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Abstract

We first consider the convex composite optimization models without globally Lipschitz condition
imposed on the gradient of the differentiable term. The classical method which is proximal gradient
will be studied with our new strategy of stepsize selection. The idea for constructing such a stepsize
is motivated by the one in [7] that used for gradient descent scheme. All the typical properties of the
latter are preserved in our stepsize like: the convenient computation of stepsizes by an explicit form;
the increasing of the sequence of stepsize to a finite positive limitation from some fixed iteration. The
improvements are not only in expanding the applicable class of problems but also in the capability of
increasing step-length compared to the original version in [7]. Our proposed method is also proved
to be decreasing and convergent with the complexity computation O

(
1
k

)
for F (xk) − F∗. This rate

is strengthened to be Q-linear if f is added the locally strong convexity property. We show that our
algorithm can be extended for solving a class of nonconvex composite model as complementing
the global Lipschitz condition on ∇f. The obtained stepsize for the nonconvex case could be bigger
than the first one. As a byproduct, one special version is introduced for the indefinite quadratic
case of the smooth term where the adaptive stepsize can be even doubled in length compared to the
former. The efficiency of our proposed algorithms is illustrated by numerical results for a set of test
instances.

Keywords: proximal gradient method, nonlinear programming, composite optimization model,
locally Lipschitz gradient, lasso problem
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1. Introduction

Composite optimization problems (COP) are arisen from many real-life applications, such as: ma-
chine learning, signal processing, data science, etc, and have received a lot of attention recently, see
e.g., [1, 2, 3, 4, 9, 14, 15, 22, 16, 23, 24, 27, 12, 5, 29, 30, 31]. The formulation of (COP) considered in
this paper can be described as follows

min
x∈Rn

F (x) = f(x) + g(x), (P)

where f and g are functions satisfying Assumption 1 below.
Assumption 1:

(A1) g : Rn → (−∞,+∞] is a proper and closed convex function.
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(A2) f : Rn → (−∞,+∞] is proper and closed such that dom(f) is convex, dom(g) ⊂ int(dom(f))
and f is differentiable on int(dom(f)).

(A3) The optimal solution set X∗ of (P) is nonempty and F∗ stands for the optimal value of (P).

One of the conventional methods for solving problem (P) is proximal gradient (PG) introduced
by Fukushima and Mine [13] in 1981 and has become now classical. The detail methodology of the
PG method can be found in Beck [4, 5]. It is observed that the optimality conditions for problem
(P) relates to the concept of its stationary points. Specifically, if x∗ ∈ int(dom(f)) is a local optimal
solution of (P) then it should be a stationary point of (P), i.e., for some t > 0

x∗ = Proxtg(x
∗), (1.1)

where Proxtg(x
∗) is defined as the unique optimal solution of the minimization problem

min
x∈Rn

{
g(x) +

1

2t
∥x− (x∗ − t∇f(x∗))∥2

}
. (1.2)

In the convex situation of (P), i.e., f is convex, the set of stationary points of (P) are coincident
with X∗. One can see [4] (Theorem 3.72, 10.7) for more details. Based on the mentioned stationary
condition, starting from some x0 ∈ int(dom(f)), the well-known PG method to solve problem (P) is
designed by generating the sequence {xk} according to the rule

xk+1 = Proxtkg(x
k), k = 0, 1, 2, ..., (1.3)

where

Proxtkg(x
k) := argmin

x∈Rn

{
g(x) +

1

2tk

∥∥∥x− (xk − tk∇f(xk))
∥∥∥2} . (1.4)

As a matter of fact, the PG scheme (1.3) is very useful if we can compute Proxtkg(x
k) easily by some

explicit formulas. There is a list of such functions that can be found in [4]; for instances, g is ℓ1 norm
or the indicator function of a closed convex set C ⊂ Rn. In (1.3), tk > 0, k = 0, 1, 2, ... are defined
as stepsizes which play a crucial role in the proximal gradient scheme. A suitable stepsize selection
can be drawn in the two main points: firstly, it should guarantee the convergence of {xk} to some
stationary point of problem (P); secondly, it should also navigate xk to a good stationary point (that
provides, for example, the objective value as low as possible) with a cheap cost. For the class of Lf−
smooth function f, i.e.,

∥∇f(x)−∇f(y)∥ ≤ Lf∥x− y∥, ∀x, y ∈ int(dom(f)),

the stepsize tk in (1.3) can be controlled flexibly by using constant stepsize in
(
0, 2

Lf

)
or backtrack-

ing line-search rule. Followed by [4] (Theorem 10.21), one get the complexity computation O( 1k ) of
F (xk) − F∗ if f is assumed to be convex and for the strongly convex case of f, the convergence
rate of {xk} to some x∗ ∈ X∗ is proved to be Q-linear. These important properties can be seen as
the generalization of the results for the gradient descent method solving unconstrained nonlinear
optimization problems, i.e., problem (P) with g = 0.

Recently, researchers have concerned problem (P) without the global Lipschitzness assumption
on ∇f, see, e.g., [10, 6, 9, 11, 21, 25, 28] since the class of such functions occurs in many applied
problems, see e.g., [11, 26, 32] and the references therein. In 2017, Bauske et al. [10] proposed No-
Lips Algorithm that requires Bregman distances-based computation and constant L in the Lipschitz-
like/convexity condition (LC). The stepsize selection is then chosen in (0, 2−δ

L ). This algorithm is shown
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in [10] to have the convergent results similar to the ones of the normal PG scheme. The other recent
results on the convergence of PG method without globally Lipschitz assumption have been studied
in Kanzow and Mehlitz [11] and then Jia et al. [9]. Their proposed method can be applied for the
nonconvex setting of (P) with the presence of Kurdyka–Łojasiewicz condition. The stepsize choice
is based on backtracking line-search procedure. Nevertheless, one know that there are some restric-
tions of taking stepsize within (0, 2

Lf
) or (0, 2−δ

L ) like: firstly, the process of finding these constants
are not easy in general and secondly, if they are large then such stepsizes will be very small that may
take long running time for executing algorithms. Analogously, the backtracking computation for
stepsize selection probably consumes expensive cost and also may cause the stepsize to gradually
decrease to a tiny number.

Therefore, approaches for solving problem (P) under locally Lipschitz gradient of f with adap-
tive stepsizes (that are stated by explicit formulas and neither need estimating constants like Lf , L, ...
nor use line-search procedures) are potential and expected. In the special context of problem (P) with
g = 0, such an algorithm named AdGD (Adaptive Gradient Descent) was proposed by Malitsky and
Mishchenko [17] in 2019 for solving unconstrained convex optimization problems satisfying locally
Lipschitz gradient

tk = min

{√
1 + θk−1tk−1,

∥xk − xk−1∥
2∥∇f(xk)−∇f(xk−1)∥

}
, k ≥ 1,

where θ0 = +∞, θk = tk
tk−1

, k ≥ 1. The authors of [17] provided the convergence of {xk} to a global
optimal solution with the complexity O( 1k ) of f(x̂k)−f∗ (x̂k is an ergodic vector obtained from {xk})
as well as R-linear rate of {xk} for the locally strongly convex objective. Continuing this research
direction, Hoai et al. [7] proposed NGD algorithm that uses an explicit stepsize strategy based on
the local curvature of f as in Algorithm 1.1.

Algorithm 1.1 (NGD) in [7] (for solving problem (P) with g = 0, f is convex and local Lipschitz gradient)

Step 0 (Initialization). Select t0 > 0, 0 < c1 < c0 < 1
2 and a positive real sequence {εk} such that

∞∑
k=0

εk < ∞.

Choose x0 ∈ Rn, x1 = x0 − t0∇f(x0), t−1 = t0 and set k = 1.
Step 1.

If ∥∇f(xk)−∇f(xk−1)∥ >
c0
tk−1

∥xk − xk−1∥

then tk = c1
∥xk − xk−1∥

∥∇f(xk)−∇f(xk−1)∥
else ε′k−1 = εk−1

if
tk−1

tk−2
< 1 then ε′k−1 = min

{
εk−1,

√
1 +

tk−1

tk−2
− 1

}
tk = (1 + ε′k−1)tk−1.

Step 2. Compute xk+1 = xk − tk∇f(xk).
Step 3. If ∥∇f(xk+1)∥ < ϵ then STOP else setting k := k + 1 and return to Step 1.

