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Abstract

A parametric class of trust-region algorithms for constrained nonconvex optimization
is analyzed, where the objective function is never computed. By defining appropriate
first-order stationarity criteria, we are able to extend the Adagrad method to the newly
considered problem and retrieve the standard complexity rate of the projected gradient
method that uses both the gradient and objective function values. Furthermore, we pro-
pose an additional iteration-dependent scaling with slightly inferior theoretical guarantees.
In both cases, the bounds are essentially sharp, and curvature information can be used to
compute the stepsize. The adaptation of the algorithm to the convex constrained case is
discussed, and initial experimental results for noisy bound-constrained instances illustrate
the benefits of the objective-free approach.

Keywords: First-order methods, objective-function-free optimization (OFFO), Adagrad, con-

vergence bounds, evaluation complexity, second-order models.

1 Introduction

It is a truism to say that adaptive-gradient methods such as Adagrad, ADAM and cousins
are at the heart of machine learning algorithms, and the literature covering them is vast
(see [29, 17, 35, 27, 37, 34, 15] to cite only a few significant contributions). In line with
current technology for neural network training, most of these minimization methods have been
considered for nonconvex unconstrained problems. While this is adequate for a broad category
of applications, it is however difficult to use them in a context where a priori information on
the problem at hand is available, often in the form of constraints. Admittedly, these a can be
taken into account by adding penalty terms to the loss/objective function, a technique often
used in the Physically Informed Neural Networks (PINNs) branch of research (see [6, 36]
for instance), but this introduces new hyper-parameters needing calibration and does not
guarantee that constraints are strictly enforced. Moreover, a sufficiently severe penalization
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of the constraints typically deteriorates the problem’s conditioning, possibly resulting in slow
convergence, especially if first-order methods are used. This suggests that there is a scope
for a more direct approach. The present short paper proposes a step in that direction by
considering adaptive gradient algorithms for nonconvex problems which have bound or convex
constraints.

Nonconvex optimization with convex constraints is not a new subject, but, to the author’s
knowledge, nearly all available algorithms use objective function values to ensure global con-
vergence by assessing the effectiveness of a move from one iterate to the next (see, for instance,
[13, Chapter 12] for a description of suitable trust-region methods and [8, Section 14.1] for an
analysis of their complexity). This can be inconvenient in deep learning applications where
sampling techniques cause significant noise ([22] provides a convincing illustration of this ar-
gument). Exceptions where the function values are not used in the globalization strategy
are the papers [10] and [1]. The first studies a stochastic zero-th order (DFO) algorithm
for problems with convex constraints based on the Malahanobis metric where the gradient is
approximated by finite-differences and proves that, in expectation, the norm of the projected
gradient (in that metric) decreases like k−1/4, where k is the iteration counter. This study
is motivated by applications in adversarial training (see the references in [10] for details).
The second paper considers a purely first-order stochastic version of AMSgrad for weakly
convex problems with convex constraints and obtains a similar rate of global convergence.
It also mentions applications in adversarial training and reinforcement learning. Although
both approaches are based on projections, no specific mention is made of the special case
of bound constraints, despite the fact that such constraints are an integral part of efficient
formulations of more complex problems with nonconvex constraints. Our aim in the present
paper is to complete this picture by considering a general class of adaptive algorithms for
general nonconvex problems including the popular Adagrad method, but also allowing the
use of curvature information, should it be available at a reasonable cost. The algorithm we
will introduce never evaluates the objective function (as is the case of the popular aforemen-
tioned Adagrad, ADAM and their variants). We refer to this feature by the OFFO acronym,
for Objective Function Free Optimization.

Our proposal is deterministic(1) and is based on the combination of two existing algorith-
mic approaches: trust-region based projection methods [13, Chapter 12] (more general and
more flexible than pure projected gradient methods) and a recent reinterpretation of adaptive-
gradient methods as a particular class of (the same) trust-region techniques [23]. We claim
that this combination, although only moderately complex technically, yields a useful class of
optimization algorithms, in particular given the interest of the deep-learning community in
methods capable of handling nonconvex functions and convex constraints.

A related approach is that using variants of Frank-Wolfe algorithm [19] to minimize a
potentially nonconvex function subject to convex constraints, whose complexity was analyed
in [28]. This method performs an objective-function-free linesearch along the direction from
the current iterate to the minimizer of the first-order model in the feasible set. in this
context, the main selling point of the Frank-Wolfe algorithm has always been (see [19]) that
it replaces projection on the feasible set (a quadratic optmization problem) by a potentially
cheaper linear programming subproblem whenever the feasible set is defined by a set of linear
inequalities. Further developments (see [5]) have looked at stochastic versions of the method

(1)It is the authors’ opinion that a study of the deterministic case is most useful for improving one’s under-
standing of an algorithm’s behaviour in more general stochastic contexts.
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replacing the linesearch by either a fixed stepsize rule of a “function agnostic” rule based on
iteration number only. Some of these variants ([40] or [32] and references therein) make use
of the definition of the feasible set as a technique to bias the search direction towards (various
forms of) sparse solutions. Our proposal differs from this line of work in that we propose
a “function-aware” adaptive stepsize strategy (the trust-region mechanism, possibly using
Adagrad-like adaptivity) using first-order information more locally (and thus probably more
reliably), and that we also allow taking second-order information into account when possible.
We also note that the (first-order) trust-region based step also results from an extremely
cheap linear programming computation when the constraints are bounds on the variables,
thus avoiding the general quadratic optimization cost of a projection in our case.

While adaptive-gradient methods for constrained nonconvex problems appear to be little
explored, this is not the case for problems featuring a convex objective function, for which
various methods have been proposed (see [2, 26, 18] for instance). Unfortunately, these
methods are difficult to adapt to the nonconvex setting because they typically hinge on an
acceleration technique that, so far, require convexity.

Our short paper is organized as follows. Because of its pervasiveness and simplicity, we
first focus on optimization with bound constraints and propose a class of OFFO adaptive-
gradient methods for this case in Section 2. We then specialize this class in Section 3 to
derive a suitably modified Adagrad algorithm and analyze its evaluation complexity. We also
propose, in Section 4 another specialization of our class, in the spirit of [23]. We then discuss
why and how our proposal can be extended to more general convex constraints in Section 5.
Some conclusions and perspectives are finally discussed in Section 7.

