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Abstract. We present a feedback scheme for non-cooperative dynamic games and
investigate its stabilizing properties. The dynamic games are modeled as generalized
Nash equilibrium problems (GNEP), in which the shared constraint consists of linear
time-discrete dynamic equations (e.g., sampled from a partial or ordinary differential
equation), which are jointly controlled by the players’ actions. Further, the individual
objectives of the players are interdependent and defined over a fixed time horizon. The
feedback law is synthesized by moving-horizon model predictive control (MPC). We
investigate the asymptotic stability of the resulting closed-loop dynamics. To this end,
we introduce α-quasi GNEPs, a family of auxiliary problems based on a modification of
the Nikaido–Isoda function, which approximate the original games. Basing the MPC
scheme on these auxiliary problems, we derive conditions on the players’ objectives,
which guarantee asymptotic stability of the closed-loop if stabilizing end constraints are
enforced. This analysis is based on showing that the associated optimal-value function
is a Lyapunov function. Additionally, we identify a suitable Lyapunov function for the
MPC scheme based on the original GNEP, whose solution fulfills the stabilizing end
constraints. The theoretical results are complemented by numerical experiments.

1. Introduction

Non-cooperative systems is a field of research of growing importance in control and
optimization. They can be found in the context of economics [16, 4], traffic modeling [7], or
robotics [12]. Due to disturbances, uncertainties, or model errors, feedback schemes are
essential, especially for stabilization tasks. Model predictive control (MPC) is a widely used
and flexible feedback mechanism, for which stability guarantees can be derived for a wide
range of centralized control systems. This work deals with the question of whether these
stability guarantees can be transferred to non-cooperative distributed MPC schemes.

The basic idea of MPC is to solve the underlying (open-loop) optimal control problem for
a possibly short look-ahead horizon repetitively and to implement only the first part of the
solution to the system during a given sampling time. Due to this very simple construction,
this scheme can be applied to a variety of control problems. It has been studied for both
linear [28] and nonlinear systems [18] with regard to its stabilizing properties. Although
technically it only provides a semi-feedback, considering the scheme for time-discrete
systems, usually derived from a discretization of the underlying continuous dynamics, yields
a structure for which MPC can be considered as a “real” feedback mechanism. Grüne et
al. studied such discrete-time MPC loops extensively in [18] and provided a vast canon of
stability analysis based on classic Lyapunov theory and Bellmann’s dynamic programming
principle. This also includes MPC based on multi-objective [19] and economic dynamic
optimization problems [17]. MPC schemes have also been analyzed for continuous dynamics
directly [10, 23, 24]. Otherwise, in order to transfer the stability result from the inherent
time-discrete closed-loop to its continuous counterpart, energy estimates may be required;
see, e.g., [1]. The incorporation of stabilizing end constraints provides a general framework,
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which guarantees asymptotic stability; see [23] for infinite-dimensional systems and [18] for
time-discrete ones.

Rather recently, MPC schemes for distributive non-cooperative control schemes have
been studied in the context of engineering applications such as robotics [8, 12, 27] or water
irrigation systems [33]. These systems are controlled by multiple agents, where private and
shared constraints are imposed on the controllers. Each agent aims to minimize a private
cost function, which is not only dependent on their own control component but also on the
other players’ decisions. Hence, a Nash equilibrium problem (NEP) arises. If, furthermore,
the agents’ sets of admissible control decisions are interdependent, the problem is classified
as a generalized Nash equilibrium problem (GNEP). Both problem classes are fundamental
pillars of game theory. A comprehensive survey article tackling the existence, uniqueness,
and characterization of such problems in finite dimensions can be found in [14]. GNEPs
arising in control settings are usually governed by dynamics that enter the problem as a
constraint. Noticeable work on dynamic games includes [3, 6] as well as [13, 21, 22, 25]
for PDE-constrained problems. It is also well-known that for dynamical games, dynamic
programming principles similar to the Bellman principle apply. Regarding MPC schemes for
GNEPs, only a limited number of studies treat the question of asymptotic stability. In [12],
different scenarios for systems of self-driving cars have been considered. Additionally, the
authors of [31] derived conditions guaranteeing stabilizing performance for MPC based on
affine-quadratic NEPs by finding an explicit characterization of the optimal trajectories.

Similarly to [31], in this paper, we derive conditions guaranteeing asymptotic stability for
MPC schemes based on the class of jointly convex GNEPs governed by jointly controlled
dynamics. We do so by finding suitable Lyapunov functions for the associated closed-
loop dynamics. In each MPC iteration we solve the GNEP by finding a variational Nash
equilibrium. Using a reformulation based on the Nikaido–Isoda function, these open-loop
dynamic games can be expressed as a joint minimization over the set of admissible controls.
Unfortunately, unlike for MPC schemes based on optimal control problems with stage-
additive cost functionals, the associated optimal-value function does not provide a suitable
Lyapunov function for the MPC-GNEP closed loop since it is constantly equal to zero for
every initial value.

Hence, we introduce a class of auxiliary problems based on a modification of the Nikaido–
Isoda function and some auxiliary parameter α ∈ [0, 1], which we call α-quasi GNEPs, for
which the optimal-value function does provide a good candidate for a Lyapunov function.
For MPC loops based on these problems instead, we obtain stabilizing behavior if additional
stabilizing terminal constraints are enforced, as is often done in MPC schemes. We utilize
the associated Lyapunov function in combination with perturbation analysis regarding the
continuous dependence of minimizers on the parameter and the initial value to transfer
the stability result to the original problem. In the process, we identify a suitable Lya-
punov function for the MPC-GNEP loop under assumptions consistent with the terminal
constraints.

The paper is structured as follows. In Section 2 we provide an overview of GNEPs as
well as stability analysis for MPC. In Section 3 we introduce the general feedback scheme of
basing MPC on generalized Nash equilibria. In Section 4, we discuss our auxiliary problems
and derive conditions for asymptotic stability based on equilibrium end constraints. In
Section 5 we provide the sensitivity analysis on the parameters used in Section 6 to transfer
the stability guarantee to MPC schemes based on GNEPs consistent with equilibrium end
constraints. Lastly, in Section 7 we provide some numerical examples.

2. Preliminaries

2.1. Generalized Nash Equilibria. We consider a GNEP with shared constraints con-
sisting of K players. Each player ν controls the variable uν ∈ Rdν . These decision variables
form the vector u = (u1, . . . , uK) ∈ Rd with d =

∑
ν dν . As typical in game theory, we use
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the notation u = (uν , u−ν), where u−ν refers to an block of components uµ with µ 6= ν.
Each player solves the problem

min
uν

θν(uν , u−ν) s.t. uν ∈ Uν(u−ν) :=
{
uν ∈ Rdν : (uν , u−ν) ∈ U

}
with continuous payoff function θν , which is quasi-convex in the player’s variable uν and
a strategy set Uν(u−ν) that depends on the decisions u−ν of the other players. Moreover,
we denote the shared constraint set by U ⊂ Rd. For such a setup, the GNEP refers to the
problem of finding a Nash equilibrium (NE), which is a vector u∗ = (u∗,1, . . . , u∗,K) ∈ U, so
that for every player ν we have

θν(u∗,ν , u∗,−ν) ≤ θν(uν , u∗,−ν) ∀uν ∈ Uν(u∗,−ν).

In what follows, we will assume the shared constraint set U is convex, compact, and non-
empty and consider so-called variational Nash equilibria (VNE). To this end, we use the
Nikaido–Isoda function

Ψ(u, v) :=

K∑
ν=1

(
θν(uν , u−ν)− θν(vν , u−ν)

)
.

A variational equilibrium of the GNEP is then defined as a point u ∈ Rd with

sup
v∈U

Ψ(u∗, v) = 0.

Each VNE is an NE; see, e.g., [14]. If, furthermore, the strategy sets are independent, i.e.,
Uν(u−ν) = Uν for all ν = 1, . . . ,K and every admissible u−ν , then the two notions coincide.
For the setup defined so far, existence of at least one VNE is guaranteed; see Section 4.1
in [14].

We define the u-parameterized optimal-value function

V (u) := sup
v∈U

Ψ(u, v), u ∈ U.

Due to the compactness and continuity assumptions, we can directly deduce the continuity
of the Nikaido–Isoda function and ensure that for every u ∈ U there is a point vu ∈ U with
V (u) = Ψ(u, vu). Furthermore, the function V : U→ R is non-negative [14, Theorem 7.1]
and, hence, we can compute a VNE by globally minimizing the min-max problem

min
u

V (u) s.t. u ∈ U.

2.2. Model Predictive Control. We briefly recap a general MPC scheme for time-discrete
dynamics and discuss strategies for showing its stabilizing properties.

Let U,X be finite-dimensional vector spaces and let N ∈ N. Furthermore, let
f : X × U → X be a transition map and let JN : XN × UN → R be a cost functional.
For every x ∈ X, let there be a non-empty set of admissible controls UN (x) ⊂ UN . Then,
an MPC scheme for the discrete-time dynamics x+ = f(x, u) is given by the following
method; see also Algorithm 3.1 in [18].

Algorithm 2.1 (Basic MPC with horizon length N).
At each sampling time n = 0, 1, 2, . . .

(1) Evaluate the state x(n) ∈ X and set x0 := x(n).
(2) Solve the optimization problem

inf
u∈UN (x0)

JN (x, u)

s.t. x(n) = f(x(n), u(n)) for n = 0, . . . , N − 1,

x(0) = x0

and let ū ∈ UN (x0) denote the solution.
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(3) Define the MPC feedback by µN (x0) = µN (x(n)) = ū(0) and use this control value
in the next sampling period.

This defines a closed-loop system via

x+ = g(x) := f(x, µN (x)). (1)

Our goal, for now, is to investigate whether the MPC feedback law stabilizes the dynamics
in the sense that the closed-loop system given by (1) is asymptotically stable at a reference
point x∗ ∈ X. A prerequisite for doing so is the existence of a reference control u∗ with
x∗ = f(x∗, u∗). The stability of the closed-loop system governed by a given feedback law
can be derived from the existence of a Lyapunov function. For this purpose, we use the
following classes of comparison functions:

K := {α : R≥0 → R≥0 : α is continuous and strictly increasing with α(0) = 0} ,
K∞ := {α : R≥0 → R≥0 : α ∈ K and α is unbounded} ,

L :=
{
δ : R≥0 → R≥0 : δ is continuous, strictly decreasing with lim

t →0
β(t) = 0

}
,

K L := {β : R≥0 × R≥0 → R≥0 : β is continuous, β(·, t) ∈ K , β(r, ·) ∈ L } .

