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Abstract. The field of global optimization has advanced significantly over the past three
decades. Yet, the solution of even small instances of many nonconvex optimization problems involv-
ing the Euclidean norm to global optimality remains beyond the reach of modern global optimization
methods. These problems include numerous well-known and high-impact open research questions
from a diverse collection of both fundamental and applied fields of science and engineering. In this
review, we survey applications in which these problems arise, describe the sources of computational
intractability, summarize existing solution methods, and identify promising research directions for
future work. We also introduce EuclidLib, a library of instances of optimization problems of this
type, to aid in performance benchmarking and algorithm development. The solution of all problems
in EuclidLib to global optimality would represent a significant achievement for the field of global
optimization and an important contribution to mathematics, science, and engineering.
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1. Introduction. The field of global optimization is experiencing a surge of
interest. Algorithms have advanced significantly since the turn of the century [20],
leading to improved performance on benchmark libraries such as MINLPLib [23],
and the number of available solvers, academic as well as commercial, is higher than
ever [135, 109, 91, 13, 18, 17, 119, 177, 49, 55]. Nonetheless, compared to linear,
mixed-integer, or quadratic programming, global optimization is not yet a mature
technology. In this paper, we identify a class of global optimization problems arising
from diverse applications which are particularly difficult to solve to global optimality.
These problems take the form

(1.1)

min f(x, y, z)

s.t. gi(∥xi∥2, y, z) ≤ 0 1 ≤ i ≤ N

hi,i′(∥xi − xi′∥2, y, z) ≤ 0 1 ≤ i < i′ ≤ N

ϕij(∥xi − aj∥2, y, z) ≤ 0 1 ≤ i ≤ N, 1 ≤ j ≤ M

γ(x, y, z) ≤ 0

x ∈ RNd, y ∈ {0, 1}m, z ∈ Rp

where the variables x represent the positions of N points in Rd, and additional binary
variables y and real-valued variables z may also be present. The problem data also
includes the fixed positions aj of M objects in Rd. We allow for nonconvexity in the
objective function, the (possibly vector-valued) constraints gi on the Euclidean norm
of the points xi, the constraints hi,i′ on the Euclidean distances between points xi

and xi′ , the constraints ϕij on the Euclidean distances between points xi and aj , and
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any other constraints γ. In the remainder of this paper, we will denote the Euclidean
norm by ∥ · ∥, omitting the subscript for brevity.

Despite the assumptions on the structure of (1.1), a large number of optimization
problems admit a formulation of this type. Problems related to geometry as well as
distance-dependent physical phenomena are particularly well-represented. For exam-
ple, the constraints of (1.1) can express non-overlap conditions in packing problems,
potential energy fields as functions of the positions of charged particles, and the sum
of squared regression error. Optimization problems of the form (1.1) are notoriously
challenging to solve to provable global optimality. It is often difficult to find good so-
lutions, as the number of local optima may be very large; for example, the number of
local energy minima for atomic nanoclusters [37] and point charges on a sphere [26] is
conjectured to grow at least exponentially in the number of items. Circle packing prob-
lems are also conjectured to have exponentially many local optima and may also have
uncountably many stationary points which are not local optima [1]. This difficulty has
motivated the development of a variety of specialized heuristic methods, such as tai-
lored basin-hopping [166, 61, 133], particle swarm [173, 87], genetic [80, 50, 182, 146],
neighborhood search [60, 38], and physics-inspired [68, 178, 183] methods. Improving
the dual bound is similarly challenging due to the fact that the constraints gi and hij

in (1.1) are often reverse convex. To this end, efforts have been made to devise custom
branch-and-bound algorithms for individual problems of the form (1.1) by exploiting
specific problem structures [93, 36, 52, 169, 47, 125, 180, 59]. Yet, techniques to prove
global optimality for these problems have only found success for small instances, and
as we will show, the performance of general-purpose global optimization algorithms on
problems remains prohibitively slow. In view of the fact that a number of well-known
problems in mathematics, statistics, chemistry, physics, engineering, and operations
research admit formulations of the form (1.1), enabling their solution to provable
global optimality is of significant fundamental and practical interest. Moreover, the
algorithmic techniques developed in the pursuit of this goal will likely be extensible
to more general classes of optimization problems, such as (mixed-integer) quadrati-
cally constrained programs. Therefore, we believe that this area presents a fruitful
opportunity for the mathematical optimization community.

The paper is organized as follows. In Section 2, we survey various applications
across mathematics, science, and engineering in which nonconvex optimization prob-
lems involving the Euclidean norm arise. In Section 3, we introduce a new library
of instances of optimization problems of this type, EuclidLib, and present and dis-
cuss the results of a computational study with modern global optimization solvers.
In Section 4, we identify and illustrate challenging features of these problems which
contribute to their computational intractability and survey existing techniques for ad-
dressing these challenges. We outline promising directions for future research efforts
in Section 5. Finally, we provide concluding remarks in Section 6.

2. Applications and formulations. Many problems of fundamental and prac-
tical importance can be formulated as optimization problems with nonconvex con-
straints involving the Euclidean norm. A number of well-known open research ques-
tions belong to this category. Herein, we provide an exposition of the corresponding
mathematical formulations grouped by their fields of origin. We remark that despite
our grouping, many of these models have applications beyond the context in which
they were first posed.

2.1. Mathematics and statistics.
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The kissing number problem. A classic problem in geometry is to determine
the maximum number of unit spheres in Rd that can be positioned tangent to a cen-
tral unit sphere without overlapping each other. This number is called the kissing
number of dimension d, which we will denote by KN(d). The terminology originates
from the game of billiards, in which two adjacent rigid balls are said to kiss if they lie
tangent to one another. Elementary arguments suffice to show that KN(1) = 2 and
KN(2) = 6. However, the problem of determining KN(3) is far from trivial, and was
famously the subject of a dispute between Isaac Newton (who thought KN(3) = 12)
and David Gregory (who thought KN(3) = 13) in the 17th century [154]. It was
not until the 1950s that KN(3) was shown to be 12 [140], and half a century later
that KN(4) was proved to be 24 [114]. To date, kissing numbers are only known for
d ∈ {1, 2, 3, 4, 8, 24}, with lower and upper bounds known for other values of d. Appli-
cations of the kissing number problem include the design of transmission formats [2]
and error-correcting codes [85], as well as the study of condensed matter phases [161].
The problem admits the following mathematical programming formulation [81]:

(2.1)
max α
s.t. ∥xi∥2 = 4 1 ≤ i ≤ N

∥xi − xj∥2 ≥ α 1 ≤ i < j ≤ N

In this formulation, the central unit sphere is fixed to the origin, and the number
of tangent spheres is fixed to N . If the optimal value α∗ ≥ 4, it is possible to arrange
N unit spheres tangent to a central unit sphere so that they do not overlap, from
which it follows that KN(d) ≥ N . On the other hand, if α∗ < 4, we have that
KN(d) < N . KN(d) can therefore be determined by solving a sequence of instances
of problem (2.1). Alternatively, KN(d) is given by the solution to the following
mixed-integer formulation, once an upper bound d̄ on KN(d) is known [96]:

(2.2)

max
d̄∑

i=1

yi

s.t. ∥xi∥2 = 4yi 1 ≤ i ≤ d̄
∥xi − xj∥2 ≥ 4yiyj 1 ≤ i < j ≤ d̄
yi ∈ {0, 1} 1 ≤ i ≤ d̄

where the binary variables y indicate whether a sphere is chosen to be part of the
configuration or not. Although a relaxation of (2.2) can give a valid upper bound on
KN(d) which is potentially tighter than d̄, we remark that the most fruitful meth-
ods for computing upper bounds on KN(d) have been via linear and semidefinite
programming formulations. However, this is not the focus of the current paper; for
a review, we direct the reader to [89], and more recent results are reported in [94].
Interestingly, the computational complexity of solving the kissing number problem is
unknown [89].

The Euclidean Steiner tree problem. In the Euclidean Steiner tree problem,
we are given a set of N points {a1, . . . , aN} in Rd, which must be connected by the
shortest possible tree, as measured by the sum of edge lengths. In addition to the
given points, which are known as terminals, we may introduce additional vertices
called Steiner points, which has the potential to shorten the tree length. It is known
that each Steiner point has degree three in a minimal Steiner tree, and that a Steiner
tree contains at most N − 2 Steiner points [69]. If no Steiner points are allowed, the
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problem reduces to the minimum spanning tree problem. A Euclidean Steiner tree is
illustrated in Figure 1; note that Steiner points can coincide with terminals.