2 First-order minimization methods with bound constraints

The first optimization problem under consideration is given by

min
x∈F

f(x) (2.1)

where f is a smooth function from IRn to IR and

F =
{
x ∈ IRn | `i ≤ xi ≤ ui for i ∈ {1, . . . , n}

}
. (2.2)

The component-wise lower bounds {`i}ni=1 and upper bounds {ui}ni=1 in (2.2) satisfy `i ≤ ui
for i ∈ {1, . . . , n}. The values `i = −∞ and ui = +∞ are allowed. In what follows, we also
assume the following:

AS.1: the objective function f(x) is continuously differentiable;

AS.2: its gradient g(x)
def
= ∇1

xf(x) is Lipschitz continuous with Lipschitz constant L ≥ 0,
that is

‖g(x)− g(y)‖ ≤ L‖x− y‖

for all x, y ∈ IRn;

AS.3: there exists a constant flow such that, for all x ∈ F , f(x) ≥ flow.
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AS.1, AS.2 and AS.3 are standard for the complexity analysis of optimization methods seeking
first-order critical points, AS.3 guaranteeing in particular that the problem is well-posed. Note
that we do not assume the gradients to be uniformly bounded, at variance with [38, 15, 39, 23].

Because the purpose of the method we are about to describe is to compute approximate
first-order critical points for problem (2.1), we first review what we mean by this statement.
Given a vector x ∈ F , we first define

χi(x, α) = δi(x, α)|g(x)i| where δi(x, α) = max
{
δ ∈ [0, α] | x− δ sign[g(x)i] ei ∈ F

}
, (2.3)

with g(x) = ∇1
xf(x) and α ≥ 0. Observe that χi(x, α) is the maximum decrease of the linear

model g(x)T s achievable along the i-th coordinate vector while preserving feasibility and the
inequality |si| ≤ α, that is

χi(x, α) =
∣∣min

{
g(x)T s such that s = −δ sign(gi,k) ei, δ ≤ α and x+ s ∈ F

}∣∣ (2.4)

Hence χi(x, 1) = |gi,k| when F = IRn (i.e., the problem is unconstrained) or when the distance

from x to the bounds exceeds one along its i-th coordinate. Moreover χi(x)
def
= χi(x, 1) can

be interpreted as a continuous and backward stable first-order criticality measure for the
one-dimensional problem

min
t∈IR

{
f(x+ tei) such that `i ≤ xi + tei ≤ ui

}
(see [24]). As it is standard to define an (unconstrained) ε-approximate first-order critical
point at a point x such that

‖g(x)‖ =

√√√√ n∑
i=1

|gi(x)|2 ≤ ε,

we extend this notion here by defining a box-constrained ε-approximate first-order critical
point as a vector x ∈ F such that √√√√ n∑

i=1

|χi(x)|2 ≤ ε, (2.5)

a backward stable condition whose left-hand side is continuous. If ε = 0, (2.5) defines an
exact first-order critical point.

Of interest here are iterative methods which generate a sequence of iterates {xk}k≥0
where the step from xk to xk+1 depends on the gradient of the objective function at xk and
on algorithm-dependent weights {wk = w(x0, . . . , xk)} whose main purpose is to control the
step’s size. These weights are assumed to be bounded below by a strictly positive constant,
that is

AS.4: for each i ∈ {1, . . . , n} there exists a constant ςi ∈ (0, 1] such that, wi,k ≥ ςi for all
k ≥ 0,

Given an iterate xk, we add a subscript k to and drop the argument xk from quantities
of interest to indicate they are evaluated for x = xk, so that

gk = ∇1
xf(xk), δi,k(α) = δi(xk, α) and χi,k = χi(xk, 1)
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for instance.
We now state the ASTR1B algorithm (for Adaptively Scaled Trust Region using 1rst order

information with Bounds), a variant of the ASTR1 method of [23] capable of handling bound
constraints.

Algorithm 2.1: ASTR1B

Step 0: Initialization. A starting point x0 ∈ F is given. A constant τ ∈ (0, 1] is also
given. Set k = 0.

Step 1: Define the trust-region. Compute gk = g(xk) and define

∆i,k =
χi,k
wi,k

. (2.6)

Step 2: Hessian approximation. Select a symmetric Hessian approximation Bk.

Step 3: GCP. Compute a step sLk using

sLi,k = −
n∑
i=1

δi,k(∆i,k) sign(gi,k) (i ∈ {1, . . . , n}) (2.7)

and a step sQk given by

sQk = γks
L
k , (2.8)

with

γk =

 min

[
1,

|gTk sLk |
(sLk )TBks

L
k

]
if (sLk )TBks

L
k > 0,

1 otherwise.
(2.9)

Finally select a step sk such that

xk + sk ∈ F , (2.10)

|si,k| ≤ ∆i,k (i ∈ {1, . . . , n}), (2.11)

and
gTk sk + 1

2
sTkBksk ≤ τ

(
gTk s

Q
k + 1

2
(sQk )TBks

Q
k

)
. (2.12)

Step 4: New iterate. Define
xk+1 = xk + sk, (2.13)

increment k by one and return to Step 1.

The ASTR1B algorithm, like ASTR1, allows the user to provide (and use) second-order
information in Bk, should it be available. There is no need for Bk to be the exact Hessian of
f at xk, and (limited-memory) quasi-Newton approximations are acceptable. If Bk is chosen
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to be indentically zero on every iteration, the ASTR1B algorithm is then a “purely first-order”
optimization method.