In contrast of AdGD, NGD is confirmed as a descent method. Hence, it not only keeps similar
convergent results like AdGD but also has typical properties such as the complexity O( 1k ) of f(xk)−
f∗ and Q-linear rate in the case of locally strong convexity of f. Moreover, the sequence of stepsizes
of NGD is proved to be increasing to a positive limitation. This adaptive stepsize is then extensible
to a class of nonconvex optimization over a closed convex set but under global Lipschitz condition
on the gradient of the objective.
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Contributions: In this paper, inspired by [7], we utilize the idea of adaptive stepsize in NGD
with PG scheme (1.3) to propose new proximal gradient algorithms for solving problem (P). Firstly,
in the convex setting of (P) and f is convex and local Lipschitz gradient, we address the following
important properties for our new algorithm NPG1 (Algorithm 3.1):

• our proposed algorithm is designed with explicit stepsizes stated by closed forms that does
not require estimating any constant (for guaranteeing the convergence) as well as backtracking
calculation;

• our proposed method descends from some fixed iteration;

• the complexity computation of F (xk)− F∗ is O( 1k );

• in the case of locally strongly convexity of f, we get the Q-linear rate of the iterates;

• the sequence of our proposed stepsize is increasing to a positive number;

• compared to the original version NGD [7], we prove the convergence of xk to a global optimal
solution of (P) under a larger range of the parameter c0, c1 (for NPG1 (3.1), c0, c1 belong to
(0, 1√

2
) instead of (0, 12) as in NGD).

Additionally, if problem (P) has ∇f being global Lipschitz, we extend our method to solve a class
of nonconvex composite models (P) where the iterates are confirmed tending to a stationary point
of (P) and the objective is shown to be decreasing as well (Algorithm 4.1 with 0 < c0 < c1 < 1).
As a byproduct, one special version solving problem (P) is designed in the case f is an indefinite
quadratic form with the capability of doubling stepsize . We also implement our new algorithms in
comparison with the recent ones for a numerous of test instances to figure out the efficiency of the
new method.
Comparison with the related work: very recently, Malitsky and Mishchenko [8] has developed their
method AdGD [17] to be AdPG (Adaptive Proximal Gradient) for solving problem (P) with the
convex f satifying locally Lipschitz gradient assumption. The stepsize is defined by

tk = min


√

2

3
+ θk−1tk−1,

tk−1√[
2t2k−1∥∇f(xk)−∇f(xk−1)∥2

∥xk−xk−1∥2 − 1

]
+

 , k ≥ 1,

where θ0 = 1
3 , θk = tk

tk−1
, k ≥ 1 and [t]+ = max{t, 0} for t ∈ R. The iterates of AdPG is proved

to converge to an optimal solution of (P) with the complexity O( 1k ) of min
1≤i≤k

(F (xi) − F∗). However,

akin to AdGD, the lack of descent property of AdPG makes difficulties to obtain the convergent
result O( 1k ) of F (xk) − F∗ and the Q-linear rate of {xk} generated by AdPG in the case f assumed
to be locally strongly convex. This restriction can be seen as one of open questions mentioned in [8].
Fortunately, as presented above, our proposed method in this paper is able to fill all these gaps.

The presentation of the paper is structured as follows. After summarizing some necessary pre-
liminaries in Section 2, we propose our new proximal algorithm in Section 3 for solving the convex
situation of (P) under locally Lipschitz condition of ∇f. In the sequel, we consider a nonconvex case
of (P) with an other new algorithm. Section 5 presents a particular version of proposed method
applied for the indefinite quadratic function f. The numerical experiments on a set of examples are
stated in Section 6. Lastly, the paper is closed by some conclusions in Section 7.



Composite optimization models via PG method with increasing adaptive stepsizes 5

2. Preliminaries

In this section, we recall some necessary fundamental results which are useful to derive our main
contributions in the upcoming sections.

Lemma 2.1. Under Assumption 1, the sequence {xk} generated by proximal gradient scheme (1.3) for solving
problem (P) has the following properties:

(i) there exists ∂g(xk+1) ∈ ∂g(xk+1) such that xk+1 = xk − tk
(
∇f(xk) + ∂g(xk+1)

)
;

(ii) for all x ∈ int(dom(f)), we have

g(x)− g(xk+1) ≥
〈
xk+1 − x,∇f(xk) +

xk+1 − xk

tk

〉
. (2.1)

Proof. (i) Since xk+1 ∈ argmin
x∈Rn

{
g(x) + 1

2tk

∥∥x− (xk − tk∇f(xk))
∥∥2} then

0 ∈ ∂g(xk+1) +
1

tk

(
xk+1 − xk + tk∇f(xk)

)
.

Hence there exists ∂g(xk+1) ∈ ∂g(xk+1) such that

xk+1 = xk − tk(∇f(xk) + ∂g(xk+1)). (2.2)

(ii) From (i) and the convexity of g we are easy to get that

g(x)− g(xk+1) ≥
〈
x− xk+1, ∂g(xk+1)

〉
=

〈
xk+1 − x,∇f(xk) +

xk+1 − xk

tk

〉
.

Lemma 2.2 (Lemma 2 in [17]). Let {xk} ⊂ Rn be a bounded sequence where its cluster points in X ⊂ Rn

and the real sequence {ak} ⊂ R+. If

∥xk+1 − x∥2 + ak+1 ≤ ∥xk − x∥2 + ak, ∀x ∈ X, (2.3)

then {xk} converges to an element of X.

3. A new proximal gradient algorithm for the convex case of problem (P)

In this section, we propose a new proximal gradient algorithm for solving problem (P) satisfying
Assumption 1 and Assumption 2 below.
Assumption 2: f is convex and locally Lipschitz gradient.
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Algorithm 3.1 (NPG1)

Step 0. Select t0 > 0, 0 < c1 < c0 < 1√
2

and a positive real sequence {γk} such that
+∞∑
k=0

γk < ∞. Choose

x0 ∈ int(dom(f)), x1 = Proxt0g(x
0), t−1 = t0 and set k = 1.

Step 1.

If ∥∇f(xk)−∇f(xk−1)∥ >
c0
tk−1

∥xk − xk−1∥ (3.1)

then tk = c1
∥xk − xk−1∥

∥∇f(xk)−∇f(xk−1)∥
(3.2)

else γ′
k−1 = γk−1

if
tk−1

tk−2
< 1 then γ′

k−1 = min

{
γk−1,

√
1 +

tk−1

tk−2
− 1

}
(3.3)

tk = (1 + γ′
k−1)tk−1. (3.4)

Step 2. Compute xk+1 = Proxtkg(x
k).

Step 3. If ∥xk+1 − xk∥ < ϵ then STOP else setting k := k + 1 and return to Step 1.

Lemma 3.1. For all x ∈ int(dom(f)) we have

∥xk+1 − x∥2 + 2tk

(
F (xk)− F (x)

)
≤ ∥xk − x∥2 + t2k

∥∥∥∇f(xk) + ∂g(xk)
∥∥∥2 .

Proof. From Lemma 2.1 (ii), for all x ∈ int(dom(f))

2tk

(
g(xk+1)− g(x)

)
≤ 2

〈
xk+1 − xk + tk∇f(xk), x− xk+1

〉
= ∥xk − x∥2 − ∥xk+1 − xk∥2 − ∥xk+1 − x∥2+

+ 2tk

〈
∇f(xk), x− xk+1

〉
. (3.5)

Using the convexity of f and g, we continue evaluating

⟨∇f(xk), x− xk+1⟩
= ⟨∇f(xk), x− xk⟩+ ⟨∇f(xk) + ∂g(xk), xk − xk+1⟩+ ⟨∂g(xk), xk+1 − xk⟩

≤ f(x)− f(xk) +
〈
∇f(xk) + ∂g(xk), xk − xk+1

〉
+ g(xk+1)− g(xk). (3.6)

From (3.5) and (3.6), we derive that

∥xk+1 − x∥2 + 2tk

(
F (xk)− F (x)

)
≤ ∥xk − x∥2 +R, (3.7)

where

R = 2tk

〈
∇f(xk) + ∂g(xk), xk − xk+1

〉
− ∥xk+1 − xk∥2

= tk

〈
2∇f(xk) + 2∂g(xk)−∇f(xk)− ∂g(xk+1), xk − xk+1

〉
= t2k

〈
∇f(xk) + 2∂g(xk)− ∂g(xk+1),∇f(xk) + ∂g(xk+1)

〉
= t2k

(∥∥∥∇f(xk) + ∂g(xk)
∥∥∥2 − ∥∥∥∂g(xk+1)− ∂g(xk)

∥∥∥2)
≤ t2k

∥∥∥∇f(xk) + ∂g(xk)
∥∥∥2 . (3.8)

The final conclusion is obtained by (3.7) and (3.8).
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Lemma 3.2. Let {tk} be a sequence of stepsizes generated by Algorithm 3.1 then there exists k0 ∈ N such
that

1 +
tk
tk−1

≥
t2k+1

t2k
∀k ≥ k0. (3.9)

Proof. If ∥∇f(xk+1)−∇f(xk)∥ > c0
tk
∥xk+1−xk∥ then tk+1 =

c1∥xk+1−xk∥
∥∇f(xk+1)−∇f(xk)∥ < c1tk

c0
(by (3.2)). Hence

tk+1

tk
< c1

c0
< 1 and (3.9) is followed. Conversely, in the case that ∥∇f(xk+1)−∇f(xk)∥ ≤ c0

tk
∥xk+1−xk∥

then by (3.4), tk+1 = (1 + γ′k)tk and (3.9) is equivalent to(
tk+1

tk

)2

= (1 + γ′k)
2 ≤ 1 +

tk
tk−1

. (3.10)

Moreover, from (3.3), if tk
tk−1

≥ 1 then γ′k = γk and because
+∞∑
k=0

γk < +∞, there is k0 such that

γ′k = γk ≤
√
2− 1 ≤

√
1 +

tk
tk−1

− 1 ∀k ≥ k0. (3.11)

For the remaining case tk
tk−1

< 1, we have

γ′k = min

{
γk,

√
1 +

tk
tk−1

− 1

}
≤

√
1 +

tk
tk−1

− 1. (3.12)

Thus, (3.9) is proved from (3.11) and (3.12).