Fig. 1: Example of a Euclidean Steiner tree for a 50-terminal instance. Terminals are
depicted as black dots. Plot generated using GeoSteiner 5.3 [77].

The Euclidean Steiner tree problem is a generalization of the Fermat-Torricelli
problem of finding a point within a triangle such that the sum of distances from the
point to the three vertices is minimal. For a review of the problem’s history, we direct
the reader to e.g., [69, 41]. Its applications include the modeling of biomolecular
systems [110, 148], the design of circuitry [184, 132], and the configuration of building
components such as ducts and pipes [149]. It is known to be NP-hard [54], although
for the two-dimensional case, algorithms such as GeoSteiner [180] perform well in
practice [77]. For a recent survey of developments in the solution of the Euclidean
Steiner tree problem in general dimension, see e.g., [46].

Let N := {1, . . . , N} denote the index set of terminals, and S := {1, . . . , N − 2}
denote the index set of possible Steiner points. Further, define E1 := {(i, j) : i ∈
S, j ∈ N} as the set of possible edges joining a terminal to a Steiner point, and
E2 := {(i, j) : i, j ∈ S, i < j} as the set of possible edges joining two Steiner points.
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Then, the Euclidean Steiner tree problem admits the following formulation [48]:

(2.3)

min
∑

(i,j)∈E1∪E2

rij

s.t. ∥aj − xi∥ −M(1− yij) ≤ rij (i, j) ∈ E1

∥xi − xj∥ −M(1− yij) ≤ rij (i, j) ∈ E2∑
i∈S

yij = 1 j ∈ N∑
j∈N

yij +
∑

k∈S,k<j

yki +
∑

k∈S,k>j

yik = 3 i ∈ S∑
k∈S,k<i

yki = 1 i ∈ S \ {1}

yij ∈ {0, 1}, rij ∈ R+ (i, j) ∈ E1 ∪ E2

xi ∈ Rd i ∈ S

In (2.3), the variables rij model the Euclidean distances between points in the Steiner
tree, the variables xi are the positions of Steiner points, and the variables yij indicate
whether edge (i, j) is part of the Steiner tree or not. The big-M constraints allow
the variables rij to take a value of zero if the edge (i, j) is not part of the Steiner
tree. A suitable value of big M can be derived based on the minimum spanning tree
of the terminals [46]. Observe that the formulation (2.3) admits a convex continuous
relaxation, namely a second-order cone program. Nevertheless, problem (2.3) is very
challenging to solve to global optimality; even specialized branch-and-bound methods
such as the SAMBA algorithm [47] are limited to instances with d ≤ 5 andN ≤ 18 [46].

The k-means clustering problem. An important problem in statistics and
machine learning is to partition M data points aj , 1 ≤ j ≤ M , into k clusters in a
way that minimizes a measure of the distance between each data point and the centroid
xi of the cluster to which it is assigned. When the objective is the squared Euclidean
distance, this problem is known as the k-means clustering problem [95]. Other variants
of this problem, e.g., using the ℓ1 norm instead of the Euclidean norm to reduce the
influence of outliers, are also well-studied [138]. The k-means clustering problem is
known to be NP-hard [3], even in two dimensions [97], and is solved heuristically in
practice using algorithms belonging to the family of methods proposed in the 1950s
and 1960s [128, 151]; for a recent review of algorithm variants, see [70]. The problem
admits a mathematical programming formulation as follows [143]:

(2.4)

min
k∑

i=1

M∑
j=1

yij∥aj − xi∥2

s.t.
k∑

i=1

yij = 1 1 ≤ j ≤ M

yij ≥ 0 1 ≤ i ≤ k, 1 ≤ j ≤ M

where the variable yij , which is always binary-valued at an optimal solution [143],
models the assignment of data point j to cluster i. Cuong and Yen [155] character-
ized the set of global solutions to (2.4) as finite, and showed that standard heuristic
algorithms may converge to points which are not even locally optimal. Rao [131]
showed that, under an additional constraint on intra- and inter-cluster distances be-
tween data points, the problem has a reduction to set partitioning. Exact algorithms
for (2.4) based on column generation [42, 4], customized branching [52, 36, 59], and
semidefinite programming [125, 124] have been developed and have recently solved
instances with up to 800 data points [124] to global optimality.
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2.2. Chemistry and physics.

The molecular clustering problem. A problem of fundamental importance
in chemical physics is to determine the minimum-energy configuration of N identical
uncharged particles interacting by van der Waals forces. The term van der Waals
forces refers to a combination of two physical effects. Firstly, as illustrated in Figure
2, instantaneous electron density fluctuations in orbitals induce dipoles in neighboring
atoms, leading to momentary electrostatic attraction between nonpolar, uncharged
particles [72]. This effect is called London dispersion.

Fig. 2: London dispersion: the formation of instantaneous dipoles due to electron
density fluctuation.

Secondly, particles experience a strong repulsive force at short distances when
electron clouds overlap [73]. The result of these two effects is that the energy of a pair
of uncharged particles i and j can be expressed in terms of their Euclidean distance rij
from one another, with a weak long-range attraction, a strong short-range repulsion,
and an equilibrium distance. A popular model of van der Waals forces is the Lennard-
Jones potential [75], usually expressed as

VLJ(rij) = r−6
ij

(
r−6
ij − 2

)
,

although variants with different coefficients and exponents also exist [142]. A second
common model is the Morse potential [112], parameterized by a positive constant ρ,

VM (rij) = exp (ρ(1− rij)) (exp (ρ(1− rij))− 2) .

These potential functions are illustrated in Figure 3. When ρ = 6, the curvature
of the Morse potential at the equilibrium distance is equal to that of the Lennard-
Jones potential. When expressed in dimensionless form, the Lennard-Jones and Morse
potentials have a minimum value of −1 at an inter-particle distance of rij = 1. Note
that although these functions are quasiconvex when expressed in terms of the inter-
particle distance rij , they are not quasiconvex when written in terms of the particle
coordinates.

The Lennard-Jones and Morse potentials agree well with experimental energy
measurements for systems such as noble gases and small molecules [186, 76]. Ac-
cordingly, they are ubiquitous in molecular simulations [172, 22] as well as theoretical
studies of phenomena such as crystallization [86], protein folding [117], and melt-
ing [66]. The Morse potential has also been used to model the kinematic behavior
of animal swarms [160, 15]. The bulk Lennard-Jones material is known to adopt a
face-centered cubic and hexagonal close-packed lattice depending on temperature and
pressure [163], and Morse lattices have been characterized as a function of ρ [24].
However, for nanoclusters too small to assemble into a repeating crystal lattice, de-
termining the minimum-energy structure is an open question. The problem may be
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Fig. 3: Lennard-Jones and Morse potentials as a function of the Euclidean distance
rij between particles i and j.

posed as follows:

(2.5) min
x∈R3N

N−1∑
i=1

N∑
j=i+1

V (∥xi − xj∥)

where V ∈ {VLJ , VM}. Problem (2.5) was first posed by Hoare and Pal in 1971 for
the Lennard-Jones potential [64]. As illustrated in Figure 4, the objective function
of (2.5) is highly multimodal; this property has spurred the development of many
minimization heuristics, including basin-hopping [166, 133], simulated annealing [178,
183], and genetic [182, 146] methods. Indeed, the number of stationary points of (2.5)
is known to be bounded below by an exponential function of N [37], and the problem
is known to be NP-hard [179]. A deterministic global optimization approach for
(2.5) was explored in [98]; however, a non-physical choice of an algorithmic parameter
invalidated optimality proofs (for example, for N = 7, [64] reports a solution better
than the solution reported as the global minimum in [98]). The Cambridge Cluster
Database [167] maintains a collection of putative optima for molecular clustering
problems.

Laboratory experiments to characterize the structure of argon clusters have given
results which are consistent with putative optima for Lennard-Jones clusters for most
values of N between 13 and 150, with a number of notable exceptions at N = 38, 75,
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Fig. 4: Slice of the potential energy function of a 4-atom Lennard-Jones cluster in R2

with the first three atoms fixed to (1.3, 1.5), (3, 1), and (2.3, 3).

76, 77, 102, 103 and 104 [9]. Similarly, Lennard-Jones cluster putative optima for N
= 38, 75, and 101 disagree with experimentally determined structures for fullerene
clusters [9]. The exact reason for these discrepancies is unknown. In light of the
consistency between putative optima and experimentally determined structures for
most clusters, and the fact that real 38- and 75-particle clusters of several materials
differ from the putative optima, it is possible that some putative optima are not
global.

