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Abstract

Chandrasekaran and Shah (2017) used the exponential cone to model
the second-order cone in demonstration of its modeling capabilities. We
simplify and extend this result to general power cones.

1 Main result

Considering the identity xa = exp(a log(x)) on x > 0, it is not hard to imaging
that at least some subset of powers should be representable in terms of the
exponential cone. Indeed, under the definition

Kexp := cl
{
(t, s, x) ∈ R3 | s > 0, t ≥ s exp

(x
s

)}
, (1)

in which the closure operator adds the face
{
(t, s, x) ∈ R3 | s = 0, t ≥ 0, x ≤ 0

}
,

we find that
t ≥ xa,

⇔ t ≥ exp(a log(x)),
⇔ t ≥ exp(au), u ≤ log(x),
⇔ (t, 1, au) ∈ Kexp, (x, 1, u) ∈ Kexp,

(2)

holds on x > 0 for any power a ≤ 0, as verified by standard convex composition
rules noting that exp(au) is convex nonincreasing and log(x) is concave. These

steps can be repeated for the general identity
∏k

i=1 x
αi
i = exp(

∑k
i=1 αi log(xi))

on x ∈ Rk
++, leading straight to an important intermediate result.

Lemma 1.1 The monomial inequality, t ≥ xα1
1 xα2

2 · · ·xαk

k on x ∈ Rk
++, can be

represented for any set of negative powers, αi ≤ 0, by

(t, 1,
∑k

i=1 αiui) ∈ Kexp, (xi, 1, ui) ∈ Kexp ∀i = 1, . . . , k.
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With a bit of rearrangement and rescaling, the result above provides us with a
representation of a general power cone inequality.

Lemma 1.2 The power cone inequality, xα1
1 xα2

2 · · ·xαk

k ≥ r ≥ 0 on x ∈ Rk
+,

can be represented on the subset of powers,
∑k

i=1 αi = 1 and αi ≥ 0, by∑k
i=1 αiui = 0, (xi, r, ui) ∈ Kexp ∀i = 1, . . . , k. (3)

Proof Assume r = 1 and x ∈ Rk
++ to rearrange the inequality as

1 ≥ x−α1
1 x−α2

2 · · ·x−αk

k ,

and apply Lemma 1.1. The constraint (1, 1,
∑k

i=1 −αiui) ∈ Kexp simplifies to∑k
i=1 αiui ≥ 0 and is enforced with equality in (3) by exploiting the opportunity

for slack in (xi, 1, ui) ∈ Kexp ⇔ ui ≤ log(xi). Finally, by homogenization,
substituting xi by

xi

r , we obtain the claimed result on x ∈ Rk
++ and r > 0. The

lack of singularities on the boundary allows us to relax the domain.

2 Examples and variants

The quadratic power cone, x1x2 ≥ x2
3 on x ∈ R2

+ × R, can be rewritten as
x0.5
1 x0.5

2 ≥ |x3| and represented by

(x1, r, u) ∈ Kexp, (x2, r,−u) ∈ Kexp, r ≥ x3 ≥ −r. (4)

In turn, we can rewrite the second-order cone, t ≥ ∥x∥2, as

t ≥
∑k

i=1 wi, twi ≥ x2
i ∀i = 1, . . . , k, (5)

and use (4) on the quadratic power cones to complete the reformulation.
Finally, the power cone represented by Lemma 1.2, namely

Kα
pow := {(x, r) ∈ Rk+1

+ : xα1
1 xα2

2 · · ·xαk

k ≥ r}, (6)

can be used to construct more common variants of itself. The hypograph power
cone, found by replacing r ∈ R+ with y ∈ R, is simply (x, r) ∈ Kα

pow, r ≥ y, and
the radial power cone, found by replacing r with ∥y∥2, is just (x, r) ∈ Kα

pow and
r ≥ ∥y∥2, leveraging the second-order cone representation in (5). These repre-
sentations all offer the luxury of not requiring parameterized cones, simplifying
software interfaces and algorithms. Whether they improve performance under
any scenario is unknown, however, and in many cases unlikely.
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