Lemma 3.3. Let {xk} be a sequence generated by Algorithm 3.1 then the following statements hold

(i) there exists k1 ≥ k0 such that for all k ≥ k1,

t2k

∥∥∥∇f(xk) + ∂g(xk)
∥∥∥2 ≤ 1

2
∥xk − xk−1∥2 +

t2k
tk−1

(
F (xk−1)− F (xk)

)
; (3.13)

(ii) {xk} is bounded.

Proof. (i) We have the relation

t2k

∥∥∥∇f(xk) + ∂g(xk)
∥∥∥2 = t2k

∥∥∥∇f(xk)−∇f(xk−1)
∥∥∥2︸ ︷︷ ︸

A

+B, (3.14)

where

B = 2t2k

〈
∇f(xk) + ∂g(xk),∇f(xk−1) + ∂g(xk)

〉
− t2k

∥∥∥∇f(xk−1) + ∂g(xk)
∥∥∥2

=
t2k
tk−1

〈
∇f(xk) + ∂g(xk), xk−1 − xk

〉
+

t2k
tk−1

〈
∇f(xk)−∇f(xk−1), xk−1 − xk

〉
︸ ︷︷ ︸

≤0

≤
t2k
tk−1

(
F (xk−1)− F (xk)

)
. (3.15)
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We now prove that there exists k1 ≥ k0 such that

A ≤ 1

2
∥xk − xk−1∥2 ∀k ≥ k1. (3.16)

Indeed, from Algorithm 3.1, if
∥∥∇f(xk)−∇f(xk−1)

∥∥ > c0
tk−1

∥xk − xk−1∥ then tk = c1∥xk−xk−1∥
∥∇f(xk)−∇f(xk−1)

∥
and since c1 <

1√
2
, we have

A = t2k∥∇f(xk)−∇f(xk−1)∥2 = c21∥xk − xk−1∥2 < 1

2
∥xk − xk−1∥2.

Conversely, if ∥∇f(xk)−∇f(xk−1)∥ ≤ c0
tk−1

∥xk − xk−1∥ then

tk = (1 + γ′k−1)tk−1 ≤ (1 + γk−1)
c0∥xk − xk−1∥

∥∇f(xk)−∇f(xk−1)∥

which follows
t2k∥∇f(xk)−∇f(xk−1)∥2 ≤ (1 + γk−1)

2c20∥xk − xk−1∥2. (3.17)

The convergence of
+∞∑
k=0

γk indicates that there exists k1 ≥ k0 satisfying

γk−1 ≤
1√
2c0

− 1 ∀k ≥ k1

(
1√
2c0

− 1 > 0 since c0 <
1√
2

)
, (3.18)

which is equivalent to (1 + γk−1)
2c20 ≤ 1

2 for all k ≥ k1. From (3.17) we have (3.16). The combination
of (3.14), (3.15) and (3.16) indicates (3.13).

(ii) Using Lemma 3.1 with x = x∗ and (3.13), for all k ≥ k1 we have

∥xk+1 − x∗∥2 + 2tk

(
F (xk)− F (x∗)

)
+ t2k

∥∥∥∇f(xk) + ∂g(xk)
∥∥∥2

≤ ∥xk − x∗∥2 + 2t2k

∥∥∥∇f(xk) + ∂g(xk)
∥∥∥2

≤ ∥xk − x∗∥2 + ∥xk − xk−1∥2 + 2
t2k
tk−1

(
F (xk−1)− F (xk)

)
. (3.19)

Nevertheless,

t2k

∥∥∥∇f(xk) + ∂g(xk)
∥∥∥2 = ∥∥∥tk (∇f(xk) + ∂g(xk+1)

)
+ tk

(
∂g(xk)− ∂g(xk+1)

)∥∥∥2
=

∥∥∥(xk − xk+1) + tk

(
∂g(xk)− ∂g(xk+1)

)∥∥∥2
= ∥xk − xk+1∥2 + 2tk

〈
xk − xk+1, ∂g(xk)− ∂g(xk+1)

〉
︸ ︷︷ ︸

≥0 because g is convex

+t2k ∥∂g(xk)− ∂g(xk+1)∥2︸ ︷︷ ︸
≥0

≥ ∥xk − xk+1∥2. (3.20)

Hence, using inequality (3.20) for the left hand side of (3.19) we obtain that

∥xk+1 − x∗∥2 + 2tk

(
1 +

tk
tk−1

)(
F (xk)− F (x∗)

)
+ ∥xk − xk+1∥2

≤ ∥xk − x∗∥2 + ∥xk−1 − xk∥2 + 2
t2k
tk−1

(
F (xk−1)− F (x∗)

)
. (3.21)
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Remember that from Lemma 3.2 we derive 2tk

(
1 + tk

tk−1

)
≥ 2t2k+1

tk
∀ k ≥ k1. Therefore, by (3.21), for

all k ≥ k1 we have

∥xk+1 − x∗∥2 + ∥xk − xk+1∥2 +
2t2k+1

tk

(
F (xk)− F (x∗)

)
≤ ∥xk − x∗∥2 + ∥xk−1 − xk∥2 +

2t2k
tk−1

(
F (xk−1)− F (x∗)

)
. (3.22)

This inequality follows that

∥xk+1 − x∗∥2 + ∥xk − xk+1∥2 +
2t2k+1

tk

(
F (xk)− F (x∗)

)
≤ K, (3.23)

where

K = ∥xk1 − x∗∥2 + ∥xk1−1 − xk1∥2 +
2t2k1
tk1−1

(
F (xk1−1)− F (x∗)

)
.

The relation (3.23) implies the boundedness of {xk}.

Remark 3.4. From the proof of Lemma 3.3 (eq. (3.11) and (3.18)), we see that if the convergent

positive series
+∞∑
k=0

γk is created such that γk ≤ min
{

1√
2c0

− 1,
√
2− 1

}
for all k ≥ 1 then k1 = 1 and

therefore we obtain (3.22) for any k ≥ 1.

The bounded property of the sequence {xk} in Lemma 3.3 provides us an important key to be-
yond the challenge of the usual condition imposed on the gradient of f that the globally Lipschitz
continuity of ∇f . In the upcoming lemma, we start deploying the locally Lipschitz of ∇f to obtain
several typical characteristics of the sequence of our new stepsize.

Lemma 3.5. Let {tk} be a sequence of stepsizes generated by Algorithm 3.1. Then

(i) {tk} is lower bounded by a positive number;

(ii) {tk} is convergent and has a positive limitation.

Proof. (i) By Lemma 3.3 the set T = conv{x∗, x0, x1, ...} is closed and compact. From the local Lip-
schitz continuity of ∇f , it is easy to see that there exists L0 > 0 satisfying ∥∇f(x) − ∇f(y)∥ ≤
L0∥x − y∥ ∀x, y ∈ T. Thereafter, either t1 ≥ c1

L0
or t1 = (1 + γ′0)t0 ≥ t0. The induction process

derives that
tk ≥ min{ c1

L0
, t0} = η > 0 ∀k ≥ 0. (3.24)

(ii) If we set rk = ln tk+1 − ln tk and r+k = max{0, rk} ≥ 0, r−k = −min{0, rk} ≥ 0, ∀k ≥ 0 then
rk = r+k − r−k . On the other hand, from Algorithm 3.1, we observe that 0 < c1 < c0 <

1√
2
, hence both

of (3.2) and (3.4) give

rk = ln
tk+1

tk
≤ ln(1 + γ′k) ≤ γ′k ≤ γk ∀k ≥ 0.

Thus, r+k ≤ γk. Moreover, the series
+∞∑
k=0

γk converges then
+∞∑
k=0

r+k < +∞. Noticeably,

ln tk+1 − ln t0 =

k∑
i=0

ri =

k∑
i=0

(r+i − r−i ) =

k∑
i=0

r+i −
k∑

i=0

r−i . (3.25)
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Hence if the nonnegative series
+∞∑
k=0

r−k diverges, i.e., lim
k→+∞

k∑
i=0

r−i = +∞ then

lim
k→+∞

(ln tk+1) = −∞

which implies lim
k→+∞

tk = 0. This result is contradict with the assertion (i). Thus,
+∞∑
k=0

r−k is convergent

and therefore lim
k→+∞

tk = t∗ ∈ (0,+∞) (followed by (3.25)).

Lemma 3.6. There exists k∗ such that

∥∇f(xk)−∇f(xk−1)∥ ≤ c0
tk−1

∥xk − xk−1∥, ∀k ≥ k∗. (3.26)

Proof. Assuming that there is a subsequence {ki} ⊂ N, ki → +∞ such that

∥∇f(xki)−∇f(xki−1)∥ >
c0

tki−1
∥xki − xki−1∥.