The Thomson and Tammes problems. At the turn of the 20th century,
before the development of quantum mechanics, the physicist J. J. Thomson proposed
a model of the atom as a sphere of uniform positive charge whose electrons are classical
negative point charges constrained to its boundary [159]. The positions of N electrons
in this atomic model were postulated to minimize the overall Coulombic interaction
energy:

(2.6)
min

x∈R3N

N−1∑
i=1

N∑
j=i+1

∥xi − xj∥−1

s.t. ∥xi∥ = 1 1 ≤ i ≤ N

where length is scaled so that the atom has unit radius. Although this model of the
atom has since been shown to be incorrect, it turns out that (2.6) has other impor-
tant applications, such as in the complexity of solving polynomial equations [145], the
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modeling of proteins on the surface of a spherical virus [107, 189, 71], and the study
of particles at droplet interfaces [12]. Notably, the seventh of Smale’s eighteen mathe-
matical problems [147] involves the approximate solution in polynomial time of (2.6),
along with a variant in which the interaction potential is given by − log ∥xi − xj∥
rather than ∥xi − xj∥−1. Analogously to the molecular clustering problem, a num-
ber of heuristic minimization methods including basin-hopping [168], multistart local
search [5], genetic algorithms [111], and simulated annealing [181] have been employed
to find local minima for the Thomson problem, a catalogue of which can also be found
at the Cambridge Cluster Database [167]. Provably global minima are known only
for N ∈ {2, 3, 4, 6, 12} [33] and N = 5 [141], the proof of the latter being published
only in 2013; asymptotic bounds on the optimal value of (2.6) are given in [82, 104].
Due to its difficulty, several instances of the Thomson problem are included in the
MINLPlib [23] benchmark set of optimization problems.

A closely related problem is to find the position N points on the surface of the
unit sphere such that the closest distance between any two is maximized, which may
be formulated in the following way:

(2.7)
max L
s.t. L ≤ ∥xi − xj∥ 1 ≤ i < j ≤ N

∥xi∥ = 1 1 ≤ i ≤ N

Problem (2.7) is known as the Tammes problem, after the biologist who posed it in
the context of the dispersion of pores on the surface of pollen grains [156]. Optimal
solutions are known only for N ≤ 14 and N = 24 [115].

2.3. Operations research.

Packing and cutting problems. The task of packing objects into a container
without overlap, also known as nesting, is ubiquitous in operations research. Appli-
cations include loading items into shipping containers [188, 134], designing facility
layouts [6], planning for additive manufacturing processes [83], designing cable bun-
dles [152], task scheduling [27], radiosurgical treatment planning [171], and developing
data visualizations [56]. The related problem of cutting parts from a stock of raw ma-
terial finds applications in the manufacture of parts from textiles [57, 67] and sheet
metal [127] and has connections to the well-known bin packing and cutting stock prob-
lems. For a recent comprehensive review of packing and cutting problems, see e.g.,
[139]. Non-overlap constraints for general objects are typically expressed using phi-
functions, which are functions defined for a pair of sets to be negative if the interiors
of the two sets intersect [14]. Herein, we restrict ourselves to the problem of packing
circles of given radii into a convex container for three reasons. Firstly, the phi-function
for a pair of circles is the difference between the distance separating the circle centers
and the sum of the radii, and therefore does not require a piecewise definition [31].
Secondly, more complicated objects may be approximated to arbitrary accuracy by a
union of inscribed circles, reducing other packing problems to the packing of circles
of unequal radii [74], as illustrated in Figure 5. Finally, even for this relatively simple
packing problem, optimal solutions are only known for small instance sizes [169].

Given the radius ri of each circle and a set X to which the circle centers are
constrained, the problem may be stated as follows:

(2.8)

max L

s.t. ∥xi − xi′∥2 ≥ (Lri + Lri′)
2 1 ≤ i < i′ ≤ N

xi ∈ X 1 ≤ i ≤ N
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Fig. 5: The constraint that objects A, B and C cannot overlap can be approximated
by the constraints that each circle in the sets {1}, {2, 3, 4}, and {5, 6, 7, 8} cannot
overlap any circle from another set.

The objective L can be thought of as a length scaling factor; if the optimal value
L∗ ≥ 1 then it is possible to fit the circles inside the container. Problem (2.8) is
known to be NP-hard [51]. A variety of heuristics have been developed for the circle
packing problem [62]; the Packomania website [150] hosts the best known solutions for
many commonly studied geometries. Exact algorithms based on custom branching [93,
170, 169], interval arithmetic [101, 102], as well as traditional geometric proofs with
and without computer assistance [153] have succeeded in proving optimality for up to
39 identical circles in a square [153], and up to 11 circles of unequal radii in various
containers [169].

Planar facility location problems. In a facility location problem, we are given
the locations aj of M customers and we seek to place N facilities optimally with
respect to a metric such as cost or utility, which usually depends on the distance
between customers and facilities. Although it is often realistic to model the set of
candidate locations by vertices on a graph, it is common modeling practice to represent
facility positions with continuous planar coordinates xi in several situations, such as
for so-called “greenfield” facility construction (i.e., construction of a facility amidst
undeveloped land), or for the location of items within a room of a building [11].
Moreover, for facilities such as cell towers [43], wireless sensors [53], or radioactive
waste storage [32], quantities such as energy expenditure, coverage quality, and risk
depend on the Euclidean distance from a facility. A classic planar facility location
problem is to minimize the weighted sum of Euclidean distances from each facility to
each customer:

(2.9)
min

N∑
i=1

M∑
j=1

wij∥xi − aj∥

s.t. xi ∈ X 1 ≤ i ≤ N

where the weights wij ∈ R are fixed and the facility locations are constrained to
lie in the set X ⊆ Rd. When N = 1, X = Rd, and all wij = 1, the solution
to problem (2.9) is the geometric median of the customer locations aj . In a well-
studied special case of (2.9), called the Weber problem after the geographer who
proposed it [174], we have N = 1 and wij ∈ R+. The Weber problem is a convex
optimization problem and is readily solved using methods related to least-squares
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algorithms [21, 121, 25, 176]. When weights are allowed to be either positive or
negative, for example if some facilities are desirable while others are undesirable, the
objective function of (2.9) is neither convex nor concave in general. However, it has
an immediate representation as a difference of convex functions; global algorithms for
its solution have been developed based on this property [28, 99]. We will refer to
problem (2.9) as the planar p-median problem; note that this term is also sometimes
used to refer to the related problem of minimizing the weighted sum of distances from
each customer to the nearest facility [106], a problem related to clustering.

In a capacitated location-allocation variant of (2.9), the quantities wij are decision
variables representing shipment quantities from each facility to each customer (with
shipment costs assumed to be proportional to the squared Euclidean distance), each
facility has a capacity ci, and each customer has a demand dj ; this problem may then
be posed as follows [144]:

(2.10)

min
N∑
i=1

M∑
j=1

wij∥xi − aj∥2

s.t.
M∑
j=1

wij ≤ ci 1 ≤ i ≤ N

N∑
i=1

wij = dj 1 ≤ j ≤ M

xi ∈ X 1 ≤ i ≤ N

wij ≥ 0 1 ≤ i < j ≤ N

The squared-distance dependence of the cost in (2.10) has been used to model sys-
tems such as transmission towers, whose power usage scales quadratically with their
range [45]. The problem is NP-hard, and branch-and-bound algorithms have been
introduced for its solution [144].

Most facility location models consider a benefit to customers that increases with
proximity to facilities. However, in some cases, so-called obnoxious facilities must
be placed in a way that minimizes disutility to customers [32]. For example, missile
silos [44], power plants [35], landfills [113], and airports [175, 58] have been modeled
in this way. Since the disutility caused by these facilities is typically a physical
phenomenon such as radiation or noise, it is commonly expressed as a function of the
Euclidean distance from the facility [126]. For example, inverse-square decay f(r) =
α/r2 with α ≥ 0 [108] and exponential decay f(r) = αe−βr with α, β ≥ 0 [164] have
been used as disutility functions. Drezner and co-workers introduced the following
formulation, in which we seek to maximize the smallest distance between any facility
and any customer [40]:

(2.11)

max L
s.t. ∥xi − aj∥2 ≤ L 1 ≤ i ≤ N, 1 ≤ j ≤ M

∥xi − xj∥2 ≥ D 1 ≤ i < j ≤ N

xi ∈ X 1 ≤ i ≤ N

where D is a positive lower bound on inter-facility squared distances (with D = 0, the
optimal solution is to place all facilities at the same point). Note that maximizing the
smallest facility-community squared distance is equivalent to maximizing the small-
est facility-community distance. As illustrated in Figure 6, this problem has many
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local maxima and has been referred to as “extremely nonconvex” [78]. Correspond-
ingly, a variety of heuristic methods, such as those based on Voronoi diagrams [40],
integer programming formulations [78], multistart local search [39], and evolutionary
algorithms [158], have been proposed. Exact algorithms [164, 175] have so far been
limited to problems with less than 5 facilities.

