(x, y) = 4D2
x,yκ(m,m)[d, d] + o(‖d‖2)

or
κ(x, x) + κ(y, y)− 2κ(x, y) = D2

x,yκ(m,m)[x− y, x− y] + o(‖x− y‖2). (40)

Observe that the left hand side in (40) coincides with (39). Thus, dividing (40) by ‖x− y‖2
2

yields
‖φ(x)− φ(y)‖2

W
‖x− y‖2

2

= κ(m,m)[ x−y
‖x−y‖2 ,

x−y
‖x−y‖2 ] + o(1)

The left hand side is positive, and by (38) it is at most γ2κ(z, z). Considering the limit y → x
and using that Dx(Dyκ(x, y))|x=y=z is symmetric it follows that it is positive semidefinite
and

‖Dx(Dyκ(x, y))|x=y=z‖2 ≤ γ2κ(z, z)

which is equivalent to (30).
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To justify the converse direction, i.e. that (31) implies (30) observe that in the derivation
of (31), only equations were used, as well as the limit y → x, i.e., (31) also implies the
infinitesimal version of (30) or (38), i.e., (31) implies

lim
y→x

‖φ(x)− φ(y)‖2
W

‖x− y‖2
2

≤ γ2‖φ(x)‖2
W

For the above proof, the squares of the equivalent inequalities

lim
y→x

‖φ(x)− φ(y)‖W
‖x− y‖2

≤ γ ‖φ(x)‖W (41)

were considered above. Since the third derivative of κ is continuous on the compact set
Ω× Ω it is bounded (as a trilinear form with respect to the 2-norm) by a constant ω <∞,
implying that the terms o(‖d‖2) in the above estimates can be replaced with ω‖d‖3.

For fixed x, y ∈ Ω (x 6= y) and t ∈ [0, 1], let’s first consider the function

l : t 7→ ‖φ(x+ t(y − x))‖W
‖x− y‖2

.

Here, we utilize the assumption that Ω is convex. By assumption, φ(x) 6= 0 in Ω, and thus
l(t) 6= 0 for t ∈ [0, 1]. Thus, the function l is differentiable. Let t̄ ∈ [0, 1) and define the
point x(t̄) := x+ t̄(y− x). The derivative of l at t = t̄ coincides with the following one-sided
limit:

l′(t̄) = lim
t↓0

l(t̄+ t)− l(t̄)
t

since t > 0︸ ︷︷ ︸
= lim

t↓0

‖φ(x+ (t̄+ t)(y − x))‖W − ‖φ(x+ t̄(y − x))‖W
‖t(x− y)‖2

= lim
t↓0

‖φ(x(t̄) + t(y − x))‖W − ‖φ(x(t̄))‖W
‖t(x− y)‖2

(41)︸︷︷︸
≤ γ‖φ(x(t̄))‖W = γ‖x− y‖2l(t̄).

Thus, the differential inequality l′(t) ≤ γ‖x − y‖2l(t) holds for t ∈ [0, 1). The corre-
sponding differential equation u′(t) = γ‖x − y‖2u(t) with u(0) = l(0) has the solution
u(t) ≡ l(0)eγ‖x−y‖2t. By Gronwall’s inequality, it follows that

l(t) ≤ u(t) = l(0)eγ‖x−y‖2t

for t ∈ [0, 1]. For t = 1 it therefore follows that

‖φ(y))‖W ≤ eγ‖x−y‖2‖φ(x)‖W . (42)
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Furthermore, according to (40), assumption (31), and the local Lipschitz continuity of κ,

‖φ(x)− φ(y)‖2
W

= κ(x, x) + κ(y, y)− 2κ(x, y) = D2
x,yκ(m,m)[x− y, x− y] +O(‖d‖3)

≤ γ2κ(m,m)‖x− y‖2 +O(‖d‖3) = γ2‖φ(m)‖2
W‖x− y‖2 +O(‖d‖3) (43)