By Algorithm 3.1, in this case we have

tki
tki−1

=
c1∥xki − xki−1∥

tki−1∥∇f(xki)−∇f(xki−1)∥
<

c1
c0

∀ki.

However, Lemma 3.5 gives

lim
ki→+∞

tki = lim
ki→+∞

tki−1 = lim
k→+∞

tk = t∗.

Consequently, t∗

t∗ ≤ c1
c0

< 1 that is impossible and we obtain the conclusion of the lemma.

Remark 3.7. From Lemma 3.6, we immediately obtain the increasing of the sequence {tk}k≥k∗ and
0 < η < tk ≤ max{t0, ..., tk∗−1, t

∗} = tmax, k ≥ 0.

Lemma 3.8. For any x ∈ int(dom(f)), we have

F (x)− F (xk+1) ≥ 1− c0
tk

∥xk+1 − xk∥2 + 1

tk
⟨xk − xk+1, x− xk⟩, for all k ≥ k∗. (3.27)

Proof. Because of the convexity of f and Lemma 2.1 (ii) we have

F (x)− F (xk+1) = f(x) + g(x)− f(xk+1)− g(xk+1)

≥ f(xk) +
〈
x− xk,∇f(xk)

〉
+

〈
xk+1 − x,∇f(xk) +

xk+1 − xk

tk

〉
− f(xk+1)

= f(xk)− f(xk+1) +
〈
xk+1 − xk,∇f(xk)

〉
+

1

tk

〈
xk+1 − xk, xk+1 − x

〉
≥ ⟨∇f(xk+1)−∇f(xk), xk − xk+1⟩+ 1

tk

∥∥∥xk+1 − xk
∥∥∥2 + 1

tk

〈
xk+1 − xk, xk − x

〉
(3.28)

On the other hand, by using Lemma 3.6, we have the evaluation〈
∇f(xk+1)−∇f(xk), xk − xk+1

〉
≥ −

∥∥∥∇f(xk)−∇f(xk+1)
∥∥∥ ∥xk − xk+1∥

≥ −c0
tk
∥xk+1 − xk∥2 ∀k ≥ k∗. (3.29)

The proof is completed by utilizing (3.28) and (3.29).
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The convergent properties of Algorithm 3.1 are given in the following theorem.

Theorem 3.9. Suppose that problem (P) satisfies Assumptions 1 and 2. Then the following assertions hold
for Algorithm 3.1.

(i) The sequence {F (xk)}k≥k∗ descends to lim
k→+∞

F (xk) = F∗.

(ii) The sequence {xk} converges to an optimal solution of problem (P).

(iii) For any x∗ ∈ X∗ and k ≥ k∗ + 1 we have

F (xk)− F∗ = F (xk)− F (x∗) ≤ D

2tk∗(k − k∗)
= O

(
1

k

)
, (3.30)

where
D = max

{
∥x∗ − xk

∗∥2, ∥x∗ − xk
∗∥2 + t∗(2c0 − 1)

1− c0

(
F (xk

∗
)− F∗

)}
.

Proof. (i) Substituting x by xk in (3.27) of Lemma 3.8 we get that

F (xk)− F (xk+1) ≥ 1− c0
tk

∥xk+1 − xk∥2 ≥ 1− c0
t∗

∥xk+1 − xk∥2 ≥ 0, for all k ≥ k∗. (3.31)

By (3.31), the sequence {F (xk)}k≥k∗ is decreasing. On the other hand, it is lower bounded by F∗
hence converges to F̄ ≥ F∗. Thus, F (xk) − F (xk+1) → 0. And consequently, the inequality (3.31)
follows

lim
k→+∞

∥xk+1 − xk∥ = 0. (3.32)

Now, replacing x with x∗ in (3.27) of Lemma 3.8 to obtain

0 ≤ F (xk+1)− F (x∗) ≤ −1− c0
tk

∥xk+1 − xk∥2 − 1

tk
⟨xk − xk+1, x∗ − xk⟩

≤ (c0 − 1)∥xk+1 − xk∥2 + ∥xk+1 − xk∥∥xk − x∗∥
tk

, for all k ≥ k∗. (3.33)

However, {xk} is bounded (by Lemma 3.3(ii)) and lim
k→+∞

tk = t∗ (from Lemma 3.5) then combining

with (3.32) we deduce that the limitation of the right hand side of (3.33) is zero as k tending to infin-
ity. Hence, again, by (3.33) we have lim

k→+∞
F (xk) = F∗.

(ii) Taking into account that the sequence {xk} is bounded then for each cluster point x of {xk},
we can take a subsequence {xki} such that xki → x. On the other hand, the closedness of F (from
Assumption 1) follows its lower semi-continuous and therefore F (x) ≤ lim

ki→∞
F (xki) = F∗, which

implies x ∈ X∗.

Setting ak = ∥xk−1 − xk∥2 + 2t2k
tk−1

(
F (xk−1)− F (x∗)

)
≥ 0 and rewrite (3.22) to be

∥xk+1 − x∗∥2 + ak+1 ≤ ∥xk − x∗∥2 + ak, ∀x∗ ∈ X∗, k ≥ k1.

Moreover, we have just shown that all cluster points of {xk} belong to X∗. Therefore, applying
Lemma 2.2 we obtain that {xk} converges to some element of X∗.
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(iii) In (3.31), substituting k by j then summing up it from j = k∗ to k we derive that

F (xk
∗
)− F (xk+1) ≥ 1− c0

t∗

k∑
j=k∗

∥xj+1 − xj∥2. (3.34)

This indicates the convergence of
+∞∑
j=k∗

∥xj+1 − xj∥2 and

+∞∑
j=k∗

∥xj+1 − xj∥2 ≤ t∗

1− c0

(
F (xk

∗
)− F∗

)
. (3.35)

Applying (3.27) again, we obtain that

F (x∗)− F (xj+1) ≥ 1

2tj

(
∥xj+1 − xj∥2 + 2

〈
xj − xj+1, x∗ − xj

〉)
+

(
1

2
− c0

)
∥xj − xj+1∥2

tj

≥ 1

2tj

(
∥x∗ − xj+1∥2 − ∥x∗ − xj∥2

)
+

(
1

2
− c0

)
∥xj − xj+1∥2

tj
∀j ≥ k∗. (3.36)

On the other hand, Remark 3.7 gives tj ≥ tk∗ ∀j ≥ k∗ which helps to infer the following inequality
from (3.36)

2tk∗
(
F (xj+1)− F (x∗)

)
≤ 2tj

(
F (xj+1)− F (x∗)

)
≤

(
∥x∗ − xj∥2 − ∥x∗ − xj+1∥2

)
+ (2c0 − 1) ∥xj − xj+1∥2 ∀j ≥ k∗. (3.37)

Summing (3.37) side by side for j = k∗ to k + k∗ − 1 (k ≥ 1), we get that

2tk∗

k+k∗−1∑
j=k∗

F (xj+1)− kF (x∗)

 ≤
(
∥x∗ − xk

∗∥2 − ∥x∗ − xk+k∗∥2
)
+

+ (2c0 − 1)
k+k∗−1∑
j=k∗

∥xj − xj+1∥2

≤ D, (3.38)

where, (from (3.35))D is defined by

D = max

{
∥x∗ − xk

∗∥2, ∥x∗ − xk
∗∥2 + t∗(2c0 − 1)

1− c0

(
F (xk

∗
)− F∗

)}
.

Additionally, the descent of {F (xk)}k≥k∗ induces
k+k∗−1∑
j=k∗

F (xj+1) ≥ kF (xk+k∗). Therefore by (3.38),

we have

F (xk+k∗)− F (x∗) ≤ 1

2tk∗

D

k
∀k ≥ 1,

which means that F (xk)− F (x∗) ≤ D

2tk∗

1

k − k∗
= O

(
1

k

)
∀k ≥ k∗ + 1.
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Next, we prove a stronger convergent result of Algorithm 3.1 if f is locally strongly convex. The
details is the following.

Theorem 3.10. Assuming that c0 ≤ 1
2 and problem (P) satisfies Assumption 1, Assumption 2. Additionally,

f is locally strongly convex then the sequence {xk} generated by Algorithm 3.1 satisfies

∥xk+1 − x∗∥2 ≤ (1− σtk∗)∥xk − x∗∥2, ∀k ≥ k∗, (3.39)

where σ > 0 is strong convexity constant of f on the compact set T = conv{x∗, x0, x1, ...}. Consequently,
this result shows the Q-linear convergence rate of {xk}.

Proof. The σ− strong convexity on T of f implies that

f(x)− f(xk) ≥ ⟨∇f(xk), x− xk⟩+ σ

2
∥x− xk∥2, ∀x ∈ T.

