
Projection onto hyperbolicity cones and beyond: a dual

Frank-Wolfe approach

Takayuki Nagano* Bruno F. Lourenço� Akiko Takeda�

September 4, 2024

Abstract

We discuss the problem of projecting a point onto an arbitrary hyperbolicity cone from both the-
oretical and numerical perspectives. While hyperbolicity cones are furnished with a generalization of
the notion of eigenvalues, obtaining closed form expressions for the projection operator as in the case
of semidefinite matrices is an elusive endeavour. To address that we propose a Frank-Wolfe method to
handle this task and, more generally, strongly convex optimization over closed convex cones. One of our
innovations is that the Frank-Wolfe method is actually applied to the dual problem and, by doing so,
subproblems can be solved in closed-form using minimum eigenvalue functions and conjugate vectors. To
test the validity of our proposed approach, we present numerical experiments where we check the per-
formance of alternative approaches including interior point methods and an earlier accelerated gradient
method proposed by Renegar. We also show numerical examples where the hyperbolic polynomial has
millions of monomials. Finally, we also discuss the problem of projecting onto p-cones which, although
not hyperbolicity cones in general, are still amenable to our techniques.

1 Introduction

Hyperbolicity cones [16, 18, 4, 41] are a far-reaching family of closed convex cones containing all symmetric
cones and all polyhedral cones. In particular, the cone of n×n real symmetric positive semidefinite matrices
Sn+ is a hyperbolicity cone. One distinctive feature of Sn+ is that the orthogonal projection onto Sn+ has
a well-known expression that can be described in terms of the spectral decomposition of a matrix. More
precisely, if X is an n× n symmetric matrix, v1, . . . vn are n orthonormal eigenvectors of X and λ1, . . . , λn
are the corresponding eigenvalues, then the projection onto Sn+ with respect to the Frobenius norm is the
result of “zeroing the negative eigenvalues in the spectral decomposition”:

PSn
+

(X) = arg min
Y ∈Sn

+

‖Y −X‖F =

n∑
i=1

max(0, λi)viv
>
i , (1.1)

where ‖·‖F is the Frobenius norm. Analogously, for a hyperbolicity cone there is a natural notion of eigen-
values (see Section 2.1) that is strong enough to allow the extension of certain linear algebraic results about
symmetric matrices, e.g., [4, 41]. With this in mind, the starting point of this project was the following
questions:

*Department of Mathematical Informatics, Graduate School of Information Science and Technology, University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

�Department of Fundamental Statistical Mathematics, Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa,
Tokyo 190-8562, Japan. This author was supported partly by the JSPS Grant-in-Aid for Early-Career Scientists 23K16844.
(bruno@ism.ac.jp)

�Department of Mathematical Informatics, Graduate School of Information Science and Technology, University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan and Center for Advanced Intelligence Project, RIKEN, 1-4-1, Nihonbashi,
Chuo-ku, Tokyo 103-0027, Japan. This was author was supported partly by the JSPS Grant-in-Aid for Scientific Research (B)
23H03351 and JST ERATO Grant Number JPM- JER1903. (takeda@mist.i.u-tokyo.ac.jp)

1

Given a general hyperbolicity cone Λ ⊆ Rn and x ∈ Rn, how to compute the projection of x
onto Λ efficiently, i.e., how to compute PΛ(x) := arg miny∈Λ ‖y − x‖? Are there closed form
expressions analogous to (1.1) in term of the eigenvalues of x ?

First, we mention briefly why these questions are important. Besides being an interesting geometric question
on its own, the usefulness of having a readily available projection operator for some convex set is well-
documented in optimization (e.g., see [20]): it is, after all, a basic requirement for the applicability of several
algorithms. Not only that, methods such as cyclic projections and others (e.g., see [3]) can be used to refine
the feasibility properties of a solution obtained by a numerical solver. All of this is, of course, contingent on
either having a “reasonable” closed form solution for the projection operator or a fast numerical method.

In the case of a general hyperbolicity cone, the fact that we have a relatively powerful notion of eigenvalues
gives some hope of an analogue of (1.1). Unfortunately, even though we have eigenvalues, we do not have
a suitable generalization of the notion of spectral decomposition that is always available for an arbitrary
hyperbolicity cone. Nevertheless, in this paper we will present several partial results on this front regarding
the computation of distance functions to hyperbolicity cones.

As for numerical methods, there are a few challenges one must take care. It goes without saying that a
method to compute the projections onto Λ cannot make use of, say, the projection operator PΛ(·) onto Λ,
so this excludes several algorithms as potential candidates such as projected gradient-based methods and
augmented Lagrangian methods.

In order to overcome this difficulty, we propose a Frank-Wolfe based method for computing the projection
operator onto a hyperbolicity cone Λ. However, developing a Frank-Wolfe based approach successfully has
its own challenges. For example, the subproblems appearing during the Frank-Wolfe iteration should either
have closed form solutions or be efficiently solvable. In addition, it is typically required that the feasible
region be compact, which is not true for the problem of projecting a point onto a convex cone.

In this work, we show that it is possible to overcome all these difficulties in the case of hyperbolicity
cones and we will discuss a dual Frank-Wolfe method for solving the projection problem over a hyperbolicity
cone and beyond. Our approach is dual in the sense that the Frank-Wolfe algorithm is actually applied to
the Fenchel dual of our problem of interest. This is because, surprisingly, solving the problem from the dual
side leads to subproblems that have closed form solutions in terms of the underlying hyperbolic polynomial.

Although our focus will be on the hyperbolicity cone case, the method we discuss in this paper is actually
capable of solving a larger class of problems as follows:

min
x∈Rn

f(x)

s.t. Tx+ b ∈ K
(1.2)

where f : Rn → R is a closed proper µ-strongly convex function, T : Rn → Rm is a linear map and K
is a full-dimensional pointed closed convex cone. In this case, we are able to show that the subproblems
that appear in the Frank-Wolfe algorithm can be expressed in terms of generalized eigenvalue functions.
The problem (1.2) contains as a special case the projection problem, since for fixed x0 ∈ Rn, we can take

f(x) := ‖x− x0‖2, let T be the identity map and b := 0.
We now summarize the main contributions of this paper.

� We provide a few theoretical results on the projection operator and the distance function to hyper-
bolicity cones. In particular, for the so-called isometric hyperbolic polynomials, there are formulae
analogous to the ones that hold for the positive semidefinite cone, see Propositions 3.4 and 3.6.

� We propose a dual Frank-Wolfe method for solving (1.2), which includes the particular case of projecting
onto a hyperbolicity cones. One of our main results is that the solution to the subproblems appearing
in our method can be expressed in terms of generalized minimal eigenvalue computations and conjugate
vectors, see Theorem 4.3. In the particular case of hyperbolicity cones, we show how conjugate vectors
can easily be obtained from the underlying hyperbolic polynomial, see Proposition 4.4. We then provide
several convergence results in Section 4.2. We emphasize that since the Frank-Wolfe method is applied
to a dual problem of (1.2), it is still necessary to bridge the gap between the dual and primal problems.

2

With this issue in mind, we provide some convergence results from the primal side, see Theorems 4.6
and 4.7. We also provide a discussion on practical issues one may find when implementing our approach,
see Section 4.3.

� We provide an implementation of our algorithm and numerical experiments in Section 5. Taking
interior point methods as a baseline, we compare against an earlier algorithm proposed by Renegar for
hyperbolicity cones [43]. We also show that our implementation is capable of handling polynomials with
millions of monomials, provided that the underlying computational algebra is carefully implemented,
see Section 5.1.2. At the end, we also have numerical experiments for non-hyperbolicity cones, see
Section 5.2.

1.1 Related works

In this brief subsection, we review some key works on numerical aspects of hyperbolicity cones. Güler wrote
a pioneering work on hyperbolic polynomials and interior point methods (IPMs) [18]. Nowadays, there are
a few IPM-based generic conic solvers that are capable of handling hyperbolicity cone constraints, such as
DDS [25], Hypatia [9] and alfonso [37]. For Hypatia and alfonso, it seems possible, in theory, to use their
“generic conic interface” to implement optimization over hyperbolicity cones. DDS, on the other hand, has
specific functionalities tailored for hyperbolicity cones.

In any case, the problem of finding the orthogonal projection onto a hyperbolicity cone K can be naturally
formulated as a conic linear program over the direct product between K and an additional second-order cone
constraint. Therefore, finding the projection can be, in theory, done with one of those solvers.

Regarding first-order methods, Renegar proposed an algorithm for conic linear programs over hyperbol-
icity cones which uses smoothing and accelerating techniques [43].

In Section 5, we present numerical experiments in order to compare the performance of different ap-
proaches for particular cases of the problem in (1.2). Although we defer a detailed discussion to Section 5,
we will see that our proposed algorithm (which is a first-order method) is quite competitive in comparison
with the aforementioned approaches.

1.2 Outline of this work

In Section 2, we recall some necessary definitions from convex analysis, hyperbolic polynomials and the
Frank-Wolfe method. In Section 3 we prove a theoretical discussion on the distance function and the
projection operator onto an isometric hyperbolicity cone. In Section 4, we propose and analyze a first-order
dual algorithm to optimize strongly convex functions over regular cones based on a Frank-Wolfe method. In
Section 5, we show the results of numerical experiments. We compare our algorithm with Renegar’s method
described in [43] and the DDS [25] solver. As our proposed method is also applicable to more general cones,
we also include numerical experiments for the problem of projecting onto p-cones and a comparison with
Mosek [34]. Section 6 concludes this paper.

2 Preliminaries

We start with notations and basic definitions. Given an element u ∈ Rn, we will denote its i-th component
by ui. We use 1n to denote the n-dimensional vector whose components are all equal to 1. We write Rn↓
for the cone of elements u ∈ Rn satisfying u1 ≥ · · · ≥ un. Let u ∈ Rd, we denote by u↓ the element in Rd↓
corresponding to a reordering of the coordinates of u in such a way that

u↓1 ≥ · · · ≥ u
↓
d.

We write Rn+ for the nonnegative orthant, i.e., the elements u ∈ Rn such that ui ≥ 0 for every i.
For a convex subset S ⊆ Rn, we denote its indicator function, recession cone, interior and relative interior

by δS , 0+S, intS and riS, respectively. Additionally, we suppose Rn is endowed with an inner product 〈·, ·〉

3

and a corresponding induced norm ‖·‖. With that, we denote by S⊥ the set of elements orthogonal to S.
For a convex cone K ⊆ Rn, we define its dual cone as

K∗ := {x ∈ Rn | ∀y ∈ K, 〈x, y〉 ≥ 0}.

A cone K is said to be pointed if K ∩ −K = {0} and full-dimensional if its interior is non-empty. A
full-dimensional pointed cone is said to be regular.

Two elements satisfying x ∈ K, y ∈ K∗ and 〈x, y〉 = 0 are said to be conjugate. For x ∈ K, we denote the
set of elements conjugate to x by F∆

x so that

F∆
x := {y ∈ K∗ | 〈y, x〉 = 0} = K∗ ∩ {x}⊥. (2.1)

The reason for this notation is that if Fx denotes the unique face of K satisfying x ∈ riFx, then F∆
x as

defined in (2.1) is exactly the conjugate face to Fx, i.e., F∆
x = K∗ ∩ F⊥x holds. For more details on faces of

cones, see [2, 38].
For a closed convex function f : Rn → R∪{∞}, we denote its conjugate function by f∗, which is defined

as
f∗(s) := sup

x∈domf
{〈s, x〉 − f(x)},

where domf = {x ∈ Rn | f(x) <∞}.
For a linear map T : Rn → Rm, we denote by T ∗ the adjoint map of T . We denote the operator norm of

T by ‖T‖op, which is defined as

‖T‖op := sup
x 6=0

‖Tx‖
‖x‖

,

where by a slight abuse of notation we use the same symbol ‖ · ‖ to indicate the underlying norm in Rn and
Rm.

A differentiable function f : Rn → R is called L-smooth if ∇f is Lipschitz continuous with constant
L > 0, i.e.,

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Rn.

For a µ > 0, f is called µ-strongly convex if for every θ ∈ [0, 1] we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− µ

2
θ(1− θ) ‖x− y‖2 , ∀x, y ∈ Rn.

Finally, we recall that the conjugate of a µ-strongly convex function is 1/µ-smooth, see [21, Theorem 4.2.1].

2.1 Hyperbolic polynomials

Let p : Rn → R be a homogeneous polynomial, we say that p is hyperbolic along the direction e if and only
if p(e) 6= 0 and for every x ∈ Rn, the one-dimensional polynomial

t 7→ p(x− te)

has only real roots. Here we summarize some basic properties of hyperbolic polynomials that will be necessary
in the subsequent sections. For more details, see [16, 18, 41].

Suppose that p has degree d. We define the map λ : Rn → Rd↓ that maps x ∈ Rn to the d roots of the
polynomial p(x− te), ordered from largest to smallest. That is, we have

p(x− te) = p(e)

d∏
i=1

(λi(x)− t)

λ1(x) ≥ · · · ≥ λd(x).

4

In analogy to classical linear algebra, we will say that λ1(x), . . . , λd(x) are the eigenvalues of x. We also
write λd(x) as λmin(x) to emphasize that λd(x) is the smallest eigenvalue. Then, the hyperbolicity cone of p
along the direction e is the closed convex cone Λ(p, e) given by

Λ(p, e) = {x ∈ Rn | λmin(x) ≥ 0},

see Section 2 in [41]. If p and e are clear from the context, we write Λ(p, e) as Λ.
For x ∈ Rn, we denote by mult(x) the number of zero eigenvalues of x. That is, mult(x) is the multiplicity

of zero as a root of t 7→ p(x− te).
A hyperbolic polynomial p is said to be complete if and only if

{x ∈ Rn | λ(x) = 0} = {x ∈ Rn | mult(x) = d} = {0}.

This happens if and only if Λ is pointed, see [41, Proposition 11].

Derivative relaxations Let Dep denote the directional derivative of p along e, so that

Dep(x) = lim
t→0

p(x+ te)− p(x)

t
, ∀x ∈ Rn.

Then, the function Dep : Rn → R is also a hyperbolic polynomial along e. The hyperbolicity cone associated
with (Dep, e), is called the derivative cone (of p along e) and is denoted by Λ′.

We write Di
ep for the higher order derivatives, so that Di

ep(x) = dip(x+te)
dti |t=0. Then, we define p(0) := p,

p(1) := D1
ep, . . . , p

(d) := Dd
ep. Taking the derivative repeatedly gives a sequence of hyperbolic polynomials

and associated hyperbolicity cones
Λ ⊆ Λ(1) ⊆ · · · ⊆ Λ(d−1)

Finally, we need the following property of hyperbolicity cones.

Theorem 2.1. [41, Theorem 12] Let Λ be a hyperbolicity cone. Define ∂rΛ = {x ∈ Λ | mult(x) = r}. Then,
for r ≥ 2,

∂rΛ(1) = ∂r+1Λ

Also,
∂1Λ(1) ∩ Λ = ∂2Λ

2.2 Generalized minimum eigenvalue functions

In this subsection we discuss a generalization of the minimum eigenvalue function that is applicable to general
regular cones. Let K ⊆ Rn be a regular (i.e., full-dimensional and pointed) closed convex cone. Let e ∈ intK
be fixed, then the minimum eigenvalue function λmin : Rm → R with respect to K and e is defined as:

λmin(x) := sup {t | x− te ∈ K}. (2.2)

First we observe that λmin(x) = inf {t | x− te 6∈ K} holds and this was the original definition considered in
[42, Section 2], see also [32, Section 2.5] and [23, Section 2]. Given that there is a dependency on e and K, it

might be appropriate to use some notation similar to “λK,emin”, but since there will be no ambiguity regarding
the chosen K and e, we will use the simpler λmin. We recall the following basic properties of λmin.

Proposition 2.2. Let K ⊆ Rn be a regular closed convex cone and e ∈ intK be fixed. Let λmin be as in
(2.2). For x ∈ Rn, the following items hold.

(i) λmin(x) is finite.

(ii) x ∈ K ⇐⇒ λmin(x) ≥ 0.

(iii) x ∈ intK ⇐⇒ λmin(x) > 0.

5

Proof. Since e is an interior point of K, there exists u > 0 such that e + ux ∈ K and since K is a cone,
x+ e/u ∈ K holds as well. This shows that λmin(x) > −∞. On the other hand if λmin(x) =∞, then x− te
belongs to K for all t. This would imply that −e ∈ K (e.g., see [44, Theorem 8.3]), which would contradict
the pointedness of K. This shows that item (i) holds.

For item (ii), if x ∈ K, then t = 0 is a feasible solution to (2.2), so indeed λmin(x) ≥ 0. Conversely,
if λmin(x) ≥ 0, then for every k > 0, there exists tk satisfying λmin(x) ≥ tk > λmin(x) − 1

k ≥ −
1
k and

x − tke ∈ K. Passing to a convergent subsequence if necessary, we may assume that tk converges to some
t̄ ≥ 0. Since K is closed, we have x− t̄e ∈ K. This implies that x = (x− t̄e) + (t̄e) ∈ K.

The proof of item (iii) is similar so we omit it.

Now, suppose that K = Λ(p, e) is a regular hyperbolicity cone. In the following proposition we observe
that λmin as defined in Section 2.1 and in (2.2) coincide.

Proposition 2.3. Let Λ(p, e) ⊆ Rn be a regular hyperbolicity cone and suppose that the degree of p is d.
Then, for every x ∈ Rn, λd(x) = sup{t | x− te ∈ Λ(p, e)}, where λd(x) is the smallest root of t 7→ p(x− te).