Definition 2.2. Let X be a metric space and consider the function g : X → X, which
defines a dynamic system x+ = g(x). A function V : S → R≥0 is called a Lyapunov function
if there exists a subset S ⊂ X and a point x∗ ∈ X, such that the following conditions hold.

(1) There exist functions α1, α2 ∈ K∞ so that

α1(‖x− x∗‖) ≤ V (x) ≤ α2(‖x− x∗‖) (2)

holds for all x ∈ S.
(2) There exists a function αV ∈ K so that for each x ∈ S with g(x) ∈ S we have

V (g(x))− V (x) ≤ −αV (‖x− x∗‖). (3)

Theorem 2.3 ([18, Theorem 2.19]). Let x∗ be an equilibrium point of the closed loop system
x+ = g(x), i.e., g(x∗) = x∗. Assume further that there exists a Lyapunov function V on
a subset S ⊂ X containing x∗. If S contains a ball Bη(x∗) with radius η > 0 such that
g(x) ∈ S for all x ∈ Bη(x∗), then x∗ is locally asymptotically stable, i.e., there exists η′ > 0
and a function β ∈ K L such that the inequality

‖x(n, x0)− x∗‖ ≤ β(‖x0 − x∗‖, n)

holds for all x0 ∈ Bη′(x∗).

For the closed MPC loop, a canonical candidate for the Lyapunov function is given by
the optimal-value function.

Definition 2.4. For any x0 ∈ X and N ∈ N, define the optimal-value function by

VN (x0) = min
u∈UN (x)

JN (x, u)

where x(0) = x0 and x(n) = f(x(n), u(n)) for n = 0, . . . , N − 1. To emphasize the influence
of the initial value we will occasionally denote the cost functional as JN (x0, u).

In [18], the stabilizing behavior of MPC feedback for time discrete dynamics has been
thoroughly studied for stage-additive cost functionals of the form

J(x, u) :=

N−1∑
n=0

`(x(n), u(n))

with stage costs ` : X × U → R. The analysis exploits the dynamic programming principle
in discrete time to derive a relaxed dynamic programming inequality, which is equivalent to
Condition (3) for suitable stage costs. The other property of a Lyapunov function must be
ensured separately.
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3. MPC for GNEPs

3.1. A Discrete-Time Dynamic GNEP. Let us now consider a time-depending GNEP
over a finite time horizon n = 0, 1, . . . , N − 1. Let X and Uν , ν = 1, . . . ,K, be finite-
dimensional vector spaces. We denote the control space by U := U1×· · ·×UK . Furthermore,
let f : X × U → X be a continuous function. We consider the discrete-time dynamics

x(n+ 1) = f(x(n), u1(n), . . . , uK(n)),

where for each player ν, their respective control variable is denoted by uν(n) ∈ Uν and
uν ∈ UNν , respectively. For a finite control sequence u ∈ UN with N ∈ N and an initial
value x0 ∈ X, we denote the corresponding trajectory via

xu(0) = x0, xu(n+ 1) = f(x(n), u(n)) for n = 0, . . . , N − 1. (4)

We consider a set of admissible controls independent of the state variable. More precisely, let
U ⊂ U denote the set of admissible controls. Then, the set of admissible control sequences
of length N is given by UN ∈ UN . Since we do not impose state constraints, this directly
yields viability of the admissible controls if U is non-empty. Each player ν is equipped with
an optimization problem

min
uν

N−1∑
n=0

θν(uν(n), u−ν(n), x(n))

s.t. uν ∈ UNν (u−ν),

x(n+ 1) = f(x(n), uν(n), u−ν(n)) for all n = 1, . . . , N − 1,

x(0) = x0

with the constraint set UNν (u−ν) := {uν : (uν , u−ν) ∈ UN}. Throughout this paper, we will
impose the following assumptions.

Assumption 1. Let the following hold:
(1) The payoff functions θν : U ×X → R are continuous for all ν = 1, . . . ,K;
(2) The payoff functions θν(·, u−ν , ·) are convex in the state variable as well as in uν ,

respectively, for all u−ν ∈ U−ν ;
(3) The set U ⊂ U is compact, convex, and non-empty;
(4) The transition map f : X × U → X is affine-linear;
(5) There exists a point x∗ ∈ X and an admissible control u∗ ∈ U, such that x∗ =

f(x∗, u∗);
(6) For each player ν the pay-off function θν : U ×X → R is non-negative.

The first three assumptions are the conditions of Theorem 5.9 in [14], which ensure the
existence of a VNE for every initial value x0 ∈ X. This can easily be seen by introducing a
control-to-state operator S : UN → XN , u 7→ xu, as well as the reduced pay-off functions
defined by θ̃ν(u) := θν(u, S(u)) for u ∈ UN . For each x0 ∈ X, the corresponding (reduced)
Nikaido–Isoda function is given by

ΨN (x0;u, v) =
∑
ν

N−1∑
n=0

(
θν(uν(n), u−ν(n), xu(n))− θν(vν(n), u−ν(n), yνu,v(n))

)
,

where for each player ν, the inner dynamics is given by
yνu,v(0) = x0,

yνu,v(n+ 1) = f(yνu,v(n), vν(n), u−ν(n)) for all n = 0, . . . , N − 1,
(5)

which we combine in yu,v = (yνu,v)ν . A VNE for the dynamic GNEP can be found by solving
the problem

min
u∈UN

max
v∈UN

ΨN (x0;u, v) (6)
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with optimal value equal to zero.

MPC Scheme. In the following, we study MPC schemes, where in each step a VNE for
the presented GNEP is computed. In each loop, this can be expressed as an optimization
problem via the min-max problem (6). Hence, the cost functional is given by

JN (x0, u) := max
v∈UN

ΨN (x0;u, v)

and the resulting scheme reads as follows.

Algorithm 3.1 (MPC for GNEPs with horizon length N).
At each sampling time n = 0, 1, 2, . . .

(1) Evaluate the state x(n) ∈ X and set x0 := x(n).
(2) Solve the optimization problem

min
u∈UN

(
max
v∈UN

ΨN (x0;u, v)

)
s.t. x(n+ 1) = f(x(n), u(n)) for n = 0, . . . , N − 1,

yν(n+ 1) = f(yν(n), vν(n), u−ν(n)) for n = 0, . . . , N − 1, ν = 1, . . . ,K,

x(0) = yν(0) = x0 for ν = 1, . . . ,K,

and let ū ∈ UN denote the solution.
(3) Define the MPC feedback by µN (x0) = ū(0) and use this control value in the next

sampling period.

Unfortunately, the resulting optimal-value function is not a suitable candidate for a
Lyapunov function because

min
u∈UN

max
v∈UN

ΨN (x0;u, v) = 0

holds for all initial data x0 ∈ X. Hence, we cannot directly adapt the stability analysis
from [18].

4. α-Quasi GNEPs

For classic MPC schemes, a widely applicable strategy for guaranteeing asymptotic
stability is showing that the optimal-value function is a Lyapunov function for the closed
loop. Although the reformulation of a GNEP based on the Nikaido–Isoda function allows
us to express the GNEP as a joint optimization problem, we still face a major difficulty:
By construction, the associated optimal-value function is equal to zero. Hence, further
modification of the problem might be necessary. There are several modifications of GNEPs
based on regularizations of the Nikaido–Isoda function [20, 29, 32]. They all conserve the
VNE property of the solutions while introducing smoothness to the problem. Further, the
involved optimal values are still equal to zero.

In order to exploit the relation between optimal-value functions and Lyapunov functions,
we propose a modification of the Nikaido–Isoda function, which instead of preserving the
VNEs only approximates them in favor of a non-constant optimal-value function. We
call this the aggregated cost perturbation and the associated problems are called α-quasi
GNEPs.

In this chapter, we will discuss the aggregated cost perturbations as well as stabilizing
MPC schemes based on α-quasi GNEPs. Similar to MPC algorithms with stage-additive cost,
we will impose equilibrium end constraints to guarantee stability. Passing our approximation
to a limit, based on the associated Lyapunov functions, we will be able to identify a suitable
Lyapunov function for the original GNEP-based closed MPC loop, which will be discussed
in Section 6.
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4.1. Aggregated Cost Perturbation. We now consider the modification of the Nikaido–
Isoda function

ΨN
α (x0;u, v) :=

N−1∑
n=0

∑
ν

(
θν(uν(n), u−ν(n), xu(n))

− (1− α)θν(vν(n), u−ν(n), yνu,v(n))
)

with α ∈ (0, 1), where xu and yu,v are given by (4) and (5), respectively, with initial value
x0 = xu(0) = yνu,v(0). In this chapter, we will study an alteration of the MPC scheme given
by Algorithm 3.1 by replacing the ΨN for ΨN

α . In this case, the optimal-value functions
encode more information. Since each player provides a non-negative pay-off function, we
have

min
u

max
v

ΨN
α (u, v) ≥ min

u
ΨN
α (u, u) = αmin

u

N−1∑
n=0

∑
ν

θν(uν(n), u−ν(n), xu(n)) ≥ 0

for any initial value x0 ∈ X. In general, the optimal-value function of the associated
min-max problem is not constant. However, the solution is not necessarily given by a VNE.
We call the min-max problems over the modified Nikaido–Isoda function α-quasi GNEPs.
For every configuration of controls u ∈ U, the vector vu := arg minv

∑
ν θ

ν(u, v) can be be
understood component-wise as the best deviation from uν that each player can make if the
other players stick to u−ν . By construction, a VNE satisfies u− vu = 0. The parameter α
counteracts the idea of minimizing the discrepancy between u and vu in favor of some
aggregated cost aspect. These problems connect the non-cooperative case (α = 0) to the
aggregated-cost case (α = 1). For aggregated cost, we find a minimization problem over U,
where the cost functional is given by the sum of all players’ costs. The continuity of the
corresponding solutions, in particular for α→ 0, is discussed in Section 5. We now shortly
discuss a dynamic programming principle (DPP) for a time-discrete min-max problem
controlled by two entities.

Theorem 4.1. Let X,U, V be Banach spaces. Let f : N ×X × U × V → X and ` : N ×
U × V × X → R be continuous functions. For any n0 ∈ N, x0, x1 ∈ X, denote the sets
of admissible control sequences of length N by UN (n0, x0) ⊂ UN and V N (n0, x0) ⊂ V N ,
respectively. Let the admissible control sets fulfill the following non-anticipativity properties.