Albeit computing a step sk satisfying (2.10)-(2.12) may seem formidable at first sight, this
is actually a simple task, and even more so if Bk = 0. Indeed, the step sLk (which minimizes
the linear model gTk s in the intersection of the trust-region and the feasible set) is easily
obtained from (2.7) since, using(2.3),

δi,k(∆i,k) =


min [∆i,k, ui − xi] if gi,k < 0
min [∆i,k, xi − `i] if gi,k > 0
0 if gi,k = 0

(2.14)

for i ∈ {1, . . . , n}. If Bk = 0, we have that sk = sQk = sLk . Otherwise the step sQk is computed
using (2.8) and (2.9), the latter possibly involving a single matrix vector product, and may
be seen a “generalized Cauchy point” (see [23]), that is a step minimizing the quadratic
model along a good first-order descent direction while preserving feasiblity with respect to
the bounds and the trust-region. Any step preserving (2.10) and the bound (2.11), and
decreasing the value of the quadratic model gTk s+ 1

2
sTBks is then acceptable as sk. Such an

improved step may be computed for instance by using truncated projected Krylov techniques.
This “generalized Cauchy point technique” has been first proposed in [11] and variants have
been used extensively since(2), for instance in the LANCELOT [12], BOX-QUACAN [16], TRON
[30] and GALAHAD [20] packages.

As stated, the algorithm does not impose any restriction on Bk, but it is clear that if
curvature can be arbitrarily large, then the step can be arbitrarily small and convergence
may be impeded. In the convergence theory below, we therefore assume that

AS.5: There exists a constant κB ≥ 1 such that ‖Bk‖ ≤ κB for all k ≥ 0.

Also observe that, at variance with “projected gradient methods” using function values
(see [13, Section 12.2.1]), the ASTR1B algorithm does not use explicit projection onto the
feasible set, nor does it perform approximate minimization of the quadratic model on the
left-hand side of (2.12) along the “projected-gradient path” when Bk is nonzero. This has
the advantage, which we judge crucial in potential neural-network training applications, of
avoiding more than a single Hessian times vector product,

Because there are many possible choices for the weights wi,k in the ASTR1B algorithm, the
latter may effectively be seen as a class of more specific methods, two of which we investigate
in Sections 3 and 4.

All results in this paper crucially depend on the following two lemmas, which derive lower
bounds on the decrease of the first-order Taylor model of f in the neighbourhood of an
iterate xk and on the value of f itself. The first is a substantially modified version of [13,
Lemma 12.2.2], while the second is an adaptation of [23, Lemma 2.1].

(2)In the non-OFFO context.
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Lemma 2.1 Suppose that AS.1 and AS.4 hold. Then, at each iteration k ≥ 0 generated
by the ASTR1B algorithm,

|gi,ksLi,k| ≥ min

[
χ2
i,k

wi,k
, χi,k

]
(i ∈ {1, . . . , n}) (2.15)

and
|gTk sLk | ≥ ςmin‖sLk ‖2 (2.16)

where ςmin = mini∈{1,...,n} ςi.

Proof. Let i ∈ {1, . . . , n} and observe that (2.3) and (2.7) ensure that sLi,k = 0 and
χi,k = 0 whenever gi,k = 0, so that (2.15) and (2.16) trivially hold in this case. We
therefore assume that gi,k 6= 0 for the rest of the proof and let di,k = ui − xi,k if gi,k < 0,
or di,k = xi,k − `i if gi,k > 0. Note that (2.7) implies that

|sLi,k| ≤ ∆i,k (2.17)

for all i and k.

If |sLi,k| ≥ 1, then di,k ≥ 1 and |gi,k| = χi,k. Moreover (2.7) implies that ∆i,k ≥ 1. We thus
obtain that

|gi,ksLi,k| ≥ χi,k min[di,k,∆i,k] ≥ χi,k. (2.18)

Suppose first that |sLi,k| = ∆i,k, then, using (2.6), AS.4 and (2.17),

|gi,ksLi,k| = |gi,k|
χi,k
wi,k

=
χ2
i,k

wi,k
= wi,k

χ2
i,k

w2
i,k

≥ ςi∆2
i,k = ςi(s

L
i,k)

2. (2.19)

If now |sLi,k| = di,k, one has di,k ≤
χi,k
wi,k

, which yields

|gi,ksLi,k| = |gi,k|di,k = χi,kdi,k = wi,k
χi,k
wi,k

di,k ≥ wi,kd2i,k ≥ ςi(sLi,k)2. (2.20)

Suppose now that |sLi,k| < 1. If |sLi,k| = ∆i,k and di ≥ 1, then again |gi,k| = χi,k and, using
(2.6),

|gi,ksLi,k| = χi,k∆i,k =
χ2
i,k

wi,k
, (2.21)

while using (2.6), AS.4 and (2.17) now gives that

|gi,ksLi,k| = χi,k∆i,k =
χ2
i,k

wi,k
= wi,k

χ2
i,k

w2
i,k

≥ ςi∆2
i,k ≥ ςi(sLi,k)2. (2.22)

If |sLi,k| = ∆i,k and di < 1, then χi,k = |gi,k|di,k and, using (2.17) again,

|gi,ksLi,k| = |gi,k|∆i,k = χi,k
∆i,k

di
≥ χi,k∆i,k =

χ2
i,k

wi,k
. (2.23)
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We also deduce, using (2.6), (2.17) and AS.4, that, in this case,

|gi,ksLi,k| =
χ2
i,k

wi,k
= wi,k

χ2
i,k

w2
i,k

≥ ςi∆2
i,k ≥ ςi(sLi,k)2. (2.24)

Finally, if |sLi,k| < 1 and |sLi,k| < ∆i,k, then one of the bounds on variable i must be active

at xk + sLk and thus
|gi,ksLi,k| = χi,k, (2.25)

and we obtain, using once more (2.6), (2.17), AS.4 and the inequality |sLi,k| < 1, that

|gi,ksLi,k| = wi,k
χi,k
wi,k

≥ ςi∆i,k ≥ ςi|sLi,k| ≥ ςi(sLi,k)2. (2.26)

Combining (2.18), (2.21), (2.23) and (2.25) then yields (2.15), while combining (2.19),
(2.20), (2.22), (2.24), (2.26) and the inequality gives that, for all i and k,

|gi,ksLi,k| ≥ ςi(sLi,k)2. (2.27)

But (2.7) implies that gi,ks
L
i,k < 0 for all i and k, and thus that, for k ≥ 0,

|gTk sLk | =

∣∣∣∣∣−
n∑
i=1

|gi,ksLi,k|

∣∣∣∣∣ =
n∑
i=1

|gi,ksLi,k|.