Proof. Let x ∈ Rn and suppose that p has degree d. By definition, the eigenvalue map (as in Section 2.1)
satisfies

λ(x− αe) = λ(x)− α1, ∀α ∈ R,

where 1 ∈ Rn is the vector where each component is 1. Recalling that x − te ∈ Λ(p, e) if and only if
λ(x− te) ≥ 0, we see that the condition “x− te ∈ Λ(p, e)” implies the component-wise inequality

λ(x) ≥ t1.

In particular, the maximum value that t can assume under the constraint “x− te ∈ Λ(p, e)” is λd(x), where
λd(x) is the smallest root of t 7→ p(x − te). Conversely, if t := λd(x), we have λd(x − λd(x)e) = 0, so
x− λd(x)e ∈ Λ(p, e). That is, λd(x) is the optimal solution to the maximization problem in (2.2).

2.3 The Frank-Wolfe Method

In this subsection, we review some of the basic aspects of the Frank-Wolfe method (FW method) proposed by
Frank and Wolfe [13], which is also known as conditional gradient method [10, Chapter 3], see also [14, 7, 40].
Originally Frank and Wolfe proposed the algorithm to optimize a quadratic function over a polyhedral set,
but the FW method is applicable to the following more general problem:

min
x∈C

f(x), (2.3)

where C is a convex and compact set in Rn and f is a differentiable and L-smooth function in C. There
are several variants on FW methods [49, 22, 27, 39], but here we only make use of the simplest version, see
Algorithm 1, which follows the description in the survey [7].

Algorithm 1: The Frank-Wolfe method [13]

1: Choose a point x0 ∈ C
2: for k = 0, 1, . . . do
3: If xk satisfies some stopping criterion, STOP
4: Compute sk ∈ arg minx∈C〈∇f(xk), x〉
5: Set dk := sk − xk
6: Choose step size αk ∈ (0, 1]
7: Set xk+1 := xk + αkdk
8: end for

One important aspect of the FW method is that it does not require the projection operator onto C.
Instead, we assume the availability of a linear optimization oracle over C which is capable of solving the

6

subproblem minx∈C〈∇f(xk), x〉 appearing in line 4 of Algorithm 1. A successful application of the FW
method thus depends on having a fast way to solve the underlying subproblem. Fortunately there are many
such problems, which have contributed for the recent renewed interest in FW methods in optimization,
machine learning and even extensions to nonconvex problems, e.g., [24, 33, 1, 50].

Another useful feature of FW methods is that there is an easily computable measure of convergence
called the Frank-Wolfe gap (the FW gap). The FW gap at x is denoted by G(x) and is defined as

G(x) := max
s∈C
〈−∇f(x), s− x〉.

Let xopt denote an optimal solution to (2.3). Since f is convex, for x ∈ C we have 〈−∇f(x), xopt − x〉 ≥
f(x)− f(xopt) ≥ 0. We also recall that x ∈ C is optimal if and only if −∇f(x) belongs to the normal cone
of C at x. Consequently, the FW gap has the following properties for x ∈ C, see also [7, Section 5.1]:

� G(x) is always nonnegative and equal to 0 if and only if x is optimal.

� G(x) ≥ f(x)− f(xopt) holds.

� G(xk) = 〈−∇f(xk), dk〉 for the k-th iterate in Algorithm 1.

In particular, under convexity, G(x) is an upper bound to the optimality gap f(x) − f(xopt). Also, G(xk)
can be calculated easily at each iteration. Because of these properties, G(xk) is often used as a stopping
criterion.

We end this section with some known convergence result regarding Algorithm 1.

Theorem 2.4. If f is convex and step size αk is given by one of the following rules, the sequence {xk}
generated by Algorithm 1 satisfies

f(xk)− fopt = O(1/k).

� diminishing step size rule [24, Theorem 1]: αk := 2
k+2

� exact line search [11, Theorem 3.1]: αk := arg minα∈[0,1] f(xk + αdk)

� Lipschitz constant dependent step size [28, Theorem 6.1]: αk := min
{
− 〈∇f(xk),dk〉

L‖dk‖2
, 1
}

, where L is a

Lipschitz constant of ∇f ,

Finally, we mention in passing that there are also convergence results about the FW gap, e.g., see [24].

3 Projections and distance functions

Let Λ(p, e) ⊆ Rn be a hyperbolicity cone which we will denote simply by Λ. In this section, we present
a few theoretical results about the projection operator PΛ(·) and the distance function dist (·,Λ), with an
important caveat that they are considered with respect a certain norm derived from p as follows

PΛ(x) := arg min
y∈Λ

‖x− y‖ , dist (x,Λ) := min
y∈Λ
‖x− y‖ ,

where ‖·‖ and the underlying inner product are given by

‖x‖ :=
√
λ1(x)2 + · · ·+ λd(x)2 = ‖λ(x)‖ (3.1)

〈x, y〉 :=
1

4
‖x+ y‖2 − 1

4
‖x− y‖2 ,

which is indeed a norm under the assumption that p is complete, see [4, Theorem 4.2]. Here, we abuse the
notation slightly so that ‖λ(x)‖ indicates the usual Euclidean norm of λ(x) in Rd.

The results in the section are applicable to the so-called isometric hyperbolic polynomials which were
initially considered in [4] and are defined as follows.

7

Definition 3.1 (Isometric hyperbolic polynomial, [4, Definition 5.1]). A hyperbolic polynomial p is isometric
if and only if for all y, z ∈ Rn, there exists x ∈ Rn satisfying

λ(x) = λ(z) and λ(x+ y) = λ(x) + λ(y).

Here are some examples of isometric hyperbolic polynomials and the corresponding inner products and
norm.

Example 3.2 (The nonnegative orthant, the semidefinite cone and symmetric cones). The nonnegative
orthant Rn+ can be realized as a hyperbolicity cone by taking p : Rn → R to be the polynomial p(x) :=

∏n
i=1 xi

and e := (1, . . . , 1). With that, p is isometric and induced inner product and norm are the usual Euclidean
one.

Let Sn be the cone of n × n real symmetric matrices, and S+
n be the cone of n × n real symmetric

positive semidefinite matrices. Then, det on Sn is a hyperbolic polynomial w.r.t. the identity matrix I, and
Λ(det, I) = S+

n . With the usual linear algebraic spectral decomposition, one can check that det is indeed
isometric. The norm induced by det is identical to the Frobenius norm, and the induced inner product is
identical to the trace inner product.

More generally, every symmetric cone can be realized as a hyperbolicity cone induced by some isometric
hyperbolic polynomial, see [48, Section 2.2] for more details.

3.1 The distance function to a hyperbolicity cone

Let x ∈ Rn. Because x belongs to Λ if and only if λ(x) ∈ Rd+, a reasonable guess is that dist (x,Λ) satisfies

dist (x,Λ)2 =

d∑
i=1

min(λi(x), 0)2,

which does indeed hold in quite a few cases, for example, when Λ is the cone of d× d positive semidefinite
real matrices. Unfortunately, we will see that proving this expression seems to require extra assumptions on
p.

A general formula for dist (x,Λ) can be obtained by making use of the following lemma, see also [5,
Proposition 5.3].

Lemma 3.3. If a hyperbolic polynomial is isometric then dist (u, λ(x)) = dist (λ−1(u), x) holds for all
u ∈ λ(Rn) and all x ∈ Rn.

Proof. Let z be such that dist (λ−1(u), x) = ‖z − x‖ and λ(z) = u. By the isometric property, there exists y

such that λ(y) = λ(z) = u and λ(y + x) = λ(y) + λ(x). Simplifying the equality ‖y + x‖2 = ‖λ(y + x)‖2 =

‖λ(y) + λ(x)‖2 leads to
〈x, y〉 = 〈λ(x), λ(y)〉 = 〈λ(x), λ(z)〉. (3.2)

Recalling that 〈z, x〉 ≤ 〈λ(z), λ(x)〉 holds (see [5, Proposition 4.4]), we have

dist (λ−1(u), x)2 = ‖z − x‖2

= ‖z‖2 − 2〈z, x〉+ ‖x‖2

≥ ‖z‖2 − 2〈λ(z), λ(x)〉+ ‖x‖2

= ‖y‖2 − 2〈λ(y), λ(x)〉+ ‖x‖2 ,

where the last equality follows from ‖y‖2 = ‖λ(y)‖2 = ‖λ(z)‖2 = ‖z‖2 and λ(y) = λ(z). Then, in view of
(3.2), we obtain

dist (λ−1(u), x)2 ≥ ‖x− y‖2 .
Since λ(y) = λ(z) = u holds we have in fact dist (λ−1(u), x)2 = ‖x− y‖2. Recalling (3.2), this leads to

dist (λ−1(u), x)2 = ‖x− y‖2 = ‖λ(y)‖2 − 2〈λ(y), λ(x)〉+ ‖λ(x)‖2 = ‖λ(x)− λ(y)‖2 = dist (u, λ(x))2.

8

Proposition 3.4 (The distance to an isometric hyperbolicity cone). Let Λ = Λ(p, e) be a complete hyper-
bolicity cone, p an isometric hyperbolic polynomial and let x ∈ Rn. We have

dist (x,Λ) = inf
u∈λ(Λ)

‖λ(x)− u‖ .

In particular, if λ(Λ) = Rd+ ∩ Rd↓ holds, then dist (x,Λ)2 =
∑d
i=1 min(λi(x), 0)2.

Proof. First, we note that that Λ can be written as an union of sets that correspond to elements that have
the same eigenvalues, i.e., Λ =

⋃
u∈λ(Λ) λ

−1(u). With that, we have

dist (x,Λ) = min
y∈Λ

dist (x, y) = min
u∈λ(Λ)

[
min

y∈λ−1(u)
dist (y, x)

]
= min
u∈λ(Λ)

[
dist (λ−1(u), x)

]
= min
u∈λ(Λ)

dist (u, λ(x)), (3.3)

where the last equality follows from Lemma 3.3. This shows the first half of the proposition. If additionally
λ(Λ) = Rd+ ∩ Rd↓ holds, we have

min
u∈λ(Λ)

dist (u, λ(x)) = min
u∈Rd

+∩Rd
↓

‖λ(x)− u‖ ≥ min
u∈Rd

+

‖λ(x)− u‖ =
∥∥λ(x)− λ(x)+

∥∥ , (3.4)

where λ(x)+ is the projection of λ(x) onto Rd+, which is obtained by zeroing the negative components of
λ(x). Since λ(x) ∈ Rd↓ holds, we also have λ(x)+ ∈ Rd↓. We conclude that∥∥λ(x)− λ(x)+

∥∥ ≥ min
u∈Rd

+∩Rd
↓

‖λ(x)− u‖ . (3.5)

From (3.4) and (3.5) we have ‖λ(x)− λ(x)+‖ = minu∈λ(Λ) dist (u, λ(x)). This, together with (3.3), leads to

dist (x,Λ) = ‖λ(x)− λ(x)+‖ which implies dist (x,Λ)2 =
∑d
i=1 min(λi(x), 0)2.

We now take a look at the requirement that λ(Λ) coincides with Rd+∩Rd↓. By construction, λ(Λ) is always

contained in Rd+ ∩ Rd↓, so the nontrivial part is the opposite containment. The condition λ(Λ) = Rd+ ∩ Rd↓
does not hold in general, but it is connected to another condition that was used to prove some of the results
of [4] about conjugacy of spectral functions, see [4, Section 5].

Lemma 3.5. Suppose that p : Rn → R is an isometric hyperbolic polynomial. We have λ(Λ) = Rd+ ∩ Rd↓ if

and only if λ(Rn) = Rd↓.

Proof. Suppose λ(Rn) = Rd↓. As we have observed, λ(Λ) ⊆ Rd+∩Rd↓ always holds, so let us prove the opposite

containment. If u ∈ Rd+ ∩Rd↓, since λ(Rn) = Rd↓, there exists x ∈ Rn such that λ(x) = u. Since u ∈ Rd+, such
an x must belong to Λ.

Next, suppose that λ(Λ) = Rd+ ∩ Rd↓. Since we always have λ(Rn) ⊆ Rd↓, let us prove the opposite

containment. Let u ∈ Rd↓. Then, we can write u as the sum of two elements in Rd↓ corresponding to the
positive and negative components of u. We have

u = u+ + u−.

Since u+ ∈ Rd+ as well, by hypothesis, there exists y ∈ Λ such that λ(y) = u+. Similarly, there is z ∈ Λ such
that λ(z) = (−u−)↓. We note that since the eigenvalues of −z are the negatives of the eigenvalues of z, we
have λ(−z) = u−.

Since p is assumed to be isometric, there exists x such that λ(x) = λ(−z) and λ(x + y) = λ(x) + λ(y).
That is, we have

λ(x+ y) = λ(x) + λ(y) = u− + u+ = u.

9

3.2 Partial results on the projection operator

Having discussed distance functions, we now take a look at how to actually project an arbitrary point
onto a hyperbolicity cone. If Λ is the cone of positive semidefinite matrices, computing the projecting is
easy: we just compute a spectral decomposition of x and zero negative eigenvalues. However, when Λ is
an arbitrary hyperbolicity cone, the analogy to positive semidefinite matrices does not seem to take us very
far. A difficulty is that, although we have a generalized notion of eigenvalues, there is no obvious notion of
“eigenvectors”. Similarly, no obvious notion of spectral decomposition exists.

That said, if each eigenvalue of λi(x) is simple, i.e., a root of multiplicity one for the polynomial univariate
polynomial t 7→ p(x − te), the projection of x onto Λ can be represented in closed form. We use results of
[4] in our proof.

Proposition 3.6. Let Λ = Λ(p, e) be a complete hyperbolicity cone and suppose that p is isometric and

λ(Rn) = Rd↓ holds. Define f : Rd → R as f(x) := 1
2

∑d
i=1 max{xi, 0}2. Then, f ◦ λ is convex differentiable,

and for all x ∈ Rn,
PΛ(x) = ∇(f ◦ λ)(x).

Proof. Under the stated assumptions, [4, Theorem 3.9] implies convexity of f ◦λ and [4, Theorem 5.5] leads
to the following equivalence.

y ∈ ∂(f ◦ λ)(x) ⇐⇒ λ(y) ∈ ∂f(λ(x)) and 〈x, y〉 = 〈λ(x), λ(y)〉. (3.6)

Because ‖λ(x)‖ = ‖x‖ holds, expanding ‖x− y‖2 we also obtain the following equivalence

〈x, y〉 = 〈λ(x), λ(y)〉 ⇐⇒ ‖λ(x)− λ(y)‖ = ‖x− y‖. (3.7)

By definition, f is differentiable and ∇f is the projection operator onto Rn, i.e.

∇f = PRd
+
. (3.8)

By (3.7) and (3.8), (3.6) can be rewritten as

y ∈ ∂(f ◦ λ)(x) ⇐⇒ λ(y) = PRd
+

(λ(x)) and ‖λ(x)− λ(y)‖ = ‖x− y‖. (3.9)

Let y ∈ ∂(f ◦ λ)(x), then in view of (3.9) we have ‖x− y‖2 =
∑d
i=1 min(0, λi(x))2. Since λ(y) ∈ Rd+, we

have y ∈ Λ, so by Lemma 3.5 and Proposition 3.4, y is precisely the projection of x onto Λ.
Since the projection onto a closed convex set is unique, the subdifferential ∂(f ◦λ)(x) is a singleton. This

means that f ◦ λ is differentiable at x and ∇(f ◦ λ) is the projection onto Λ.

Corollary 3.7. In addition to the assumption in Proposition 3.6, suppose each eigenvalue λi(x) is simple.
Then,

PΛ(x) =

d∑
i=1

max(λi(x), 0)
1

p(1)(x− λi(x)e)
∇p(x− λi(x)e)

Proof. If each eigenvalue λi(x) is simple, then x 7→ λi(x) is analytic in a neighbourhood of x, and

∇λi(x) =
1

p(1)(x− λi(x)e)
∇p(x− λi(x)e) (3.10)

holds, see Section 3.1 and Equation (3.5) in [43]. From Proposition 3.6 we have

PΛ(x) = ∇(f ◦ λ)(x).

10

From the definition of f and (3.10) we have

PΛ(x) = ∇(f ◦ λ)(x) =

d∑
i=1

max(λi(x), 0)∇λi(x)

d∑
i=1

max(λi(x), 0)
1

p(1)(x− λi(x)e)
∇p(x− λi(x)e).

3.3 Limitations and further discussion

The results we proved so far on the distance function and the projection operator are restricted to isometric
hyperbolic polynomials and the sharpest results require the provision that λ(Rn) = Rd↓. Unfortunately there
are at least three issues.

The first is that it is not known how large the class of isometric hyperbolic polynomials is and even
hyperbolic polynomials associated to polyhedral cones may fail to be isometric. In a sense, this is not
surprising because the same cone can be generated by different hyperbolic polynomials, e.g., R3

+ also satisfies
R3

+ = Λ(p, (1, 1, 1)) for p(x1, x2, x3) = x2
1x

2
2x

2
3. An example of non-isometric polynomial is given in [4,

Example 5.2], however it is less than ideal because there there are “redundancies” in the description of the
underlying cone1.