This implies
‖φ(x)− φ(y)‖W ≤

√
γ2κ(x, x)‖x− y‖2 +O(‖d‖3)

= γ
√
κ(x, x)‖x− y‖+O( 1

2
√
ξ
‖d‖3)

with ξ ≥ γ2κ(x, x)‖x− y‖2 = 4γ2κ(x, x)‖d‖2 (mean value theorem). Therefore,

‖φ(x)− φ(y)‖W ≤ γ
√
κ(x, x)‖x− y‖+O(‖d‖2) = γ‖φ(x)‖W‖x− y‖+O(‖d‖2). (44)

Now, define
g(t) := ‖φ(x(t))− φ(x)‖W , where x(t) := x+ t(y − x).

Then g is differentiable as long as g(t) 6= 0, and using the fact that ‖a‖−‖b‖ ≤ ‖a− b‖, and
exploiting (44), we have

g′(t) = lim
∆t↓0

‖φ(x(t+ ∆t))− φ(x)‖W − ‖φ(x(t))− φ(x)‖W
∆t

≤ lim
∆t↓0

‖φ(x(t+ ∆t))− φ(x(t))‖W
∆t

≤ lim
∆t↓0

γ‖φ(x(t))‖W∆t‖x− y‖+O(‖∆t d‖2)

∆t

= γ‖φ(x(t))‖W‖x− y‖.

The above inequality holds also at t = 0 for the right-hand side derivative of g. Substituting
x(t) in place of y into (42), we get from the above inequality

g′(t) ≤ γeγ‖x−x(t)‖2‖φ(x)‖W ‖x− y‖ = γ‖φ(x)‖W ‖x− y‖eγ‖x−y‖2t.

With g(0) = 0, it follows

g(t) ≤
∫ t

0

γ‖φ(x)‖W ‖x− y‖eγ‖x−y‖2t = ‖φ(x)‖W(eγ‖x−y‖2t − 1)

and for t = 1 we obtain

‖φ(y)− φ(x)‖W ≤ ‖φ(x)‖W(eγ‖x−y‖2 − 1)

with
eγ‖x−y‖2 − 1 ≈ γ‖x− y‖2 for small ‖x− y‖2. #
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7.4 Weighted Kernels

Recall the dual kernel problem (20), i.e.

min
u∈Rm

{
1

2
uTZKZu− eTu | uT ζ = 0, Ce ≥ u ≥ 0

}
, (20)

and now assume that
x(1) = x(2),

i.e. the point x(1) is listed twice in the data (similar to the situation where x(1) and x(2) lie
very close together and have the same label ζ1 = ζ2). As indicated in the numerical examples
in Section 5.3.2, listing a data point twice rather than once may change the separation of
the two classes identified by the SVM. (The change is evident, for example, for the test with
c = 1 and C = 1 or C = 1.5, and it is less noticeable for large values of C.)

In the following, the vectors u and ζ are partitioned as uT = (u1, u2, ũ
T ) and ζT =

(ζ1, ζ2, ζ̃
T ) and K̄ := ZKZ is partitioned as

K̄ =

α α ṽT

α α ṽT

ṽ ṽ R

 ∈ Rm×m,

where α > 0 is a positive number, and ṽ ∈ Rm−2.
The set of optimal solutions of the convex problem (20) is convex, and with (u1, u2, ũ

T )T

also (u2, u1, ũ
T )T is an optimal solution. Thus, the constraint “u1 = u2” is added in the

following without loss of generality. Defining

˘̄K :=

(
4α 2ṽT

2ṽ R

)
, ĕ :=

(
2
e

)
∈ Rm−1, and ζ̆ :=

(
2ζ1

ζ̃

)
it follows with elementary calculations that the objective in (20) coincides with

uT K̄u− eTu = (u1, ũ
T ) ˘̄K(u1, ũ

T )T − ĕT (u1, ũ
T )T

and also ζTu = ζ̆T (u1, ũ
T )T . Hence (20) coincides with the problem

min
u∈Rm−1

{
1

2
uT ˘̄Ku− ĕTu | uT ζ̆ = 0, Ce ≥ u ≥ 0

}
in m − 1 dimensions. The solution of (20) is obtained by setting u1 = u2 = u1, and
(u3, . . . , um) = (u2, . . . ,um−1). (Note that the constraint above is Ce ≥ u and not Cĕ ≥ u.)