Fig. 6: Squared Euclidean distance to the nearest customer for an obnoxious facility
location instance with 500 customers located within the unit square.

3. EuclidLib and a computational study. Despite the development of tai-
lored global optimization algorithms for many of the problems introduced in Section
2, optimal solutions are typically known only for N ≪ 100. As we will discuss in Sec-
tion 4, the computational intractability of problems (2.1)-(2.11) stems in large part
from their geometric and group structures. Therefore, we have compiled a library
EuclidLib of instances of these problems to benchmark the performance of general-
purpose global optimization solvers for this work and to assist in future studies of
optimization problems involving the Euclidean norm.

Statistics for the EuclidLib instances are given in Table 2. The library comprises
1,352 instances in total, with an average of 6,395 variables (minimum: 5, maximum:
119,197) and 4,873 constraints (minimum: 1, maximum: 59,699). We sought to bal-
ance the number of instances of different problem types to ensure that EuclidLib

would be an accurate measure of a global optimization algorithm’s performance on a
variety of problems. The dimension d in which objects are embedded ranges from 2 to
10. For models of physical phenomena, d is 2 or 3. The number |J | of fixed objects,
such as data points or customer locations, ranges from 5 to 1000. The numberN of ob-
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jects whose positions are to be determined by solving the optimization problems ranges
from 2 to 200 in most of the problems we chose, except for the kissing number and
Euclidean Steiner tree problems, in which N does not vary independently from d. Al-
though heuristic methods are routinely used to obtain locally optimal solutions for in-
stances of many of these problems with N ≫ 100, the problem of certifying global op-
timality even for N ≥ 25 or so remains open for almost all problems considered herein.
Therefore, the development of algorithms capable of solving all problems in EuclidLib

to global optimality would represent a significant achievement for the field of global
optimization, and would enable important contributions to mathematics, science, and
engineering. In the remainder of this section, we describe the EuclidLib instances in
more detail and present the performance of modern global optimization solvers in our
computational benchmarking study. A repository containing all EuclidLib instances
is maintained at https://github.com/anatoliy-kuznetsov/EuclidLib.

3.1. Description of instances. Formulation (2.1) for the kissing number prob-
lem can be transformed to a feasibility problem by adding the constraint α ≥ 4, where
feasibility implies that KN(d) ≥ N and infeasibility implies that KN(d) < N . There-
fore, we included instances of (2.1) with N ranging from the best known lower bound
on KN(d) to one above the best known upper bound on KN(d). In this way, the
solution of all kissing number problem instances in EuclidLib is sufficient to deter-
mine the kissing number for dimensions 2 through 10. In formulation (2.3) of the
Euclidean Steiner tree problem, the number of Steiner points depends on the number
of terminals, and not every Steiner point need be included in the tree. Although exact
algorithms for Euclidean Steiner trees in general dimension are only capable of solv-
ing instances with fewer than 20 terminals at present [46], we included instances with
up to 200 terminals, since it is common to consider Steiner tree problems on graphs
containing hundreds or thousands of terminals [19], and the GeoSteiner algorithm is
capable of solving problems of up to 10,000 terminals in two dimensions [77]. For the
Euclidean Steiner tree, k-means clustering, and p-median problems, we generated syn-
thetic instances using a uniform distribution for the points aj representing terminals,
data points, and customer locations, respectively. We restricted k-means clustering
instances to no more than five dimensions. We remark that R5 is a relatively low
dimension compared to that used in many applications; for example, data sets with
over 1,500 features have been used in practice [29].

We chose molecular clustering problems with the Lennard-Jones potential as well
as the Morse potential with parameter ρ = 6, which is commonly used to benchmark
global optimization algorithms [167]. As mentioned in Section 2.2, discrepancies be-
tween experimentally observed cluster structures and putative minima of (2.5) have
been observed for instances as small as N = 38 and up to N = 104. The solution
of (2.5) for N ≤ 4 is trivially to arrange all atoms equidistant from one another, but
this is not possible in R3 for N ≥ 5. Since the experiments described in [9] include
clusters of up to 150 particles, we have included instances of (2.5) with 5 ≤ N ≤ 150
in EuclidLib. Their solution to global optimality would settle a question which has
been open for decades and would provide fundamental insight into the thermodynam-
ics of small clusters of matter. Similarly, instances of the Thomson problem (2.6) with
N up to 200 have long been used as part of global optimization benchmarks [23], but
global optima remain unknown for the Thomson problem with N > 12 and for the
Tammes problem with N > 24.

The problem of packing equal circles into a square is perhaps the most well-
studied circle packing problem in two dimensions; yet, the largest instance whose

https://github.com/anatoliy-kuznetsov/EuclidLib
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optimal solution is known is the 39-circle one. Moreover, specialized algorithms for
this problem make simplifications such as domain reductions based on the container
being square and the circles being of equal radius. In view of the many applications
in which these assumptions do not hold, and the application of the packing of unequal
circles to the approximate packing of general shapes, we have included the following
instances with N up to 40: packing equal circles into the unit square, packing equal
circles into the unit circle, packing circles with ri = i into a circle, and packing circles
with ri = i−1/2 into a circle. The solution of these instances to global optimality will
likely require the development of algorithms which are more generalizable to other
optimization problems involving the Euclidean norm. Additionally, these geometries
have been considered before in the global optimization community [169, 93] and pu-
tative optima are available on the Packomania website [150]. The facility location
problems we have included in EuclidLib include the obnoxious facility location in-
stances from [40], which have recently received attention in the global optimization
community [78, 92] owing to their difficulty.

3.2. Computational benchmarking results. We assessed the performance of
the global optimization solvers BARON [135], LindoGlobal [91], ANTIGONE [109],
SCIP [17], and Gurobi [55] on EuclidLib instances using GAMS 46.4.0 on a machine
with a 4 GHz processor, 5 GB RAM, and a time limit of 3600 s. The results are
shown in Figure 7. The y-axis shows the cumulative percent of instances solved
to global optimality (zero gap) by each solver. BARON [135] and SCIP [17] solve
the most instances, 38, within the time limit. However, this figure represents just
2.9% of the test set. Indeed, only 73 instances (5.7%) are solvable by any solver
within the time limit. For each solver, Table 1 shows the number of instances solved,
the corresponding percentage of EuclidLib instances solved, the average number of
variables and constraints in instances solvable by that solver within the time limit,
and the geometric mean of solution times. Solver timeouts are counted as 3,600 s
in calculating the geometric mean of solution times. Solvable instances have a mean
of 42 variables, just 0.7% of the EuclidLib average, and 237 constraints, 4.9% of
the EuclidLib average. These results indicate that only relatively small instances of
EuclidLib problems are tractable for modern global optimization solvers.

Solver
Instances
solved

Percent
solved

Average
# variables

Average
# cons.

Geometric
mean (s)

BARON 24.4.30 38 2.9% 65 62 2,891
SCIP 8.1 38 2.9% 12 422 3,080

Gurobi 11.0.1 28 2.1% 10 398 3,212
ANTIGONE 1.1 19 1.5% 14 311 3,280

LINDOGLOBAL 3.17P 15 1.1% 16 65 3,357

Table 1: Summary of computational results for EuclidLib instances.