We update this change and the condition c0 ≤ 1
2 in the argument of formula (3.28) and (3.36) to

obtain the following inequality

F (x∗)− F (xk+1) ≥ 1

2tk
∥x∗ − xk+1∥2 +

(
σ

2
− 1

2tk

)
∥x∗ − xk∥2,

for all x∗ ∈ X∗, k ≥ k∗, Remember that F (x∗)− F (xk+1) ≤ 0 ∀k hence

1

2tk
∥x∗ − xk+1∥2 ≤

(
1

2tk
− σ

2

)
∥x∗ − xk∥2, k ≥ k∗. (3.40)

By (3.40), Lemma 3.5(i) and Remark 3.7, we have: ∀k ≥ k∗

0 < 1− σtk ≤ 1− σtk∗ ≤ 1− ση < 1,

which derives
∥xk+1 − x∗∥2 ≤ (1− σtk∗) ∥xk − x∗∥2, k ≥ k∗.

The last inequality aims the Q-linear convergence rate of {xk}.

4. For a class of the nonconvex case of problem (P)

We now consider problem (P) satisfying Assumption 1 and other conditions in Assumption 3 below
Assumption 3:

(i) f is globally Lipschitz gradient with constant Lf on int(dom(f)).

(ii) For u, v ∈ int(dom(f)), the function huv : [0, 1] → R defined by

huv(t) = f ′
t(u+ t(v − u)) = ⟨∇f(u+ t(v − u)), v − u⟩

is quasiconvex.

Example 4.1. Suppose that f is either convex or concave. Then f satisfies Assumption 3 (ii). Indeed,
the convexity (concavity, resp.) of f follows the convexity (concavity, resp.) of f(u + t(v − u)) on
the set {t ∈ R | u + t(v − u) ∈ int(dom(f))} ⊃ [0, 1] (since int(dom(f)) is convex). As a result,
f ′
t(u + t(v − u)) is increasing (decreasing, resp.) monotone over [0, 1] and therefore quasiconvex on

that.
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Example 4.2. The indefinite quadratic function f(x) = 1
2x

TAx+bTx (A is a symmetric matrix in Rn×n

and b ∈ Rn) satisfies both of Assumption 1 and Assumption 3 since huv(t) = ⟨A(u+ t(v−u))+ b, v−u⟩
is linear and hence quasiconvex on [0, 1] for any u, v ∈ int(dom(f)) = Rn.

From Example 4.1 and 4.2, we see that the class of problem (P) satisfying Assumption 1 and Assump-
tion 3 is nonconvex in general. Subsequently, we propose an other version of Algorithm 3.1 that can
be applied for such a kind of problems.

Algorithm 4.1 (NPG2)
Step 0 (Initialization). Select t0 > 0, 0 < c1 < c0 < 1, x0 ∈ int(dom(f)) a tolerance ϵ > 0 and a positive real

sequence {γk} such that
∞∑
k=0

γk < ∞. Taking x1 = Pt0g(x
0), t−1 = t0 and k = 1.

Step 1.

If ∥∇f(xk)−∇f(xk−1)∥ >
c0
tk−1

∥xk − xk−1∥

then tk = c1
∥xk − xk−1∥

∥∇f(xk)−∇f(xk−1)∥
else γ′

k−1 = γk−1

if
tk−1

tk−2
< 1 then γ′

k−1 = min

{
γk−1,

√
1 +

tk−1

tk−2
− 1

}
(4.1)

tk = (1 + γ′
k−1)tk−1.

Step 2. Compute xk+1 = Ptkg(x
k).

Step 3. If ∥xk+1 − xk∥ < ϵ then STOP else setting k := k + 1 and return to Step 1.

The convergence of Algorithm 4.1 is established after some lemmas analogous to the ones of
Section 3.

Lemma 4.3. The sequence {tk} in Algorithm 4.1 satisfies inf
k≥0

tk > 0 and has a positive limitation.

Proof. Similarly as Lemma 3.5 (i), it is clearly to get that tk ≥ min{t0, c1
Lf

} > 0 for all k ≥ 0. As a
result, inf

k≥0
tk > 0. The remaining conclusion is shown as Lemma 3.5 (ii).

Lemma 4.4. For Algorithm 4.1, there exists k̄ such that

∥∇f(xk)−∇f(xk−1)∥ ≤ c0
tk−1

∥xk − xk−1∥ ∀k ≥ k̄.

Proof. The proof is the same as in Lemma 3.6.

Lemma 4.5. Assuming that problem (P) satisfies Assumption 1 and Assumption 3 then the sequence {xk}
generated by Algorithm 4.1 has the following property

F (xk)− F (xk+1) ≥ 1− c0
tk

∥xk+1 − xk∥2, ∀k ≥ k̄.

Proof. Invoking the Fundamental Theorem of Calculus, we have

f(xk+1)− f(xk) =

∫ 1

0

〈
∇f(xk + t(xk+1 − xk)), xk+1 − xk

〉
dt

= ⟨∇f(xk), xk+1 − xk⟩+
∫ 1

0
uk(t)dt, ∀k ≥ k̄ (4.2)
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where

uk(t) = ⟨∇f(xk + t(xk+1 − xk))−∇f(xk), xk+1 − xk⟩
= hxkxk+1(t)− ⟨∇f(xk), xk+1 − xk⟩.

According to Assumption 3, the quasiconvexity of uk(t) in [0, 1] follows that

uk(t) ≤ max{uk(0), uk(1)} = max{0, uk(1)} ≤ |uk(1)|
= |⟨∇f(xk+1)−∇f(xk), xk+1 − xk⟩|, ∀t ∈ [0, 1].

Thereafter, using Lemma 4.4, we derive that∫ 1

0
uk(t)dt ≤

c0
tk
∥xk+1 − xk∥2, ∀k ≥ k̄. (4.3)

Now, combining (4.2), (4.3) and Lemma 2.1(ii) with x = xk+1 we get that

F (xk)− F (xk+1) = f(xk)− f(xk+1) + g(xk)− g(xk+1)

≥ −
〈
xk+1 − xk,∇f(xk)

〉
− c0

tk
∥xk+1 − xk∥2+

+

〈
xk+1 − xk,∇f(xk) +

xk+1 − xk

tk

〉
=

1− c0
tk

∥xk+1 − xk∥2 ∀k ≥ k̄. (4.4)

The following theorem gives the convergence of Algorithm 4.1 for solving the problem (P).

Theorem 4.6. Under Assumption 1 and 3, the following assertions hold for Algorithm 4.1:

(i) The sequence {F (xk)}k≥k̄ is decreasing and for any k ≥ k̄, F (xk+1) < F (xk) unless xk is a stationary
point of problem (P).

(ii) F (xk)− F (xk+1) → 0 and
+∞∑
k=0

∥xk+1 − xk∥ is convergent.

Proof. (i) By (4.4) and c0 < 1, it is clear to see that F (xk) ≥ F (xk+1) for all k ≥ k̄. If F (xk) =
F (xk+1) then xk+1 = xk = Proxtkg(x

k) meaning xk is a stationary point of (P).

(ii) Since problem (P) has a non-empty optimal solution set then the sequence {F (xk)}k≥k̄ is de-
creasing and lower bounded by F∗. This follows the existence of a finite limitation F̂ of {F (xk)}k≥k̄

(F̂ ≥ F∗). It means that F (xk) − F (xk+1) → 0. Moreover, by Lemma 4.3 we have {tk}k≥k in-
creasing to lim

k→+∞
tk = t∗. On the other hand, inequality (4.4) indicates that ∥xk+1 − xk∥2 ≤

tk
1−c0

(F (xk) − F (xk+1)) ≤ t∗

1−c0
(F (xk) − F (xk+1)) for all k ≥ k. Therefore

+∞∑
k=k

∥xk − xk+1∥ ≤

F (xk)− F̂ that follows the desired conclusion.

Remark 4.7. (i) Remember that c0, c1 ∈
(
0, 1√

2

)
for Algorithm 3.1 (NPG1) but c0, c1 ∈ (0, 1) for

Algorithm 4.1 (NPG2).

(ii) Actually, the command (4.1) in Algorithm 4.1 is optional since we do not need it during the
proof of the convergence of NPG2.
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5. Problem (P) with quadratic function f

In this section, we propose an extension of Algorithm 4.1 called NPG-quad solving problem (P) with
quadratic function f, i.e., f(x) = 1

2x
TAx+ bTx as described in Example 4.2. With the range of c0, c1

in (0, 2), the stepsize in NPG-quad can be bigger than the previous ones. This probably makes the
execution time of NPG-quad shorter.

Algorithm 5.1 (NPG-quad)
Step 0 (Initialization). Select t0 > 0, 0 < c1 < c0 < 2, x0 ∈ dom(g), a tolerance ϵ > 0 and a positive real

sequence {γk} such that
∞∑
k=0

γk < ∞. Taking x1 = Pt0g(x
0), t−1 = t0, and k = 1.

Step 1.