• Consider u ∈ UN (n0, x0), 1 < N ∈ N. If there exists a control v ∈ V N (n0, x0) such
that x1 = x(n0, u(n0), v(n0)) holds, then u|n0+N

n=n0+1 ∈ UN−1(n0 + 1, x1) follows.
• Consider vN−1 ∈ V N−1(n0 + 1, x1), N ∈ N. If there exists an admissible u ∈
U1(n0, x0) and an admissible v ∈ V 1(n0, x0) such that x1 = x(n0, x0, u(n0), v(n0)),
then the control sequence given by

vN (n0) = v, vN (n) = vN−1(n) for all n = n0 + 1, . . . , N − 1,

satisfies vN ∈ V N (n0, x0).
Moreover, suppose that both statements still hold if the roles of v and u are reversed.

Consider now the problem

min
u∈UN (n0,x0)

max
v∈V N (n0,x0)

JN (n0, x0, u, v),

with

JN (n0, x0, u, v) :=

n0+N−1∑
n=n0

`(n, u(n), v(n), x(n)),

where the dynamics is given by

x(n0) = x0, (n+ 1) = f(n, u(n), v(n)), n = n0, n0 + 1, . . .
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for some initial data (n0, x0) ∈ N×X. For any choice (n0, x0) ∈ N×X, assume that the
sets UN (n0, x0), V N (n0, x0) are compact. Next, define the optimal-value function by

VN (n0, x0) = min
u∈UN (n0,x0)

max
v∈V N (n0,x0)

JN (n0, x0, u, v).

Then, the dynamic programming principle

VN (n0, x0) = min
u∈UN

max
v∈V N

{`(n0, u(n0), v(n0), x0) + VN−1(n0 + 1, x1)} (7)

holds with x1 = f(n0, x0, u(n0), v(n0)).

Proof. The proof can be found in Appendix 9.1. �

The non-anticipativity property ensures that the tails of admissible controls are admissible.
These results are directly applicable to the min-max problems over the (modified) Nikaido–
Isoda function. This enables us to derive a relaxed dynamic programming principle for the
modified problem.

Lemma 4.2 (Relaxed dynamic programming principle for outer minimization). Let N ∈ N
be fixed and let the family of compact sets (UN

′
(x))x ⊂ UN ′ with x ∈ X,N ′ ∈ N, N ′ ≤ N ,

fulfill the non-anticipativity property. Consider the function V αN : X → R defined by

x0 7→ min
u∈UN (x0)

JαN (x0;u) with JαN := max
v∈UN

ΨN
α (x0;u, v).

Let x0 ∈ X be fixed and denote the minimizer by ū? ∈ UN (x0). Then, ū := ū?(0) satisfies

V αN (x0) ≥ α
∑
ν

θν(ūν , ū−ν , x0) + V αN−1(f(x0, ū)).

Proof. First note that Theorem 4.1 is applicable. The set of admissible (outer) control sets is
non-anticipative by definition and the inner sets U are so, too, since the admissible control set
is constant in time and independent of the state. Here, we can identify the time-independent
state trajectory by f̃(z, u, v) = (f(x, u), (f(x, vν , u−ν))ν). The time-independent stage cost
is given by

`(u, v, z) =
∑
ν

θν(uν , u−ν , x)− (1− α)θν(vν , u−ν , yν) with z = (x, (yν)ν .

Hence, we can apply the DPP for min-max problems. Let ṼN ′ : X × XK → R, denote
optimal-value function for the min-max problem with a horizon of length N ′ ≤ N and let
z0 = (x0)K+1. Thus, we can conclude

V αN (x0) = Ṽ (z0) = min
u

max
v

{
`(u(0), v(0), z0) + ṼN−1

(
f̃(z0, u(0), v(0))

)}
= max

v

{
`(ū?(0), v(0), z0)) + ṼN−1

(
f̃(z0, ū?(0), v(0))

)}
≥ `(ū, ū, x0) + ṼN−1

(
f̃(z0, ū, ū)

)
= α

∑
ν

θν(ūν , ū−ν , x0) + V αN−1(f(x0, ū)). �

Remark 4.3. First note that the previous lemma covers the case UN
′
(x) = UN ′ for N ′ ∈ N.

Second, the DPP is also naturally applicable to the (unmodified) GNEP case. Since tails of
VNEs are VNEs themselves (see Lemma 4.1 in [30]), it reduces to a trivial equation, where
all min-max terms are equal to zero.
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4.2. Auxiliary MPC with Stabilizing End Constraints. A common strategy to ensure
stability of the MPC closed-loop system with stage-additive costs is to use terminal conditions
such as equilibrium end constraints or Lyapunov terminal cost [18]. We derive conditions on
the pay-off function, which allow us to generalize the stability analysis to cost functions given
by the modified Nikaido–Isoda function. First, let us focus on equilibrium end constraints.
To be specific, we modify Algorithm 3.1 by exchanging the optimization problem for

min
u∈UNX0 (x0)

JN (x0, u) = max
v∈UN

ΨN
α (x0;u, v)

s.t. x(0) = x0, x(n+ 1) = f(x(n), u(n)), n = 0, . . . , N − 1,
(8)

where X0 = {x∗} and UNX0
(x0) = {u ∈ UN (x0) : xu(N) ∈ X0} with xu(0) = x0 holds.

Denote the solution by ū ∈ UN (x0). We denote the associated feedback by µαN : X → U and
the corresponding optimal-value function by V αN : X → R. We can generalize the notation
of X0 by considering the set of initial values, which can be brought to the stationary point
x∗ ∈ X in k steps by considering

Xk :=
{
x ∈ X : there exists u ∈ Uk with xu(k) = x∗ if xu(0) = 0

}
.

In this auxiliary scheme, we consider an MPC feedback, where in each iteration a solution
for an α-quasi GNEP is computed. Starting in the stationary point, meaning x0 = x∗, for
a large class of pay-off functions, these solutions will coincide with the corresponding VNE;
see Lemma 4.6 below. Moreover, these solutions can be seen as approximations of the VNE
(for any initial value), which we discuss in section 5.

Theorem 4.4. Let the following assumptions hold.
(1) The point x∗ ∈ X is an equilibrium point for an admissible control, i.e., there exists

a control u∗ ∈ U such that x∗ = f(x∗, u∗).
(2) For any choice yν ∈ X, ν = 1, . . . ,K, we have∑

ν

θν(u∗,ν , u∗,−ν , x∗) ≤ (1− α)
∑
ν

θν(vν , u∗,−ν , yν)

for any v ∈ U and n = 0, . . . , N − 1.
Then, the optimal-value function from Algorithm 3.1 based on the minimization problem (8)
satisfies

V αN (x0) ≤ V αN−1(x0) (9)
for every x0 ∈ XN−1 and N ≥ 2. For x0 ∈ XN−1, this implies

V αN (x0) ≥ α
∑
ν

θν(µαN (x0)ν , µαN (x0)−ν , x0) + V αN (f(x0, µ
α
N (x0))). (10)

Proof. Let x0 ∈ X be fixed and note that

`(u∗, v, x∗, y) =
∑
ν

θν(u∗,ν , u∗,−ν , x∗)− (1− α)
∑
ν

θν(v̄ν , u∗,−ν , yν) ≤ 0

holds for every v ∈ U and y = (yν) ∈ XK . Let uN−1 ∈ UN−1
X0

(x0), then by Condition (1),
the control sequence given by

uN (n) = uN−1(n) for n = 0, . . . , N − 2, uN (N − 1) = u∗
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satisfies uN ∈ UNX0
(x0). Furthermore, by employing the dynamic programming principle for

the (inner) maximization problem, we have

JN (x0, u
N ) = max

v∈UN
ΨN
α (uN , v, xuN , yuN ,v)

= max
v∈UN

{
ΨN−1
α (uN , v, xuN , yu,v) + max

v̄∈U
`(u∗, v, x∗, yuN ,v(N − 1))

}
≤ max
v∈UN

{
ΨN−1
α (uN , v, xuN , yuN ,v)

}
= max
v∈UN−1

{
ΨN−1
α (uN , v, xuN , yuN ,v)

}
= JN−1(uN−1, x0).

Considering the set ŨNX0
(x0) := UN−1

X0
(x0)× {u∗}, this leads to

inf
u∈UNX0 (x0)

JN (u, x0) ≤ inf
uN∈ŨNX0 (x0)

JN (uN , x0) ≤ inf
uN−1∈UN−1

X0
(x0)

JN−1(uN−1, x0),

which translates to V αN (x0) ≤ V αN−1(x0). Now fix x0 ∈ XN . Note that UNX0
(x0) fulfills the

non-anticipativity assumption from Theorem 4.1. Hence, by Lemma 4.2 we get the relaxed
DPP inequality

V αN (x0) ≥ α
∑
ν

θν(µαN (x0)ν , µαN (x0)−ν , x0) + V αN−1(f(x0, µ
α
N (x0))).

Since µαN (x0) = ū(0) holds for an ū ∈ UNX0
(x0), we have f(µαN (x0)) ∈ XN−1. Combining the

relaxed DPP inequality with Equation (9) evaluated in f(µαN (x0)), we directly can obtain
Inequality (10). �

Remark 4.5. Note that Condition (2) of Theorem 4.4 is satisfied if θν(x∗, u∗) = 0 holds for
every player ν.

Lemma 4.6. If the conditions from Theorem 4.4 are fulfilled, then u∗ is a VNE for the
initial value x∗ and any horizon length k ∈ N. Furthermore, we have V αk (x∗) = 0 for every
k ∈ N.

Proof. Since 1 − α > 0, Condition 2 directly implies
∑
ν θ

ν(u∗,ν , u∗,−ν , x∗) = 0. Using
Condition 2 iteratively leads to

k∑
n=0

∑
ν

θν(u∗,ν , u∗,−ν , x∗) ≤
k∑

n=0

∑
ν

θν(vν(n), u∗,−ν , yu∗,v(x
∗;n))

for any v ∈ Uk, which means that the constant control sequence u∗ is a VNE of the GNEP
with initial point x∗ and any horizon length k ∈ N.

Considering the optimal-value function, we deduce

0 ≤ min Ψk
α(u, u) ≤ V αk (x∗) ≤ max

v
Ψk
α(u∗, v) = Ψk

α(u∗, u∗) = 0,

for any k ∈ N. �

Lemma 4.7. Under the assumption of Theorem 4.4, the set XN is forward invariant under
the feedback law µαN : X → U for every N ∈ N, i.e., f(x, µαN (x)) ∈ XN for every x ∈ XN .

Proof. Let x ∈ XN . Then, we have f(x, µαN (x)) ∈ XN−1. Hence, there exists uN−1 ∈
UN−1

X0
(f(x, µαN (x))). Now, by Assumption 1 of Theorem 4.4, we can construct the control

sequence
uN (n) = uN−1(n), n = 0, . . . , N − 2, uN (N − 1) = u∗,

which produces the state

xuN (N) = f(xuN−1(N − 1), x∗) = f(x∗, u∗) = x∗.