As discussed in Section 1, EuclidLib problems are challenging from both the
primal and dual “directions”. To assess whether improving the primal bound or the
dual bound took longer in our study, we analyzed solver convergence for the instances
solved to global optimality. The results are shown in Figure 8 for each individual
solver. The x-axes show the fraction of time τ elapsed between the end of presolve
routines and the end of the solution process. This scaling facilitates the comparison
of solution progress between instances with different solution times. The y-axes show
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Fig. 7: Performance of global optimization solvers on the EuclidLib collection. Note
the logarithmic scale on the x-axis.
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in the solver log file.
The profiles in Figure 8 show qualitatively that, on average, dual bounds are

both initially weaker than primal bounds and also take longer to improve. Indeed,
we observed that, for a significant fraction of instances, the optimal solution is found
in local search during preprocessing, and almost all of the solution time is devoted
to proving global optimality. Note that the specific shape of each profile in Figure 8,
along with the scale of the y-axis, depends on a variety of factors such as the subset of
instances solved, their relative solution times, and solver-specific parameters such as
the strategies for tree exploration or preprocessing methods such as local search and
bounds tightening. Therefore, we caution that these profiles should not be used to
compare the performance of different solvers on metrics such as their relative quality
of heuristics and relaxation methods. Instead, they are intended to show qualitatively
that dual bound improvement is challenging for EuclidLib instances and therefore
underscore the potential of stronger convex relaxations for this class of problems to
accelerate the solution process.

Fig. 8: Solution progress for EuclidLib instances solved to global optimality within
the time limit, with scaled time on the x-axis and scaled objective value on the y-axis.

4. Challenges and progress. Herein, we highlight two features of EuclidLib
problems which make them particularly challenging for global optimization methods
based on a branch-and-bound framework. Firstly, due to the application areas from
which they arise, many of these problems admit symmetric solutions; in particular,
their symmetry group includes Euclidean transformations in addition to permutations.
Secondly, many EuclidLib problems contain an inherent reverse convex structure
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defined in terms of the Euclidean norm. Convex relaxations of these sets generated
in the standard way are generally very weak. As shown in Section 3, these two
characteristics together lead to very slow dual bound improvement, and subsequently,
long solution times. In what follows, we elaborate further on these challenges and
survey existing techniques, usually developed specifically for individual problems, for
handling them.

4.1. Symmetry elimination. Symmetry elimination is an important aspect
of branch-and-bound algorithms, often enabling the solution of otherwise intractable
problems, and remains an active area of research [123]. A symmetry of an opti-
mization problem min{f(x) : x ∈ X ⊆ Rn} is a bijection π : Rn → Rn such that
π(X) := {π(x) : x ∈ X} = X and f(π(x)) = f(x) for every x ∈ X [120]. Let Π denote
a set of symmetries, or symmetry group. Then, the orbit of a point x ∈ X under Π
is {π(x) : π ∈ Π} [100]. In particular, if x is an optimal solution, then every solution
in its orbit is an optimal solution. In practice, it is often the case at a low-depth
node in a branch-and-bound tree that an optimal solution’s orbit intersects all child
nodes. This fact prevents fathoming of large portions of the search tree and leads to
enumeration of degenerate optimal solutions. Therefore, the goal of symmetry elim-
ination methods for branch-and-bound algorithms is generally to reduce the domain
X so the cardinality of its intersection with each orbit is as small as possible, ide-
ally equal to one [123]. Achieving this goal is very difficult in practice, particularly
for the problems in EuclidLib. One reason is that the application of symmetry-
breaking inequalities for different orbits independently can make all optimal solutions
infeasible. Some sufficient conditions for combining symmetry-breaking constraints
for permutations of disjoint index sets are known [88, 90]. However, many problems
in EuclidLib admit Euclidean symmetries (translation, rotation, and reflection) in
addition to permutational symmetries, as noted in [88]. The question of necessary
and sufficient conditions for the simultaneous breaking of multiple permutation orbits
remains open, as does the breaking of permutation and Euclidean orbits.

Symmetry elimination methods can be categorized as either static (at the level of
the formulation, or root node), or dynamic (at the level of each node in the branch-and-
bound tree). Static symmetry elimination methods often include constraints which
can be added directly to the formulation; their ease of implementation makes them
accessible to the modeler. On the other hand, dynamic symmetry elimination methods
typically require the implementation of a specialized algorithm at each node of the
branch-and-bound tree but are usually more effective [90].

The most common types of static symmetry elimination constraints for problems
in EuclidLib are the fixing of some variables and the imposition of an order on the
positions x1, . . . , xN . As an illustrative example, consider the molecular clustering
problem, (2.5). Since the potential energy of a cluster is defined only in terms of the
pairwise Euclidean distances of identical atoms, the set of symmetries for this problem
is the Cartesian product between the symmetric group SN and the Euclidean group
E3. In other words, permuting the atom numbers and applying translations, rotations,
and reflections to the cluster preserve the domain and objective function. This group
has infinite cardinality, but many of the translational and rotational symmetries can
be broken by fixing the first atom to the origin, the second atom to the x-axis, and
the third atom to the xy-plane [64]. Moreover, additional permutational symmetries
can be eliminated by imposing an ordering z1 ≤ z2 ≤ ... ≤ zN on the z-coordinates of
each atom. Bounds on the atomic coordinates can be derived from bounds dL and dU

on interatomic squared distances at an optimal solution; for example, Yuhjtman [187]
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showed that dL ≥ 0.6842 and Blanc [16] showed that dU ≤ N2. The molecular
clustering formulation together with these constraints can then be written as

(4.1)

min
N−1∑
i=1

N∑
j=i+1

V (
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2)

s.t. x1 = y1 = z1 = y2 = z2 = z3 = 0
zi ≤ zi+1 1 ≤ i < N
dL ≤ (xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 ≤ dU 1 ≤ i < j ≤ N

(xi, yi, zi) ∈ [−
√
dU ,

√
dU ]× [−

√
dU ,

√
dU ]× [0,

√
dU ] 1 ≤ i ≤ N

However, both Euclidean and permutational symmetries remain in formulation (4.1).
Consider the polyhedron formed by the convex hull of atomic positions at any solution,
shown in Figure 9(a) for the triangular bipyramid, an optimal solution to (4.1) for
N = 5. Formulation (4.1) enforces that three vertices of a face of this polyhedron
should be embedded in the xy-plane, rotated and translated such that one is at the
origin, one lies on the x-axis, and one lies in the xy-plane. Although these constraints
make rotations of the polyhedron about the origin and translations without rotation
infeasible, they do not restrict which faces can lie in the xy-plane. If not all faces are
congruent, this leads to symmetric solutions, such as the one illustrated in Figure 9(b).
In other words, many Euclidean transformations consisting of a translation composed
with a rotation are not eliminated by this formulation. The atomic coordinates of
these two solutions are given in Table 3.

(a) (b)

Fig. 9: Two symmetric solutions to the molecular clustering formulation (4.1) with
symmetry elimination constraints.

By the above argument, given a solution to (4.1), one can estimate the cardinality
of its orbit under Euclidean transformations as the number of triangles in a triangu-
lation of the convex hull of the atomic positions, since the vertices of each triangle
can be positioned in the xy-plane. For the putative optima with 5 ≤ N ≤ 150, these
values are plotted in Figure 10. In reality, these values are likely an underestimation
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Atom Solution (a) Solution (b)
1 (0, 0, 0) (0, 0, 0)
2 (0.997907, 0, 0) (0.997907, 0, 0)
3 (0.502506, 0.866254, 0) (0.495400, 0.866255, 0)
4 (-0.327898, 0.769087, 0.544798) (1.325805, 0.769088, 0.544798)
5 (0.502507, 0.287377, 0.817197) (0.495400, 0.287378, 0.817197)

Table 3: Atomic coordinates in symmetric solutions to (4.1).

of the number of symmetric solutions, since a polyhedral face with more than three
vertices admits multiple triangulations.

Fig. 10: Number of triangles in triangulations of the convex hulls of putative optima
for the molecular clustering problem (4.1) with the Lennard-Jones potential. The
strongest known symmetry elimination constraints enforce that three vertices of a
facet of the polyhedron formed by atomic positions should be embedded within the
xy-plane, but there are in general many choices of which facet.

Moreover, it may be the case that at a solution of (4.1), there exist subsets of
vertices with equal z-coordinates. For example, the optimal solution of (4.1) with
the Lennard-Jones potential and N = 6 is to arrange the atoms at the vertices of a
regular octahedron. Then, if atoms 1, 2, and 3 lie in the xy-plane, it follows that
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atoms 4, 5, and 6 lie in a plane parallel to it, and the permutation of their positions
leads to multiple optimal solutions for (4.1). These symmetries are not accounted
for in the quantities shown in Figure 10, so the number of symmetric solutions is
likely even higher. Similar variable fixings and orderings have also been used for the
circle packing problem [34], in the k-means clustering problem to order clusters by
size [143], and in a transformed space for the solution of the Thomson problem [141].