The inequality (2.16) then follows by summing (2.27) for i ∈ {1, . . . , n} and using the
definition of ςmin. 2

Lemma 2.2 Suppose that AS.1, AS.2, AS.4 and AS.5 hold. Then, at each iteration
k ≥ 0 generated by the ASTR1B algorithm,

f(xk+1) ≤ f(xk)−
τςmin

2κB

n∑
i=1

min

[
χ2
i,k

wi,k
, χi,k

]
+ 1

2
(κB + L)

n∑
i=1

χ2
i,k

w2
i,k

. (2.28)

Proof. We now consider the quadratic model and suppose first that (sLk )TBks
L
k > 0

and γk < 1. Then, we deduce from (2.8), (2.9), (2.16) and AS.5 that

gTk s
Q
k + 1

2
(sQk )TBks

Q
k = minγ [gTk (γsLk + 1

2
(γsLk )TBk(γs

L
k )]

= − (gTk s
L
k )2

2(sLk )TBks
L
k

≤ − ςmin
2κB
|gTk sLk |

(2.29)

If now (sLj )TBjs
L
j ≤ 0 or γj = 1, then (2.8) and (2.7) give that

gTk s
Q
k + 1

2
(sQk )TBks

Q
k = gTk s

L
k + 1

2
(sLk )TBks

L
k ≤ 1

2
gTk s

L
k < 0 (2.30)
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and (2.29) then again follows from the bounds κB ≥ 1 and ςi ≤ 1 for i ∈ {1, . . . , n} (see
AS.4).

Successively using AS.1–AS.2, (2.12), (2.29) and (2.6) therefore yields that, for j ≥ 0,

f(xj+1) ≤ f(xj) + gTj sj + 1
2
sTj Bjsj − 1

2
sTj Bjsj + 1

2
L‖sj‖2

≤ f(xj) + τ
(
gTj s

Q
j + 1

2
(sQj )TBjs

Q
j

)
+ 1

2
(κB + L)‖sj‖2

≤ f(xj)−
τςmin

2κB

n∑
i=1

min

[
χ2
i,k

wi,k
, χi,k

]
,+ 1

2
(κB + L)

n∑
i=1

∆2
i,j

≤ f(xj)−
τςmin

2κB

n∑
i=1

min

[
χ2
i,k

wi,k
, χi,k

]
+ 1

2
(κB + L)

n∑
i=1

χ2
i,k

w2
i,k

,

which completes the proof. 2

3 Adagrad with bound constraints and second-order models

In the unconstrained case, the well-known Adagrad algorithm [17] (in particular reframed

as a trust-region method [23]) uses weights given by wi,k =
√
ς +

∑k
j=0 g

2
i,k. We pursue

the analogy mentioned above between gi,k in the unconstrained case and χi,k in the box-
constrained case by defining weights as follows. For given ς ∈ (0, 1] and ϑ ∈ (0, 1] let, for all
i ∈ {1, . . . , n} and for all k ≥ 0,

wi,k ∈
[√

ϑ vi,k, vi,k

]
where vi,k

def
=

ς +
k∑
j=0

χ2
i,j

 1
2

. (3.1)

The weights used by the well-know Adagrad algorithm are thus recovered by setting ϑ = 1.
When applied to unconstrained problems, ASTR1B with (3.1), ϑ = 1 and Bk = 0 is therefore
identical to the (deterministic) Adagrad method, and thus generalizes this method to the box-
contrained case.

Note that, for all k ≥ 0 and all i ∈ {1, . . . , n}, the first part of (3.1) implies that

χi,k
wi,k

≤ 1√
ϑ

and min

[
χ2
i,k

wi,k
, χi,k

]
≥
√
ϑ
χ2
i,k

wi,k
(3.2)

so that we may rewrite the bound (2.28) as

f(xk+1) ≤ f(xk)−
τϑςmin

2κB

n∑
i=1

χ2
i,k

wi,k
+ 1

2
(κB + L)

n∑
i=1

χ2
i,k

w2
i,k

, (3.3)

from which we deduce, by summing over iterations 0 to k, that

τϑς

2κB

k∑
j=0

n∑
i=1

χ2
i,j

wi,j
≤ f(x0)− f(xk+1) + 1

2
(κB + L)

k∑
j=0

n∑
i=1

χ2
i,j

w2
i,j

. (3.4)
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Theorem 3.1 Suppose that AS.1–AS.3 and AS.5 hold and that the ASTR1B algorithm
is applied to problem (2.1) with its ’Adagrad-like’ weights given by (3.1). Then

average
j∈{0,...,k}

n∑
i=1

χ2
i,j ≤

κadag

k + 1
, (3.5)

with Γ0
def
= f(x0)− flow and

κadag = max

ς, 1

2
e

2Γ0ϑ
n(κB+L) ,

1

2ς

(
8nκB(κB + L)

τϑ
5
2

)2
∣∣∣∣∣W−1

(
− τςϑ

5
2

8nκB(κB + L)

)∣∣∣∣∣
2
 , (3.6)

where W−1 is the second branch of the Lambert function [14].

Proof. Given the inequality (3.4), the proof of the theorem is a variation on that of
[23, Theorem 3.2], where the i-th component of the gradient gi,k is replaced by χi,k, the
criticality measure for the i-th variable. It is detailed in the Appendix for the sake of
completeness. 2

As noted in [23], it is possible to give a weaker but more explicit bound on κadag by using an
upper bound on the value of the involved Lambert function. This can be obtained from [9,
Theorem 1] which states that, for x > 0,∣∣W−1(−e−x−1)∣∣ ≤ 1 +

√
2x+ x. (3.7)

Remembering that, for γ1 and γ2 given by (A.5), log
(
γ2

γ1

)
≥ log(3) > 1 and choosing x =

log
(
γ2

γ1

)
− 1 > 0 in (3.7) then yields that

∣∣∣∣W−1(−γ1γ2
)∣∣∣∣ ≤ log

(
γ2
γ1

)
+

√
2

(
log

(
γ2
γ1

)
− 1

)
. (3.8)

It is also possible to extend the definition of sLk in (2.7) by premultiplying it by a stepsize
αk ∈ [αmin, 1] for some αmin ∈ (0, 1]. Our results again remain valid (with modified constants).