If (xk − xk−1)TA(xk − xk−1) > c0
∥xk − xk−1∥2

tk−1
(5.1)

then tk =
c1∥xk − xk−1∥2

(xk − xk−1)TA(xk − xk−1)
(5.2)

else γ′
k−1 = γk−1

if
tk−1

tk−2
< 1 then γ′

k−1 = min

{
γk−1,

√
1 +

tk−1

tk−2
− 1

}
(5.3)

tk = (1 + γ′
k−1)tk−1. (5.4)

Step 2. Compute xk+1 = Ptkg(x
k).

Step 3. If ∥xk+1 − xk∥ < ϵ then STOP else setting k := k + 1 and return to Step 1.

Lemma 5.1. The sequence {tk} generated by Algorithm 5.1 has a positive limitation.

Proof. Analogous to former sections, we are easy to have tk ≥ min
{
t0,

c1
∥A∥

}
> 0 for all k ≥ 0.

Therefore, inf
k≥0

tk > 0. The computation of tk by (5.2) or (5.4) provides ln
(
tk+1

tk

)
< ln(1 + γk). The

subsequent arguments are akin to the one of Lemma 3.5 (ii).

Lemma 5.2. For Algorithm 5.1, there exists k̃ such that

(xk − xk−1)TA(xk − xk−1) ≤ c0
∥xk − xk−1∥2

tk−1
, for all k ≥ k̃. (5.5)

Proof. Based on the properties of {tk} in Lemma 5.1 and arguing by contradiction as Lemma 3.6 we
have the desired conclusion.

Theorem 5.3. Supposing problem (P) satisfies Assumption 1 and f has quadratic form as in Example 4.2.
For {xk} generated by Algorithm 5.1, the sequence {F (xk)}k≥k̃ is decreasing to a limitation F̃ ≥ F∗ and
+∞∑
k=0

∥xk+1 − xk∥ is convergent.
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Proof. We have

f(xk+1)− f(xk) =

∫ 1

0

〈
∇f(xk + t(xk+1 − xk)), xk+1 − xk

〉
dt

=

∫ 1

0

〈
A(xk + t(xk+1 − xk)) + b, xk+1 − xk

〉
dt

=
〈
A(xk+1 − xk), xk+1 − xk

〉∫ 1

0
tdt+

〈
Axk + b, xk+1 − xk

〉
=

1

2
(xk+1 − xk)TA(xk+1 − xk) +

〈
∇f(xk), xk+1 − xk

〉
. (5.6)

Now plugging (5.6) in F (xk)− F (xk+1) and using Lemma 2.1(ii) to obtain

F (xk)− F (xk+1) = f(xk)− f(xk+1) + g(xk)− g(xk+1)

≥ −1

2
(xk+1 − xk)TA(xk+1 − xk)− ⟨∇f(xk), xk+1 − xk⟩+

+

〈
xk+1 − xk,∇f(xk) +

xk+1 − xk

tk

〉
= −1

2
(xk+1 − xk)TA(xk+1 − xk) +

1

tk
∥xk+1 − xk∥2. (5.7)

Next, applying Lemma 5.2 for (5.7) we obtain for all k ≥ k̃,

F (xk)− F (xk+1) ≥
(
1− c0

2

) ∥xk+1 − xk∥2

tk
. (5.8)

The remaining arguments are similar as Theorem 4.6.

Remark 5.4. If f is a concave quadratic function i.e., A is negative semi-definite then the condition
(5.1) is false, hence

• k̃ in Lemma 5.2 should be zero;

• tk is always defined by formula (5.4) and {tk}k≥0 is increasing to a finite limitation;

• the evaluation (5.8) should be

F (xk)− F (xk+1) ≥ ∥xk+1 − xk∥2

tk
, ∀k ≥ 0. (5.9)

6. Numerical experiments

In this section, we investigate the performance of our new stepsize for the proximal gradient scheme
by comparing our Algorithms 3.1(NPG1), 4.1 (NPG2) and 5.1 (NPG-quad) with: 1. the AdPG pro-
posed by Malitksy and Mischenko [8], 2. the proximal gradient algorithms ProxGD(s, r) with step-
size selection based on an improved version of Armijo’s backtracking procedure1, where (s, r) equals
(1.1, 0.5) or (1.2, 0.5). The chosen parameters for ProxGD are taken as the two most effective sets from

1For s > 1, r < 1, Armijo’s linesearch in [8] finds the largest tk = sritk−1 for i = 0, 1, ... such that f(xk+1) ≤
f(xk) + ⟨∇f(xk), xk+1 − xk⟩+ 1

2tk
∥xk+1 − xk∥2.
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the observation on the numerical results provided in [8]. For our algorithms, we use the convergent

series
+∞∑
k=0

γk defined by

γk−1 =
0.1(ln k)5.7

k1.1
, ∀k ≥ 1,

and setting (c0, c1) = (0.7, 0.69) for NPG1, (c0, c1) = (0.99, 0.98) for NPG2 and NPG-quad. For all
implemented algorithms, the stopping criterion is either the residual ∥xk+1 − xk∥ ≤ 1e − 06 or the
number of iterations over Nmax.

We conduct experiments on five typical optimization problems with various sizes for each one.
The average results on 10 randomly generated data for each size of considered problems with respect
to ∥xk+1−xk∥ (Res.), F (xk)−F∗ (Obj.)2, running time in seconds (Time(s)) and the number of iterations
(Iter.) are reported on Tables 1, 2, 3, 4, 5. We emphasize the best results among all by bold characters
and the worst results by italic type. We also choose one arbitrary data for each kind of problems to
illustrate the performance by Figures 1, 2, 3, 4, 5.

All experiments were implemented in Python and executed on a personal computer equipped
with a 12th Gen Intel(R) Core(TM) i7-1260P 2.10 GHz processor, RAM 16.0 GB.

6.1. Lasso problems
The formulation of Lasso problem is formulated as the ℓ1 regularized least squares

min
x∈Rn

1

2
∥Ax− b∥2 + λ∥x∥1, (Lasso)

where A ∈ Rm×n, b ∈ Rm. The applications of Lasso can be found in statistic, machine learning,
signal processing, see e.g., [3, 15, 18]. By using the similar rules in [18], we randomly generate A ∈
Rm×n with entries drawn from the normal distribution N (0, 1). We then construct a sparse solution
x∗ with 5% approximately non-zero entries, drawn from a mixture distribution N (0, 1)× B(1, 0.05)
then setting b = Ax∗ + δ, where δ is white Gaussian noise with variance 0.01. The regularization
term λ = 0.01∥AT b∥∞. Obviously, Lasso satisfies Assumptions 1, 2, 3 then both of NPG1 and NPG2
are available for it. Moreover, f is quadratic hence NPG-quad can be applied for solving this problem
also. Figure 1 illustrates the performance of mentioned algorithms for one of randomly generated
data with m = 2048, n = 8192. The obtained average results in Table 1 show the best performance
of NPG-quad for almost dimensions of Lasso.

2F∗ is computed as the minimum of F (xk) over all iterations and all tested algorithms.
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Figure 1: Illustration for one of randomly generated data of Lasso with size m = 2048, n = 8192.

Size
Metrics

Average of all datasets

m n AdPG PG-LS
(1.1, 0.5)

PG-LS
(1.2, 0.5)

NPG1 NPG2 NPG-quad

512 1024

Iter. 114,4 146,7 138,4 92,1 85,4 79,7
Res. 7,95E-07 6,76E-07 6,29E-07 7,99E-07 7,16E-07 6,25E-07
Obj. 1,07E-10 7,05E-11 7,52E-11 3,45E-10 1,05E-10 1,03E-11
Time(s) 0,041622 0,060324 0,057674 0,029767 0,027424 0,025698

512 2048

Iter. 307,7 402,9 381,5 235,7 197,6 204,7
Res. 7,26E-07 8,05E-07 8,55E-07 6,1E-07 7,29E-07 4,25E-07
Obj. 8,71E-09 2,71E-09 4,35E-09 7,23E-09 4,99E-09 8,57E-11
Time(s) 0,133219 0,188929 0,211354 0,110316 0,092419 0,096476

512 4096

Iter. 5923,4 8311,4 8269,7 5690 4534,1 3066,5
Res. 9,65E-07 9,68E-07 9,43E-07 9,8E-07 9,73E-07 9,22E-07
Obj. 6,5E-06 1,2E-06 5,69E-07 9,81E-06 5,56E-06 6,86E-08
Time(s) 5,106856 8,503539 9,265539 5,189247 4,11577 2,790751

1024 2048

Iter. 118,8 153,6 144,8 102 90,9 89,6
Res. 8,18E-07 6,45E-07 5,9E-07 7,94E-07 7,82E-07 5,68E-07
Obj. 3,23E-10 1,97E-10 1,55E-10 9,11E-10 2,64E-10 3,34E-11
Time(s) 0,091836 0,127233 0,138282 0,081234 0,073686 0,076868

1024 4096

Iter. 282,6 366,6 342,2 221,7 187,7 188,8
Res. 7,57E-07 9,1E-07 7,5E-07 7,24E-07 7,46E-07 5,91E-07
Obj. 1,13E-08 4,27E-09 6E-09 1,89E-08 1,11E-08 9,4E-11
Time(s) 0,900778 1,335362 1,334489 0,690471 0,581451 0,588497

1024 8192

Iter. 5422,5 7953 7839,9 5431,7 4345,8 2967,5
Res. 9,42E-07 9,7E-07 9,45E-07 9,61E-07 9,78E-07 9,43E-07
Obj. 1,76E-05 2,34E-06 1,65E-06 1,84E-05 1,14E-05 4,27E-07
Time(s) 41,86462 69,53798 75,38844 41,31976 33,15261 23,23451

2048 4096

Iter. 107 135,6 129,3 97,5 86,6 79,2
Res. 7,76E-07 7,48E-07 7,19E-07 7,43E-07 7,57E-07 5,46E-07
Obj. 4,13E-10 5,13E-10 3,07E-10 1,37E-09 3,69E-10 1,16E-10
Time(s) 0,905618 1,328207 1,350697 0,79346 0,706674 0,646555

2048 8192

Iter. 289,1 380,7 361,1 226,8 199,6 183,5
Res. 7,52E-07 7,85E-07 8,42E-07 7,67E-07 7,11E-07 5,15E-07
Obj. 3,93E-08 1,31E-08 1,33E-08 3,65E-08 2,58E-08 5,18E-10
Time(s) 4,878866 6,889515 7,239163 3,60845 3,178414 2,932337

Table 1: Average results for Lasso problem (Nmax = 15000).