Dynamic symmetry elimination methods have been employed, usually as part
of a problem-specific algorithm, to simultaneously eliminate permutational and Eu-
clidean symmetries in some of the problems in EuclidLib. For example, Locatelli and
Raber [93] developed techniques for the problem of packing equal circles in a square,

(4.2)
max r
s.t. (xi − xj)

2 + (yi − yj)
2 ≥ 4r2 1 ≤ i < j ≤ N

0 ≤ xi ≤ 1, 0 ≤ yi ≤ 1 1 ≤ i ≤ N

An important step in their symmetry elimination method is to partition the square
into a set of smaller squares constructed so that their diagonal is smaller than the
largest radius r found so far; this idea was introduced in [122] and also employed
in [118]. Then, by construction, at most one circle center can belong to any smaller
square in an optimal solution. The algorithm proceeds by considering assignments
of circle centers to squares, which can be thought of as a customized branching rule.
Crucially, symmetric assignments of circle centers to squares can be pruned in a
dynamic matter at each node. This idea is illustrated in Figure 11. First, each square
is assigned a unique number. The exact numbering strategy is not important, as
long as no two squares share a number. In [93], the square is partitioned into 4m

congruent subsquares, using the smallest value of m such that the condition on the
diagonal length is satisfied. The numbering is defined recursively: all numbers in the
lower left quadrant of a square are less than all numbers in the lower right quadrant,
which in turn are less than all numbers in the upper left quadrant, which are less than
all numbers in the upper right quadrant. This numbering scheme is shown in Figure
11(a). Without loss of generality, we can enforce the constraint that circle center i
must belong to a lower-numbered square than circle i + 1, since any configuration
of circles can be renumbered to satisfy this condition. Therefore, once the branch-
and-bound node corresponding to the assignments shown in Figure 11(b) has been
processed, the node shown in Figure 11(c) can be pruned. The same idea can be
applied to nodes related by a Euclidean transformation to one already considered, as
shown in Figure 11(d). Moreover, optimality conditions for this problem can be used
to eliminate symmetric packings in which a circle is “loose” and may be translated
without changing the objective value [129].

Not all EuclidLib problems admit Euclidean symmetries; for example, when
problem (1.1) includes data aj , such as in the Euclidean Steiner tree, k-means, and
facility location problems, Euclidean isometries of the points xi do not preserve the
objective value in general. Nonetheless, an algorithm capable of detecting and auto-
matically eliminating permutational and Euclidean symmetries simultaneously would
likely lead to a significant speedup for EuclidLib problems that do have this group
structure, including the molecular clustering, kissing number, Thomson, Tammes, and
circle packing problems.

4.2. Construction of convex relaxations. The results in Section 3 indicate
that standard methods used in global optimization solvers for the construction of
convex relaxations typically lead to weak bounds for the problems in EuclidLib. As
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(a) (b) (c) (d)

Fig. 11: Nodes in the tree of a custom branch-and-bound method for the problem
(4.2) of packing equal circles in a square. By subdividing the square into numbered
equal sub-squares such that at most one circle center can belong to each sub-square,
Euclidean and permutational symmetries of the problem can be eliminated in a dy-
namic fashion.

we will show, this is partly due to a reverse convex structure inherent in many of
these problems. Constructing a convex relaxation is commonly referred to as convex-
ification. In this section, we define some requisite notions, illustrate the challenges in
convexifying these problems, and survey techniques which are capable of generating
stronger relaxations.

The terminology of reverse convex programming was introduced by Hillestad and
Jacobsen in 1980 [63]. A constraint f(x) ≥ 0 is called reverse convex when f is
quasiconvex (i.e., it has convex sublevel sets); the set {x : f(x) ≥ 0} described by
constraint(s) of this form may also be referred to as reverse convex. Reverse convex
sets are well-studied in the optimization literature, in part due to their applications
in generating intersection cuts [8], a type of cutting plane based on a valid inequality
for a reverse convex set. It is known that the convex hull of a reverse convex set
is polyhedral [63], but the computation of high-quality convex relaxations of general
reverse convex sets remains an active area of research [162]. For example, the set
conv {x ∈ P : f(x) ≥ 0}, where convS denotes the convex hull of a set S, P is a
polytope, and f is a single quadratic function, was characterized only recently [136],
and the question of convexifying the intersection of more than one such set is an
important open question in the field of quadratic programming [116].

A common approach used within global optimization codes to convexify the set
F described by multiple constraints fi(x) ≥ 0 is to convexify each constraint individ-
ually and to take the intersection of the resulting convex relaxations [105]. Relaxing
constraints individually (single-row relaxation) yields a convex set containing F and
is popular due to its ease of implementation and applicability to most functions which
appear in optimization problems in practice. Since conv (∩iFi) ⊆ ∩iconv (Fi), the
relaxation quality can sometimes be significantly improved by the so-called simultane-
ous convexification of multiple constraints. Simultaneous convexification refers to the
convexification of a set given by multiple constraints directly rather than by taking the
intersection of convex relaxations of the individual constraints [157]. This approach
has been described in the context of polynomial optimization [84] and quadratic bi-
variate functions [7] and was considered in a more general context in [10].

In the case of EuclidLib problems, single-row relaxations often lead to weak dual
bounds even when the set described by each constraint is relaxed to its convex hull.
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(a) (b)

Fig. 12: Projection of the set {(xi, yi, xj , yj) : (xi − xj)
2 + (yi − yj)

2 ≥ 0.36} where
(xi, yi) and (xj , yj) are constrained to the unit square with and without the symmetry
elimination constraint xi ≤ xj .

As an illustrative example, consider the circle packing problem in a unit square with
identical radii (4.2), and suppose that an incumbent solution with objective value
r∗ = 0.3 has been found. Then, a non-overlap constraint satisfied by every optimal
solution is

(xi − xj)
2 + (yi − yj)

2 ≥ (2(0.3))2 = 0.36.

At the root node, the centers of circles i and j are both constrained to the unit
square, so by interval arithmetic, we can deduce that (xi−xj , yi−yj) ∈ [−1, 1]2 in the
absence of a symmetry elimination constraint enforcing xi ≤ xj , and (xi−xj , yi−yj) ∈
[−1, 0]×[−1, 1] in the presence of such a constraint. The projection of the set described
by the non-overlap constraint onto the (xi−xj , yi−yj) plane is shown in blue in Figure
12 for these two situations. In both cases, the convex hull of this set is obtained by
dropping the non-overlap constraint entirely. For this reason, convexifying (4.2) early
in the branch-and-bound tree by relaxing each row separately can lead to very poor
relaxations. This geometric structure is not unique to the circle packing problem and
is a feature of any set of lower bounds on the Euclidean distances between points
constrained to the same domain.

This fact is well known and has motivated the development of numerous strate-
gies to ameliorate the poor quality of single-row relaxations. For example, Wang and
Gounaris [170, 169] propose a branching scheme which generates three child nodes
based on inscribing an equilateral triangle in the circle given by the non-overlap con-
straint with an orientation chosen to ensure the infeasibilty of a relaxation solution.
Then, the feasible set can be partitioned into three regions by branching on linear
functions of coordinate differences instead of the usual strategy of branching on coor-
dinates directly. This single-row relaxation strategy was successfully employed along
with intersection cuts and a feasibility-based tightening technique to solve circle pack-
ing problems with unequal radii to global optimality [169]. In general, a polygon with
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(a) (b)

Fig. 13: Custom branching for a reverse convex constraint involving the Euclidean
norm based on inscribed polygons. In panel (a), three child nodes are generated
by a triangle, whereas in panel (b), eight child nodes are generated by an octagon.
Boundaries between child nodes are depicted as blue dashed lines.

more vertices will yield a sharper convex relaxation of the reverse convex non-overlap
constraint at the expense of generating more child nodes, as shown in Figure 13.