Hence, we have XN−1 ⊂ XN and, thus, f(x, µαN (x)) ∈ XN . �
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Theorem 4.8 (Asymptotic stability using endpoint constraints). Consider the MPC
scheme with stabilizing endpoint constraints given by Algorithm 3.1 based on the modified
minimization problem (8) and prediction horizon N ∈ N. Furthermore, let the assumptions
of Theorem 4.4 hold as well as the following conditions.

(1) There exists a function α1 ∈ K such that

α
∑
ν

θν(µαN (x0)ν , µαN (x0)−ν , x0) ≥ α1(‖x0 − x∗‖)

holds for all x0 ∈ XN .v
(2) There exists functions α2, α3 ∈ K∞ such that

α2(‖x0 − x∗‖) ≤ V αN (x0) ≤ α3(‖x0 − x∗‖)
holds for all x0 ∈ XN .

Then, the closed-loop system is asymptotically stable.

Proof. By Theorem 4.4, we have

V αN (x0) ≥ α
∑
ν

θν(µαN (x0)ν , µαN (x0)−ν , x0) + V αN (f(x0, µ
α
N (x0))).

Combing this with the first condition we obtain Equation (3) for V = V αN , g = µαN , and
S = XN , αV = α1. Condition (2) leads to Equation (2) for these entities directly. Hence,
by Theorem 2.3 the closed-loop system is asymptotically stable on XN . �

We see that by imposing equilibrium end constraints we can easily enforce the optimal-
value function to fulfill one criterion of a Lyapunov function, namely the decay along the
trajectories. The second property is more dependent on the design of the cost functional.
However, there is a close connection between the optimal-value function V αN and the optimal-
value function of a problem with stage-additive cost, which can be exploited to find suitable
K∞-bounds.

Definition 4.9. Consider non-negative pay-off functions. We define the aggregated cost
functional as JNagg : UN ×X → R via

(x, u) 7→
N−1∑
n=0

∑
ν

θν(uν(n), u−ν(n), xu(n)),

where xu(0) = x and xu(n + 1) = f(x(n), u(n)) for all n = 0, . . . , N − 1. Similarly, we
define the aggregated optimal-value function by

V agg
N (x0) := min

u∈UNX0 (x0)
JNagg(x0, u)

for every x0 ∈ XN .

Based on this optimal-value function, we can find K∞-bounds for V αN with α ∈ (0, 1).

Lemma 4.10. Consider non-negative pay-off functions and let V αN denote the optimal-value
function from Theorem 4.4 for α ∈ (0, 1). If there exist functions γ1, γ2 ∈ K∞ such that

γ1(‖x0 − x∗‖) ≤ V agg
N (x0) ≤ γ2(‖x0 − x∗‖)

holds for every x0 ∈ XN , then for every α ∈ (0, 1) we have

αγ1(‖x0 − x∗‖) ≤ V αN (x0) ≤ γ2(‖x0 − x∗‖).

Proof. Concerning the lower bound, we can easily derive

V αN (x0) = min
u

max
v

θ(u, u)− (1− α)θ(v, u)

≥ min
u
αθ(u, u) = αV agg

N (x0) ≥ αγ1(‖x− x∗‖).
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For the upper bound, due to θ ≥ 0, we have

V αN (x0) = min
u

max
v

θ(u, u)− (1− α)θ(v, u) ≤ min
u
θ(u, u) ≤ γ2(‖x− x∗‖). �

Note that the existence of such K∞-bounds can be guaranteed under the assumptions of
the next lemma.

Lemma 4.11. (1) Assume that there exists a function α1 ∈ K∞ such that∑
ν

θν(uν , u−ν , x) ≥ α1(‖x− x∗‖) for every x ∈ XN and u ∈ U.

Then, we have V αN (x0) ≥ α1(‖x0 − x∗‖) for all x0 ∈ XN .
(2) Assume that f and all pay-off functions are continuous on X ×U. Let there exist a

η > 0 such that for every x ∈ Bη(x∗) ⊂ X, η > 0, there exists a ux ∈ U such that
f(x, ux) = x∗ holds, as well as a function α2 ∈ K∞ that satisfies∑

ν

θν(uνx, u
−ν
x , x) ≤ α2(‖x− x∗‖).

Then, there exists α3 ∈ K∞ such that

V αN (x0) ≤ α3(‖x0 − x∗‖) for all x0 ∈ XN .

Proof. Choosing `(n, x, u) =
∑
ν θ

ν(x, u), we fit to the setting of Proposition 5.7 in [18],
which yields K∞-bounds for V agg

N . Combined with Lemma 4.10, the statements follow. �

5. Continuous dependence of the minimizer
on the initial value and parameters

In this section, we show stability of the minimizers with respect to perturbations of the
initial value and the auxiliary parameter α. We are especially interested in limits including
α→ 0. The first result is concerned with the variation of the auxiliary parameter around
the point α = 0. It shows that the min-max problems for the modified Nikaido–Isoda
function approximate the problem of finding a VNE within the subset UNX0

(x0).

Theorem 5.1. Let the initial value x0 ∈ X be given and fixed and let, with a slight abuse of
notation, ΨN ,ΨN

α : UN ×UN → R0 denote the reduced objective functionals with eliminated
dynamics. Consider the functionals

F : UNX0
(x0)→ R≥0, u 7→ max

v∈UN
ΨN (u, v),

Fα : UNX0
(x0)→ R≥0, u 7→ max

v∈UN
ΨN
α (u, v).

Any accumulation point of a sequence of minimizers (uα)α, corresponding to Fα each,
minimizes F .

Proof. In what follows, we abbreviate

θ(u, v) :=
∑
ν

N−1∑
n=0

θν(vν(n), u−ν(n), yνu,v(n)).

Due to the compactness of UN and the continuity of the pay-off functions and the transition
map, Theorem 2.1 in [11] yields that the functions F, Fα are well-defined and continuous.
The function f̃ : UN → X, u 7→ xu(x0;N), is continuous. Thus, the set

UNX0
(x0) = UN ∩ f̃−1({x∗})

is compact as a closed subset of UN . Hence, both functions attain a minimum. For any
u ∈ UNX0

(x0), denote
vu := arg min

v∈UN
θ(u, v).
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First note that Fα converges point-wisely to F as α → 0. For α ∈ (0, 1), let uα be a
minimizer of Fα and let u0 be the minimizer of F . Let uα → u for some u ∈ UNX0

(x0) as
α→ 0. Then, we have

Fα(u0) ≥ Fα(uα) = θ(uα, uα)− (1− α) min
v
θ(uα, v) ≥ θ(uα, uα)− (1− α)θ(uα, vu)

Taking the limit, we obtain

F (u0) = lim
α→0

Fα(u0) ≥ lim
α→0

θ(uα, uα)− (1− α)θ(uα, vu) = F (u). �

Remark 5.2. The proof can be carried over to the case α→ α′ with α′ ∈ (0, 1].

Deriving a stability result for an additional variation of the initial value is more challenging
because the initial value influences the set of admissible controls, whereas the parameter α
does not. To succeed, we will make use of the following assumptions.

Assumption 2 (Completely controllable dynamics). Let the following hold.
(1) The transition map is given by f : X × U → X, (x, u) 7→ Ax+Bu, with a matrix

pair (A,B) so that the system x+ = f(x, u) is completely controllable in every step.
(2) Assume that u∗ is in the interior Ů of U.

Lemma 5.3. Let Assumption 2.1 hold. For any (x, u) ∈ X × U with f(x, u) = x∗ and
any ε > 0, there exists δ > 0 such that for any y ∈ Bδ(x), there exists v ∈ Bε(u) with
f(y, v) = x∗.

Proof. Let d ∈ X with ‖d‖ = 1 be given arbitrarily. Due to the complete controllability,
there exists a w ∈ U with 0 = Ad + Bw. One solution to this equation is given by
vd = B†Ad, where B† is the Moore–Penrose pseudo-inverse of B. Now, let ε > 0 and consider
δ < ε/‖B†A‖. Consider y ∈ Bδ(x). Then, we can find the representation y = x+δd for some
d ∈ X. Choosing the control v = u+δvd, we obtain Ay+Bv = Ax+Bu+δ(Ad+Bvd) = x∗

with ‖u− v‖ = δ‖vd‖ < ε. �

Theorem 5.4. Let Assumption 2 hold. Consider the multi-function S : R×X → 2U defined
by

(α, x0) 7→ arg min
u∈UNX0 (x0)

JαN (x0, u) with JαN (x0, u) = max
v∈UN

Ψα
N (x0;u, v).

Then, S is upper semi-continuous at any point (α, x0) ∈ [0, 1]× XN−1. Furthermore, the
associated optimal-value function V : R × X → R is continuous at every point (α, x0) ∈
[0, 1]× XN−1.

Proof. We show this result by applying Proposition 4.4 of [5]. In the following, we check the
conditions of this theorem. Let α ∈ [0, 1] be given and let x0 ∈ XN−1. Here, the parameter
space is given by R×X and the objective is given by JαN : R×X × UN → R. Firstly, we
have to ensure that the objective is continuous. Note that Ψ is continuous in x0, u, v, and
α as a composition of continuous functions. The continuity of the function JαN follows from
Theorem 2.1 in [11].

Secondly, we have to ensure that the multi-function Φ: R×X → 2U
N

, (α, x0) 7→ UNX0
(x0)

is closed. Note that this mapping is independent of α. For every x0 ∈ X, the function
f̃x0 : UN → X, u 7→ xu(x0, N), is continuous since f is continuous. Furthermore, define
F̄ : UN × X → X, (u, x0) 7→ xu(x0, N), which is also a continuous function. Note that
Φ(x0, α) = f̃−1

x0
(x∗)∩UN is a closed set. Hence, Φ is closed-valued. Furthermore, the graph

of Φ is R×
(
F̄−1(x∗) ∩ (X × UN )

)
and thus closed.

Thirdly, we show that there exists a constant M ∈ R, a compact set C ⊂ UN , and a
neighborhood U of (α, x0) such that for any (β, y0) ∈ U the level set

levMJ
β
N (y0, ·) :=

{
x ∈ UNX0

(x0) : JβN (y0, u) ≤M
}
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is non-empty and contained in C. Since U is compact, we can choose C = UN . Then,
there exists a u ∈ UN−1

X0
(x0) ⊂ UNX0

(x0) = Φ(α, x0). Lemma 5.3 implies that there exists
δ > 0 such that for every y ∈ Bδ(x∗) there exists an uy ∈ Ů with f(y, uy) = x∗. Since f is
continuous, there exists a η > 0 such that for every y0 ∈ Bη(x0), we have

‖xu(y0;N − 1)− xu(x0;N − 1)‖ = ‖xu(y0;N − 1)− x∗‖ < δ.