Observe that, if the algorithm is terminated as soon as (2.5) (as we argued in Section 2),
it must stop at the latest at iteration

k = κ2adagε
−2. (3.9)

This corresponds the the ε-order O(ε−2), the standard complexity order of first-order methods
using function values (see [8, Chapter 2]).

It also results from [23, Theorem 3.3] (applied for µ = 1
2
) that the complexity bound

given by Theorem 3.1 is essentially sharp (in the sense of [7]), because this is the case for its
unconstrained variant. More precisely, we have the following result.
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Theorem 3.2 The bound (3.5) is essentially sharp in that, for each η ∈ (0, 1], there
exists a univariate function fη satisfying AS.1-AS.3 and AS.5 such that, when applied
to minimize fη without constraints from the origin, the ASTR1B algorithm with (3.1),
Bk = 0 and ϑ = 1 produce a sequence of gradient norms given by χ1,0 = g0 = −2 and
χ2
1,k = g2k = 1

k1+2η for k ≥ 1.

Proof. See [23, Theorem 3.3] and note that

average
j∈{0,...,k}

χ2
1,k =

4

k + 1
+

1

k + 1

k∑
j=1

1

j1+2η
≤ 4 + ζ(1 + 2η)

k + 1
,

where ζ(·) is the Riemann zeta function, which is well-defined and finite for arguments
exceeding one. 2

4 A “diminishing stepsizes” variant

We assume, in this section, that the weights wi,k are chosen such that, for some power
parameter 0 < ν ≤ µ < 1, all i ∈ {1, . . . , n} and some constants ςi ∈ (0, 1] and θ > 0,

max[ςi, vi,k] (k + 1)ν ≤ wi,k ≤ max[ςi, vi,k] (k + 1)µ (k ≥ 0), (4.1)

where, for each i, the vi,k satisfy the properties that

vi,k+1 > vi,k implies that vi,k+1 ≤ |χi,k+1| (4.2)

and
vi,k ≥

√
ϑ|χi,k| (4.3)

for some ϑ ∈ (0, 1]. The motivation for considering these alternative class of variants is the
interesting numerical performance [23] of the choice

vi,k = max
j∈{0,...,k}

|χi,j |

which satisfies (4.2) and (4.3). This choice of weights ensures that

χi,j
wi,j
≤ 1√

ϑ

and, as in the previous section, (2.28) implies (3.4). We then obtain the following result.
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Theorem 4.1 Suppose that AS.1, AS.2, AS.3 and AS.5 hold and that the ASTR1B algo-
rithm is applied to problem (2.1), where the weights wi,k are chosen in accordance with
(4.1), (4.2) and (4.3). Then, for any η ∈ (0, τϑςmin) and

jη
def
=

(
κB(κB + L)

ςmin(τςmin − η)

) 1
ν

, (4.4)

there exist a constant κ�, a subsequence {k`} ⊆ {k}∞jη+1 and an index kς (where κ� and
kς only depend on the problem and the algorithmic constants) such that, for all k` ≥ kς ,

min
j∈{0,...,k`}

n∑
i=1

χ2
i,j ≤ κ�

(k` + 1)µ

k` − jη
≤ 2κ�(jη + 1)

k1−µ`

. (4.5)

Proof. The proof is again a variation of the proof of [23, Theorem 4.2] where the
i-th component of the gradient gi,k is replaced by χi,k, the criticality measure for the i-th
variable. The proof is also simpler than that in [23] because our choice of weights wi,k is
slightly more restrictive. The details are once more given in the Appendix. 2

Because jθ and kς only depends on ν and problem’s constants, Theorem 4.1 gives some
indication on the rate of convergence for iterations beyond an a priori computable iteration
index. The formulation of the theorem is nevertheless weaker than that of Theorem 3.1 since
(4.5) only holds for iterates along the subsequence {k`} and there is no guarantee that the
bound given by the right-hand-side is valid at other iterations. Fortunately, the index k` in
this right-hand side is an index in the complete sequence of iterates, which does not depend
on the subsequence. A stronger result not involving subsequences has been proved in the
unconstrained case under the stronger assumption that gradients remain uniformly bounded
[21, Theorem 4.1], and its extension to the bound constrained case is possible much in the
same fashion that Theorem 4.2 of [23] has been adapted here.

When µ and ν tend to zero, the k-order of convergence beyond jθ (as stated by (4.5))
tends to O(1/

√
k`), which the order derived for the methods of the previous section and is the

standard k-order for first-order methods using evaluations of the objective function, albeit
the value of jθ might increase. Moreover this result is essentially sharp, as implied by the
following theorem.

Theorem 4.2 The bound (4.5) is essentially sharp in that, for any ω > 1
2
(1− ν), there

exists a univariate function fω(x) satisfying AS.1–AS.3 and AS.5 such that the ASTR1B

algorithm with (4.1), µ = ν and Bk = 0 applied to this function without constraints
produces a sequence of first-order criticality measures given by χ1,k = ‖gk‖ = 1

(k+1)ω .

Proof. See [23, Theorem 4.3] and the comments in the proof of Theorem 3.2 above. 2
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5 Handling more general convex constraints

Let us now consider the more general problem (2.1) where f is again a smooth function from
IRn to IR but F is now a general closed non-empty convex set. Provided that projection
onto the intersection of a trust-region and the feasible set is comptationally realistic, all the
developments described in Sections 2 to 4 remain valid with very minimal adjustemnts.