For the more well-studied case where all circles are of identical radius, simulta-
neous convexification techniques have been explored. For example, Khajavirad [79]
derived sharper variable bounds for circle centers in (4.2) based on symmetry ar-
guments and showed that facet-defining clique inequalities for the Boolean quadric
polytope can be used to convexify non-overlap constraints for triplets of circles. The
resulting root-node dual bounds were proven to be sharper than those obtained by a
single-row relaxation. Though not presented as such, a simultaneous convexification
method based on computational geometry techniques was used in [93] for optimality-
based domain reduction. To illustrate this approach, consider three circle centers
constrained to polytopes X1, X2, and X3, as shown in Figure 14, and suppose a fea-
sible solution to (4.2) has been found with radius r∗. Then, one can calculate the
set

R2 = {x ∈ X2 : ∥x− y∥ < r∗ ∀y ∈ X1}

and compute the convex hull of X2 \R2, which is polyhedral since X2 \R2 is reverse
convex [63]. The polytope X ′

2 := conv (X2 \ R2) can then be used to reduce X3 by
computing

conv ({x ∈ X3 : ∥x− y∥ < r∗ ∀y ∈ X ′
2})

which in turn can be used to further reduce X1, which can further reduce X ′
2 and

so on. In [93], this procedure, called the “wave effect”, was performed twice at each
branch-and-bound node and enabled the solution to global optimality of instances of
(4.2) up to N = 39 (on sub-GHz processors of the time).

Note that the problem of simultaneously convexifying multiple nonconvex con-
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Fig. 14: Optimality-based domain reduction via simultaneous convexification.

straints is extremely challenging, which is intuitive since it is related to the problem
of deciding the feasibility of a system of nonconvex constraints. The computational
success of methods such as the ones described in this section points to the promise of
simultaneous convexification, but the problem remains open in general.

5. Opportunities for future research. Considering the challenges outlined
in Section 4, we have grouped promising avenues for future research into methods
for symmetry elimination and methods for convexification. From the perspective of
symmetry elimination, the most challenging problem types in EuclidLib are those
which admit Euclidean as well as permutational symmetries, i.e., the kissing number,
molecular clustering, Thomson, Tammes, and circle packing problems. The symmetry
groups of some of these, such as the circle packing problem [34] and kissing number
problem [88], have been characterized. However, the most effective known way to
eliminate symmetric solutions for these problems is by using custom branch-and-
bound codes, which are time-consuming to develop and have limited generalizability.
We envision a symmetry elimination algorithm capable of automatically computing
symmetry groups for all problems in this class. Ideally, this method should be capable
of eliminating all but one optimal solution without prior hard-coding of the instance
geometry. In our view, one promising approach to this task is the use of cutting
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planes based on fundamental domains of symmetry groups. Following the definition
given in [123], given a set X, we say F ⊆ X is a fundamental domain for X under the
action of a group G if F contains one element from each orbit under G of each point
x ∈ X. One well-known way to define fundamental domains is to make infeasible all
elements of each orbit except for the one which minimizes a linear function α; then,
F can be described by the linear inequalities

(5.1) α⊺x ≤ α⊺g(x)

for each g ∈ G. The parameter α should be chosen so that each orbit has a unique
minimizer, i.e., the stabilizer of G with respect to α is the identity. In the context
of a branch-and-bound algorithm, inequalities (5.1) can be added as cutting planes.
The number of possible inequalities depends on the cardinality of G; for Euclidean
isometries, there are infinitely many. However, it may be possible to generate the most
violated inequality efficiently by solving a convex optimization problem. For example,
if G is a permutation group, the most violated inequality can be found by minimizing
the right-hand side of (5.1) over the Birkhoff polytope, which is the convex hull of
permutation matrices. Although the set of rotation matrices is nonconvex, its convex
hull has been characterized [137] and efficient optimization over this set is an active
area of research [185, 130] due to its applications in kinematics [30], computer graph-
ics [103], and satellite positioning [165]. Rather than exactly solving an optimization
problem for the most violated inequality (5.1), it may also be possible to solve it
approximately and/or generate multiple such inequalities simultaneously. Symmetry
detection graphs have also been recently explored for the elimination of symmetric
solutions related by a reflection about the center of a box domain, with promising nu-
merical results [65]. The characterization of symmetry groups of EuclidLib instances
admitting Euclidean symmetries, descriptions of fundamental domains thereof, and
algorithms for the efficient generation of valid inequalities for these fundamental do-
mains are all open areas of research; considering the success of symmetry elimination
methods in mixed-integer linear programming [123], we believe that these questions
constitute a potentially fruitful direction for the community.

Apart from symmetry elimination, the other potentially impactful area for future
research efforts is the simultaneous convexification of reverse convex sets defined in
terms of the Euclidean norm. In the context of the circle packing problem, the advan-
tages of convexifying multiple non-overlap constraints simultaneously has been shown
both empirically [93] and theoretically [79]. Given the recent theoretical advances in
the convexification of reverse convex quadratic sets [136, 116], and considering the very
specific structure of the squared Euclidean norm as opposed to a general quadratic
form, we believe that this challenge is within reach. From an algorithmic point of
view, since many EuclidLib problems involve the placement of objects within R2 or
R3, it is our view that insights from computational geometry may be useful in the
implementation of simultaneous convexification methods. For example, techniques
from computational solid geometry, which is used to compute Boolean operations on
solids for 3D modeling software such as computer-aided design programs, could be
adapted to this task. Since the intersection of complements of spheres has a very nat-
ural Boolean representation, one possible approach to convexifying such a set could
be to compute a “safe” mesh approximation (in the sense that it is guaranteed to
contain the reverse convex set) and then compute the convex hull thereof using stan-
dard efficient algorithms for computing the convex hull of a finite number of points
in R3. This approach has the advantage of being extensible to account for linear
constraints as well as other norms commonly considered for variants of EuclidLib
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problems, such as the ℓ1 norm, which appears in variants of the Steiner tree and pla-
nar facility location problems. It requires that the sphere centers be fixed rather than
variable, a condition automatically satisfied when the Euclidean distance in question
is that between a variable point xi and a point aj given as problem data, such as in
the k-means or facility location problems. For problems in which |J | = 0 and there
are no points aj given as problem data, it is nonetheless possible to geometrically
deduce and subsequently convexify reverse convex inequalities from linear constraints
on each point xi, as shown in Figure 14. To see this in general, observe that if Xi is
a polytope with vertices vk, and Xj is also a polytope, then the constraints xi ∈ Xi

and xj ∈ Xj , together with the reverse convex constraint ∥xi − xj∥ ≥ rL, imply that

xj ∈ Xj \
⋂
k

BrL(v
k),

where Br(x) denotes the closed ball of radius r centered at x, which follows from
the fact that the maximum of a convex function over a polytope is attained at a
vertex. This characterization could provide the basis for a geometric approach to the
simultaneous convexification of reverse convex constraints involving the Euclidean
distance between two variable points xi.

6. Conclusions. Nonconvex optimization problems that involve the Euclidean
norm arise in myriad contexts in mathematics, science, and engineering, are particu-
larly challenging to solve to global optimality, and include well-known open problems.
Although specialized algorithms have been developed over the years for their solution,
with few exceptions, they have been limited to small instances. We have compiled
a benchmarking library, EuclidLib, of instances of this type for use by the global
optimization community and have conducted a computational study showing that
these problems are currently beyond the reach of general-purpose global optimiza-
tion solvers. We identified dual bound improvement as a key challenge and showed
that the simultaneous presence of multiple symmetry groups as well as the geomet-
ric structure of reverse convex sets involving the Euclidean norm contribute to this
difficulty. These shared problem structures make the development of symmetry elim-
ination methods, such as those based on fundamental domains, and convexification
methods, possibly incorporating insights from computational geometry, applicable to
many of the problems within EuclidLib. The development of algorithms capable of
solving all EuclidLib problems to global optimality would represent a remarkable
achievement for the field of global optimization as well as a high-impact contribution
to fundamental and applied knowledge in a variety of fields.
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tightening techniques for non-convex MINLP, Optimization Methods and Software, 24
(2009), pp. 597–634.

[14] J. Bennell, G. Scheithauer, Y. Stoyan, and T. Romanova, Tools of mathematical mod-
eling of arbitrary object packing problems, Annals of Operations Research, 179 (2010),
pp. 343–368.

[15] A. J. Bernoff and C. M. Topaz, Nonlocal aggregation models: A primer of swarm equilibria,
SIAM Review, 55 (2013), pp. 709–747.

[16] X. Blanc, Lower bound for the interatomic distance in Lennard-Jones clusters, Computa-
tional Optimization and Applications, 29 (2004), pp. 5–12.
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[24] L. Bétermin, Minimizing lattice structures for Morse potential energy in two and three di-
mensions, Journal of Mathematical Physics, 60 (2019), p. 102901.

[25] P. H. Calamai and A. R. Conn, A stable algorithm for solving the multifacility location prob-
lem involving euclidean distances, SIAM Journal on Scientific and Statistical Computing,
1 (1980), pp. 512–526.