Hence, the sequence given by

v(n) = u(n) for n = 0, . . . , N − 2, v(N − 1) = uz with z = xu(y0;N − 1)

is contained in UNX0
(y0). Thus, for every (β, y0) ∈ (α − η, α + η) × Bη(x0), we have

Φ(β, y0) 6= ∅. Now, consider

M := max
{
JβN (y0, u) : β ∈ [α− η, α+ η], y0 ∈ B̄η(x0), u ∈ UN

}
.

Then, for any u ∈ Φ(β, y0) with (β, y0) ∈ (α− η, α+ η)×Bη(x0) we have JβN (y0, u) ≤M
and, consequently, the level set levMJαN (y0, ·) is non-empty.

Lastly, we need to show that for any open neighborhood VU of S(α, x0), there exists a
neighborhood VP around (α, x0) such that VU ∩Ψ(β, y0) 6= ∅ if (β, y0) ∈ VP . Consider an
open neighborhood VU of S(α, x0). Then, for each u ∈ S(α, x0) there exists an ε > 0 with
Bε(x0) ⊂ VU . We will show that for any choice of ε > 0 and u ∈ S(α, x0), there exists a
δ > 0 such that for any y0 ∈ Bδ(x0), there exists a v ∈ UNX0

(y0) with v ∈ Bε(u).
Since the set of admissible controls is independent of α, the desired property follows by

choosing the neighborhood VX = (α−δ, α+δ)×Bδ(x0) around the parameter (α, x0). Now,
fix u ∈ S(α, x0) and ε < 1. Since x0 ∈ XN−1, there exists a ũ ∈ UNX0

(x0) with ũ(N − 1) ∈ Ů.
Let m = max{‖u‖ : u ∈ UN}. Consider the control sequence uε = u + ε

4m (ũ − u). Since
the admissible control set U is convex, we have uε(n) ∈ U for every n = 0, . . . , N − 1.
Additionally, we have uε(N−1) ∈ Ů due to Lemma 9.1 in the appendix. Since the dynamics
is linear, we can deduce xuε(N, x0) = x∗ as well.

There exists a ball Bε1(uε(N − 1)) ⊂ Ů with ε1 ≤ ε/2. Furthermore, due to Lemma 5.3,
there exists a δ1 > 0 such that for any z ∈ Bδ1(xuε(x0;N − 1)) there exists a vz ∈
Bε1(uε(N − 1)) ⊂ Ů with f(z, v) = x∗. Furthermore, since the map x 7→ xuε(x;N − 1) is
continuous, we can find δ > 0 such that

‖xuε(x0;N − 1)− xuε(y0;N − 1)‖ < δ1 for any y0 ∈ Bδ(x0).

Now, for any y0 ∈ Bδ(x0) consider the control sequence given by

v(n) = uε(n) for n = 0, . . . , N − 2,

v(N − 1) = vz with z = xuε(y0;N − 1).

Then, we have v ∈ UNX0
(y0) by construction and

‖u− v‖ ≤ ‖u− uε‖+ ‖uε − v‖ ≤
ε

4m
2m+ ‖uε(N − 1)− v(N − 1)‖ ≤ ε

2
+ ε1 < ε.

Hence, we can apply Proposition 4.4 of [5] and obtain the continuous dependence on the
parameters at any α ∈ [0, 1] and x0 ∈ XN−1. �

6. Stability of the Limiting Scheme

In this section, we extend the stability analysis from Section 4.2 to the case α = 0. This
corresponds to the MPC scheme with equilibrium end constraints, where the objective is
given by

J0
N (x0, u) = max

v∈UN
ΨN (x0, u, v),
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meaning that in each iteration a true VNE is computed. As before, we define

θ(v, u) :=

N−1∑
n=0

∑
ν

θν(vν(n), u−ν(n), yνu,v(n))).

In the following, we presume the following set of assumptions.

Assumption 3. Let the following hold:
(1) The pair (x∗, u∗) ∈ X × U fulfills f(x∗, u∗) = x∗ with u∗ ∈ Ů.
(2) For any choice α ∈ (0, 1), yν ∈ X, ν = 1, . . . ,K, we have∑

ν

θν(u∗,ν , u∗,−ν , x∗) ≤ (1− α)
∑
ν

θν(vν , u∗,−ν , yν)

for any v ∈ U.
(3) There exists γ1, γ2, γV ∈ K∞ such that

γ1(‖x0 − x∗‖) ≤ V agg
N (x0) ≤ γ2(‖x0 − x∗‖),∑

ν

θν(uν , u−ν , x0) ≥ γV (‖x0 − x∗‖)

holds for any x0 ∈ XN and any u ∈ U.
(4) The dynamics f : X × U → X is completely controllable in one step.
(5) For any x0 ∈ XN , we have

min
u∈UNX0 (x0)

max
v∈UN

ΨN (x0;u, v) = 0.

Furthermore, the minimizer is unique.

By the results of Section 4, the first three assumptions ensure asymptotic stability for
the closed MPC loop for any α ∈ (0, 1). Note that for this result alone, the function γV only
needs to be non-negative as well as strictly increasing and to satisfy γV (0) = 0. Furthermore,
Assumption 3.5 is fulfilled if for any x0 ∈ XN there exists a unique VNE to the associated
GNEP with xu(N) = x∗. Altogether, this gives the following desired result.

Theorem 6.1. Consider the MPC scheme feedback scheme with equilibrium end constraints
µN : X → X, where the objective is given by

J0
N (x0, u) = max

v∈UN
ΨN (x0;u, v).

Let Assumption 3 hold. For x0 ∈ XN , define

V 0
N (x0) :=

N−1∑
n=0

∑
ν

θν(uν(n), u−ν(n), xu(n)),

where u ∈ UNX0
(x0) is the optimal solution to the problem

min
u∈UNX0 (x0)

J0
N (x0, u).

Then, the function V 0
N : XN → R fulfills

γ1(‖x0 − x∗‖) ≤ V 0
N (x0) ≤ γ2(‖x0 − x∗‖),

V 0
N (x0)− V 0

N (f(x0, µN (x0))) ≥ γV (‖x− x∗‖)
for any x0 ∈ XN , where γ1, γ2, γV are given by Assumption 3.

Proof. Let x0 ∈ XN be given and fixed. For any α ∈ (0, 1), consider the auxiliary MPC
scheme based on the objective

JαN (x0, u) = max
v∈UN

ΨN
α (x0;u, v).
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Due to Assumptions 3.1–3.3, Theorem 4.4, Theorem 2.3, and Lemma 4.10, the associated
MPC feedback µαN and the optimal-value function V αN fulfill

αγ1(‖x0 − x∗‖) ≤ V αN (x0) ≤ γ2(‖x0 − x∗‖), (11)
V αN (x0)− V αN (f(x0, µ

α
N (x0))) ≥ αγV (‖x0 − x∗‖) (12)

for some γV , γ1, γ2 ∈ K∞.
We now show the decay along the trajectories. Since γV is a K∞-function, it is invertible

on [0,∞) and Equation (12) can be re-written as

‖x0 − x∗‖ ≤ γ−1
V

(
1

α
(V αN (x0)− V αN (f(x0, µ

α
N (x0)))

)
with γ−1

V ∈ K∞. Furthermore, the solution

u0(x0) := arg min
u∈UNX0 (x0)

J0
N (x0, u)

is unique due to Assumption 3.5. This assumption also gives J0
N (x0, u

0(x0)) = 0. Hence,
we can derive

1

α
V αN (x0) =

1

α
min

u∈UNX0 (x0)
JαN (x0, u) ≤ 1

α
JαN (x0, u

0(x0))

=
1

α
(J0
N (x0, u

0(x0)) + αmin
v
θ(v, u0(x0))) = min

v
θ(v, u0(x0)).

For any x0 ∈ XN , we choose uα(x) ∈ arg minu∈UNX0 (x0) J
α
N (x0, u) arbitrarily. Furthermore,

we deduce
1

α
V αN (f(x0, µ

α
N (x0))) =

1

α
JαN (f(x0, µ

α
N (x0)), uα(f(x0, µ

α
N (x0))))

=
1

α
max
v

ΨN
α (uα(f(x0, µ

α
N (x0))), v)

≥ 1

α
ΨN
α (uα(f(x0, µ

α
N (x0))), uα(f(x0, µ

α
N (x0))))

= θ(uα(f(x0, µ
α
N (x0))), uα(f(x0, µ

α
N (x0)))).

Since Assumption 3.5 holds, u0(x0) is a VNE and satisfies

min
v
θ(v, u0(x0)) = θ(u0(x0), u0(x0)).

Hence, by the monotonicity of γV , we have

‖x0 − x∗‖ ≤ γ−1
V

(
θ(u0(x0), u0(x0))− θ(uα(f(x0, µ

α
N (x0))), uα(f(x0, µ

α
N (x0))))

)
. (13)

Next, we show that

lim
α→0

uα(f(x0, µ
α
N (x0)) = u0(f(x0, µN (x0))) (14)

holds independently of the choice uα. To this end, let ε > 0. Consider the function
S : R×X → 2U

N

given by

(α, x0) 7→ arg min
u∈UNX0 (x0)

JαN (x0, u).

Due to Assumption 3.4, we can employ Theorem 5.4 and deduce that S is upper semi-
continuous at any (α, x0) ∈ [0, 1]×XN−1. Furthermore, note that by Assumption 3.5, for any
x ∈ XN−1 the set S(0, x) ⊂ UN is single-valued. In particular, for x1 := f(x0, µN (x0)) ∈
XN−1 this means that there exists δ > 0 such that for (β, y1) ∈ (−δ, δ)×Bδ(x1), we have
‖u0(x1)−uβ(y1)‖ ≤ ε for any choice uβ(y1) ∈ S(β, y1). By Theorem 5.1, we obtain that for
any x ∈ XN , for α→ 0, any convergent sequence (uα(x))α with uα(x) ∈ S(α, x) converges
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to the unique minimizer u0(x) ∈ UNX0
(x). Since UNX0

(x) is bounded, by using the subsequence
principle, we can deduce

lim
α→0

uα(x) = u0(x)

for arbitrary uα(x) ∈ S(α, x) and x ∈ XN . Since the transition map f is continuous, this
implies

lim
α→0

f(x, (uα(x))0) = f(x, (u0(x))0).