The way to ensure that there are no redundancies is to restrict ourselves to minimal polynomials, which
we will now recall. For simplicity, assume that Λ is a regular hyperbolicity cone. Although Λ can be
generated by different hyperbolic polynomials, there exists a hyperbolic polynomial p of minimal degree that
generates Λ with the property that p divides any other hyperbolic polynomial p̂ satisfying Λ = Λ(p̂, e), e.g.,
see [19, Lemma 2.1] for a more general result or see the discussion in [17, Section 2.2]. We will call such
a p a minimal degree polynomial for Λ. So the more interesting question is whether minimal hyperbolic
polynomials can fail to be isometric. Unfortunately, that is indeed possible.

Proposition 3.8 (A non-isometric minimal polynomial associated to a polyhedral cone). Let p : R3 → R
be the polynomial defined as

p(x) = (x1 + x2 + x3)(x1 − x2 + x3)(2x1 − x2 − x3)(x1 + 2x2 − x3).

p is a hyperbolic polynomial along e = (0, 0, 1), and the hyperbolicity cone for (p, e) is the polyhedral cone
satisfying Λ(p, e) = {x ∈ R3 | x1 + x2 + x3 ≥ 0, x1 − x2 + x3 ≥ 0,−2x1 + x2 + x3 ≥ 0,−x1 − 2x2 + x3 ≥ 0}.
The polynomial p is minimal for Λ(p, e) but p is not isometric.

Proof. The roots of p(x− te) are

r1(x) = x1 + x2 + x3, r2(x) = x1 − x2 + x3,

r3(x) = −2x1 + x2 + x3, r4(x) = −x1 − 2x2 + x3.

In order for x to belong to Λ(p, e) all the roots must be nonnegative. This gives the expression for Λ(p, e) in
the statement of the proposition.

Next, let q be a minimal hyperbolic polynomial for Λ(p, e) so that q divides p and Λ(p, e) = Λ(q, e) holds.
Since p is a product of four degree 1 polynomials, q must be a product of some of those four polynomials.
Suppose that p is not of minimal degree. Then, q cannot have degree 4, so, up to a constant, it must be a
product of strictly less than four degree 1 polynomials among the ones that appear in the decomposition of
p. Therefore, in order to show that p is of minimal degree, we only need to argue that removing any of the
polynomials that appear in the decomposition of p will result in a larger cone. We do this case by case.

1Example 5.2 in [4] corresponds to the restriction of the polynomial p(x1, x2, x3) = x1x2x3 to a certain two-dimensional
space. Every pointed two-dimensional closed convex cone is isomorphic to R2

+, which only requires a degree 2 hyperbolic
polynomial. So, there is indeed a redundancy in the expression provided for Example 5.2 in [4].

11

If q omits the factor x1 + x2 + x3, then Λ(q, e) contains (−1,−1, 1) 6∈ Λ(p, e). If q omits x1 − x2 + x3,
then Λ(q, e) contains (−1, 1, 1) 6∈ Λ(p, e). If q omits 2x1 − x2 − x3, then Λ(q, e) contains (1,−1, 1) 6∈ Λ(p, e).
Finally, if q omits x1 + 2x2 − x3, then Λ(q, e) contains (1, 1, 2) 6∈ Λ(p, e).

The conclusion is that in order for q to be minimal it cannot omit any of the degree 1 factors of p, so q
must have degree 4 and p is a minimal degree polynomial as well.

Next, we sketch a proof that p is not isometric, see Appendix A for more details. Let z = (3, 1, 0) and
y = (−1, 0, 0). With that, λ(z) = (4, 2,−5,−5) holds, so z has an eigenvalue of multiplicity two. This implies
that if λ(w) = λ(z) holds for some w, at least two among the r1(w), r2(w), r3(w), r4(w) must be the same.
By considering all possible cases, we can show the following implication

λ(w) = λ(z) ⇐⇒ w = z,

see Appendix A for more details. Moreover, λ(z + y) 6= λ(z) + λ(y). Thus, p is not isometric.

The second issue is that even if a polynomial is isometric, it is not necessarily the case λ(Rd) = Rd↓ holds.
Such an example has already being considered in [4, Section 6], see the “Singular values” part and consider
Example 6.1 in view of Theorem 5.4 in [4].

The third and final issue is that even in the cases that the result in this section apply in full, they are
only valid to the projection computed with respect the norm induced by the hyperbolic polynomial in (3.1).
Naturally, the norm in (3.1) can be different from the usual Euclidean norm in Rn, which may limit the
applicability of the results.

In view of these limitations, we believe it is important to also consider numerical algorithms for computing
projections onto hyperbolicity cones. This leads us to the next section.

4 A FW algorithm for strongly convex optimization over regular
cones

In this section we develop a numerical method that is able to handle strong convex optimization over any
regular closed convex cone K. More precisely, we aim to solve the following pair of primal-dual problems:

min
x∈Rn

f(x) (P)

s.t. Tx+ b ∈ K

min
y∈Rm

(f∗ ◦ T ∗)(y) + 〈b, y〉 (D)

s.t. y ∈ K∗,
where f : Rn → R is a closed proper µ-strongly convex function, f∗ is its conjugate, T : Rn → Rm is a linear
map, T ∗ is its adjoint and b ∈ Rm is a vector.

Before we move on further, some remarks are in order. We suppose that Rm is equipped with some
arbitrary inner product 〈·, ·〉 for which the corresponding norm is given by ‖·‖. A similar remark applies to
Rn and while Rm and Rn may have different inner products, for simplicity we will use the same symbols 〈·, ·〉,
‖·‖ to denote the inner product and the norm in both spaces. Furthermore, the conjugate f∗, the adjoint
T ∗ and the dual cone K∗ are, of course, computed with respect to the inner product in the spaces that they
are defined. That said, in contrast to Section 3, one important point is that, even if K is a hyperbolicity
cone, we will not require that ‖·‖ be the norm induced by underlying hyperbolic polynomial p.

As mentioned in the Section 1, (P) contains as a particular case the projection problem, since we can take

b = 0, let T be the identity map and f(x) := ‖x− x0‖2, where x0 is fixed and ‖·‖ is the norm induced by
some inner product on Rn. However, (P) will also allow us to handle more general quadratic minimization
problems, as we shall see in Section 4.4.

The problem (D), although written as a minimization problem, is actually equivalent to the Fenchel dual
of (P) and for completeness we show below its derivation. First, we observe that (P) can be expressed as
follows using indicator functions:

min
x∈Rn

f(x) + δK−b(Tx). (4.1)

12

Then, the Fenchel dual problem of (4.1) is

max
y∈Rm

−f∗(T ∗y)− δ∗K−b(−y), (4.2)

e.g., see [44, Corollary 31.2.1]. Here, for all y ∈ Rm,

δ∗K−b(y) = sup
x∈Rm

{〈x, y〉 − δK−b(x)} = 〈−b, y〉+ δK◦(y),

where K◦ = −K∗ is the polar of K. Hence, δ∗K−b(−y) = 〈b, y〉+ δK∗(y). So, (4.2) is equivalent to (D).

Optimality conditions for (P) and (D) We now briefly discuss the optimality conditions for (P) and
(D), which follow from classic convex duality theory. First, we show that there is no duality gap and both
problems are attained under mild conditions. Here, we say that a problem is attained if there exists a feasible
solution whose objective function value is equal to the optimal value of the problem.

Proposition 4.1 (No duality gap). Let p∗ and d∗ denote the optimal values of (P) and (D). The following
items hold.

(i) p∗ + d∗ = 0.

(ii) If (P) is feasible, then p∗ and d∗ are finite and p∗ is attained.

(iii) If (P) satisfies Slater’s condition (i.e., there exists x̄ such that T x̄+ b ∈ intK), then p∗ and d∗ are both
finite and attained.

Proof. Since f is assumed to be strongly convex over Rn, the domain of f∗ is Rn, see [21, Theorem 4.2.1].
Because K is pointed, K◦ has an interior point. We note also that int (K)◦ = int dom δ∗K−b. Thus any point
in y ∈ int dom δ∗K−b is such that

T ∗y ∈ ri (dom f∗) = Rn (4.3)

Under (4.3), we can invoke an appropriate version of Fenchel’s duality theorem (e.g., [44, Corollary 31.2.1])
to conclude that (P) and (4.2) have the same optimal value and p∗ is attained if finite. In particular if (P) is
feasible, then, since (4.2) is feasible as well, p∗ is attained. Recalling that the optimal value of (4.2) is −d∗,
we conclude that p∗ + d∗ = 0. This proves items (i) and (ii).

Furthermore, if (P) satisfies Slater condition, the same Fenchel’s duality theorem ensures that d∗ is
attained, which proves item (iii).

From Proposition 4.1, there is no duality gap between (P) and (D) and, as long as Slater’s condition is
satisfied at (P), both problems have optimal solutions xopt and yopt, respectively. Since f is strongly convex,
xopt is unique. In any case, the solutions are related by the formulae:

T ∗yopt ∈ ∂f(xopt) (4.4)

Txopt ∈ ∂δ∗K−b(−yopt), (4.5)

e.g., see [44, pg. 333 and Theorem 31.3]. Since we assumed that f is a closed proper convex function, (4.4)
is equivalent to xopt ∈ ∂f∗(T ∗yopt), e.g., [44, Theorem 23.5]. Moreover, f∗ is differentiable because of the
strong convexity of f . In the end, (4.4) is equivalent to

xopt = ∇f∗(T ∗yopt). (4.6)

Similarly, (4.5) is equivalent to −yopt ∈ ∂δK−b(Txopt). An important consequence of (4.6) is that the unique
optimal solution of (4.1) can be derived from any optimal solution to the dual problem (D).

13

4.1 Overcoming the challenges of constructing a Frank-Wolfe based method

When applying a Frank-Wolfe method there are a few challenges a practitioner must handle in order to
obtain an efficient algorithm and to ensure convergence. In this subsection, we discuss these issues one by
one. Here, we recall our standing assumption that K is a regular closed convex cone.

4.1.1 Issue 1: Primal or dual?

The first issue is to decide which side of the problem to solve: (P) or (D). We are mainly interested in (P),
but solving (D) would also be enough in view of the fact that an optimal solution to (P) can be obtained
via (4.6).

That said, in order for the FW method to be efficient, we need to be efficient in solving the subproblem
“arg minx∈C〈∇f(xk), x〉” that appears in Algorithm 1. So the decision to apply FW to either (P) or (D)
depends on which side is more likely to afford an easily solvable subproblem.

After carefully examining this question, it seemed to us that solving (D) is more promising because the
FW subproblem in this case can be connected to the generalized minimum eigenvalue problem over a regular
cone, as we shall discuss in Section 4.1.3.

Having settled for (D), we discuss in the sequel two outstanding issues.

4.1.2 Issue 2: Compactness of the feasible region

The classical FW method requires the compactness of the feasible region, so it can not be applied directly
to (D). However, this can be fixed by adding a constraint that cuts a compact slice of the feasible region of
(D) in such a way that at least one optimal solution is inside the slice. In order to do that, we consider the
following assumption.

Assumption 1. We assume that e ∈ intK and cD > 0 are such that there exists at least one optimal
solution yopt to (D) satisfying 〈e, yopt〉 ≤ cD.

Under Assumption 1 we can show that

min
y∈Rm

(f∗ ◦ T ∗)(y) + 〈b, y〉

s.t. 〈e, y〉 ≤ cD
y ∈ K∗

(4.7)

has a compact feasible region, and, by assumption, (4.7) has at least one optimal solution of (D) among its
optimal solutions.

Proposition 4.2. The non-empty convex set

{y ∈ K∗ | 〈e, y〉 ≤ cD} (4.8)

is compact. Moreover, (4.8) contains at least one optimal solution of (D) under Assumption 1.

Proof. First, since 0 is always contained in (4.8), the set in (4.8) is non-empty. It is also closed and convex
because K∗ is a closed convex cone. Next, we prove the boundedness of (4.8) by checking that the recession
cone of (4.8) is trivial. Since the set in (4.8) contains zero, its recession cone coincides with the set of elements
y such that λy belong to (4.8) for all λ ≥ 0, e.g., see [44, Theorem 8.3]. All such y must then belong to
K∗ and satisfy 〈e, y〉 ≤ 0. However, since e is an interior point of K, we have 〈e, y〉 = 0 which forces y = 0.
Finally, (4.8) contains at least one optimal solution of (D) by Assumption 1.

In view of Proposition 4.2, at least one of the optimal solutions of (D) can be obtained by solving (4.7).
We also note that since the objective functions in (4.7) and (D) are the same, the set of optimal solutions of
the former is included in the optimal solution set of the latter. However, (4.7) has a compact feasible region
so it is amenable to the classical FW method.

14

Of course, for a given problem, the crux of the issue is whether we can easily obtain e and cD as in
Assumption 1. As we will show in Section 4.4, cD can be computed explicitly from the problem data in
the case of quadratic optimization, so the assumption of having cD at hand will not be problematic for our
purposes.

4.1.3 Issue 3: How to solve the subproblem exactly?

Our current state of affairs is as follows. Having decided to apply a FW method to the dual side of our
problem of interest, we showed that it is enough to solve (4.7), which is a compact version of (D) containing
at least one of its optimal solutions. Next we examine whether this choice indeed leads to easy subproblems.
Applying Algorithm 1 to the problem (4.7) leads to the following subproblem at each iteration:

min
s∈Rm

〈∇(f∗ ◦ T ∗)(yk) + b, s〉
s.t. 〈e, s〉 ≤ cD

s ∈ K∗,
(4.9)

where, we use yk in place of xk since we are working from the dual side. In what follows, it will be helpful
to define

xk := ∇f∗(T ∗yk).

With that, we have ∇(f∗ ◦ T ∗)(yk) + b = T∇f∗(T ∗yk) + b = Txk + b. Also, we transform the inequality
constraint into a equality constraint by using a slack variable α. With that, we arrive at the following
subproblem, which is equivalent to (4.9).

min
s∈Rm,α∈R

〈Txk + b, s〉

s.t. 〈e, s〉+ α = cD
s ∈ K∗, α ∈ R+

(4.10)

The problem (4.10) is a common conic linear program in primal format. The goal of this subsection is to
show that an optimal solution of (4.10) can be written explicitly in terms of the the corresponding generalized
eigenvalue function. In order to do so, we consider the dual problem of (4.10).

max
t∈R,z∈Rm

cDt

s.t. z = (Txk + b)− te
z ∈ K, t ≤ 0.

(4.11)

The problem in (4.11) is closely related to the minimum eigenvalue problem in (2.2). As hinted in
Section 4.1.1, this is why solving our problem of interest from the dual side makes sense: when doing so, we
arrive at a subproblem whose optimal value can be obtained from a minimum eigenvalue computation. We
are now positioned to show our main theorem for this subsection.

Theorem 4.3 (Closed-form solution of the FW subproblem). Consider the primal-dual pair of problems
(4.10) and (4.11). Then, the following statements hold.

(i) Both (4.10) and (4.11) satisfy Slater’s condition. In particular, the optimal values of both problems
coincide and are attained.

(ii) The optimal solution of (4.11) is given by

topt = min(0, λmin(Txk + b))
zopt = Txk + b− topte,

(4.12)

where λmin is the minimum eigenvalue function along the direction e, as in (2.2).

15

(iii) If topt = 0, then (0, cD) ∈ Rm ×R is an optimal solution to (4.10). Otherwise, if topt < 0, the optimal
solution set of (4.10) with respect to the s variable is

{s ∈ K∗ | 〈e, s〉 = cD, 〈s, zopt〉 = 0} = {s ∈ F∆
zopt | 〈e, s〉 = cD},

where F∆
zopt

is the conjugate face of K at zopt as in (2.1).

Proof. Item (i) First we check that (4.10) satisfies Slater’s condition. K is a regular cone by assumption,

so intK∗ is not empty. Let s ∈ intK∗. If 〈e, s〉 = 0, then since e is an interior point of K, we have s = 0,
which is impossible since 0 ∈ intK∗ implies K∗ = Rm. Therefore, s satisfies 〈e, s〉 > 0. Let

ŝ :=
cD

2〈e, s〉
s.

Then, ŝ ∈ intK∗ and 〈e, ŝ〉 = cD
2 hold. Therefore, (ŝ, cD/2) is a strictly feasible solution to (4.10).

Next, we check that (4.11) satisfies Slater’s condition. Since e ∈ intK, there exists a small u > 0 such
that (Txk + b)u+ e ∈ intK. Therefore, for t := −1/u, we have Txk + b− te ∈ intK and (Txk + b− te, t) is
a strictly feasible solution.

Item (ii) We divide the proof in two cases.

Case (a): Txk + b ∈ K In this case, we have 〈Txk + b, s〉 ≥ 0 for every s ∈ K∗. Since (0, cD) is feasible

for (4.10), (0, cD) is an optimal solution of (4.10). Because of item (i) the optimal value of (4.11) must be
zero as well, so topt = 0 which coincides with min(0, λmin(Txk + b)).

Case (b): Txk + b /∈ K Let topt denote the optimal solution of (4.11), which exists and is finite because

of item (i). By definition of λmin (see (2.2)), we have topt ≤ λmin(Txk + b), since the problem in (4.11) has
one additional constraint in comparison to the problem in (2.2). However, since Txk + b 6∈ K, the inequality
λmin(Txk + b) < 0 holds by item (ii) of Proposition 2.2. Therefore, t := λmin(Txk + b) and z := Txk + b− te
is feasible for (4.11), so topt = λmin(Txk + b). Therefore, in this case too, the formula in (4.12) holds.