[26] M. Calef, W. Griffiths, and A. Schulz, Estimating the number of stable configurations for
the generalized Thomson problem, Journal of Statistical Physics, 160 (2015), pp. 239–253.

[27] M. Caramia, S. Giordani, and A. Iovanella, Grid scheduling by on-line rectangle packing,
Networks, 44 (2004), pp. 106–119.

[28] P. Chen, P. Hansen, B. Jaumard, and H. Tuy, Weber’s problem with attraction and repul-
sion, Journal of Regional Science, 32 (1992), pp. 467–486.

https://arxiv.org/abs/2402.17702


NONCONVEX OPTIMIZATION OVER THE EUCLIDEAN NORM 29

[29] X. Chen, X. Xu, J. Z. Huang, and Y. Ye, TW-k-means: Automated two-level variable
weighting clustering algorithm for multiview data, IEEE Transactions on Knowledge and
Data Engineering, 25 (2013), pp. 932–944.

[30] Y. Chen, S. Huang, and R. Fitch, Active SLAM for mobile robots with area coverage and
obstacle avoidance, IEEE/ASME Transactions on Mechatronics, 25 (2020), pp. 1182–
1192.

[31] N. Chernov, Y. Stoyan, and T. Romanova, Mathematical model and efficient algorithms
for object packing problem, Computational Geometry, 43 (2010), pp. 535–553.

[32] R. L. Church and Z. Drezner, Review of obnoxious facilities location problems, Computers
& Operations Research, 138 (2022), p. 105468.

[33] H. Cohn and A. Kumar, Universally optimal distribution of points on spheres, Journal of
the American Mathematical Society, 20 (2007), pp. 99–148.

[34] A. Costa, L. Liberti, and P. Hansen, Formulation symmetries in circle packing, Electronic
Notes in Discrete Mathematics, 36 (2010), pp. 1303–1310. ISCO 2010—International
Symposium on Combinatorial Optimization.

[35] K. M. Curtin and R. L. Church, A family of location models for multiple-type discrete
dispersion, Geographical Analysis, 38 (2006), pp. 248–270.

[36] G. Diehr, Evaluation of a branch and bound algorithm for clustering, SIAM Journal on
Scientific and Statistical Computing, 6 (1985), pp. 268–284.

[37] J. P. K. Doye, D. J. Wales, and M. A. Miller, Thermodynamics and the global optimization
of Lennard-Jones clusters, The Journal of Chemical Physics, 109 (1998), pp. 8143–8153.
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[83] J. A. D. A. L. J. P. Araújo, E. Özcan and M. Baumers, Analysis of irregular three-
dimensional packing problems in additive manufacturing: A new taxonomy and dataset,
International Journal of Production Research, 57 (2019), pp. 5920–5934.

[84] J. B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM
Journal on Optimization, 11 (2001), p. 796–817.

[85] J. Leech and N. Sloane, Sphere packings and error-correcting codes, Canadian Journal of
Mathematics, 23 (1971), pp. 718–745.

[86] M. Lewin and X. Blanc, The crystallization conjecture: A review, EMS Surveys in Mathe-
matical Sciences, 2 (2015), pp. 255–306.

[87] H. Li, H. He, and Y. Wen, Dynamic particle swarm optimization and k-means clustering
algorithm for image segmentation, Optik, 126 (2015), pp. 4817–4822.

[88] L. Liberti, Symmetry in mathematical programming, in Mixed Integer Nonlinear Program-
ming, New York, NY, 2012, Springer New York, pp. 263–283.

[89] L. Liberti, Mathematical programming bounds for kissing numbers, in Optimization and
Decision Science: Methodologies and Applications, A. Sforza and C. Sterle, eds., Cham,
2017, Springer International Publishing, pp. 213–222.

[90] L. Liberti and J. Ostrowski, Stabilizer-based symmetry breaking constraints for mathemat-
ical programs, Journal of Global Optimization, 60 (2014), pp. 183–194.

[91] Y. Lin and L. Schrage, The global solver in the LINDO API, Optimization Methods and
Software, 24 (2009), pp. 657–668.

[92] M. Locatelli, A new approach to the multiple obnoxious facility location problem based on
combinatorial and continuous tools, Optimization Letters, 18 (2024), pp. 873–887.

[93] M. Locatelli and U. Raber, Packing equal circles in a square: A deterministic global
optimization approach, Discrete Applied Mathematics, 122 (2002), pp. 139–166.

[94] F. C. Machado and F. M. de Oliveira Filho, Improving the semidefinite programming
bound for the kissing number by exploiting polynomial symmetry, Experimental Mathe-
matics, 27 (2018), pp. 362–369.

[95] J. MacQueen, Some methods for classification and analysis of multivariate observations, in
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
vol. 1, Oakland, CA, USA, 1967, pp. 281–297.

[96] N. Maculan, P. Michelon, and J. M. Smith, Bounds on the kissing numbers in Rn: math-
ematical programming formulations, tech. report, University of Massachusetts Amherst,
1996.

[97] M. Mahajan, P. Nimbhorkar, and K. Varadarajan, The planar k-means problem is NP-
hard, in WALCOM: Algorithms and Computation, Berlin, Heidelberg, 2009, Springer
Berlin Heidelberg, pp. 274–285.

[98] C. D. Maranas and C. A. Floudas, A global optimization approach for Lennard-Jones
microclusters, The Journal of Chemical Physics, 97 (1992), pp. 7667–7678.

[99] C. D. Maranas and C. A. Floudas, A Global Optimization Method For Weber’s Problem
With Attraction And Repulsion, Springer US, Boston, MA, 1994, pp. 259–285.

[100] F. Margot, Exploiting orbits in symmetric ILP, Mathematical Programming, 98 (2003),
pp. 3–21.
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[128] J. Pérez-Ortega, N. N. Almanza-Ortega, A. Vega-Villalobos, R. Pazos-Rangel,
C. Zavala-D́ıaz, and A. Mart́ınez-Rebollar, The k-means algorithm evolution, in
Introduction to Data Science and Machine Learning, K. Sud, P. Erdogmus, and S. Kadry,
eds., IntechOpen, Rijeka, 2019, ch. 5.

[129] U. Raber, Nonconvex All-Quadratic Global Optimization Problems: Solution Methods, Ap-
plication and Related Topics, PhD thesis, University of Trier, 1999.

[130] A. Ramachandran, K. Shu, and A. L. Wang, Hidden convexity, optimization, and algo-
rithms on rotation matrices, 2024, https://arxiv.org/abs/2304.08596.

[131] M. R. Rao, Cluster analysis and mathematical programming, Journal of the American Sta-
tistical Association, 66 (1971), pp. 622–626.

[132] G. Robins and A. Zelikovsky, Handbook of Algorithms for Physical Design Automation,
Auerbach Publications, New York, NY, 2019, ch. 24, pp. 487–508.

[133] G. G. Rondina and J. L. F. Da Silva, Revised basin-hopping Monte Carlo algorithm for
structure optimization of clusters and nanoparticles, Journal of Chemical Information
and Modeling, 53 (2013), pp. 2282–2298.

[134] M. Ruan, C. Shen, J. Tang, C. Qi, and S. Qiu, A double traveling salesman problem with
three-dimensional loading constraints for bulky item delivery, IEEE Access, 9 (2021),
pp. 13052–13063.

[135] N. V. Sahinidis, BARON: A general purpose global optimization software package, Journal

https://octeract.gg/
https://arxiv.org/abs/2304.08596


NONCONVEX OPTIMIZATION OVER THE EUCLIDEAN NORM 33

of Global Optimization, 8 (1996), pp. 201–205.
[136] A. Santana and S. S. Dey, The convex hull of a quadratic constraint over a polytope, SIAM

Journal on Optimization, 30 (2020), pp. 2983–2997.
[137] J. Saunderson, P. A. Parrilo, and A. S. Willsky, Semidefinite descriptions of the convex

hull of rotation matrices, SIAM Journal on Optimization, 25 (2015), pp. 1314–1343.
[138] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari, M. J. Er,

W. Ding, and C. Lin, A review of clustering techniques and developments, Neurocom-
puting, 267 (2017), pp. 664–681.

[139] G. Scheithauer, Introduction to Cutting and Packing Optimization: Problems, Modeling
Approaches, Solution Methods, Springer Nature, Cham, Switzerland, 2018.
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