By this, for x0 ∈ XN specifically, we can find δ1 > 0 such that for α ∈ (−δ1, δ1), we have

‖f(x, µαN (x0))− f(x, µN (x0))‖ = ‖f(x, (uα(x0))0)− f(x, (u0(x0))0)‖ < δ

for any uα(x0) ∈ S(α, x0). Now, by choosing α ≤ min (δ, δ1), we can deduce (14). Now,
taking Equation (13) to the limit α→ 0, we obtain

‖x0 − x∗‖ ≤ γ−1
V

(
θ(u0(x0), u0(x0))− θ(u0(f(x0, µN (x0))), u0(f(x0, µN (x0))))

)
.

= γ−1
V

(
V 0
N (x0)− V 0

N (f(x0, µN (x0)))
)
.

Consequently, applying γV to the equation conserves the order and we are left with

γV (‖x0 − x∗‖) ≤ V 0
N (x0)− V 0

N (f(x0, µN (x0)).

Next, we show that γ1 is a lower bound. In the same fashion as above, for x0 ∈ XN , we
can deduce

‖x0 − x∗‖ ≤ γ−1
1 (

1

α
V αN (x0)) ≤ γ−1

1 (min
v
θ(v, u0(x0)))

= γ−1
1 (θ(u0(x0), u0(x0))) = γ−1

1 (V 0
N (x0)).

Finally, we construct the upper bound directly. Note that

Jagg(x0, u
0(x0)) = θ(u0(x0), u0(x0)), Jagg(x∗, (u∗)N ) = J0

N (x∗, (u∗)N ) = 0.

Furthermore, due to Lemma 4.6, we have u0(x∗) = (u∗)N . Since the dynamics is completely
controllable there exists a δ > 0 with Bδ(x∗) ⊂ X1 ⊂ XN−1.

Since the pay-off functions are convex, the function (x, u) 7→ J0
N (x, u) is Lipschitz

continuous on B̄δ′(x∗) × UN for some δ′ < δ. Furthermore, due to Assumption 3.3, it is
also non-constant. Hence, there exists L > 0 such that for any x0 ∈ B̄δ′(x∗), we have

V 0
N (x0) = J0

N (x0, u
0(x0))− J0

N (x∗, (u∗)N )) ≤ L
(
‖x0 − x∗‖+ ‖u0(x0)− (u∗)N‖

)
.

Define
α̃(r) := max

x∈B̄r(x∗)
L
(
‖x− x∗‖+ ‖u0(x)− u∗‖

)
.

By Theorem 5.4, the function x 7→ S(0, x0) = arg minu J
0
N (x, u) is upper semi-continuous.

Since for any x ∈ XN the set of minimizers S(0, x) is single-valued, the function x 7→ u0(x)
is continuous at every x ∈ Bδ(x∗) ⊂ XN−1. Thus, the function α̃ is continuous on [0, δ′).
Furthermore, α̃ is monotonically increasing on [0, δ′) and we have α̃(0) = J0

N (x∗, u∗) = 0.
Outside of Bδ′(x∗), we can consider

α̂(r) := max
{
J0
N (x, u) : x ∈ B̄r(x∗), u ∈ UN

}
.

Since J0
N is continuous on X× UN and for each r > 0, the set B̄r(x∗)× ∈ UN is compact,

the function α̂ is continuous. Furthermore, α̂ is monotonically increasing and we have

V 0
N (x0) ≤ α̂(‖x0 − x∗‖).

Now, consider the function

α2(r) = r +

{
α̃(δ′) + α̂(r) for r ≥ δ′,
α̃(r) + r

δ′ α̂(r) for r ∈ [0, δ′).
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This function is continuous, strictly increasing, unbounded (due to the addition of the first
term), and fulfills α2(0) = 0. Hence, α2 ∈ K∞. Furthermore, we have α2(r) ≥ α̃(r) for
0 ≤ r ≤ δ′ as well as α2(r) ≥ α̂(r) for r ≥ δ′. Thus, α2 gives an upper bound for V 0

N . �

Lemma 6.2. Under Assumption 3, the set XN is forward invariant under the feedback law
µN : X → X presented in Theorem 6.1.

Proof. The proof follows the same construction as used for the proof of Lemma 4.7. �

Corollary 6.3. Under Assumption 3, the closed loop x+ = f(x, µN (x)) with µN : X → X
presented in Theorem 6.1 is asymptotically stable at x∗ ∈ X on the domain XN .

Proof. Theorem 6.1 gives us the criteria for asymptotic stability from Theorem 2.3 with
V = V 0

N , S = XN , and g = f(·, µN ). �

Even if Assumption 3.5 is not satisfied for every initial value, we can still make the
following observation.

Lemma 6.4. Let Assumption 3.1–3.4 hold. Consider the set

Y :=
{
x0 ∈ X : the GNEP (6) has a VNE u ∈ UNX0

(x0)
}
.

Then, the feedback law µN : X → X presented in Theorem 6.1 renders the set Y invariant.

Proof. Let x0 ∈ Y be given. Then, there exists u ∈ UNX0
(x0), which is a VNE of Problem (6).

Hence, we have
N−1∑
n=0

∑
ν

θν(uν(n), u−ν(n), xu(n)) ≤
N−1∑
n=0

∑
ν

θν(vν(n), u−ν(n), yνu,v(n))

for every v ∈ UN . Choosing v(0) = u(0), this yields
N−1∑
n=1

∑
ν

θν(uν(n), u−ν(n), xu(n)) ≤
N−1∑
n=1

∑
ν

θν(vν(n), u−ν(n), yνu,v(n))

for every v ∈ UN−1. Now consider x1 = f(x0, u(0)) = f(x0, µN (x0)) and define

u1(n) = u(n+ 1), for n = 0, . . . , N − 2, u1(N − 1) = u∗.

Then, we have u1 ∈ UNX0
(x1). Due to Assumption 3.2, we have θν(x∗, u∗) = 0 and we can

deduce
N−1∑
n=0

∑
ν

θν(uν1(n), u−ν(n), xu1
(n))

=

N−1∑
n=1

∑
ν

θν(uν(n), u−ν(n), xu(n)) +
∑
ν

θν(u∗, xu(n))

≤
N−1∑
n=1

∑
ν

θν(vν(n), u−ν(n), yνu,v(n)) +
∑
ν

θν(uν,∗, v−ν1 , yνu,v(N)))

for every (v, v1) ∈ UN−1 × U. Employing an index shift, we see that u1 is a VNE of
Problem 6 with initial value x1 ∈ X and, hence, x1 ∈ Y. �

We give an example for which the VNE of a GNEP satisfies the equilibrium end constraint
at least on a subdomain of the state space.

Example 6.5. Let the dynamics be given by x+ = f(x, u) = Ax+ Bu, where A : X → X
and B : U → X are linear operators. Let the pair (x∗, u∗) ⊂ X × U satisfy f(x∗, u∗) = x∗.
Furthermore, the operator B has a diagonal block matrix structure B = diag{B1, . . . , BK},
where each Bν acts on the νth player’s control with ν = 1, . . . ,K. We will also write
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B = Bν + B−ν . For each ν and any fixed choice u−ν , the dynamics’ νth component is
completely controllable in uν in one step. Furthermore, let the pay-off functions be given by

θν(vν , u−ν , x) = ‖x∗,ν − xν‖2 + ‖x∗,ν − f(x, vν , u−ν)ν)‖2.

Moreover, let U ⊂ U be a closed, compact set such that u∗ ∈ Ů. Then, there exists a
domain Ω ⊂ X such that for any x ∈ Ω, there exists a VNE of

min
u∈U

max
v∈U

∑
ν

N−1∑
k=0

(
θν(uν(k), u−ν(k), xu(k))− θν(vν(k), u−ν(k), yνu,v(k))

)
,

which satisfies xu(N) = x∗ for any x0 ∈ XN .

Proof. Let η > 0 be given. Then, the set

Y = {xu(N − 1) : u ∈ UN , xu(0) ∈ Bη(x∗)}
is bounded. Due to the controllability properties of the system and Lemma 5.3, there
exists a ball Bδ(x∗) with δ > 0, such that for any y ∈ Bδ(x∗), there exists a vy ∈ U with
x∗ = f(y, v). Choosing η small enough, we ensure Y ⊂ Bδ(x∗) due to the continuity of the
transition map. Note that due to the diagonal block structure of B, for any u ∈ U, the
point z = f(y, vνy , u

−ν) fulfills zν = x∗,ν for any component ν = 1, . . . ,K and y ∈ Bδ(x∗).
Let u = (u(0), . . . , u(N − 1)) be a solution to the GNEP.

Then, we have
∑
ν θ

ν(u, u) ≤
∑
ν θ

ν(v, u) for any v ∈ UN . Consider v = (u(0), . . . , u(N−
1), vz), where vz is chosen as described above for z = xu(N − 1). Using this choice of v, we
can deduce∑

ν

θν(uν(N − 1), u−ν(N − 1), xu(N − 1)) ≤
∑
ν

θν(vνx, u
−ν(N − 1), xu(N − 1)),

‖x∗,ν − xνu(N − 1)‖2 + ‖x∗,ν − xνu(N)‖2 ≤ ‖x∗,ν − xνu(N − 1)‖2 + ‖x∗,ν − x∗,ν‖2,
which gives xνu(N) = x∗,ν for every ν = 1, . . . ,K. �

Remark 6.6. Equilibrium end constraints are not applicable if the system is not controllable
to x?. In classic MPC, the terminal constraint can be relaxed by further imposing Lyapunov
end costs F : X → R. This construction can also be used to design a stabilizing feedback
scheme for MPC based on α-quasi GNEPs by generalizing the conditions found in [18,
Section 5.3]. When it comes to transferring the result to α = 0, one could aim for a similar
construction as in Section 6. Note that this would require finding an upper bound for

1

α
V αN (x0) =

1

α

(
min

u∈UNX0 (x0)
max
v∈UN

ΨN
α (x0, u, v) + F (xu(N))

)
and, subsequently, passing to the limit α→ 0. Note that the presence of terms of the form
1
αF (x) might hinder convergence. The analysis for this case is an interesting direction for
future work.