6.2. Minimum length piecewise-linear curve subject to equality constraints
We consider an other optimization problem from [19, Example 10.4], where the objective is min-

imizing the length of the piecewise-linear curve connecting the points (0, 0), (1, x1), ..., (n, xn) while
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satisfying the equality constraint Ax = b, the problem can be formed as

min
√
1 + x21 +

n−1∑
i=1

√
1 + (xi+1 − xi)2 s.t. Ax = b, (Min-length)

where A ∈ Rm×n, b ∈ Rm. It is seen that Min-length3 satisfies Assumption 1,2,3 and we can use NPG1
and NPG2 to solve it. In the implementation, all members of A are randomly generated by normal
distribution N (0, 1). Taking b = Ax∗, where x∗ ∼ N (0, 1). Figure 2 provides the line graphs of
one randomly generated data with m = 2000, n = 10000. Table 2 includes the average computation
results for various sizes of Min-length. Notably, both NPG1 and NPG2 outperform the remaining
ones with the big deviation in term of computational time, residual, objective value and the number
of iterations. The speed of NPG1 can be seen as the best among all for Min-length.
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Figure 2: Illustrations for one of randomly generated data of Min-length with m = 2000, n = 10000.

6.3. Dual of the entropy maximization problem
We consider the entropy maximization problem subject to linear constraints [19, Section 5.1.6]

which is

min
n∑

i=1

xi log xi s.t. Ax ≤ b,
n∑

i=1

xi = 1, and xi > 0, i = 1, ..., n, (6.1)

where A = [a1, a2, ..., an] ∈ Rm×n, with ai ∈ Rm is the i−th column of A and b ∈ Rm. Its dual
problem is

min e−µ−1
n∑

i=1

e−(ai)Tλ + bTλ+ µ, s.t. λ ∈ Rm
+ , µ ∈ R. (Dual-max-entropy)

It is observed that Problem Dual-max-entropy4 matches Assumption 1, 2 but Assumption 3. Therefore
the use of NPG1 is straightforward for it. We still run NPG2 for Dual-max-entropy as a heuristic
approach. We use the similar rule of generating data as [8]. Specifically, a m × n matrix A with
entries are generated from N (0, 1), b = Ax∗ with a ℓ1-normalized x∗ sampled from the uniform
distribution U [0.1, 1). Results are depicted in Table 3 and Figure 3. It is shown that the performance
of NPG2 significant efficiency compared to the remaining ones.

3Min-length is a case of problem (P) with f(x) =
√

1 + x2
1 +

n−1∑
i=1

√
1 + (xi+1 − xi)2 and g(x) = ıC with C = {x ∈ Rn |

Ax = b}.
4Dual-max-entropy is a case of problem (P) with f(λ, µ) = e−µ−1

n∑
i=1

e−(ai)T λ + bTλ + µ and g(λ, µ) = ıC with

C = Rm
+ × R and ∇f does not global Lipschitz on C.
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Size Metrics Average of all datasets

m n AdPG PG-LS
(1.1, 0.5)

PG-LS
(1.2, 0.5) NPG1 NPG2

50 5000

Iter. 45399,2 50000 50000 14476,8 30012,6
Res. 3,72E-06 1,63E-05 1,51E-05 9,92E-07 9,94E-07
Obj. 9,35E-08 7,17E-06 6,71E-06 2,68E-08 0
Time(s) 15,65872 19,51051 21,40545 4,981068 10,22737

500 5000

Iter. 1035,1 1623,9 1631,4 357,2 328,4
Res. 9,44E-07 8,82E-07 8,68E-07 7,73E-07 7,67E-07
Obj. 3,1E-10 1,88E-10 1,51E-10 1,94E-10 7,77E-11
Time(s) 1,632963 3,080268 3,386024 0,587674 0,533654

2000 5000

Iter. 120,4 165,1 163,7 73,9 87,9
Res. 6,07E-07 6,82E-07 7,87E-07 6,75E-07 6,28E-07
Obj. 1,36E-11 1,41E-11 1,33E-11 2,91E-12 1,14E-11
Time(s) 1,130271 1,666739 1,711799 0,604635 0,718454

100 10000

Iter. 49008,7 50000 50000 17646,5 36450,4
Res. 8,29E-06 3,84E-05 3,97E-05 9,85E-07 9,88E-07
Obj. 3,7E-07 2,68E-05 2,49E-05 3,87E-08 0
Time(s) 36,15325 42,87928 47,1404 13,09231 27,43948

1000 10000

Iter. 1052,9 1614,2 1609,5 367,4 354,2
Res. 9,47E-07 6,35E-07 7,61E-07 7,29E-07 7,71E-07
Obj. 3,6E-10 3,86E-10 3,22E-10 1,37E-10 7,55E-11
Time(s) 8,05511 13,69401 15,06101 2,742484 2,656093

2000 10000

Iter. 330,1 526 500,3 140 181,3
Res. 8,38E-07 6,99E-07 5,91E-07 7,34E-07 5,88E-07
Obj. 1,17E-10 9,79E-11 1,09E-10 4,27E-11 2,55E-12
Time(s) 5,022146 8,726909 9,14353 2,041686 2,64932

Table 2: Average results for Min-length problem (Nmax = 50000).
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Figure 3: Illustration for one of randomly generated data of Dual-max-entropy with m = 4000, n = 5000.

6.4. Maximum likelihood estimate of the information matrix
This problem (see [19, Equation (7.5)]) aims to estimate the inverse of a covariance matrix Y of a

multivariate random variable subject to the eigenvalue bounds given some samples of the random
variable. The problem can be formulated as

min f(X) = − log det(X) + tr(XY ) s.t., X ∈ Sn and lI ⪯ X ⪯ uI. (Max-likelyhood)

Here Sn denotes the space of real symmetric matrices of dimension n × n, and A ⪯ B indicates
that B − A is positive semi-definite. Observably, Max-likelyhood5 satisfies Assumption 1,2,3 then
NPG1 and NPG2 are exact methods to solve Max-likelyhood. The dataset for the implementation is
generated analogously to [8] as follows. We initially generate a random vector y ∈ Rn with entries
from N (0, 10) and δi ∈ Rn with entries from N (0, 1), and then set yi = y + δi, i = 1, . . . ,M . The

5Max-likelyhood is a case of problem (P) with f(X) = − log det(X)+ tr(XY ) and g(X) = ıC with C = {X ∈ Sn | lI ⪯
X ⪯ uI}.
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Size Metrics Average of all datasets

m n AdPG PG-LS
(1.1, 0.5)

PG-LS
(1.2, 0.5) NPG1 NPG2

100 500

Iter. 32,7 80 51,1 30,6 29,1
Res. 4,69E-07 5,9E-07 4,72E-07 5,67E-07 4,75E-07
Obj. 3,85E-14 1,19E-13 1,04E-13 3,1E-13 1,57E-14
Time(s) 0,02434 0,040698 0,027038 0,013777 0,013373

500 2000

Iter. 35,3 83,7 54,8 33,4 31,9
Res. 7,44E-07 7,9E-07 5,96E-07 6,3E-07 4,97E-07
Obj. 2,08E-13 7,62E-13 1,49E-13 7,41E-13 4,89E-14
Time(s) 0,492897 1,27927 0,886613 0,496571 0,466446

2000 4000

Iter. 50,1 102,1 70,2 47,5 45,9
Res. 5,68E-07 8,26E-07 7,53E-07 5,02E-07 4,8E-07
Obj. 2,18E-14 8,17E-13 7,68E-13 1,68E-12 6,67E-13
Time(s) 5,598936 12,29137 9,333802 5,594557 5,436425

4000 5000

Iter. 79,6 151,7 116,1 73,1 60,4
Res. 6,28E-07 7,63E-07 7,42E-07 6,56E-07 4,28E-07
Obj. 6,27E-12 4,53E-12 6,53E-12 2,94E-12 1,39E-12
Time(s) 21,63522 46,93658 38,94247 20,23978 16,44809

Table 3: Average results for Dual-max-entropy problem (Nmax = 200).

covariance matrix of the samples y1, ..., yM is Y = 1
M

M∑
i=1

yiy
T
i . The obtained results are shown in

Table 4 and Figure 4. It is seen that for Max-likelyhood, both of NPG1 and NPG2 provide better
results compared to the others with the big deviation. And most of cases NPG2 performs best.
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Figure 4: Illustrations for one of randomly generated data of Max-likelyhood with n = 100, l = 0.1, u = 10,M = 500.