Item (iii) If topt = min(0, λmin(Txk+b)) = 0, then λmin(Txk+b) ≥ 0 which implies that Txk+b ∈ K, by

Proposition 2.2. In this case, we already verified in Case (a) of item (ii) that (0, cD) is an optimal solution
to (4.10). Suppose that topt < 0. Since both (4.10) and (4.11) satisfy Slater’s condition, the following
conditions from classical conic linear programming duality theory are necessary and sufficient for optimality

〈z, s〉 − tα = 0 (4.13)

〈e, s〉+ α = cD

(Txk + b)− te = z

z ∈ K, s ∈ K∗, t ≤ 0, α ≥ 0.

Therefore, if topt < 0, then complementary slackness (i.e., (4.13)) and α ≥ 0 implies that the optimal α∗ in
(4.10) is 0. In particular, the s ∈ K∗ that are optimal for (4.10) are exactly the ones that satisfy 〈e, s〉 = cD
and 〈s, zopt〉 = 0.

So far, we have shown that we can obtain the optimal value of (4.11) through a minimum eigenvalue
computation. However, we still require an optimal solution for the case where topt < 0. Fortunately, from
item (iii) of Theorem 4.3, we see that it is enough to find a nonzero s ∈ F∆

zopt and rescale s so that 〈e, s〉 = cD
holds. This leads us to our final point in this subsection.

Conjugate vector computations In view of Theorem 4.3, the final piece we need to complete our
discussion is a method to find a nonzero vector in F∆

zopt . Fortunately, there are many useful cones K
for which F∆

z is completely known, given a particular z ∈ K. Here we list a few. For symmetric cones
(this includes the case of positive semidefinite matrices and second order cones), formulae are given in [12,
Theorem 2] and [32, Section 4.1.1]. For p-cones with p ∈ (1,∞), see [31, Section 4.1]. Power cones and

16

exponential cones are linearly isomorphic to their dual cones under the Euclidean inner product, so with
some adjustments, the formulae discussed in [29, Section 3.1] and [30, Section 4.1], respectively, can also be
used to determine conjugate faces for these two cones.

Unfortunately, if K = Λ(p, e) is a general hyperbolicity cone, it seems nontrivial to obtain a formula for
F∆
z given an arbitrary z ∈ Λ(p, e). That said, a nonzero conjugate vector can be obtained easily by using

the following proposition. Here, we recall that mult(z) denotes the number of zero eigenvalues of z and p(i)

is the i-th directional derivative of p along a fixed hyperbolic direction, see Section 2.1.

Proposition 4.4 (Conjugate vectors in hyperbolicity cones). Let Λ = Λ(p, e) ⊆ Rm be a hyperbolicity cone.
Let z ∈ Λ satisfy mult(z) ≥ 1 and define r := mult(z). Then,

∇p(r−1)(z) ∈ F∆
z \ {0}.

Proof. First, we observe that z ∈ Λ and mult(z) ≥ 1 implies that z is in the boundary of Λ which follows,
for example, from item (iii) of Proposition 2.2 and Proposition 2.3, see also [41, Section 3].

We first consider the case r = 1. We recall that for y ∈ Λ, we have p(y) ≥ 0. In addition, p(y) = 0 holds
if y is in the boundary of Λ. In particular, we have p(z + ty) ≥ 0 and p(z + tz) = 0 for every y ∈ Λ and
t ≥ 0. Then, taking the derivative with respect to t at t = 0, we obtain

〈∇p(z), y〉 ≥ 0,∀y ∈ Λ and 〈∇p(z), z〉 = 0.

This shows that∇p(z) ∈ F∆
z . However, since mult(z) = 1, ∇p(z) is nonzero (e.g., [41, Lemma 7]). Therefore,

∇p(r−1)(x) = ∇p(x) is a non-zero conjugate vector.
Next, we consider the case r ≥ 2. We recall that

∂iΛ = {x ∈ Λ | mult(x) = i}.

By definition, x ∈ ∂rΛ. Using Theorem 2.1 repeatedly,

∂rΛ = ∂(r−1)Λ(1) = · · · = ∂2Λ(r−2) = (∂1Λ(r−1)) ∩ Λ(r−2)

holds. Therefore, x ∈ (∂1Λ(r−1))∩Λ(r−2). Letting Λ̄ := Λ(r−1), the multiplicity of 0 as an eigenvalue of z with
respect to p(r−1) is one, so we can apply the previous case to Λ̄ and p(r−1) to conclude that ∇p(r−1)(z) 6= 0
holds and ∇p(r−1)(z) belongs to the conjugate face of Λ(r−1) at z. However, since Λ ⊆ Λ(r−1), we have

(Λ(r−1))
∗ ⊆ Λ∗. This implies that ∇p(r−1)(z) belongs to the conjugate face of Λ at x.

We are now ready to complete our discussion on the optimal solutions of (4.10) for the case of a hyper-
bolicity cone. Under the setting of Theorem 4.3, if topt < 0, we have λmin(zopt) = 0, so mult(zopt) ≥ 1.
From Proposition 4.4 and, assuming that Λ is regular, we have that

cD
〈e,∇p(mult(zopt)−1)(zopt)〉

∇p(mult(zopt)−1)(zopt) (4.14)

is included in the optimal solution set, i.e., (4.14) is an optimal solution of (4.7). We recall that

〈e,∇p(mult(zopt)−1)(zopt)〉 6= 0

holds because e ∈ int Λ and ∇p(mult(zopt)−1)(zopt) 6= 0.

4.2 The proposed method and its convergence analysis

Having solved the issues related to applying Algorithm 1 to our problem of interest, we can now formally
state our obtained method. To recap, we wish to solve (P), but we solve instead (4.7) which is a compact
version of the dual problem of (P) (Proposition 4.2), under Assumption 1. Then, the idea is to apply a FW
method to (4.7). During the iterations, the FW subproblem to be solved is (4.10). However, (4.10) is easier to
solve from the dual side (4.11), since it reduces to a minimum eigenvalue computation (Theorem 4.3). Once

17

Algorithm 2: Dual Frank-Wolfe method for solving (P)

1: Choose initial point y0 ∈ K∗ satisfying 〈e, y0〉 ≤ cD.
2: for k = 0, 1, . . . do
3: xk := ∇f∗(T ∗yk)
4: if yk or xk satisfies stopping criterion then
5: Break
6: end if
7: if Txk + b ∈ K then
8: sk = 0
9: else

10: zk := Txk + b− λmin(Txk + b)e
11: Let ŝk ∈ F∆

zk
\ {0} and let sk := cD

〈e,ŝk〉 ŝk. (For the case of hyperbolicity cones, see Proposition 4.4)

12: end if
13: dk := sk − yk
14: Choose αk ∈ (0, 1] by an appropriate rule
15: yk+1 := yk + αkdk
16: end for

the optimal value of (4.11) is found, we obtain an optimal solution to the subproblem (4.10) by identifying a
conjugate vector which, in the case of hyperbolicity cones, can be done as in (4.14). The resulting procedure
is described in Algorithm 2.

In Algorithm 2, any step size rule which guarantees the convergence of the FW method can be used (e.g.,
rules discussed in Theorem 2.4).

In what follows we will prove some convergence guarantees for Algorithm 2. Although the classical
convergence theory of FW methods already provides some guarantees, since we are applying the method to
the dual side of the problem, it is still necessary to show theoretical guarantees for the primal iterates xk.

First we recall and introduce some notation. We denote by d∗ the optimal value (D). Recall that under
Assumption 1, d∗ also coincides with the optimal value of (4.7). Also, let Yopt denote the optimal set of (4.7)
and let h denote the objective function of (4.7).

The analysis we will conduct in this subsection will be for the most part method agnostic. More precisely,
suppose that {(xk, yk)} ⊆ Rn × Rn is any sequence such that the following assumption is satisfied.

Assumption A. For every k, yk is feasible for (4.7), xk = ∇f∗(T ∗yk) holds and h(yk)→ d∗ holds

In particular, under Assumption 1 and under an appropriate step size rule (see Theorem 2.4), the iterates
generated by Algorithm 2 satisfy Assumption A, although the feasibility of yk requires some comments. The
initial iterate y0 is in the feasible region of (4.7) and all the subsequent iterates yk+1 are obtained by taking
a convex combination between yk and a direction sk that is feasible for (4.7) as well. In particular, yk is
always feasible for (4.7) indeed.

We start with the following well-known lemma.

Lemma 4.5. Under Assumptions 1 and A, the sequence {yk} satisfies

lim
k→∞

dist (yk, Yopt) = 0 (4.15)

Proof. Suppose that (4.15) fails. Then, there exists an ε > 0 and a subsequence {ykj} for which

dist (ykj , Yopt) ≥ ε

holds for all j. Since the feasible region of (4.7) is compact (Proposition 4.2) and all the yk are feasible, there
exists a convergent subsequence of {ykj}. This would lead to a cluster point ȳ that satisfies limj→∞ h(ykj) =
h(ȳ) = d∗ and dist (ȳ, Yopt) ≥ ε, which is a contradiction.

18

Although the sequence {yk} is not ensured to converge, its cluster points must all be minimizers of (4.7),
by Lemma 4.5. With that, our first result is that the primal iterates xk indeed converge to the unique
optimal solution.

Theorem 4.6 (Convergence of primal iterates). Under Assumptions 1 and A we have

lim
k→∞

xk = xopt,

where xopt is the optimal solution of (4.1).

Proof. From (4.6), we have
∀yopt ∈ Yopt, xopt = ∇f∗(T ∗yopt).

Therefore,

∀yopt ∈ Yopt, ‖xk − xopt‖ = ‖xk −∇f∗(T ∗yopt)‖
= ‖∇f∗(T ∗yk)−∇f∗(T ∗yopt)‖ .

Taking the infimum with respect to yopt in Yopt, we obtain

‖xk − xopt‖ = inf
yopt∈Yopt

‖∇f∗(T ∗yk)−∇f∗(T ∗yopt)‖ .

We recall that∇f∗ is 1/µ-Lipschitz continuous because of the µ-strong convexity of f , see [21, Theorem 4.2.1].
Thus,

‖xk − xopt‖ = inf
yopt∈Yopt

‖∇f∗(T ∗yk)−∇f∗(T ∗yopt)‖

≤ inf
yopt∈Yopt

1

µ
‖T ∗yk − T ∗yopt‖

≤ inf
yopt∈Yopt

‖T ∗‖op

µ
‖yk − yopt‖

=
‖T ∗‖op

µ
dist (yk, Yopt).

However, under the stated assumptions, Lemma 4.5 ensures that limk→∞ dist (yk, Yopt) = 0 holds, which
leads to limk→∞ ‖xk − xopt‖ = 0.

In spite of the potential lack of convergence of {yk}, the primal sequence {xk} is ensured to converge by
Theorem 4.6. Related to that, under a mild assumption on T , next we prove that the rate of convergence of
xk to xopt is no worse than the square-root of the rate of convergence of h(yk) to d∗.

Theorem 4.7 (Rate of convergence). Suppose that Assumptions 1 and A hold, f is µ-strongly convex
function and that T ∗T is positive definite. Then, for every k we have

‖xk − xopt‖ ≤

√
2‖T‖2op

µλmin(T ∗T)

√
h(yk)− d∗,

where λmin(T ∗T) (> 0) is the minimum eigenvalue of T ∗T , xopt is the optimal solution of (4.1) and d∗ is
the optimal value of (D).

19

Proof. First, we check that ∇h is Lipschitz continuous with constant ‖T‖2op/µ. Since f is µ-strongly convex,
∇f∗ is 1/µ-Lipschitz continuous ([21, Theorem 4.2.1]). Thus, for y, y′ ∈ Rn we have

‖∇h(y)−∇h(y′)‖ = ‖T∇f∗(T ∗y)− T∇f∗(T ∗y′)‖
≤ ‖T‖op‖∇f∗(T ∗y)−∇f∗(T ∗y′)‖

≤ ‖T‖op
1

µ
‖T ∗y − T ∗y′‖

≤ ‖T‖op
1

µ
‖T ∗‖op‖y − y′‖

=
1

µ
‖T‖2op‖y − y′‖.

From the convexity of h and the Lipschitz continuity of ∇h with constant ‖T‖2op/µ, we obtain

h(yk) ≥ h(yopt) + 〈yk − yopt,∇h(yopt)〉+
1

2

µ

‖T‖2op

‖∇h(yk)−∇h(yopt)‖2,

see, e.g., [36, Theorem 2.1.5, Equation (2.1.10)]. Recalling that ∇h(yk) = T∇f∗(T ∗yk) + b = Txk + b and
readjusting the inequality, we obtain

‖Txk − Txopt‖2 ≤
2‖T‖2op

µ
(h(yk)− h(yopt) + 〈yk − yopt,−∇h(yopt)〉) . (4.16)

By Assumption A, yk is always feasible for (4.7). From the first-order optimality conditions for the problem
(4.7) (e.g., [36, Theorem 2.2.9]), we obtain the inequality

〈yk − yopt,−∇h(yopt)〉 ≤ 0. (4.17)

Also, from the assumption T ∗T � 0,

‖Txk − Txopt‖2 ≥ λmin(T ∗T) ‖xk − xopt‖2 . (4.18)

From (4.16), (4.17), and (4.18), we obtain

λmin(T ∗T) ‖xk − xopt‖2 ≤
2‖T‖2op

µ
(h(yk)− h(yopt)) ,

which leads to

‖xk − xopt‖ ≤

√
2‖T‖2op

µλmin(T ∗T)

√
h(yk)− h(yopt).

As a corollary of Theorem 4.7 and of the fact that a convex function is locally Lipschitz continuous over
the relative interior of its domain, we can also get a rate of convergence for the primal objective function.

Corollary 4.8 (Convergence of the primal objective function). Suppose that Assumptions 1 and A hold.
Then, there exists a positive constant L such that the output of Algorithm 1 after k iterations satisfies

f(xk)− f(xopt) ≤ L ‖xk − xopt‖ .

In particular, under the assumptions of Theorem 4.7 we have

f(xk)− f(xopt) ≤ L

√
2‖T‖2op

µλmin(T ∗T)

√
h(yk)− d∗,

20

Proof. By Assumption A and the compactness of the feasible region of (4.7) (Proposition 4.7), the sequence
of iterates {yk} is bounded. By definition xk = ∇f∗(T ∗yk) holds and ∇f∗ is Lipschitz continuous, because of
the strong convexity of f . In particular, {xk} is the image of the bounded set {yk} via a continuous map with
closed domain, so {xk} is bounded as well2 . Although a given xk might fail to be feasible for (P), it belongs
to the domain of f , which is Rn by assumption. Now, a convex function is Lipschitz continuous relative to
any bounded set whose closure is contained in the relative interior of its domain (e.g., [44, Theorem 10.4]).
Then, since {xk} is bounded, there exists a constant L > 0 such that

f(xk)− f(xopt) ≤ L ‖xk − xopt‖

holds for every k, as we wanted to show. The remainder of the corollary follows directly from Theorem 4.7.

The summary of Theorems 4.6, 4.7 and Corollary 4.8 is the following. Under Assumptions 1 and A,
xk indeed converges to xopt. Furthermore, the convergence rates of xk to xopt and of f(xk) to f(xopt)
are no worse than the square root of the convergence rate of h(yk) to d∗, provided that T ∗T is positive
definite. These results are not specific to Frank-Wolfe methods, since they hold for any approach that
generate sequences as in Assumption A and arise as consequences of the relations between a strongly convex
optimization problem and its dual.

In the particular case that {(xk, yk)} are the iterates generated by Algorithm 2, if the step size is chosen
as to ensure h(yk)−d∗ = O(1/k) (see Theorem 2.4), we have the following guarantees on the primal iterates
and the primal objective function.

lim
k→∞

xk = xopt, (4.19)

‖xk − xopt‖ = O(1/
√
k), (4.20)

f(xk)− f(xopt) = O(1/
√
k), (4.21)

with the caveat that (4.20) and (4.21) require the extra assumption that T ∗T is positive definite (i.e., T is
injective).

Before we move on, we should remark that it was recently shown that the iterates of the Frank-Wolfe
method may fail to converge in nontrivial settings, see [6]. We note that there is no contradiction with
(4.19), since we proved convergence for the primal iterate xk. We recall that in our approach Frank-Wolfe
is applied to the dual problem (4.7) and, indeed, for the corresponding iterates yk we were not able to say
anything more than what is expressed in Lemma 4.5.

4.3 Practical considerations

Having discussed the theoretical properties of Algorithm 2, we now take a look at some implementation
issues that may arise.

Choice of stopping criteria There is some level of flexibility regarding the choice of stopping criterion.
Typically, a maximum iteration number can be set or, for example, the Frank-Wolfe gap can be used to stop
the algorithm when it becomes too small and the xk iterates are close to being feasible.

Computation of the minimum eigenvalue function and conjugate vectors Recall that the mini-
mum eigenvalue function (see (2.2)) required in Algorithm 2 depends on the (regular) cone K and the chosen
direction e ∈ intK. If a closed form expression is not readily available, as long as a procedure to decide
membership in K is available, a binary search approach can be used to find λmin(x) for a given x. Obtaining
conjugate vectors, however, is more challenging and depends on having a good understanding of the facial
structure of K.

2Of course, the fact that the domain is closed is important, otherwise the image of the interval (0, 1) by the function x 7→ 1/x
would be a counter-example.

21

In the particular case where K is a hyperbolicity cone, there is more structure one can exploit in order to
efficiently compute λmin and conjugate vectors, so let us take a look at this case. Suppose that K = Λ(p, e),
where p : Rn → R has degree d. By Proposition 2.3, λmin is the smallest root of the one-dimensional
polynomial t 7→ p(x − te). Or, equivalently, λmin is minus the largest root of the polynomial px : R → R
such that px(t) := p(x+ te). In order to compute the roots of px, we first need to determine its coefficients.
In theory, this could be done via its Taylor expansion, since

px(t) = p(x+ te) =

d∑
i=1

1

i!
p(i)(x)ti,

where we recall that p(i) = Di
ep. In practice, however, a naive evaluation of p(i) may be computationally

prohibitive. To address this issue, we follow Renegar’s suggestion in [41, Section 9] to evaluate the terms
p(i)(x) using the inverse Fast Fourier Transform as follows.