7. Numerical Examples

In order to shed some light on how the proposed MPC schemes perform in practice,
we present two dynamics for which we implemented the GNEP based MPC feedback
given by Algorithm 3.1 (without equilibrium end constraints) and its alteration based on
Problem (8) (with equilibrium end constraints and α 6= 0). The first dynamics is given by
the time-discrete linear system

x+ =

[
1 0
1 1

]
x+

[
1 0
0 1

]
u, (15)

which fits to the conditions of Theorem 6.5. Here, each component of the state corresponds
to a player ν = 1, 2. The pay-off functions are given by the tracking term pay-offs given
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in Example 6.5. For the second example, we consider the dynamics given by two inverted
pendulums coupled with a spring. The dynamics is modeled by the system

ẍν = uν + k(x−ν − xν ± d),

ϑ̈ν =
g

l
sinϑν −

1

l
cosϑν(uν + k(x−ν − xν ± d))

for ν = 1, 2, where g is the gravitational constant, l ∈ [0,∞) is the length of the rods,
k ∈ R refers to the spring constant, and d is the distance the pendulums keep, when the
spring is rested. This can be rewritten into a dynamical system given by the variables
(ϑ1, ϑ̇1, x1, ẋ1, ϑ2, ϑ̇2, x2, ẋ2). Furthermore, with a slight abuse of notation, we write xν =

(ϑν , ϑ̇ν , xν , ẋν) for each player ν. A stationary point of this system is given by

x∗ = (0, 0, 0, 0, 0, 0, d, 0), u∗ = (0, 0).

To ensure the existence of a unique solution to the modified equilibrium problems we
encounter in each iteration, we linearize the dynamic at (x∗, u∗). We use an explicit RK4
scheme to translate the resulting system into a time-discrete form, which has the form
x+ = (Id + ARK)x + BRKu − ARKx

∗ := Ax + Bu + C. In order to fulfill the complete
controllability condition for the GNEP case, we concatenate four discrete time steps to
arrive at an affine-linear time-discrete system, that is completely controllable in one step.
This results in the control space U = R8 and the dynamics

x+ = A4x+ [B AB A2B A3B]u+

3∑
k=0

AkC.

Note that this system does not have the block structure required to guarantee the existence
of a VNE that satisfies the equilibrium end constraints. For the MPC loop based on
Problem (8), we forgo the concatenation since it is not required. We furthermore equip the
dynamics with pay-off functions of the form

θν,k(x, u) = ‖xν(k)− x∗,ν‖2 + ‖uν(k)‖2.
Regarding the optimization,when working with the modified Nikaido–Isoda function and

equilibrium end constraints, we solve the outer minimization with a sequential least-squares
programming (SLSQP) algorithm [26]. The derivative is computed based on Danskin’s
theorem (see, e.g., [15]) for which the inner maximization needs to be solved, which we
accomplish by using an L-BFGS-B algorithm [9, 34].

In each iteration of Algorithm 3.1, we compute the VNE based on a reformulation of
the GNEP via the regularized Nikaido–Isoda function [14, 20] resulting in the optimality
condition from Theorem 3.6 of [20], which we again solve via a L-BFGS-B algorithm. Here,
we do not enforce the equilibrium end constraints, since our stability region is only given
by points, where the GNEP solution satisfies them anyway.

For the first example, based on the dynamics (15), the closed MPC-GNEP trajectory can
be found in Figure 1. Due to the structure of Example 6.5, there exists a stability region for
the GNEP-MPC scheme. Outside, we cannot guarantee that the computed VNE satisfies
the terminal constraint. This is mirrored in the corresponding Lyapunov function V 0, which
is not monotone outside this region, but starts decaying when the state enters the stability
region. Subsequently, we see stabilization of the state trajectory.

For the dynamics given by the linearized coupled inverted pendulum, the results computed
via the auxiliary MPC scheme (with terminal end constraints and modified Nikaido–Isoda
function) and the scheme given by Algorithm 3.1 can be found in Figures 2 and 3, respectively.
For the auxiliary scheme, we see stabilizing behavior, which is in accordance to our theoretical
results from Section 4.

Regarding the MPC-GNEP scheme, note that for this example, Assumption 3.5 is
not fulfilled. Hence, we cannot provide a theoretical justification for a converging closed-
loop trajectory. Nonetheless, asymptotically stabilizing behavior can be observed. As
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Figure 1. MPC based on Algorithm 3.1 for the dynamics (15). We
use the horizon length N = 10 and bounds UN = [−1, 1]. Furthermore,
1 % uniformly distributed noise is added to the dynamics. Note that the
Lyapunov function is non-monotone outside of the stability region.
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Figure 2. MPC based on problem (8) with equilibrium end constraints
and modified Nikaido–Isoda function for the coupled inverted pendulum.
We use the horizon length N = 20, γ = 1, α = 0.1, U = [−100, 100].
Furthermore, 1 % uniformly distributed noise is added to the dynamics.

time progresses, the trajectory seems to oscillate around a stable point with a decaying
amplitude. Simultaneously, the Lyapunov function V 0 seems to decay in an oscillating
fashion as well. This suggests that the stability analysis can be extended to cases in which
the VNE computed in each iteration do not fulfill the equilibrium end constraints.1

8. Conclusion and Outlook

We presented a stability analysis for MPC schemes based on dynamic GNEPs and an
approximation thereof: α-quasi GNEPs. For both types of problems, we were able to derive
conditions guaranteeing asymptotic stability by employing terminal constraints.

For the α-quasi GNEP, both equilibrium end constraints and Lyapunov end costs can be
utilized. Although α-quasi GNEPs do not exactly correspond to game-theoretical problems,
they can be used for feedback synthesis nonetheless. Furthermore, they play an important
role in transferring the analysis to the MPC scheme for GNEPs. In this field, stabilizing
behavior has barely been studied analytically. We provide a stability result for an abstract
class of jointly convex GNEPs based on classic Lyapunov theory. A crucial assumption is
that the corresponding variational Nash equilibria fulfill the equilibrium end constraint.
Although this condition is not met generally, our numerical examples suggest that MPC
for GNEPs can be stabilizing despite its violation. This raises the question of whether the
end constraint can be omitted and, consequently, whether a stability result can again be
derived on the basis of α-quasi GNEPs. Similarly to classic MPC, exponentially stabilizing
dynamics [18, 1] paired with a suitably large look-ahead horizon could be key in this
analysis.

1The jupyter notebooks containing these computations can be found at https://github.com/anttop/
MPC_GNEP.

https://github.com/anttop/MPC_GNEP
https://github.com/anttop/MPC_GNEP
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Figure 3. MPC based on Algorithm 3.1 for the coupled inverted pendulum.
We use the horizon length N = 5, γ = 1, U = [−100, 100]. Furthermore,
1.% uniformly distributed noise is added to the dynamics. Note that for
this setup, Condition 3.5 is not fulfilled in general.

Acknowledgements

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under project A03 of the Sonderforschungsbereich/Transregio 154
“Mathematical Modelling, Simulation and Optimization using the Example of Gas Networks”
(project ID: 239904186).

References

[1] B. Azmi, A.-C. Boulanger, and K. Kunisch. “On the semi-global stabilizability of the Korteweg–
de Vries equation via model predictive control.” In: ESAIM Control Optim. Calc. Var. 24.1
(2018), pp. 237–263. doi: 10.1051/cocv/2017001.

[2] M. Bardi, I. C. Dolcetta, et al. Optimal control and viscosity solutions of Hamilton-Jacobi-
Bellman equations. Vol. 12. Springer, 1997.

[3] T. Başar and G. J. Olsder. Dynamic noncooperative game theory. Vol. 23. Classics in Applied
Mathematics. Reprint of the second (1995) edition. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1999, pp. xvi+519. doi: 10.1137/1.9781611971132.

[4] H. Benchekroun. “Comparative dynamics in a productive asset oligopoly.” In: J. Econom.
Theory 138.1 (2008), pp. 237–261. doi: 10.1016/j.jet.2006.10.012.

[5] J. F. Bonnans and A. Shapiro. Perturbation analysis of optimization problems. Springer Series
in Operations Research. Springer-Verlag, New York, 2000, pp. xviii+601. doi: 10.1007/978-
1-4612-1394-9.

[6] A. Bressan. “Noncooperative differential games.” In: Milan J. Math. 79.2 (2011), pp. 357–427.
doi: 10.1007/s00032-011-0163-6.

[7] A. Bressan and K. Han. “Optima and equilibria for a model of traffic flow.” In: SIAM J.
Math. Anal. 43.5 (2011), pp. 2384–2417. doi: 10.1137/110825145.

https://doi.org/10.1051/cocv/2017001
https://doi.org/10.1137/1.9781611971132
https://doi.org/10.1016/j.jet.2006.10.012
https://doi.org/10.1007/978-1-4612-1394-9
https://doi.org/10.1007/978-1-4612-1394-9
https://doi.org/10.1007/s00032-011-0163-6
https://doi.org/10.1137/110825145


24 REFERENCES

[8] A. Britzelmeier and M. Gerdts. “Non-linear Model Predictive Control of Connected, Auto-
matic Cars in a Road Network Using Optimal Control Methods.” In: IFAC-PapersOnLine
51.2 (2018). 9th Vienna International Conference on Mathematical Modelling, pp. 168–173.
doi: 10.1016/j.ifacol.2018.03.029.

[9] R. H. Byrd, P. Lu, J. Nocedal, and C. Y. Zhu. “A limited memory algorithm for bound
constrained optimization.” In: SIAM J. Sci. Comput. 16.5 (1995), pp. 1190–1208. doi:
10.1137/0916069.

[10] H. Chen and F. Allgöwer. “A quasi-infinite horizon nonlinear model predictive control
scheme with guaranteed stability.” In: Automatica J. IFAC 34.10 (1998), pp. 1205–1217. doi:
10.1016/S0005-1098(98)00073-9.

[11] F. H. Clarke. “Generalized gradients and applications.” In: Trans. Amer. Math. Soc. 205
(1975), pp. 247–262. doi: 10.2307/1997202.

[12] A. Dreves and M. Gerdts. “A generalized Nash equilibrium approach for optimal control
problems of autonomous cars.” In: Optimal Control Appl. Methods 39.1 (2018), pp. 362–342.
doi: 10.1002/oca.2348.

[13] A. Dreves and J. Gwinner. “Jointly convex generalized Nash equilibria and elliptic multi-
objective optimal control.” In: J. Optim. Theory Appl. 168.3 (2016), pp. 1065–1086. doi:
10.1007/s10957-015-0788-7.

[14] F. Facchinei and C. Kanzow. “Generalized Nash equilibrium problems.” In: 4OR 5.3 (2007),
pp. 173–210. doi: 10.1007/s10288-007-0054-4.

[15] F. Facchinei and J.-S. Pang. Finite-dimensional variational inequalities and complementarity
problems. Vol. I. Springer Series in Operations Research. Springer-Verlag, New York, 2003,
pp. xxxiv+624+I69. doi: 10.1007/b97543.