To determine β, define bi for i ≥ 2 as

bi = 1− ζi

(
2u1ζ1κ(x(i), x(1))) +

m∑
j=3

uj−1ζjκ(x(i), x(j))

)
.
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(This is the same bi as before, only b1 is missing.) Set b̆T = (b2, . . . , bm), and find β as the
minimizer of “ĕT max{(b̆T + β̂(ζ2, . . . , ζm)), 0}” for β̂ ∈ R, and classify a new point x̃ via

ζ̃ := sign

(
2u1ζ1κ(x(1), x̃)) +

(
m∑
j=3

uj−1ζjκ(x(j), x̃)

)
− β

)
.

Below the assumption “x(1) = x(2)” is not made any more:
If D denotes the diagonal matrix in Rm×m with D1,1 = 2 and Di,i = 1 for i ≥ 1 then the

above transformations show that giving double weight to the data point x(1) is equivalent to
solving

min
u∈Rm

{
1

2
uTDZKZDu− eTDu | uTDζ = 0, Ce ≥ u ≥ 0

}
,

setting b = e− ZKZDu, and classifying a new point x̃ via

ζ̃ := sign((
m∑
i=1

Di,iuiζiκ(x(i), x̃))− β).

When some other other points x(i) are also given double weight, the scaling for these points
can be carried out simultaneously by setting the associated diagonal entries to Di,i = 2. And
when the weight factor is not 2 but some other positive factor, the associated diagonal entries
can be set accordingly. The above transformation holds for general diagonal matrices D � 0.

If the data points x(i) are generated in some random fashion and if two data points with
the same classification happen to be close to each other, then it is generally not intended to
give higher weight to such random pair of data points, compared to an isolated data point.

A way to discount for such clustering of points in the case of iso-normalized kernels is as
follows: First assign initial weights

Di,i = 1/(1 +
∑

j:ζj=ζi
κ(i, j)).

For the Gaussian kernel the above definition can be written as

Di,i = 1/(1 +
∑

j:ζj=ζi
e−c‖x

(i)−x(j)‖2)

so that a point x(i) that is listed twice with the same label and that is “far away” from all
other points will get the total weight 1 (instead of 2).

In order to balance a possible dominance of one classification over the other, set

τ1 := m/(2
∑

j:ζj=1 Dj,j), τ2 := m/2(
∑

j:ζj=−1 Dj,j)

and change Di,i to τ1Di,i for i with ζi = 1 as well as Di,i to τ2Di,i for i with ζi = −1, so that
the weight sums of points with ζi = 1 is m/2 and the weight sums of points with ζi = −1
also is m/2.

The influence of the weights is more pronounced for smaller values of C. In the example
below, a rather unbalanced setting was chosen: the three data points in the middle are
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classified with ζ = 1 and the lower left data point in the middle is listed twice as a data
point (giving it more weight). The points on the circle are classified with ζ = −1. New
points in the red area will be classified with ζ = −1 while the green area is for ζ = 1. First,
the Gaussian SVM is tested with Di,i ≡ 1 for all i.

c = 1 and C = 1, C = 1.5, C = 5 from left to right.

Below the same data is used and Di,i are adjusted as proposed above. Here, smaller
values of C are used – larger values of C yield very similar outcome as C = 1.

c = 1 and C = 0.2, C = 0.5, C = 1 from left to right.
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