6.5. Nonnegative matrix factorization
One of efficient approaches to solve recommendation system problems [20] is based on nonneg-

ative matrix factorization6

min f(U, V ) =
1

2
∥UV T −A∥2F , s.t. U ∈ R+

m×r, V ∈ R+
n×r, (NMF)

where A ∈ Rm×n is a low-rank matrix, ∥·∥F stands for Frobenius norm. This problem does not satisfy
Assumption 2 and Assumption 3. Therefore our algorithms can be seen as heuristic methods for it.
Akin to [8], we create A by multiplying matrices B and C⊤, where B ∈ R+

m×r and C ∈ R+
n×r have

entries drawn from a normal distribution N (0, 1). All negative entries of B and C are replaced with
zero. The computational results are reported in Table 5 and illustrated by Figure 5. For this problem,
NPG1 and NPG2 are alternative the most effective method in comparison with the remaining ones.

6NMF is a case of problem (P) with f(U, V ) = 1
2
∥UV T −A∥2F and g(U, V ) = ıC with C = R+

m×r × R+
n×r.
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Size Metrics Average of all datasets

n, l, u, M AdPG PG-LS
(1.1, 0.5)

PG-LS
(1.2, 0.5) NPG1 NPG2

100, 0.1, 10, 50

Iter. 1661,5 2439 2364,5 1259,7 1171,8
Res. 9,58E-07 8,68E-07 9,16E-07 9,21E-07 8,59E-07
Obj. 4,27E-09 1,94E-09 2,74E-09 6,45E-09 8,4E-10
Time(s) 44,42071 74,11472 82,07483 32,88484 28,012

100, 0.1, 10, 500

Iter. 133,7 219,2 197,7 103,5 93,6
Res. 7,15E-07 6,76E-07 7,42E-07 5,66E-07 6,45E-07
Obj. 2,69E-11 1,29E-11 2,93E-11 1,7E-11 7,07E-12
Time(s) 3,48568 6,391397 6,273465 2,579751 2,252374

100, 0.1, 10, 1000

Iter. 57,9 103,9 83,8 58 49,7
Res. 5,69E-07 4,91E-07 4,44E-07 7,56E-07 6,19E-07
Obj. 3,46E-12 5,79E-12 4,9E-12 8,64E-13 2,1E-12
Time(s) 1,53195 2,907321 2,620872 1,525524 1,305989

30, 0.1, 1000, 50

Iter. 5210,2 7612,8 7518,9 4684,2 3295,8
Res. 9,69E-07 2,05E-06 1,86E-06 9,3E-07 9,49E-07
Obj. 4,28E-09 1,34E-07 1,2E-07 4,69E-09 1,54E-09
Time(s) 6,992612 11,99245 12,3711 6,013213 4,227009

50, 0.1, 1000, 100

Iter. 1644,2 2589,4 2545,9 1193,8 954,1
Res. 9,4E-07 8,62E-07 9,01E-07 8,7E-07 8,67E-07
Obj. 8,07E-10 4,87E-10 3,91E-10 1,35E-09 1,52E-10
Time(s) 10,78987 19,67659 20,37514 7,702965 6,14909

Table 4: Average results for Max-likelyhood problem (Nmax = 20000).
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Figure 5: Illustrations for one of randomly generated data of NMF problem with m = 3000, n = 3000, r = 30.

7. Conclusions

In this paper, we propose an efficient explicit stepsize applied for the proximal gradient (PG) scheme.
This is an improvement of the one proposed in [7] with the larger range of step-length. The im-
provement is stated in the applications for classes of composite optimization models under weak
conditions on the differentiable term. In particular, NPG1 solves the convex situation of problem (P)
without global Lipschitz gradient condition on f. The iterates is proved to converge to an optimal
solution of (P) with the complexity computation O( 1k ) of F (xk) − F∗ and the Q-linear rate if f has
local strong convexity property. These convergence results are based on the descent of our proposed
method. Moreover, the extensions of NPG1 that NPG2 and NPG-quad are also designed for (P) in
case of nonconvex f. Our stepsize selection is computed quickly by a closed formulas without line-
search computation or estimating some constant (like Lipschitz constant of gradient) to ensure the
convergence of the PG algorithm. Moreover, the increasing of the sequence of our stepsizes from
some fixed iteration opens the ability to speed up the corresponding PG algorithms. The deep ex-
periments on a variety of test instances with various sizes show the crucial efficiency of the proposed
method compared to the recent ones.

Future research includes deploying our adaptive stepsize for the composite models in the ab-
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Size Metrics Average of all datasets

m r n AdPG PG-LS
(1.1, 0.5)

PG-LS
(1.2, 0.5) NPG1 NPG2

500 20 1000

Iter. 537 801,4 746,3 302,6 308,5
Res. 9,07E-07 8,8E-07 8,84E-07 7,93E-07 6,6E-07
Obj. 1,93E-07 6,04E-08 8,27E-08 1,04E-07 1,37E-08
Time(s) 5,941108 9,572103 9,001703 2,949437 2,95718

1000 20 500

Iter. 543,9 777,7 751,7 300,5 309,9
Res. 8,42E-07 9,04E-07 8,7E-07 8,57E-07 7,76E-07
Obj. 1,44E-07 7,8E-08 5,78E-08 2,05E-08 2,85E-08
Time(s) 4,319812 7,194566 7,430679 2,572676 2,431692

2000 20 3000

Iter. 506,7 731,9 699,9 301 302,6
Res. 8,33E-07 9,29E-07 9,01E-07 7,56E-07 7,69E-07
Obj. 4,86E-07 2,13E-07 1,65E-07 1,49E-07 1,44E-07
Time(s) 31,53794 51,34798 55,23237 18,86799 19,00453

3000 20 2000

Iter. 509,8 716,2 672,7 290,1 305
Res. 8,26E-07 8,26E-07 8,82E-07 8,15E-07 6,7E-07
Obj. 4,56E-07 1,08E-07 2,11E-07 2,65E-07 6,11E-08
Time(s) 34,89519 56,01866 57,75551 19,84947 21,09172

3000 20 3000

Iter. 498,1 701 671,9 275,3 276,9
Res. 7,95E-07 8,39E-07 8,97E-07 8,74E-07 8,11E-07
Obj. 4,63E-07 1,49E-07 2,44E-07 2,08E-07 5,89E-08
Time(s) 43,91157 69,55736 74,0461 24,11349 24,23001

500 30 1000

Iter. 982,7 1493,6 1422,9 633,6 598,5
Res. 9,38E-07 8,85E-07 9,01E-07 8,37E-07 8,84E-07
Obj. 4,76E-07 1,85E-07 1,38E-07 4,04E-07 6,43E-08
Time(s) 9,063069 16,18621 16,60831 5,608065 5,171566

1000 30 500

Iter. 1026,1 1502,3 1430,2 603,3 587,3
Res. 9E-07 8,93E-07 8,57E-07 7,87E-07 8,63E-07
Obj. 4,28E-07 1,78E-07 1,09E-07 2,44E-07 3,35E-08
Time(s) 7,197391 12,64285 13,08158 4,361314 3,594271

2000 30 3000

Iter. 876,2 1247,9 1200,2 435,5 467,2
Res. 8,75E-07 8,78E-07 8,77E-07 8,94E-07 7,64E-07
Obj. 1,49E-06 2,88E-07 3,06E-07 3,27E-07 1,1E-07
Time(s) 56,17322 96,50053 115,0343 33,76644 35,68324

3000 30 2000

Iter. 907,4 1280 1247,7 439,6 469,3
Res. 8,95E-07 9,1E-07 9,06E-07 7,71E-07 8,06E-07
Obj. 1,47E-06 5,77E-07 6,12E-07 4,89E-07 1,3E-07
Time(s) 76,98802 117,8925 125,9915 35,08839 37,14086

3000 30 3000

Iter. 914,1 1303,2 1252,5 457,9 504
Res. 8,81E-07 8,8E-07 8,89E-07 8,74E-07 7,46E-07
Obj. 1,7E-06 4,86E-07 7,59E-07 1,84E-07 3,96E-07
Time(s) 94,52072 157,0848 150,6168 43,47812 48,21538

Table 5: Average results for NMF problem (Nmax = 5000).

sence of both convexity and global Lipschitz gradient assumptions on f.
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