[16] V. Grimm, M. Hintermüller, O. Huber, L. Schewe, M. Schmidt, and G. Zöttl. A PDE-
Constrained Generalized Nash Equilibrium Approach for Modeling Gas Markets with Transport.
2021. url: https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/docId/458.

[17] L. Grüne. “Economic receding horizon control without terminal constraints.” In: Automatica
J. IFAC 49.3 (2013), pp. 725–734. doi: 10.1016/j.automatica.2012.12.003.

[18] L. Grüne and J. Pannek. Nonlinear model predictive control. Theory and algorithms. 2017.
doi: 10.1007/978-3-319-46024-6.

[19] L. Grüne and M. Stieler. “Multiobjective model predictive control for stabilizing cost criteria.”
In: Discrete Contin. Dyn. Syst. Ser. B 24.8 (2019), pp. 3905–3928. doi: 10.3934/dcdsb.
2018336.

[20] A. von Heusinger and C. Kanzow. “Optimization reformulations of the generalized Nash
equilibrium problem using Nikaido-Isoda-type functions.” In: Comput. Optim. Appl. 43.3
(2009), pp. 353–377. doi: 10.1007/s10589-007-9145-6.

[21] M. Hintermüller and T. Surowiec. “A PDE-constrained generalized Nash equilibrium problem
with pointwise control and state constraints.” In: Pac. J. Optim. 9.2 (2013), pp. 251–273.

[22] M. Hintermüller, T. Surowiec, and A. Kämmler. “Generalized Nash equilibrium problems in
Banach spaces: theory, Nikaido-Isoda-based path-following methods, and applications.” In:
SIAM J. Optim. 25.3 (2015), pp. 1826–1856. doi: 10.1137/14096829X.

[23] K. Ito and K. Kunisch. “Receding horizon optimal control for infinite dimensional systems.”
In: vol. 8. A tribute to J. L. Lions. 2002, pp. 741–760. doi: 10.1051/cocv:2002032.

[24] A. Jadbabaie and J. Hauser. “On the stability of receding horizon control with a general
terminal cost.” In: IEEE Trans. Automat. Control 50.5 (2005), pp. 674–678. doi: 10.1109/
TAC.2005.846597.

[25] C. Kanzow, V. Karl, D. Steck, and D. Wachsmuth. “The multiplier-penalty method for
generalized Nash equilibrium problems in Banach spaces.” In: SIAM J. Optim. 29.1 (2019),
pp. 767–793. doi: 10.1137/17M114114X.

[26] D. Kraft. A Software Package for Sequential Quadratic Programming. Deutsche Forschungs-
und Versuchsanstalt für Luft- und Raumfahrt Köln: Forschungsbericht. Wiss. Berichtswesen
d. DFVLR, 1988.

[27] A. Liu, R. Zhang, W.-a. Zhang, and Y. Teng. “Nash-optimization distributed model predictive
control for multi mobile robots formation.” eng. In: Peer-to-peer networking and applications
10.3 (2017), pp. 688–696. doi: 10.1007/s12083-016-0479-7.

[28] M. Morari and J. H. Lee. “Model predictive control: past, present and future.” In: Computers
& Chemical Engineering 23.4 (1999), pp. 667–682. doi: 10.1016/S0098-1354(98)00301-9.

https://doi.org/10.1016/j.ifacol.2018.03.029
https://doi.org/10.1137/0916069
https://doi.org/10.1016/S0005-1098(98)00073-9
https://doi.org/10.2307/1997202
https://doi.org/10.1002/oca.2348
https://doi.org/10.1007/s10957-015-0788-7
https://doi.org/10.1007/s10288-007-0054-4
https://doi.org/10.1007/b97543
https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/docId/458
https://doi.org/10.1016/j.automatica.2012.12.003
https://doi.org/10.1007/978-3-319-46024-6
https://doi.org/10.3934/dcdsb.2018336
https://doi.org/10.3934/dcdsb.2018336
https://doi.org/10.1007/s10589-007-9145-6
https://doi.org/10.1137/14096829X
https://doi.org/10.1051/cocv:2002032
https://doi.org/10.1109/TAC.2005.846597
https://doi.org/10.1109/TAC.2005.846597
https://doi.org/10.1137/17M114114X
https://doi.org/10.1007/s12083-016-0479-7
https://doi.org/10.1016/S0098-1354(98)00301-9


REFERENCES 25

[29] A. Raghunathan, A. Cherian, and D. Jha. “Game Theoretic Optimization via Gradient-based
Nikaido-Isoda Function.” In: Proceedings of the 36th International Conference on Machine
Learning. Ed. by K. Chaudhuri and R. Salakhutdinov. Vol. 97. Proceedings of Machine
Learning Research. PMLR, 2019, pp. 5291–5300. url: https://proceedings.mlr.press/
v97/raghunathan19a.html.

[30] M. Stieler. “Performance Estimates for Scalar and Multiobjective Model Predictive Control
Schemes.” PhD thesis. Universität Bayreuth, 2018. url: https://epub.uni-bayreuth.de/
id/eprint/3783/.

[31] M. Stieler, M. H. Baumann, and L. Grüne. “Noncooperative Model Predictive Control
for Affine-Quadratic Games.” In: PAMM 18.1 (2018), e201800036. doi: 10.1002/pamm.
201800036.

[32] M. Ulbrich and J. Fritz. “On generalized Nash equilibrium problems in infinite-dimensional
spaces using Nikaido–Isoda type functionals.” In: Optimization Methods and Software 0.0
(2024), pp. 1–31. doi: 10.1080/10556788.2024.2320736.

[33] R. Zhang, A. Liu, L. Yu, and W. Zhang. “Distributed Model Predictive Control Based on
Nash Optimality for Large Scale Irrigation Systems.” eng. In: IFAC-PapersOnLine 48.8
(2015), pp. 551–555. doi: 10.1016/j.ifacol.2015.09.025.

[34] C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. “Algorithm 778: L-BFGS-B: Fortran subroutines
for large-scale bound-constrained optimization.” In: ACM Trans. Math. Software 23.4 (1997),
pp. 550–560. doi: 10.1145/279232.279236.

9. Appendix

9.1. Proof of Theorem 4.1.

Proof. The proof follows the arguments used in Theorem VIII.1.9 of [2] for showing a DPP
for dynamic games with respect to the lower value. In the following, we will denote the
right-hand side of Equation (7) by WN (n0 + 1, x0).

For u ∈ UN (n0, x0), the ith component of the control will be denoted by u(n0 + i) or
v(n0 + i), respectively. First note that due to the compactness of the sets of admissible
controls and the continuity of the functions f and `, each minimum and maximum is
well-defined.

Let (n0, x0) ∈ N×X be fixed. We begin with showing VN ≤WN . Let ε > 0 and choose
z ∈ X, n ∈ N arbitrarily. Then, there exists a uz ∈ UN−1(n, z) with

VN−1(n, z) ≥ max
v∈V N−1(n,z)

JN−1(n, z, uz, v) +
ε

2
.

Furthermore, there exists ū ∈ UN (n0, x0) such that

W (n0, x0) ≥ max
v∈V N (n0,z0)

{
`(n0, ū(n0), v(n0), x0) + VN−1(n0 + 1, xū,v(n0 + 1))

}
+
ε

2
.

Choosing z = xū,v(n0 + 1) as well as n = n0 + 1 (for every v ∈ V N (n0, x0)) and exploiting
the first non-anticipativity property for the control v, we can conclude

W (n0, x0)

≥ max
v∈V N

{
`(n0, ū(n0), v(n0), x0)+

≥ max
ṽ∈V N−1

JN−1(n0, xū,v(n0 + 1), uz, ṽ) +
ε

2

}
+
ε

2

≥ max
v∈V N

{`(n0, ū(n0), v(n0), x0) + JN−1(n0, xū,v(n0 + 1), uz, v
∣∣n0+N

n=n0+1
}+ ε

≥ min
u∈UN

max
v∈V N

JN (n0, x0, u, v) + ε,

which yields the desired inequality.
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Lastly, we show VN ≥ WN in a similar way. Again, let ε > 0. There exists a u ∈
UN (n0, x0) with

VN (n0, x0) ≥ max
v∈V N (n0,x0)

JN (n0, x0, u, v) + ε. (16)

Furthermore, we have

W (n0, x0) ≤ max
v∈V N (n0,x0)

{
`(n0, x0, u(n0), v(n0)) + VN−1(n0 + 1, xu,v(n0 + 1))

}
. (17)

There exists v ∈ V N (n0, x0) such that

max
ṽ∈V N

{
`(n0, x0, u(n0), ṽ(n0)) + VN−1(n0 + 1, xu,ṽ(n0 + 1))

}
≤ `(n0, x0, u(n0), v(n0)) + VN−1(n0 + 1, xu,v(n0 + 1)) +

ε

2
.

(18)

Note that u ∈ UN (n0, x0) implies u(· + 1) ∈ UN−1(n0 + 1, xu,ṽ(n0 + 1)) for every ṽ ∈
V N (n0, x0). Hence, for z = xu,v(n0 + 1), we find v̄ ∈ V N−1(n0 + 1, xu,v(n0 + 1)) with

VN−1(n0 + 1, z) = min
u∈UN−1

max
v∈V N−1

JN−1(n0 + 1, z, u, v)

≤ max
v∈V N−1

JN−1(n0 + 1, z, u(·+ 1), v)

≤ JN−1(n0 + 1, z, u(·+ 1), v̄) +
ε

2
.

(19)

Combining (17)–(19) and finally (16), we can conclude

WN (n0, x0) ≤ `(n0, x0, u(n0), v(n0)) + VN−1(n0 + 1, xu,v(n0 + 1)) +
ε

2
≤ `(n0, x0, u(n0), v(n0)) + JN−1(n0 + 1, z, u(·+ 1), v̄) + ε

≤ max
v∈V N

JN (n0, x0, u, v) + ε

≤ VN (n0, x0). �

9.2. Miscellaneous.

Lemma 9.1. Let C ⊂ Rn be a convex set with C̊ 6= ∅. Let x ∈ ∂C and y ∈ C̊. Then, the
inclusion

{x+ ε(y − x) : ε ∈ (0, 1]} ⊂ C̊
holds.

Proof. Let ε > 0 and consider m = x+ ε(y − x). Then, m ∈ C. Furthermore, the function
f : Rn → Rn defined by

z 7→ x+
1

ε
(z − x)

is continuous with f−1(C) ⊂ C, since for w ∈ C we have

w = x+
1

ε
(z − w) ⇐⇒ z = x+ ε(w − x).

Due to continuity, f−1(C̊) ⊂ C is open. Furthermore, we have m ∈ f−1(C̊) since f(m) = y

and, thus, m ∈ C̊. �
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