Theorem 4.9. [41, Section 9] Let p : Rn → R be a d-degree hyperbolic polynomial whose directional vector
is e ∈ Rn and ω be a primitive d-th root of unity. Then,

1

i!
p(i)(x) =

1

d

d∑
j=1

ω−ijp(x+ ωje) (i = 1, · · · , d− 1)

holds, and hence

∇p(i)(x) =
i!

d

d∑
j=1

ω−ij∇p(x+ ωje) (i = 1, · · · , d− 1).

Remark. At the end of Section 9 in [41], equations for p(i)(x) and ∇p(i)(x) are given in which i appears in
place of −i in the “ω−ij” term. We believe this is a typo, which can be verified by considering p(x1, x2, x3) =
x1x2x3, e = (1, 1, 1) and computing p(1)(x1, x2, x3) which is x1x2 + x1x3 + x2x3. That said, the inverse of
the Vandermonde matrix given in Section 9 is correct.

Once the coefficients of px(t) or px(−t) are identified, we can numerically obtain its roots which allow us
to compute the eigenvalues of x. The computation of the roots of a polynomial is itself a nontrivial problem
and there are a few choices on how to handle it. For example, one simple approach is to form the companion
matrix and compute its eigenvalues.

There is one extra outstanding issue regarding eigenvalue computations. The terms p(x+wje) appearing
in Theorem 4.9 may be large even if x itself is not very large3. In order to ameliorate possible overflow
issues, we may exploit the fact that λ(αx) = αλ(x) holds for α > 0 and scale x by a suitable constant before
computing its eigenvalues.

Finally, we note that Theorem 4.9 also provides a formula for the computation of conjugate vectors as
in Proposition 4.4.

4.4 Minimizing a positive definite quadratic function

In the previous subsections we discussed Algorithm 2 and its properties. In this subsection, we discuss how
Assumption 1 is satisfied for the problem of minimizing a positive definite quadratic function under conic
constraints. More precisely, we will check that cD can be explicitly obtained from the problem data. We
consider the following problem

min
x∈Rn

f(x) = 1
2 〈x,Qx〉+ 〈c, x〉

s.t. Tx+ b ∈ K,
(4.22)

where Q is a symmetric positive definite matrix (i.e., Q � 0), K ⊂ Rm is a regular cone and the inner
product is the usual Euclidean one. Additionally we assume that there exists ê such that T ê = e ∈ riK. We

3For example, for p(x) := x1 · · ·xn, e = (1, . . . , 1) and x0 := (2, . . . , 2), we have p(x0 + e) = 3n.

22

can construct a feasible solution of (4.22) from ê as follows. Since T ê ∈ riK, there exists ε > 0 such that
T ê+ εb ∈ K. For this ε, T (ê/ε) + b ∈ K, so ê/ε is a feasible solution to (4.22).

The conjugate function of f is

f∗(x) =
1

2
〈x− c,Q−1(x− c)〉,

and hence,
∇f∗(x) = Q−1(x− c).

Next, we will show that

cD := ‖ê‖

√
(2f(ê/ε) + 〈c,Q−1c〉)

λmin(Q−1)

satisfies Assumption 1. Let xopt and yopt be optimal solutions of (4.22) and the dual problem of (4.22),
respectively. Since ê/ε is a feasible solution of (4.22),

f(ê/ε) ≥ f(xopt)

=
1

2
〈xopt, Qxopt〉+ 〈c, xopt〉

From xopt = ∇f∗(T ∗yopt) (see (4.6)), we have

1

2
〈xopt, Qxopt〉+ 〈c, xopt〉 =

1

2
〈∇f∗(T ∗yopt), Q∇f∗(T ∗yopt)〉+ 〈c,∇f∗(T ∗yopt)〉

=
1

2
〈Q−1(T ∗yopt − c), T ∗yopt − c〉+ 〈c,Q−1(T ∗yopt − c)〉

=
1

2
〈T ∗yopt, Q

−1T ∗yopt〉 −
1

2
〈c,Q−1c〉

Therefore,

〈T ∗yopt, Q
−1T ∗yopt〉 ≤ 2f(ê/ε) + 〈c,Q−1c〉

which implies

‖T ∗yopt‖2 ≤
(
2f(ê/ε) + 〈c,Q−1c〉

)
λmin(Q−1)

,

where λmin(Q−1) (> 0) is the minimum eigenvalue of Q as a matrix. From this inequality, cD is derived as
follows.

〈e, yopt〉 = 〈T ê, yopt〉
= 〈ê, T ∗yopt〉
≤ ‖ê‖ ‖T ∗yopt‖

≤ ‖ê‖

√
(2f(ê/ε) + 〈c,Q−1c〉)

λmin(Q−1)
.

We note that (4.22) contains the particular case of the projection problem. That is, if we wish to project an
arbitrary x0 ∈ Rm onto K, we may take c := −x0, let T be the identity map and Q be the identity matrix
in (4.22). In this case, it is enough to let e = ê be any element in interior of K and let ε := 1. With that, cD
simplifies to

cD = ‖e‖ ‖e− x0‖ . (4.23)

23

5 Numerical experiments

In order to test our ideas, we wrote a MATLAB implementation of Algorithm 2 and performed some nu-
merical experiments. Naturally, numerical experiments typically involve some sort of comparison. However,
there are few methods and solvers that can handle directly the problems we discuss in this paper. The
most direct competitor seems to be the accelerated gradient method (AGM) developed by Renegar in [43],
which is specific to hyperbolicity cones. The DDS solver, which implements an interior point method, is also
capable of handling hyperbolicity cone constraints. With this in mind, our goal in this section is to answer
the following questions.

(1) Is our dual Frank-Wolfe method competitive against Renegar’s AGM in the case of hyperbolicity cones?

(2) Is our method “competitive” against IPMs?

As we will see, the answer for question (1) is a relatively straightforward “yes” as we found that our proposed
method significantly outperforms Renegar’s AGM although it should be stressed that Renegar’s AGM is
applicable to a more general class of problems.

The second question is more delicate. We wrote “competitive” (in quotation marks) because IPMs and
first-order methods have different design goals. Generally speaking, first-order methods have a small cost
per iteration. They struggle to get accurate solutions but they may be a good choice if the goal is to obtain
solutions with low-to-medium accuracy fast. Conversely, IPMs seem to excel at getting accurate solutions,
but often have more numerically expensive iterations.

Taking heed of this difference, we designed experiments to check how long does it take for our method
to obtain solutions that are “somewhat close” to the solutions obtained by IPMs. This is consistent with
the idea that the computation of a projection is often used as a subroutine in another method, so there are
cases where getting a less accurate solution fast is more desirable. Taking this into consideration, the answer
to question (2) is a qualified yes, as we will see in the results. Roughly speaking, our approach consistently
obtains solutions that are within 1% to 5% of the solutions obtained by IPMs in a fraction of the time.

All files can be found in the following link.
https://github.com/bflourenco/dfw_projection

All experiments were done in a PC with a Intel Xeon W-2145 CPU, 128GB RAM and Windows 10 Pro.
The code was implemented in Matlab 2022b.

5.1 Projection onto derivative relaxations

In this subsection our paper comes full circle and we address again the problem of projecting a point onto
a hyperbolicity cone, this time from a numerical point of view. We focus on hyperbolicity cones for which
there are no (known) closed form expressions in terms of the underlying eigenvalues. Perhaps the simplest
cones of this type correspond to the derivative relaxations of the nonnegative orthant. We remark that,
more generally, derivative relaxations are often used to test ideas in the theory of hyperbolic polynomials
and have been extensively studied, e.g., [51, 45, 8, 47, 46, 26].

In particular, the k-th derivative relaxation of Rn+ (see Section 2.1), denoted by Rn,(k)
+ satisfies

Rn,(k)
+ = Λ(σn,n−k, e),

where e := (1, . . . , 1) and σn,k is the k-th elementary symmetric polynomial in n variables which is given by

σn,k(x) :=
∑

1≤i1<···<ik≤n

xi1 · · ·xik .

In this section, our target problem is

min
x∈Rn

1

2
‖x− c‖2 (5.1)

s.t. x ∈ Rn,(k)
+

24

https://github.com/bflourenco/dfw_projection

where Rn,(k)
+ is the k-th derivative cone of Rn+ along e = 1n and c is the vector we wish to project onto

Rn,(k)
+ . Since the objective function of (5.1) is a positive definite quadratic function, (5.1) is implementable

as discussed in Section 4.4. The derivative relaxations Rn,(k)
+ for 0 < k < n − 3, n ≥ 4 are non-polyhedral

and there are no known formulae for their orthogonal projections.

Implementation remarks on Algorithm 2 We implemented Algorithm 2 fairly straightforwardly fol-
lowing the discussion in Section 4. In particular, the constant term in (5.1) is removed and we consider the
equivalent problem

min
x∈Rn

1

2
‖x‖2 − 〈c, x〉 (5.2)

s.t. x ∈ Rn,(k)
+ .

The problem (5.2) is regarded as the primal problem (P) and the constant cD is computed as described in
(4.23) with e = ê = (1, . . . , 1), x0 = c.

The code for our implementation are in the files FW_HP_exp.m and FW_HP.m. The former is the one we
actually use in the experiments and it returns all the iterates generated by the method and other useful
experimental information. It is, however, quite memory intensive, so we also provide the file FW_HP.m which
only returns the best solution obtained during the course of the algorithm. For users that wish a quick way
to compute a projection onto a given hyperbolicity cone, we also provide the file poly_proj.m that is a
wrapper around FW_HP.m specialized for projection computations, see examples in poly_proj_examples.m.

We also implemented special functions to handle elementary symmetric polynomials and their gradients.
Even for small n, the description of σn,k can be quite large. For example, for n = 20, σ10 is a sum of
184756 monomials. Rather than store σn,k as a matrix, we use an approach based on a simple divide-
and-conquer algorithm to evaluate σn,k and its gradients directly. The corresponding files are eleSym.m

and grad_eleSym.m. In the numerical experiments we compare both the naive approach (i.e., storing the
polynomials directly) and the implicit approach tailored for elementary symmetric polynomials.

Experimental and implementation remarks on Renegar’s AGM and DDS In order to make use
of Renegar’s AGM and DDS we considered the following equivalent formulations of (5.1).

(5.1) ⇐⇒

min
x,y

y

s.t. y ≥ ‖x− c‖
x ∈ Rn,(k)

+

⇐⇒

min
x,y,z

y

s.t. y ≥ ‖z‖
z = x− c
x ∈ Rn,(k)

+

Given a hyperbolicity cone and an underlying hyperbolic polynomial, Renegar’s AGM also requires the
computation of p(i)(x), ∇p(i)(x) (i = 1, . . . , d) and the hyperbolic eigenvalues. In our implementation we
took similar precautions as the ones discussed in Section 4.3. Additionally, Renegar’s algorithm requires
the computation of the following expression which corresponds to the gradient of a smoothed version of the
maximum eigenvalue function:

∇fµ(x) =
1∑

jmj exp(λj(x)/µ)

∑
j

mj exp(λj(x)/µ)

p(mj)(x− λj(x)e)
∇p(mj−1)(x− λj(x)e), (5.3)

where {λj(x)} is the set of distinct eigenvalues of x and mj is the multiplicity of λj(x) and µ (> 0) is a
parameter determining the accuracy of the algorithm, see [43, Proposition 3.3]. The smaller µ is, the smaller
the error is guaranteed to be. However, if µ is too small, there may be numerical issues if (5.3) is evaluated
naively. To address this problem, we use the idea in [35, Section 5.2] in order to reformulate (5.3) as (5.4).

∇fµ(x) =
1∑

jmj exp(λj(x)− λmax/µ)

∑
j

mj exp(λj(x)− λmax/µ)

p(mj)(x− λj(x)e)
∇p(mj−1)(x− λj(x)e), (5.4)

25

where λmax = maxj{λj(x)}.
As in the case of our proposed method, we also adjusted the implementation of Renegar’s AGM to make

it possible to exploit the structure of elementary symmetric polynomials. Finally, we remark that Renegar’s
main algorithm (“MainAlgo” in [43]) prescribes that two accelerated gradient sub-methods run in parallel
and, then, if at given point a certain condition is met for the iterates of the first sub-method, both sub-methods
are stopped, a certain outer update is conducted and the sub-methods are then restarted. Here, in order
to simplify the implementation, instead of running the sub-methods in parallel, we perform one iteration of
each sub-method and check if the condition for the outer update is satisfied. During the discussion of the
results of the numerical experiments we will revisit this issue.

5.1.1 A comparison between Renegar’s AGM, Algorithm 2 and DDS

In this series of experiments we proceed as follows. We fix the values of n and k in (5.1) and then we

generate 30 normally distributed points in Rn. These are the c’s we would like to project onto Rn,(k)
+ . For

each generated point c we check if the minimum eigenvalue of c with respect to Rn,(k)
+ and e = (1, . . . , 1)

is greater than −10−4. If this happens, then c is deemed to be too close to the cone, so we discard it and
generate a new point.

Once the 30 points are generated, we solve the problem (5.1) with DDS, with our proposed method (see
file FW_HP_exp.m) and with an implementation of Renegar’s AGM (see file AGM_HP.m). For Algorithm 2 and
Renegar’s AGM we also considered variants that use code specialized to elementary symmetric polynomials.
So, in total, each of the 30 instances is solved through 5 different methods, which will be, henceforth denoted
by “DDS”, “FW”, “FW EleSym”, “AGM” and “AGM EleSym”. Here, we recall that FW and AGM
correspond to Algorithm 2 and Renegar’s accelerated gradient method, respectively. “EleSym” indicates the
usage of special methods to handle elementary symmetric polynomials as discussed previously.

We consider the objective function value obtained by DDS as the baseline to which we compare the
performance of the other algorithms. The results are described in Tables 1 and 2. We now explain the
meaning of the data. For example, consider the first line in Table 1a, so that the “Error” column indicates
“10%”. Roughly speaking, for this line, we checked how much time does each one of the 4 tested methods
need to get a solution that has a value that is within 10% of the function valued obtained by DDS.

More formally, for each instance i, denote by f iDDS and tiDDS the objective function value obtained by

DDS and the corresponding running time, respectively. Analogously, denote by f i,jFW the function value

obtained by Algorithm 2 for the i-th instance at the j-th iteration. Denote by ti,jFW the time elapsed after
the j-th iteration. For each instance k and a given error tolerance E (e.g., 10%), we checked the amount of
time that the code FW_HP_exp.m required to reach an iteration j for which

f i,jFW ≤ f
i
DDS ×

(
100 + E

100

)
, (5.5)

holds and the minimal eigenvalue of corresponding primal iterate (the xk in Algorithm 2) is at least −10−8

(i.e., xk is sufficiently close to being feasible). Then, we record the ratio
ti,jFW

tiDDS
and in the column “Mean” we

register the average of these ratios together with their standard deviation. This average is what we henceforth
call the mean relative time. In the “S” (for Success) column, we indicate the percentage of instances for
which the method was able to find a solution that satisfies (5.5) within the feasibility requirements.

For the other methods FW EleSym, AGM and AGM EleSym we proceed similarly. We remark that
although each algorithm uses a different equivalent formulation for the problem (5.1), objective function
value comparisons are always done with respect to the objective function of (5.1). For each instance, for
all methods except DDS, we set the maximum running time to be equal to the time spent by DDS. The
rationale is that it does not make sense to run a first order method longer than the time required by an IPM
for the same problem.

For example, for the first line in Table 1a (which corresponds to n = 10, k = 1), the entry “0.39± 0.76”
under “FW” means that, on average, our proposed method was able to find a solution whose objective value
is within 10% of the value found by DDS using 0.39% of the time that DDS needed to find f iDDS. The

26

corresponding standard deviation was 0.76. It also succeeds for all 30 instances, i.e., for each one of the
instances there was at least one iteration that satisfied (5.5) with E = 10. The data in the other columns
“FW EleSym”, “AGM” and “AGM EleSym” have analogous meaning.

As we go down Table 1a, the mean relative time increases and success rate decreases. As the error E
decreases, it becomes harder to approach the values obtained by DDS within the allowed time budget. Still,
we believe it is notable that for E = 1%, FW is able to get solutions whose values are within 1% of the value
obtained by DDS using less than 1% of DDS’s running time. For the FW EleSym code, which is the variant
optimized for elementary symmetric polynomials, we were able to get even more mileage with 100% success
for E = 0.5% and mean relative time of less than 2%.

Overall, our impression is that a bottleneck in the 4 methods is the computation of minimum eigenvalues
and, in the case of our proposed method, the computation of conjugate vectors too. Both are heavily
influenced by the degree of the underlying hyperbolic polynomial. Indeed, the results for FW and FW
EleSym for n = 10 and k = 2 (Table 1b) seem a bit better than the ones for n = 10 and k = 1 (Table 1a) in
the sense that the success rates were higher.

In contrast for n = 20 and k ∈ {1, 2}, we have polynomials of degrees 19 and 18 respectively. In those
cases, the performance of FW, AGM and AGM EleSym plummet and these three methods seem to struggle
to even get low accuracy solutions. However, FW EleSym is still competitive and is able to get high success
rates up to E = 0.1 with reasonable mean relative times.