The main point is that, while we used the distance of xi,k to the bounds `i and ui above, it
is now sufficient to use the distance of xi,k from the boundary of F along the i-th coordinate
axis. Thus (2.14) becomes

δi,k(∆i,k) =


min

[
∆i,k,max{α | xi,k + αei ∈ F}

]
if gi,k < 0

min
[
∆i,k,max{α | xi,k − αei ∈ F}

]
if gi,k > 0

0 if gi,k = 0

(5.1)

for i ∈ {1, . . . , n}, which is very often as easy to compute as (2.14). The ASTR1B algorithm,
(which is now better referred to as ASTR1CC, the CC standing for Convex Constraints) is
unmodified other than using (5.1) in (2.7). The fact that the algorithm does not use a
projected-gradient search is now even more important in the new context, because projections
on general convex sets, although known to exist, may be expensive to compute.

Thus we obtain that the conclusions of Lemmas 2.1 and 2.2, and consequently of Theo-
rems 3.1 and 4.1 remain valid. For the picture to be complete, we only have to verify that

the quantity
√∑n

i=1 χ
2
i,j is a suitable first-order criticality measure for the problem invovling

general convex constraints. Fortunately, this is very easy because√√√√ n∑
i=1

χ2
i,j =

∥∥∥∥∥∥∥
 χ1,j

...
χn,j


∥∥∥∥∥∥∥
2

which is zero if and only if it is also the case for∥∥∥∥∥∥∥
 χ1,j

...
χn,j


∥∥∥∥∥∥∥
1

=
n∑
i=1

χi,j =

∣∣∣∣min
d∈IR

{
g(xj)

Td | xj + d ∈ F and ‖d‖∞ ≤ 1
}∣∣∣∣ ,

a well-known continuous first-order criticality measure for the convexly-constrained problem
at xj (see [13, Theorem 12.1.6], for instance).

We may therefore conclude from this discussion that the ASTR1CC algorithm using weights
wi,k defined by either (3.1) or (4.1) is indeed suitable for solving problems of this type and
does produce an ε-approximate first-order critical point in at most O(ε−2) evaluations of the
gradient (and possibly the Hessian) and no evaluation of the objective function at all, this
bound being essentially sharp.

6 Numerical illustration

Without any ambition of completeness, we now illustrate the behaviour of the ASTR1B algo-
rithm on a small set of 22 bound-constrained problems from the CUTEst collection (as made
available in Matlab through S2MPJ [25]). The problems under consideration are given in
Table A.2 in Appendix 7. We compare six algorithms.
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Noise ASTR1B(0) ASTR1B(1) ASTR1B(3) TRInf(0) TRInf(1) TRInf(3)

Performance 0% 0.54 0.48 0.48 0.87 0.90 0.90

Reliability 0% 100.0% 95.5% 95.5% 90.9% 90.9% 90.9%
1% 99.6% 100.0% 100.0% 5.5% 5.9% 5.0%
5% 100.0% 99.6% 99.6% 5.0 % 5.0% 5.5%
15% 100.0% 100.0% 100.0% not run not run not run

25% 99.1% 100.0% 98.2% not run not run not run

Table 1: Performance and reliability of ASTR1B variants and corresponding trust-region algo-
rithms as a function of relative noise

ASTR1B(0): the ASTR1B algorithm using (3.1) and Bk = 0 (i.e. momentumless Adagrad with
bounds)

ASTR1B(1): the ASTR1B algorithm using (3.1) and Bk given by a limited BFGS update [31]
using one secant pair;

ASTR1B(3): the ASTR1B algorithm using (3.1) and Bk given by a limited BFGS update using
three secant pairs;

TRInf(0): the standard trust-region algorithm using an `∞ trust-region and a purely linear
model (Bk = 0);

TRInf(1): the standard trust-region algorithm using an `∞ trust-region and Bk given by a
limited BFGS update using one secant pair;

TRInf(3): the standard trust-region algorithm using an `∞ trust-region and Bk given by a
limited BFGS update using three secant pairs.

We also ran these algorithms for an accuracy level ε = 10−3 on our small illustrative problem
set using 0%, 5%, 15% and 25% of relative Gaussian noise on the gradients (and objective
function for the trust-region algorithms), in order to explore their sensitivity to random
perturbations. The details of our experimental setup are presented in Appendix 7. Our
choice of considering the same level of noise on the objective-function value (when used) and
the gradient is motivated by “finite-sum” applications such as deep learning where both the
objective-function value and the gradient are computed by sampling. Although the authors
are aware that better results can be obtained for the trust-region algorithms if one is ready
to substantially increase the sample size for the objective function (see [4] or [3] for instance),
this is unnatural and considerably more expensive in the sampling context.

Our results are reported in Table 1. The first line of the table gives the compared per-
formance of the six methods of interest in the absence of noise, measured as the area of the
method’s curve in a performance profile counting the number of iterations to convergence for
the six methods and for an abscissa between 0 and 10, divided by 10. Hence the closest to
one, the best performance (see [33] or [22] for other uses of this synthetic measure). Clearly,
the trust-region methods using function values outperform the ASTR1B variants, whose perfor-
mance could be qualified of mediocre. But the picture changes completely when one considers
the reliability of the algorithms, reported in the remaining lines of the table as the percentage
of successfully solved problems. From this point of view, the reliability of the trust-region
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methods becomes extremely poor as soon as some noise is added(3), while that of the ASTR1B

remains remarkably constant. This observation conforts a similar conclusion obtained in [22]
for unconstrained problems.

7 Conclusions

We have combined existing optimization techniques to propose an adaptive gradient algo-
rithm for minimizing general nonconvex objective functions subject to convex constraints
and allowing the use of curvature information. We have also analyzed its evaluation com-
plexity and shown that it is (in order) identical to that of both standard algorithms using
function values for the same problem and adaptive-gradient algorithms for the unconstrained
one. Interestingly, our theoretical results do not require weak-convexity.

We view this proposal as a useful step towards efficient first-order OFFO algorithms for
nonconvex problems with nonconvex constraints, a subject of importance in “constraint-
aware” machine learning applications such as PINNs, adversarial training and other ap-
proaches. Another interesting application of the ideas developped here is the use of sparsity-
inducing norms (such as those discussed in [5]) to define the trust region geometry.
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[26] P. Joulani, A. Raj, A György, and C. Szepesvári. A simpler approach to accelerated stochastic optimiza-
tion: Iterative averaging meets optimism. In International Conference on Machine Learning (ICML),
2020.