In Table 2, we have the results for (n, k) ∈ {(30, 27), (40, 37), (50, 47)}. In all those cases, the degree of
the hyperbolic polynomial is just three. Both FW and FW EleSym had particularly strong performances,
which leads further credence to the idea that the degree is an important factor. In the case of FW EleSym,
we were able to consistently get within 0.05% or less of the objective value obtained by DDS with just a small
fraction of the required running time. For example, for n = 50, k = 47 (Table 2c), on average, we needed no
more than 0.05% of the running time of DDS in order to get within 0.005% of the objective value. In this
case, σn,n−k has 19600 monomials, so using routines specialized to elementary symmetric polynomials leads
to a boost in performance. We believe that is why in this set of experiments, FW EleSym was better than
FW. Similarly, AGM EleSym had a superior performance when compared to the pure AGM.

In Tables 1 and 2, we configured DDS to run with the default stopping criterion tolerance of 10−8. This
means that DDS is actively looking for relatively high-accuracy solutions. One may then reasonably wonder
what would happen if we configure DDS to run with a lower accuracy. To address that, we considered the
same exact experiment but with the DDS stopping tolerance set to 10−3.

When DDS runs with a lower tolerance there are two opposing effects that appear. On one hand, the ratio
of the running times tend to increase, since the denominator (i.e., the DDS running time) decreases as DDS
stops earlier. On the other hand, since the solutions obtained by the DDS are less accurate, intuition would
suggest that it would be easier to approach the solutions obtained by DDS using a first-order method. This
would mean that the numerator of the mean relative times would get smaller. The former effect should lead
to “worse” results and the latter effect should lead to “better” (i.e., higher success rates and/or decreased
mean relative times) results.

The results are described in Tables 3 and 4. Overall, the results were largely similar to the ones in Tables 1
and 2 and seem to allow for similar conclusions. A notable difference is that, indeed, for some choices of n, k
the success rate of FW is higher than in the case where DDS is run with high accuracy. For example, for
n = 10 and k = 1 (Table 3a), we can see that the success rate of FW stays above 60% throughout the 30
instances, although, naturally, the mean relative times increase accordingly. For n = 20, k = 1, FW EleSym
was able to get 80% success rate up until E = 0.001% with reasonable mean relative times, see Table 3c.
In contrast, in the high-accuracy setting (Table 1c), E = 0.05% seems to be the best we could obtain with
success rate above 80%. In the setting of Table 3, the fact that the solution obtained by DDS are easier to
reach seems to be the stronger factor here.

In the case where the polynomials are of smaller degree (Table 4), the fact that DDS stops faster seems
to be the preponderant effect, as the success rates for FW and FW EleSym are no longer 100% even at
E = 1%. Nevertheless, they still stay above 90% up to E = 0.5% with quite reasonable mean relative times.
Overall, for FW EleSym we still need less than 0.3% of the running time of DDS in order to find solutions
whose values are within 0.5% of the objective value found by DDS.

27

Taking Tables 1–4 in consideration, our conclusion is that: (a) in most cases Algorithm 2 indeed succeeds
in getting low-to-medium accuracy solutions in a reasonable time; (b) Algorithm 2 seems to be faster than
Renegar’s AGM; (c) when the hyperbolic polynomial has many monomials and/or is of higher degree,
FW EleSym tends to be significantly better than FW. A caveat is that, as mentioned previously, our
implementation of Renegar’s AGM is sequential rather than parallel, but even taking into consideration a
parallel speed-up factor of 2, our approach still seems to outperform Renegar’s AGM by a large margin.

On the other hand, it seems that Algorithm 2 is indeed quite sensitive to the precision of eigenvalue and
conjugate vector computations. In particular, for high degree hyperbolic polynomials careful implementation
of the eigenvalue computation routines is important.

5.1.2 Hyperbolic polynomials with many monomials

For certain choices of n and k, the corresponding (n− k)-th elementary symmetric polynomial has hundreds
of thousands of monomials. For example, for (n, k) = (20, 10) and (n, k) = (30, 15), σn,n−k has, respectively,
184756 and 155117520 monomials. In this subsection, we will check that FW EleSym still runs reasonably in
those cases and we will also use this opportunity to check the behavior of Algorithm 2 over a single instance.

We note that for (n, k) = (20, 10) and (n, k) = (30, 15), DDS struggles to complete a single iteration.
And, from the previous discussion we saw that FW EleSym was significantly faster than either version of
Renegar’s AGM. So, for this set of experiments we will only focus on FW EleSym and check the behavior
of function values and the Frank-Wolfe gap.

For (n, k) ∈ {(20, 10), (30, 15)} we generated 10 random instances using the same procedure as before.
Then, for each instance, we ran FW EleSym for 10 seconds and we plotted the Frank-Wolfe gap and the
relative objective function value in Figures 1 and 2 using log-log plots. For each instance the relative objective
function value was computed as follows: we compute the smallest function value obtained through the 10
seconds among the primal iterates whose minimal eigenvalues were at least −10−8. We call this value f̂opt.
Then, denoting the objective function of (P) by f and k-th primal iterate by xk the relative objective function
value at the k-th iteration is

min1≤i≤k f(xi)− f̂opt

f̂opt

,

with the caveat that “min” is only considered over primal iterates whose minimal eigenvalues were at least
−10−8. The goal is to measure empirically how fast the primal objective value is converging. Using f̂opt

may seem odd, but the issue is that we do not know the true optimal values and have no other baselines to
compare since we were not able to solve the problem with DDS.

Both Figures 1 and 2 suggest that the Frank-Wolfe gap and the function values are decreasing sublinearly,
which is consistent with the convergence results described in Section 4.2. Denoting the common optimal
value of (D) and (4.7) by d∗, we recall that the Frank-Wolfe gap at the k-th iteration is an upper bound
to the difference h(yk) − d∗, where h(yk) is the value of the dual objective function at the k-iterate. In
view of Theorem 4.7, the square root of the Frank-Wolfe gap times a constant can be used to bound the
distance of the primal iterate to the primal optimal solution. So the fact that in both plots the Frank-Wolfe
gap is indeed decreasing for all instances, gives us some numerical confidence that Algorithm 2 is indeed
approaching the true optimal solution of (P) in spite of the challenging circumstances. This suggests that
even if the hyperbolic polynomial has millions of monomials, Algorithm 2 still has a fighting chance provided
that the underlying computational algebra for the polynomial is carefully implemented.

5.1.3 Easy projection via poly proj.m

We also provide the file poly proj.m which is a wrapper around FW HP.m specialized on computing projec-
tions. It receives three parameters: the point to be projected, the hyperbolic polynomial and a hyperbolicity
direction. Optionally, it also receives a parameter that controls the behaviour of the solver. Polynomials can
be informed via a matrix format or via an oracle interface where the user provides functions for computing
the polynomial and related objects. Additionally, in the case of elementary symmetric polynomials, the

28

FW FW EleSym AGM AGM EleSym

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 0.39 ± 0.76 100.0 0.70 ± 0.97 100.0 49.78 ± 28.06 73.3 93.87 ± 14.26 6.7

5% 0.40 ± 0.76 100.0 0.71 ± 0.97 100.0 74.43 ± 22.29 53.3 - 0

1% 0.51 ± 1.01 100.0 0.91 ± 1.09 100.0 94.52 ± 0.00 3.3 - 0

0.5% 0.74 ± 1.26 100.0 1.36 ± 1.50 100.0 - 0 - 0

0.1% 9.37 ± 7.12 90.0 22.57 ± 19.05 100.0 - 0 - 0

0.05% 26.91 ± 13.63 86.7 50.96 ± 29.87 76.7 - 0 - 0

0.01% 62.92 ± 30.91 6.7 91.40 ± 0.00 3.3 - 0 - 0

0.005% 82.37 ± 0.00 3.3 - 0 - 0 - 0

(a) n = 10, k = 1

FW FW EleSym AGM AGM EleSym

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 0.30 ± 0.05 100.0 0.32 ± 0.09 100.0 43.26 ± 21.34 90.0 82.86 ± 9.08 70.0

5% 0.32 ± 0.04 100.0 0.36 ± 0.07 100.0 45.47 ± 18.17 46.7 91.00 ± 8.36 30.0

1% 0.63 ± 0.28 100.0 0.86 ± 0.42 100.0 62.71 ± 9.24 13.3 - 0

0.5% 1.50 ± 0.97 100.0 2.30 ± 1.50 100.0 64.52 ± 10.26 6.7 - 0

0.1% 17.00 ± 6.88 100.0 29.51 ± 13.66 100.0 - 0 - 0

0.05% 37.97 ± 13.54 96.7 61.28 ± 21.61 83.3 - 0 - 0

0.01% 71.63 ± 16.48 6.7 95.29 ± 0.00 3.3 - 0 - 0

(b) n = 10, k = 2

FW FW EleSym AGM AGM EleSym

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 0.34 ± 0.00 3.3 1.19 ± 0.52 100.0 - 0 - 0

5% 0.34 ± 0.00 3.3 1.21 ± 0.52 100.0 - 0 - 0

1% 0.70 ± 0.00 3.3 1.71 ± 0.78 100.0 - 0 - 0

0.5% - 0 2.54 ± 1.24 100.0 - 0 - 0

0.1% - 0 9.49 ± 7.33 100.0 - 0 - 0

0.05% - 0 31.53 ± 27.68 96.7 - 0 - 0

0.01% - 0 95.66 ± 0.00 3.3 - 0 - 0

(c) n = 20, k = 1

FW FW EleSym AGM AGM EleSym

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 0.16 ± 0.04 16.7 0.22 ± 0.07 100.0 - 0 - 0

5% 0.20 ± 0.03 13.3 0.23 ± 0.07 100.0 - 0 - 0

1% 0.20 ± 0.05 6.7 0.40 ± 0.18 100.0 - 0 - 0

0.5% 0.43 ± 0.38 6.7 0.57 ± 0.27 100.0 - 0 - 0

0.1% 5.78 ± 0.00 3.3 6.39 ± 4.62 100.0 - 0 - 0

0.05% - 0 23.44 ± 11.36 100.0 - 0 - 0

0.01% - 0 86.89 ± 3.73 6.7 - 0 - 0

(d) n = 20, k = 2

Table 1: All experiments were done with 30 randomly generated points. The polynomials in the experiments
described here have degrees 9, 8, 19, 18, respectively. For the “Mean” column values closer to 0 are better
and indicate the mean relative time (in comparison to the running time of DDS) to get a solution whose
value is within “Error” of the solution obtained by DDS. A bold entry in a row indicates the method with
best mean relative time among the ones that were 100% successful.

29

FW FW EleSym AGM AGM EleSym

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 0.82 ± 0.11 100.0 0.08 ± 0.01 100.0 28.77 ± 11.14 100.0 6.94 ± 2.46 100.0

5% 0.82 ± 0.11 100.0 0.08 ± 0.01 100.0 34.79 ± 11.45 100.0 8.24 ± 2.52 100.0

1% 0.82 ± 0.11 100.0 0.08 ± 0.01 100.0 44.67 ± 12.26 93.3 13.56 ± 13.07 100.0

0.5% 0.82 ± 0.11 100.0 0.08 ± 0.01 100.0 47.22 ± 13.94 93.3 14.07 ± 13.01 100.0

0.1% 0.82 ± 0.11 100.0 0.08 ± 0.01 100.0 61.88 ± 17.32 63.3 28.66 ± 24.92 96.7

0.05% 1.24 ± 2.29 100.0 0.28 ± 1.11 100.0 68.68 ± 16.25 50.0 37.52 ± 30.31 90.0

0.01% 11.07 ± 25.34 86.7 12.04 ± 24.17 96.7 - 0 67.89 ± 20.59 46.7

0.005% 12.86 ± 26.33 46.7 19.11 ± 28.52 60.0 - 0 70.41 ± 20.81 30.0

0.001% 16.23 ± 21.75 6.7 37.99 ± 53.47 10.0 - 0 74.61 ± 19.81 20.0

(a) n = 30, k = 27

FW FW EleSym AGM AGM EleSym

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 1.01 ± 0.16 100.0 0.06 ± 0.01 100.0 31.03 ± 5.17 96.7 6.67 ± 11.86 100.0

5% 1.01 ± 0.16 100.0 0.06 ± 0.01 100.0 36.66 ± 7.43 96.7 7.38 ± 11.74 100.0

1% 1.01 ± 0.16 100.0 0.06 ± 0.01 100.0 53.32 ± 16.52 93.3 9.97 ± 11.95 100.0

0.5% 1.01 ± 0.16 100.0 0.06 ± 0.01 100.0 56.12 ± 16.05 90.0 10.42 ± 10.12 96.7

0.1% 1.01 ± 0.16 100.0 0.06 ± 0.01 100.0 70.36 ± 18.57 73.3 18.72 ± 19.91 96.7

0.05% 1.01 ± 0.16 100.0 0.06 ± 0.01 100.0 69.93 ± 16.88 40.0 27.55 ± 21.38 96.7

0.01% 1.01 ± 0.16 100.0 0.06 ± 0.01 100.0 76.53 ± 12.27 10.0 42.10 ± 23.54 90.0

0.005% 5.02 ± 17.12 86.7 8.38 ± 21.32 100.0 - 0 58.40 ± 21.60 83.3

0.001% 0.99 ± 0.13 30.0 8.03 ± 25.22 33.3 - 0 68.93 ± 21.91 43.3

(b) n = 40, k = 37

FW FW EleSym AGM AGM EleSym

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 1.52 ± 0.21 100.0 0.05 ± 0.01 100.0 47.46 ± 8.61 100.0 4.12 ± 0.74 100.0

5% 1.52 ± 0.21 100.0 0.05 ± 0.01 100.0 55.60 ± 15.51 93.3 7.75 ± 12.00 100.0

1% 1.52 ± 0.21 100.0 0.05 ± 0.01 100.0 69.45 ± 18.27 83.3 11.51 ± 14.72 100.0

0.5% 1.52 ± 0.21 100.0 0.05 ± 0.01 100.0 77.32 ± 15.72 70.0 13.82 ± 15.19 100.0

0.1% 1.52 ± 0.21 100.0 0.05 ± 0.01 100.0 75.88 ± 20.09 46.7 19.36 ± 19.66 100.0

0.05% 1.52 ± 0.21 100.0 0.05 ± 0.01 100.0 87.12 ± 23.98 33.3 24.95 ± 21.03 100.0

0.01% 1.52 ± 0.21 100.0 0.05 ± 0.01 100.0 104.30 ± 0.00 3.3 50.81 ± 22.23 90.0

0.005% 1.52 ± 0.21 100.0 0.05 ± 0.01 100.0 - 0 57.89 ± 19.14 90.0

0.001% 1.52 ± 0.21 50.0 1.14 ± 4.37 53.3 - 0 68.67 ± 18.28 70.0

(c) n = 50, k = 47

Table 2: All experiments were done with 30 randomly generated points. The polynomials in the experiments
described here all have degree 3.

30

FW FW EleSym AGM AGM EleSym
Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 0.45 ± 0.20 100.0 1.54 ± 1.26 100.0 46.52 ± 7.18 40.0 - 0
5% 0.46 ± 0.23 100.0 1.55 ± 1.25 100.0 54.44 ± 6.57 10.0 - 0
1% 0.60 ± 0.31 100.0 2.02 ± 1.53 100.0 - 0 - 0

0.5% 0.89 ± 0.64 100.0 2.78 ± 2.00 100.0 - 0 - 0
0.1% 10.08 ± 10.14 90.0 24.80 ± 25.53 100.0 - 0 - 0
0.05% 20.55 ± 19.45 90.0 32.35 ± 32.92 83.3 - 0 - 0
0.01% 31.44 ± 24.01 66.7 22.76 ± 23.67 43.3 - 0 - 0
0.005% 34.84 ± 26.88 66.7 28.35 ± 28.19 43.3 - 0 - 0
0.001% 34.91 ± 26.51 63.3 32.53 ± 32.91 43.3 - 0 - 0

(a) n = 10, k = 1, 30 points

FW FW EleSym AGM AGM EleSym
Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 0.53 ± 0.09 100.0 1.07 ± 0.70 100.0 60.21 ± 16.23 76.7 - 0
5% 0.57 ± 0.09 100.0 1.22 ± 0.78 100.0 68.47 ± 11.59 43.3 - 0
1% 1.17 ± 0.63 100.0 2.81 ± 2.10 100.0 91.12 ± 17.68 6.7 - 0

0.5% 2.68 ± 2.04 100.0 5.45 ± 3.79 100.0 103.62 ± 0.00 3.3 - 0
0.1% 25.76 ± 15.20 96.7 42.96 ± 20.63 93.3 - 0 - 0
0.05% 43.59 ± 23.51 80.0 60.60 ± 27.33 60.0 - 0 - 0
0.01% 57.97 ± 30.11 43.3 50.11 ± 37.97 16.7 - 0 - 0
0.005% 58.95 ± 33.34 36.7 41.61 ± 35.22 13.3 - 0 - 0
0.001% 53.86 ± 33.49 30.0 45.10 ± 38.23 13.3 - 0 - 0

(b) n = 10, k = 2

FW FW EleSym AGM AGM EleSym
Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 0.62 ± 0.00 3.3 1.79 ± 0.70 100.0 - 0 - 0
5% 0.62 ± 0.00 3.3 1.81 ± 0.69 100.0 - 0 - 0
1% 1.26 ± 0.00 3.3 2.52 ± 0.98 100.0 - 0 - 0

0.5% - 0 3.53 ± 1.59 100.0 - 0 - 0
0.1% - 0 8.59 ± 4.64 100.0 - 0 - 0
0.05% - 0 12.82 ± 11.34 100.0 - 0 - 0
0.01% - 0 19.17 ± 19.80 93.3 - 0 - 0
0.005% - 0 19.20 ± 21.98 90.0 - 0 - 0
0.001% - 0 19.14 ± 23.07 86.7 - 0 - 0

(c) n = 20, k = 1

FW FW EleSym AGM AGM EleSym
Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 0.30 ± 0.02 16.7 0.35 ± 0.09 100.0 - 0 - 0
5% 0.33 ± 0.07 13.3 0.38 ± 0.09 100.0 - 0 - 0
1% 0.32 ± 0.05 6.7 0.59 ± 0.22 100.0 - 0 - 0

0.5% 0.65 ± 0.52 6.7 0.84 ± 0.36 100.0 - 0 - 0
0.1% 10.14 ± 0.00 3.3 3.90 ± 5.04 100.0 - 0 - 0
0.05% 17.08 ± 0.00 3.3 7.35 ± 9.63 100.0 - 0 - 0
0.01% - 0 16.92 ± 18.41 96.7 - 0 - 0
0.005% - 0 18.95 ± 21.07 96.7 - 0 - 0
0.001% - 0 21.93 ± 24.73 96.7 - 0 - 0

(d) n = 20, k = 2

Table 3: The setting is the same as in Table 1 except that DDS is run with 10−3 tolerance.

31

FW FW EleSym AGM AGM EleSym

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 1.60 ± 0.16 100.0 0.16 ± 0.02 100.0 53.66 ± 8.51 96.7 13.59 ± 3.54 100.0

5% 1.60 ± 0.16 100.0 0.16 ± 0.02 100.0 66.23 ± 16.17 96.7 15.76 ± 3.51 96.7

1% 1.61 ± 0.15 96.7 0.16 ± 0.02 96.7 83.69 ± 16.86 76.7 23.15 ± 11.56 96.7

0.5% 1.61 ± 0.15 96.7 0.16 ± 0.02 96.7 82.00 ± 17.17 66.7 25.98 ± 15.76 96.7

0.1% 1.60 ± 0.15 60.0 0.16 ± 0.01 60.0 94.56 ± 8.71 13.3 37.60 ± 20.04 46.7

0.05% 1.59 ± 0.15 40.0 0.16 ± 0.01 40.0 - 0 45.18 ± 25.55 13.3

(a) n = 30, k = 27

FW FW EleSym AGM AGM EleSym

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 1.93 ± 0.24 100.0 0.10 ± 0.02 100.0 58.60 ± 8.38 96.7 8.54 ± 1.17 96.7

5% 1.93 ± 0.24 100.0 0.10 ± 0.02 100.0 68.14 ± 13.46 93.3 10.00 ± 2.11 96.7

1% 1.94 ± 0.24 96.7 0.11 ± 0.02 96.7 82.65 ± 21.42 56.7 15.12 ± 5.68 96.7

0.5% 1.94 ± 0.24 96.7 0.11 ± 0.02 96.7 79.98 ± 22.22 40.0 21.66 ± 20.04 96.7

0.1% 1.89 ± 0.21 66.7 0.10 ± 0.01 66.7 - 0 40.95 ± 25.76 50.0

0.05% 1.96 ± 0.20 40.0 0.10 ± 0.01 40.0 - 0 47.13 ± 27.91 16.7

(b) n = 40, k = 37

FW FW EleSym AGM AGM EleSym

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 2.69 ± 0.27 100.0 0.08 ± 0.01 100.0 83.91 ± 13.77 100.0 7.45 ± 1.22 100.0

5% 2.69 ± 0.27 100.0 0.08 ± 0.01 100.0 87.51 ± 13.34 70.0 10.46 ± 7.67 96.7

1% 2.69 ± 0.27 96.7 0.08 ± 0.01 96.7 89.85 ± 12.53 26.7 17.91 ± 15.46 96.7

0.5% 2.69 ± 0.27 96.7 0.08 ± 0.01 96.7 93.65 ± 6.95 16.7 22.30 ± 20.80 96.7

0.1% 2.64 ± 0.26 73.3 0.08 ± 0.01 73.3 92.77 ± 9.31 10.0 36.95 ± 33.16 70.0

0.05% 2.66 ± 0.25 70.0 0.08 ± 0.01 70.0 - 0 61.83 ± 31.75 53.3

(c) n = 50, k = 47

Table 4: The setting is the same as in Table 2 except that DDS is run with 10−3 tolerance.

Figure 1: Frank-Wolfe gap and relative function values log-log plots for n = 20, k = 10, 10 instances. For
those values of n and k, the corresponding hyperbolic polynomial has 184756 monomials. For the second
figure, since f̂opt is the best solution obtained during the 10 seconds, it is natural that the relative error
computed empirically goes to 0. Still, the fact that the graph is almost a straight line before that suggests
that the convergence is indeed sublinear as predicted by (4.21).

32

Figure 2: Frank-Wolfe gap and relative function values log-log plots for n = 30, k = 15, 10 instances. For
those values of n and k, the corresponding hyperbolic polynomial has 155117520 monomials. Comments
analogous to the ones in Figure 1 apply.

code can be configured to use the routines eleSym.m and grad_eleSym.m. For some usage examples, see
poly proj examples.m.

5.2 Projection onto p-cones

Algorithm 2 is also applicable in more general settings so in this subsection our goal is to examine its behavior
beyond the case of hyperbolicity cones. Here, we consider the problem of projecting a given c ∈ Rn+1 onto
a p-cone.

min
x∈Rn+1

1

2
‖x− c‖2 (5.6)

s.t. x ∈ Kn+1
p ,

where Kn+1
p = {(x0, x1, . . . , xn) ∈ Rn+1 | x0 ≥ 0, xp0 ≥ |x1|p + · · ·+ |xn|p} for some p ∈ (1,∞).

The problem (5.6) can be solved with both DDS and Mosek [34]. However, Mosek does not handle p-norm
constraints directly, so we need to reformulate (5.6) using power cone constraints as follows.

x ∈ Kn+1
p ⇐⇒

{
xp0 ≥

∑n
i=1|xi|p

x0 ≥ 0

⇐⇒

 xp0 ≥
∑n
i=1 yix

p−1
0

yix
p−1
0 ≥ |xi|p (i = 1, . . . , n)

x0 ≥ 0

⇐⇒

x0 ≥

∑n
i=1 yi

y
1/p
i x

1−1/p
0 ≥ |xi| (i = 1, . . . , n)

x0 ≥ 0

Using this transformation and dropping the quadratic objective function to a second-order cone constraint,
(5.6) is transformed into the following equivalent problem.

min
t∈R,x∈Rn+1

t

s.t. t ≥ ‖x− c‖

x0 ≥
n∑
i=1

yi

x
1−1/p
0 y

1/p
i ≥ |xi| (i = 1, . . . , n)

x0 ≥ 0

33

In our preliminary tests, Mosek was significantly faster than DDS, so in the following experiments we only
compare with Mosek.

As in Section 5.1, our implementation of Algorithm 2 for solving (5.6) is relatively straightforward. For
more details, see the file FW_GCP_exp.m. The element e is given by (1, 0, . . . , 0) and, with that, the generalized
minimum eigenvalue function is such that

λmin(x) = x0 −

√√√√ n∑
i=1

|xi|p.

The computation of conjugate vectors is done using the formulae described in [31, Section 4.1] and the
constant cD is computed as in (4.23).

We follow the same experimental procedures as in Section 5.1. We generate c by sampling from the
standard normal distribution, discarding points that are too close to the cone and repeating until 30 points
were generated.

We tested our implementation of Algorithm 2 with p ∈ {1.1, 1.3, 3, 5} and n ∈ {100, 300, 500, 1000}. The
results are described in Tables 5 and 6. Table entries have the same meaning as in Tables 1–4. Analogously
to Section 5.1.1, our goal was to examine how long does take it take on average to obtain a solution that
has a value that is close to the one obtained by Mosek. For example, the entry “2.65± 0.93” at the column
p = 3 at Table 5d means that, on average over 30 points, Algorithm 2 required 2.65% of the time that Mosek
needed in order to find a solution whose value is within 0.5% of the optimal value found by Mosek. As before,
we only consider iterates that satisfy λmin(xk) ≥ −10−8 and all objective function value computations are
considered with respect the formulation in (5.6). In all instances, we set the maximum running time to be
equal to the time spent by Mosek.

For the experiments in Table 5, Mosek was configured to run with its default accuracy settings. For most
values of p and n, Algorithm 2 was able to obtain solutions having objective value between 1% and 0.5% of
the value obtained by Mosek in a fraction of the time. The case p = 1.1 seems to be the most challenging
where except for n = 100, Algorithm 2 typically requires on average at least 10% of the running time Mosek
to reach solutions with E = 0.5%. The performance for the other p’s was better and for, say, p = 3, even for
n = 1000 no more than 3% of the running time of Mosek was required to reach solutions with E = 0.5%.

We also performed experiments where Mosek is configured to run with a lower optimality threshold of
10−3, analogously to Tables 3-44. These experiments are described in Table 6 and the results are largely
similar to the ones reported in Table 5.

Again, it should be emphasized that the goal of experimental setting described in Tables 5 and 6 is to
understand the trade-off between the accuracy afforded by a second-order approach and the fast iterations of
a first-order method for this particular class of problems. In this sense, Algorithm 2 seems to be competitive
since it consistently obtain relatively close solutions within a fraction of the time required by Mosek. On the
other hand, it struggles to get closer than 0.1% of the objective value obtained by Mosek within the allotted
time budget.

6 Conclusion

The initial motivation for this paper was the problem of computing projections onto hyperbolicity cones.
We explored this question from both theoretical and numerical perspectives. As seen in Section 3, there
are limits to what can be done for general hyperbolicity cones and formulae analogous to the ones for the
positive semidefinite cone are only available in certain special cases (Propositions 3.4 and 3.6). In face of
these limitations, we also proposed an algorithm based on the classic Frank-Wolfe method for computing
projections, see Section 4. In fact, our method can handle more general problems including the case where
the underlying cone is not necessarily a hyperbolicity cone.

4More precisely, the parameter MSK DPAR INTPNT CO TOL MU RED of Mosek which controls the relative complementarity gap
tolerance is set to 10−3.

34

p = 1.1 p = 1.3 p = 3 p = 5

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 6.35 ± 3.83 100.0 2.42 ± 0.95 100.0 1.32 ± 0.44 100.0 1.54 ± 0.53 100.0

5% 6.35 ± 3.83 100.0 2.42 ± 0.95 100.0 1.32 ± 0.44 100.0 1.97 ± 0.89 100.0

1% 6.35 ± 3.83 100.0 9.20 ± 4.26 100.0 5.44 ± 3.11 100.0 10.67 ± 4.44 100.0

0.5% 6.92 ± 4.32 100.0 28.56 ± 10.52 100.0 16.97 ± 5.88 100.0 24.88 ± 9.84 100.0

0.1% 69.39 ± 18.59 16.7 - 0 89.15 ± 8.92 40.0 77.09 ± 13.37 20.0

(a) n = 100

p = 1.1 p = 1.3 p = 3 p = 5

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 10.03 ± 5.01 100.0 2.71 ± 0.76 100.0 1.28 ± 0.44 100.0 1.70 ± 0.59 100.0

5% 10.03 ± 5.01 100.0 2.71 ± 0.76 100.0 1.28 ± 0.44 100.0 1.86 ± 0.75 100.0

1% 10.03 ± 5.01 100.0 5.07 ± 1.43 100.0 3.25 ± 2.70 100.0 8.24 ± 5.95 100.0

0.5% 10.03 ± 5.01 100.0 16.28 ± 4.41 100.0 12.85 ± 7.78 100.0 22.11 ± 12.55 100.0

0.1% 77.74 ± 12.38 53.3 94.33 ± 0.00 3.3 84.54 ± 8.39 23.3 92.00 ± 5.64 10.0

(b) n = 300

p = 1.1 p = 1.3 p = 3 p = 5

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 16.39 ± 5.69 100.0 3.34 ± 0.99 100.0 1.49 ± 0.27 100.0 1.73 ± 0.32 100.0

5% 16.39 ± 5.69 100.0 3.34 ± 0.99 100.0 1.49 ± 0.27 100.0 1.73 ± 0.32 100.0

1% 16.39 ± 5.69 100.0 5.84 ± 2.04 100.0 1.78 ± 0.76 100.0 5.34 ± 4.60 100.0

0.5% 16.39 ± 5.69 100.0 15.11 ± 4.55 100.0 8.43 ± 5.65 100.0 16.18 ± 9.24 100.0

0.1% 79.12 ± 17.49 43.3 - 0 86.06 ± 7.92 13.3 95.42 ± 4.93 20.0

(c) n = 500

p = 1.1 p = 1.3 p = 3 p = 5

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 22.79 ± 6.03 100.0 4.43 ± 0.99 100.0 2.28 ± 0.50 100.0 2.59 ± 0.35 100.0

5% 22.79 ± 6.03 100.0 4.43 ± 0.99 100.0 2.28 ± 0.50 100.0 2.59 ± 0.35 100.0

1% 22.79 ± 6.03 100.0 9.75 ± 2.11 100.0 2.28 ± 0.50 100.0 3.01 ± 1.47 100.0

0.5% 22.79 ± 6.03 100.0 15.33 ± 3.26 100.0 2.65 ± 0.93 100.0 9.10 ± 9.19 100.0

0.1% 62.71 ± 10.08 96.7 - 0 - 0 96.30 ± 1.76 6.7

(d) n = 1000

Table 5: Relative times in comparison with Mosek using default accuracy for p ∈ {1.1, 1.3, 3, 5} and n ∈
{100, 300, 500, 1000}. We wrote in bold the entries that correspond to the cases where Algorithm 2 has mean
relative time less than 15% and the success rate is 100%.

35

p = 1.1 p = 1.3 p = 3 p = 5

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 4.90 ± 2.34 100.0 2.41 ± 1.32 100.0 1.15 ± 0.44 100.0 1.58 ± 0.74 93.3

5% 4.90 ± 2.34 100.0 2.41 ± 1.32 100.0 1.15 ± 0.44 100.0 1.96 ± 0.85 93.3

1% 4.90 ± 2.34 100.0 9.57 ± 5.75 100.0 4.97 ± 3.12 100.0 11.26 ± 6.07 93.3

0.5% 5.21 ± 2.34 100.0 28.76 ± 15.44 100.0 15.36 ± 6.06 100.0 25.58 ± 13.30 93.3

0.1% 80.01 ± 14.02 46.7 - 0 82.49 ± 12.78 50.0 77.75 ± 20.73 13.3

(a) n = 100

p = 1.1 p = 1.3 p = 3 p = 5

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 10.26 ± 4.37 100.0 2.49 ± 0.63 100.0 1.19 ± 0.43 100.0 1.59 ± 0.37 100.0

5% 10.26 ± 4.37 100.0 2.49 ± 0.63 100.0 1.19 ± 0.43 100.0 1.75 ± 0.60 100.0

1% 10.26 ± 4.37 100.0 4.56 ± 1.11 100.0 2.95 ± 2.38 100.0 8.24 ± 5.76 100.0

0.5% 10.26 ± 4.37 100.0 15.61 ± 5.20 100.0 12.09 ± 8.42 100.0 22.11 ± 11.05 100.0

0.1% 84.19 ± 11.91 50.0 - 0 90.07 ± 5.98 23.3 96.29 ± 4.92 6.7

(b) n = 300

p = 1.1 p = 1.3 p = 3 p = 5

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 14.38 ± 7.55 100.0 3.34 ± 1.00 100.0 1.56 ± 0.36 100.0 1.76 ± 0.39 100.0

5% 14.38 ± 7.55 100.0 3.34 ± 1.00 100.0 1.56 ± 0.36 100.0 1.76 ± 0.39 100.0

1% 14.38 ± 7.55 100.0 5.86 ± 2.03 100.0 1.87 ± 0.83 100.0 5.32 ± 4.27 100.0

0.5% 14.38 ± 7.55 100.0 15.22 ± 5.81 100.0 10.02 ± 8.48 100.0 16.30 ± 8.90 100.0

0.1% 71.77 ± 12.47 50.0 - 0 85.52 ± 5.82 20.0 87.29 ± 7.49 10.0

(c) n = 500

p = 1.1 p = 1.3 p = 3 p = 5

Error Mean S(%) Mean S(%) Mean S(%) Mean S(%)

10% 23.11 ± 5.76 100.0 4.40 ± 0.72 100.0 2.24 ± 0.29 100.0 2.64 ± 0.53 100.0

5% 23.11 ± 5.76 100.0 4.40 ± 0.72 100.0 2.24 ± 0.29 100.0 2.64 ± 0.53 100.0

1% 23.11 ± 5.76 100.0 9.80 ± 1.89 100.0 2.24 ± 0.29 100.0 3.00 ± 1.17 100.0

0.5% 23.11 ± 5.76 100.0 15.55 ± 3.37 100.0 2.64 ± 0.98 100.0 9.32 ± 8.81 100.0

0.1% 64.34 ± 13.40 100.0 - 0 - 0 90.87 ± 0.61 6.7

(d) n = 1000

Table 6: The setting is the same as in Table 5 except that Mosek is run with 10−3 complementarity gap
tolerance.