[27] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings in the International
Conference on Learning Representations (ICLR), 2015.

[28] S. Lacoste-Julien. Convergence rate of Frank-Wolfe for non-convex objectives. arXiv:1607.00345, 2016.

[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.
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Proof of Theorem 3.1

The proof uses the following technical lemma, partly inspired by [37, 15].

Lemma A.1 Let {ak}k≥0 be a non-negative sequence, ξ > 0 and define, for each k ≥ 0,

bk =
∑k

j=0 aj . Then
k∑
j=0

aj
(ξ + bj)

≤ log

(
ξ + bk
ξ

)
. (A.1)

Proof. See [37], [38] or [23, Lemma 3.1]. 2

Proof of Theorem 3.1 We see from (3.1) that wi,k verifies AS.4 and we may thus use
Lemma 2.2 and its consequence (3.4).

For each i ∈ {1, . . . , n}, we apply Lemma A.1 with ak = χ2
i,k and ξ = ς and obtain that,

n∑
i=1

k∑
j=0

χ2
i,k

w2
i,k

≤ 1

ϑ

n∑
i=1

log

(
1

ς

(
ς +

k∑
l=0

χ2
i,l

))
≤ n

ϑ
log

(
1 +

1

ς

k∑
l=0

n∑
i=1

χ2
i,l

)
.

and substituting this bound in (3.4) then gives that

τϑς

2κB

k∑
j=0

n∑
i=1

χ2
i,j

wi,j
≤ Γ0 + 1

2
(κB + L)

n

ϑ
log

(
1 +

1

ς

k∑
l=0

n∑
i=1

χ2
i,l

)
. (A.2)

Suppose now that
k∑
j=0

n∑
i=1

χ2
i,j ≥ max

[
ς,

1

2
e

2ϑΓ0
n(κB+L)

]
, (A.3)
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implying that

1 +
1

ς

k∑
j=0

n∑
i=1

χ2
i,j ≤

2

ς

k∑
j=0

n∑
i=1

χ2
i,j and Γ0 ≤

n(κB + L)

2ϑ
log

2

ς

k∑
j=0

n∑
i=1

χ2
i,j

 .

Using (A.2), we obtain then that

τ
√
ςϑ

3
2

2
√

2κB

√√√√ k∑
`=0

n∑
i=1

χ2
i,j

k∑
j=0

n∑
i=1

χ2
i,j ≤

n(κB + L)

ϑ
log

2

ς

k∑
j=0

n∑
i=1

χ2
i,j

 ,

that is

τ
√

2ςϑ
5
2

4κB

√√√√ k∑
j=0

n∑
i=1

χ2
i,j ≤ 2n(κB + L) log

√√√√2

ς

k∑
j=0

n∑
i=1

χ2
i,j

 . (A.4)

Now define

γ1
def
=

τςϑ
5
2

4κB

, γ2
def
= 2n(κB + L) and u

def
=

√√√√2

ς

k∑
j=0

n∑
i=1

χ2
i,j (A.5)

and observe that that γ2 > 3γ1 because τ
√
ςϑ

3
2 ≤ 1 and κB ≥ 1. The inequality (A.4) can

then be rewritten as
γ1u ≤ γ2 log(u). (A.6)

Let us denote by ψ(u)
def
= γ1u− γ2 log(u). Since γ2 > 3γ1, the equation ψ(u) = 0 admits two

roots u1 ≤ u2 and (A.6) holds for u ∈ [u1, u2]. The definition of u2 then gives that

log(u2)−
γ1
γ2
u2 = 0

which is
u2e
− γ1
γ2
u2 = 1.

Setting z = −γ1

γ2
u2, we obtain that

zez = −γ1
γ2

Thus z = W−1(−γ1

γ2
) < 0, where W−1 is the second branch of the Lambert function defined

over [−1
e , 0). As −γ1

γ2
≥ −1

3 , z is well defined and thus

u2 = −γ2
γ1
z = −γ2

γ1
W−1

(
−γ1
γ2

)
> 0.

As a consequence, we deduce from (A.6) and (A.5) that

k∑
j=0

n∑
i=1

χ2
i,j =

ς

2
u22 =

1

2ς

(
8nκB(κB + L)

τϑ
5
2

)2
∣∣∣∣∣W−1

(
− τςϑ

5
2

8nκB(κB + L)

)∣∣∣∣∣
2

.
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and

average
j∈{0,...,k}

n∑
i=1

χ2
i,j ≤

1

2ς

(
8nκB(κB + L)

τϑ
5
2

)2
∣∣∣∣∣W−1

(
− τςϑ

5
2

8nκB(κB + L)

)∣∣∣∣∣
2

· 1

k + 1
. (A.7)

If (A.3) does not hold, we have that

average
j∈{0,...,k}

n∑
i=1

χ2
i,j < max

{
ς,

1

2
e

2Γ0ϑ
n(κB+L)

}
· 1

k + 1
. (A.8)

Combining (A.7) and (A.8) gives (3.5). 2

Proof of Theorem 4.1

From (3.4) and AS.3, using wmin,j
def
= mini∈{1,...,n}wi,k ensures that

Γ0 ≥ f(x0)− f(xk+1) ≥
k∑
j=0

n∑
i=1

χ2
i,j

2κBwi,j

[
τϑςmin −

κB(κB + L)

wmin,j

]
. (A.9)

Consider now an arbitrary η ∈ (0, τϑςmin) and suppose first that, for some j,[
τϑςmin −

κB + L

wmin,j

]
≤ η, (A.10)

i.e., using (4.1),

ςmin j
ν ≤ wmin,j ≤

κB(κB + L)

τϑςmin − η
.

But this is impossible for j > jη for jη given by (4.4), and hence (A.10) fails for all j > jη.
As a consequence, we have that, for k > jη,

f(xjη+1)− f(xk) ≥ η
k∑

j=jη+1

n∑
i=1

χ2
i,j

2κBwi,j

≥ η

2κB

k∑
j=jη+1

n∑
i=1

χ2
i,j

max[ςi, vi,j ] θ (j + 1)µ

≥ η

2κB(k + 1)µ

k∑
j=jη+1

n∑
i=1

min

[
χ2
i,j

ςi
,
χ2
i,j

vi,j

]

≥ η(k − jη)
2κB(k + 1)µ

min
j∈{jη+1,...,k}

(
n∑
i=1

min

[
χ2
i,j

ςi
,
χ2
i,j

vi,j

])
(A.11)
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But we also know from (2.28), (4.1) and (4.3) that

f(x0)− f(xjη+1) ≥
jη∑
j=0

n∑
i=1

τϑςminχ
2
i,j

2κBwi,j
− 1

2
(κB + L)

jη∑
j=0

n∑
i=1

χ2
i,j

w2
i,j

≥ − 1
2
κB(κB + L)

jη∑
j=0

n∑
i=1

χ2
i,j

w2
i,j

≥ −nκB(κB + L)

2ϑ
jη (A.12)

Combining (A.11) and (A.12), we obtain that

Γ0 ≥ f(x0)− f(xk+1) ≥ −
nκB(κB + L)

2ϑ
jη +

η(k − jη)
2κB(k + 1)µ

min
j∈{jη+1,...,k}

(
n∑
i=1

min

[
χ2
i,j

ςi
,
χ2
i,j

vi,j

])

and thus that

min
j∈{jη+1,...,k}

(
n∑
i=1

min

[
χ2
i,j

ςi
,
χ2
i,j

vi,j

])
≤ 2κB(k + 1)µ

η(k − jη)

[
Γ0 +

nκB(κB + L)

2ϑ
jη

]
and we deduce that there must exist a subsequence {k`} ⊆ {k}∞jη+1 such that, for each `,

n∑
i=1

min

[
χ2
i,k`

ςi
,
χ2
i,jk`

vi,k`

]
≤ 2κB(k` + 1)µ

η(k` − jη)

[
Γ0 +

nκB(κB + L)

2ϑ
jη

]
. (A.13)

But

(k` + 1)µ

k` − jη
<

2µkµ`
k` − jη

<
2kµ`

k` − jη
=

2kµ` k`
(k` − jη)k`

=
k`

k` − jη
· 2

k1−µ`

≤ 2(jη + 1)

k1−µ`

, (A.14)

where we used the facts that µ < 1 and that k`
k`−jθ is a decreasing function for k` ≥ jθ + 1.

Using this inequality, we thus obtain from (A.13) that, for each `,

n∑
i=1

min

[
χ2
i,k`

ςi
,
χ2
i,k`

vi,k`

]
≤ 4κB(jη + 1)

η k1−µ`

[
Γ0θ + n

κB(κB + L)

2ϑ
jη

]
.

As a consequence,

kς
def
=

4κB(jη + 1)
[
Γ0 + nκB(κB+L)

2ϑ jη

]
ηςmin


1

1−µ

is such that, for all k` ≥ kς ,

min

[
χ2
i,k`

ςi,
,
χ2
i,k`

vi,k`

]
≤ ςmin. (A.15)

But (4.3) ensures that

min

[
χ2
i,k`

ςi
,
χi,k`√
ϑ

]
≤ min

[
χ2
i,k`

ςi,
,
χ2
i,k`

vi,k`

]
≤ ςmin.
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Now this inequality and the bounds ςi ∈ (0, 1), ϑ ∈ (0, 1) and ςmin ∈ (0, 1) together imply that
χi,k` ∈ (0, 1) and hence that χ2

i,k`
< χi,k` . We thus obtain from (A.15) that, for all k` ≥ kς ,

n∑
i=1

χ2
i,k`

max[ςi,
√
ϑ]
≤ 2κB(k` + 1)µ

η(k` − jη)

[
Γ0 +

nκB(κB + L)

2ϑ
jη

]
which, because max[ςi,

√
ϑ] ≤ 1, gives that, for all k` ≥ kς ,

n∑
i=1

χ2
i,k`
≤ (k` + 1)µ

k` − jη

(
4κB

η

)[
Γ0 + n

κB(κB + L)

ϑ
jη

]
, (A.16)

finally implying, because of (A.14), that (4.5) holds with

κ� = 2(jη + 1)

(
4κB

η

)[
Γ0 + n

κB(κB + L)

ϑ
jη

]
.

2

Details of the experimental setup

The test problem used and their dimension are given in Table A.2.

BQPGABIM 50 HADAMALS 400 NCVXBQP1 500 OBSTCLBL 625
BQPGASIM 50 JNLBRNG1 625 NCVXBQP2 500 OBSTCLBM 625
EXPLIN 600 JNLBRNG2 625 NCVXBQP3 500 OBSTCLBU 625
EXPLIN2 600 JNLBRNGA 625 NOBNDTOR 1024 QINGB 500
EXPQUAD 120 JNLBRNGB 625 OBSTCLAE 625
GENROSEB 500 LINVERSE 999 OBSTCLAL 625

Table A.2: The CUTEst/S2MPJ problems used for illustration

Our test were performed in Matlab R2023b on a Dell Precision with 64GB of memory
and running Ubuntu 20.04. All algorithms were stopped after a maximum number of 100000
iterations (remember we are mostly using first-order methods). All variants of the ASTR1B

algorithms use the constants given by

τ = 1, ϑ = 1 and ς = 0.01.

The trust-region algorithm was used with an acceptance threshold η1 = 10−4, a trust-region
expansion threshold η2 = 0.95, a radius contraction factor of 1

2
and a radius expansion factor of

2. In all cases where a nonzero Bk was used, the approximate quadratic model was minimized
using a truncated Lanczos iteration with a maximum number of inner iterations given by 3n
and a relative gradient accuracy request of 10−4. Whenever random noise is present in the
evaluations, the gradient’s and (when relevant) the objective-function’s values are perturbed
according to

f(x) = f(x)
(
1 + τN (0, 1)

)
, [g(x)]i = [g(x)]i)

(
1 + τN (0, 1)

)
, (i ∈ {1, . . . , n}),

where τ ∈ [0, 1] is the noise level and N (0, 1) is the standard normal distribution. In these
cases, the reported results are based on the rounded averages of ten independent runs.