36

As discussed in Section 4, a novel point is that the Frank-Wolfe method is actually applied to the dual
problem, since this leads to subproblems whose solutions can be expressed in terms of minimum eigenvalues
computations and conjugate vectors. In the particular case of hyperbolicity cones, we show how all the
necessary objects are computable from the underlying hyperbolic polynomial. Then, in Section 5 we pre-
sented some numerical experiments that suggest that our approach has a better performance than an earlier
algorithm proposed by Renegar [43]. We also compared against interior point methods. As expected, IPMs
excel at getting accurate solutions but we found that our approach was often able to obtain close enough
solutions with a fraction of the running time.

Still, there are a few outstanding issues that we believe could be addressed in future works. In particular,
there have been many interesting works regarding Frank-Wolfe method and variants, including nonconvex
extensions [33, 1, 50]. In particular, one of the most common ways to improve Frank-Wolfe methods is via
the so-called away steps and it could be interesting to try to port some techniques to our setting by making
use of the geometric properties of hyperbolicity cones and their duals. The modifications described in [15],
for instance, could be promising, but they seem to require a deep knowledge of the facial structure of the
underlying convex set, which may present a challenge for a set obtained by taking a compact slice of the
dual of a hyperbolicity cone as we do in our approach.

Finally, a limitation of our approach is the requirement that a constant cD (see Assumption 1) is known.
To conclude this paper, we offer some thoughts on this point.

When cD in Assumption 1 is unknown Suppose that K is a regular convex cone and e ∈ intK is
arbitrary. Suppose also that (D) has an optimal solution. Since 〈e, y〉 > 0 always holds for y ∈ K∗ \ {0}, for
any such problem, there is always some cD for which Assumption 1 is satisfied. As we saw in Section 4.4,
cD is readily available when minimizing a positive definite quadratic function. But suppose that we have a
problem for which cD is not available.

Then, one can start with any e ∈ intK, an initial guess for cD, say, c0D := 1 and run Algorithm 2 with
c0D and e. Let x̄0 and ȳ0 denote the output of the algorithm. As remarked in the discussion about the
stopping criteria, if c0D is large enough so that Assumption 1 is satisfied, then x̄0 and ȳ0 should be close to
being zero duality gap pairs of optimal solutions to (P) and (D). On the other hand, if c0D is too small, then
either x̄0 is far from being feasible to (P) or the sum of the objective values associated to x̄0 and ȳ0 has
large absolute value or both phenomena happen at the same time. In that case, we may increase c0D by, say,
setting c1D := 2c0D and try Algorithm 2 again with c1D and e in order to obtain new solutions x̄1 and ȳ1.

The summary of discussion is that, in theory, one could handle problems for which cD is unknown by
repeatedly invoking Algorithm 2 with increasingly larger guesses of cD and stopping when the obtained
solutions are sufficiently close to being primal-dual optimal for (P) and (D). This, of course, would require a
very careful calibration of the stopping criterion in Algorithm 2. Although we did not explore this possibility
in this paper, this might be an interesting future direction to consider.

References

[1] M. V. Balashov, B. T. Polyak, and A. A. Tremba. Gradient projection and conditional gradient methods
for constrained nonconvex minimization. Numerical Functional Analysis and Optimization, 41(7):822–
849, 2020.

[2] G. P. Barker. Theory of cones. Linear Algebra and its Applications, 39:263 – 291, 1981.

[3] H. H. Bauschke and J. M. Borwein. On projection algorithms for solving convex feasibility problems.
SIAM Review, 38(3):367–426, 1996.

[4] H. H. Bauschke, O. Güler, A. S. Lewis, and H. S. Sendov. Hyperbolic polynomials and convex analysis.
Canadian Journal of Mathematics, 53(3):470–488, 2001.

[5] D. Bini, P. Boito, Y. Eidelman, L. Gemignani, and I. Gohberg. A fast implicit QR eigenvalue algorithm
for companion matrices. Linear Algebra and its Applications, 432(8):2006–2031, 2010.

37

[6] J. Bolte, C. W. Combettes, and E. Pauwels. The iterates of the Frank–Wolfe algorithm may not
converge. Mathematics of Operations Research, Dec. 2023.

[7] I. M. Bomze, F. Rinaldi, and D. Zeffiro. Frank–Wolfe and friends: a journey into projection-free
first-order optimization methods. 4OR, 19(3):313–345, 2021.

[8] P. Brändén. Hyperbolicity cones of elementary symmetric polynomials are spectrahedral. Optimization
Letters, 8(5):1773–1782, Jun 2014.

[9] C. Coey, L. Kapelevich, and J. P. Vielma. Solving natural conic formulations with hypatia.jl. INFORMS
Journal on Computing, 34(5):2686–2699, Sept. 2022.

[10] V. F. Demyanov and A. M. Rubinov. Approximate methods in optimization problems. Number 32 in
Modern analytic and computational methods in science and mathematics. Elsevier Publishing Company,
1970.

[11] J. C. Dunn. Convergence rates for conditional gradient sequences generated by implicit step length
rules. SIAM Journal on Control and Optimization, 18(5):473–487, 1980.

[12] L. Faybusovich. Jordan-algebraic approach to convexity theorems for quadratic mappings. SIAM
Journal on Optimization, 17(2):558–576, 2006.

[13] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval research logistics quarterly,
3(1-2):95–110, 1956.

[14] R. M. Freund and P. Grigas. New analysis and results for the Frank–Wolfe method. Mathematical
Programming, 155(1–2):199–230, Nov. 2014.

[15] R. M. Freund, P. Grigas, and R. Mazumder. An extended Frank–Wolfe method with “in-face” directions,
and its application to low-rank matrix completion. SIAM Journal on Optimization, 27(1):319–346, Jan.
2017.

[16] L. G̊arding. An inequality for hyperbolic polynomials. Journal of Mathematics and Mechanics, pages
957–965, 1959.

[17] J. Gouveia, M. Ito, and B. F. Lourenço. Minimal hyperbolic polynomials and ranks of homogeneous
cones. arXiv preprint, 2024.

[18] O. Güler. Hyperbolic polynomials and interior point methods for convex programming. Mathematics
of Operations Research, 22(2):350–377, 1997.

[19] J. W. Helton and V. Vinnikov. Linear matrix inequality representation of sets. Communications on
Pure and Applied Mathematics, 60(5):654–674, 2007.

[20] D. Henrion and J. Malick. Projection methods for conic feasibility problems: applications to polynomial
sum-of-squares decompositions. Optimization Methods and Software, 26(1):23–46, 2011.

[21] J. Hiriart-Urruty and C. Lemarechal. Convex Analysis and Minimization Algorithms II: Advanced The-
ory and Bundle Methods. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg,
2013.

[22] C. A. Holloway. An extension of the Frank and Wolfe method of feasible directions. Mathematical
Programming, 6(1):14–27, 1974.

[23] M. Ito and B. F. Lourenço. A bound on the Carathéodory number. Linear Algebra and its Applications,
532:347 – 363, 2017.

[24] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In International Con-
ference on Machine Learning, pages 427–435. PMLR, 2013.

38

[25] M. Karimi and L. Tunçel. Domain-Driven Solver (DDS) version 2.1: a MATLAB-based software package
for convex optimization problems in domain-driven form. Mathematical Programming Computation,
16(1):37–92, Oct. 2023.

[26] M. Kummer. Spectral linear matrix inequalities. Advances in Mathematics, 384:107749, 2021.

[27] S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization variants.
Advances in neural information processing systems, 28, 2015.

[28] E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Computational mathematics
and mathematical physics, 6(5):1–50, 1966.

[29] Y. Lin, S. B. Lindstrom, B. F. Lourenço, and T. K. Pong. Generalized power cones: Optimal error
bounds and automorphisms. SIAM Journal on Optimization, 34(2):1316–1340, Apr. 2024.

[30] S. B. Lindstrom, B. F. Lourenço, and T. K. Pong. Error bounds, facial residual functions and applica-
tions to the exponential cone. Mathematical Programming, 200(1):229–278, Oct. 2022.

[31] S. B. Lindstrom, B. F. Lourenço, and T. K. Pong. Optimal error bounds in the absence of constraint
qualifications with applications to the p-cones and beyond. to appear at Mathematics of Operations
Research, 2024.

[32] B. F. Lourenço. Amenable cones: error bounds without constraint qualifications. Mathematical Pro-
gramming, 186:1–48, 2021.

[33] R. Luss and M. Teboulle. Conditional gradient algorithms for rank-one matrix approximations with a
sparsity constraint. SIAM Review, 55(1):65–98, 2013.

[34] MOSEK ApS. MOSEK Modeling Cookbook Release 3.3.0, 2024.

[35] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical programming, 103(1):127–
152, 2005.

[36] Y. Nesterov. Lectures on Convex Optimization. Springer Optimization and Its Applications. Springer
International Publishing, 2018.

[37] D. Papp and S. Yıldız. alfonso: Matlab package for nonsymmetric conic optimization. INFORMS
Journal on Computing, 34(1):11–19, 2022.

[38] G. Pataki. The geometry of semidefinite programming. In H. Wolkowicz, R. Saigal, and L. Vanden-
berghe, editors, Handbook of semidefinite programming: theory, algorithms, and applications. Kluwer
Academic Publishers, online version at http://www.unc.edu/~pataki/papers/chapter.pdf, 2000.

[39] J. Peña, D. Rodŕıguez, and N. Soheili. On the von Neumann and Frank–Wolfe algorithms with away
steps. SIAM Journal on Optimization, 26(1):499–512, 2016.

[40] S. Pokutta. The Frank-Wolfe algorithm: A short introduction. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 126(1):3–35, Dec. 2023.

[41] J. Renegar. Hyperbolic programs, and their derivative relaxations. Foundations of Computational
Mathematics, 6(1):59–79, Jan. 2006.

[42] J. Renegar. “Efficient” subgradient methods for general convex optimization. SIAM Journal on Opti-
mization, 26(4):2649–2676, 2016.

[43] J. Renegar. Accelerated first-order methods for hyperbolic programming. Mathematical Programming,
173(1):1–35, 2019.

[44] R. T. Rockafellar. Convex Analysis . Princeton University Press, 1997.

39

http://www.unc.edu/~pataki/papers/chapter.pdf

[45] R. Sanyal. On the derivative cones of polyhedral cones. Advances in Geometry, 13(2):315–321, 2013.

[46] J. Saunderson. A spectrahedral representation of the first derivative relaxation of the positive semidef-
inite cone. Optimization Letters, 12(7):1475–1486, Oct 2018.

[47] J. Saunderson and P. A. Parrilo. Polynomial-sized semidefinite representations of derivative relaxations
of spectrahedral cones. Mathematical Programming, 153(2):309–331, Nov 2015.

[48] D. Sun and J. Sun. Löwner’s operator and spectral functions in Euclidean Jordan algebras. Mathematics
of Operations Research, 33(2):421–445, 2008.

[49] P. Wolfe. Convergence theory in nonlinear programming. Integer and nonlinear programming, pages
1–36, 1970.

[50] L. Zeng, Y. Zhang, G. Li, and T. K. Pong. Frank-Wolfe-type methods for a class of nonconvex inequality-
constrained problems. Mathematical Programming, 2024.

[51] Y. Zinchenko. On hyperbolicity cones associated with elementary symmetric polynomials. Optimization
Letters, 2(3):389–402, Jun 2008.

A A proof that the polynomial in Proposition 3.8 is not isometric

We give a detailed proof that

p(x) = (x1 + x2 + x3)(x1 − x2 + x3)(2x1 − x2 − x3)(x1 + 2x2 − x3)

is hyperbolic with respect to e = (0, 0, 1), but not an isometric hyperbolic polynomial.

Proof. The roots of p(x− te) are

r1(x) = x1 + x2 + x3, r2(x) = x1 − x2 + x3,

r3(x) = −2x1 + x2 + x3, r4(x) = −x1 − 2x2 + x3,

which are all real for x ∈ R3. Since p(e) > 0, p is hyperbolic along e.
To prove p is not isometric, we show that, for z = (3, 1, 0) and y = (−1, 0, 0), there is no w ∈ R3 such

that λ(w) = λ(z) and λ(w + y) = λ(w) + λ(y). First we show that

λ(w) = λ(z)⇒ w = z.

Let w ∈ R3 be such that λ(w) = λ(z) holds. We start by observing that λ(z) = (4, 2,−5,−5), so z has an
eigenvalue of multiplicity two. Therefore, if λ(w) = λ(z), at least two of r1(w), r2(w), r3(w), r4(w) must be
the same. We consider all possible cases.

(i) r1(w) = r2(w). This case happens if and only if w2 = 0. We have the following subcases.

(a) If w1 > 0, then r1(w) = r2(w) > r4(w) > r3(w) holds, i.e., the two largest eigenvalues of w are
equal. Therefore, λ(w) can not be λ(z), because the two smallest components of λ(z) are equal.

(b) If w1 = 0, then r1(w) = r2(w) = r3(w) = r4(w) holds. Similarly, λ(w) can not be λ(z).

(c) If w1 < 0, then r3(w) > r4(w) > r2(w) = r1(w) holds. Therefore,

λ(w) = λ(z)⇒

 r3(w) = 4
r4(w) = 2
r2(w) = r1(w) = −5

However, there does not exist w which satisfies these equalities.

40

(ii) r1(w) = r3(w). This case happens if and only if w1 = 0. We have the following subcases.

(a) If w2 > 0, then r1(w) = r3(w) > r2(w) > r4(w) holds. Therefore, λ(w) can not be λ(z).

(b) If w2 = 0, then r1(w) = r2(w) = r3(w) = r4(w) holds. Therefore, λ(w) can not be λ(z).

(c) If w2 < 0, then r4(w) > r2(w) > r3(w) = r1(w) holds. Therefore,

λ(w) = λ(z)⇒

 r4(w) = 4
r2(w) = 2
r1(w) = r3(w) = −5

However, there does not exist w which satisfies these equalities.

(iii) r1(w) = r4(w). This case happens if and only if 2w1 = −3w2. We have the following subcases.

(a) If w1 > 0, then r2(w) > r1(w) = r4(w) > r3(w) holds. Therefore, λ(w) can not be λ(z).

(b) If w1 = 0, then r1(w) = r2(w) = r3(w) = r4(w) holds. Therefore, λ(w) can not be λ(z).

(c) If w1 < 0, then r3(w) > r4(w) = r1(w) > r2(w) holds. Therefore, λ(w) can not be λ(z).

(iv) r2(w) = r3(w). This case happens if and only if 3w1 = 2w2. We have the following subcases.

(a) If w1 > 0, then r1(w) > r2(w) = r3(w) > r4(w) holds. Therefore, λ(w) can not be λ(z).

(b) If w1 = 0, then r1(w) = r2(w) = r3(w) = r4(w) holds. Therefore, λ(w) can not be λ(z).

(c) If w1 < 0, then r4(w) > r3(w) = r2(w) > r1(w) holds. Therefore, λ(w) can not be λ(z).

(v) r2(w) = r4(w). This case happens if and only if 2w1 = −w2. We have the following subcases.

(a) If w1 > 0, then r2(w) = r4(w) > r1(w) > r3(w) holds. Therefore, λ(w) can not be λ(z).

(b) If w1 = 0, then r1(w) = r2(w) = r3(w) = r4(w) holds. Therefore, λ(w) can not be λ(z).

(c) If w1 < 0, then r3(w) > r1(w) > r2(w) = r4(w) holds. Therefore,

λ(w) = λ(z)⇒

 r3(w) = 4
r1(w) = 2
r2(w) = r4(w) = −5

However, there does not exist w which satisfies these equalities.

(vi) r3(w) = r4(w). This case happens if and only if w1 = 3w2. We have the following subcases.

(a) If w1 > 0, then r1(w) > r2(w) > r3(w) = r4(w) holds. Therefore,

λ(w) = λ(z)⇒

 r1(w) = 4
r2(w) = 2
r3(w) = r4(w) = −5

⇐⇒

 w1 = 3
w2 = 1
w3 = 0

⇐⇒ w = z

(b) If w1 = 0, then r1(w) = r2(w) = r3(w) = r4(w) holds. Therefore, λ(w) can not be λ(z).

(c) If w1 < 0, then r4(w) = r3(w) > r2(w) > r1(w) holds. Therefore, λ(w) can not be λ(z).

The summary of all the six cases and subcases above is that the sole possibility for λ(w) = λ(z) is case
(vi).(a) where we have w = z. That is,

λ(w) = λ(z)⇒ w = z.

Moreover, (3, 1,−3,−4) = λ(z + y) is different from λ(z) + λ(y) = (6, 3,−6,−6). Therefore, p is not
isometric.

41

	Introduction
	Related works
	Outline of this work

	Preliminaries
	Hyperbolic polynomials
	Generalized minimum eigenvalue functions
	The Frank-Wolfe Method

	Projections and distance functions
	The distance function to a hyperbolicity cone
	Partial results on the projection operator
	Limitations and further discussion

	A FW algorithm for strongly convex optimization over regular cones
	Overcoming the challenges of constructing a Frank-Wolfe based method
	Issue 1: Primal or dual?
	Issue 2: Compactness of the feasible region
	Issue 3: How to solve the subproblem exactly?

	The proposed method and its convergence analysis
	Practical considerations
	Minimizing a positive definite quadratic function

	Numerical experiments
	Projection onto derivative relaxations
	A comparison between Renegar's AGM, Algorithm 2 and DDS
	Hyperbolic polynomials with many monomials
	Easy projection via poly_proj.m

	Projection onto p-cones

	Conclusion
	A proof that the polynomial in Proposition 3.8 is not isometric

