
A General Framework for Sequential Batch-Testing

Rayen Tan∗ Alex Xu† Viswanath Nagarajan∗

June 21, 2024

Abstract

We consider sequential testing problems that involve a system of n stochastic components,
each of which is either working or faulty with independent probability. The overall state of the
system is a function of the state of its individual components, and the goal is to determine the
system state by testing its components at the minimum expected cost. In the classic setting,
where each component is tested separately, sequential testing algorithms are known for several
functions such as AND, k-of-n and score-classification. Moreover, many of these algorithms
are “non adaptive”, i.e., they test components in an a priori fixed order until the function is
evaluated. We consider a batched setting that allows for testing multiple components simul-
taneously, at the expense of an extra setup cost. Our main result is a generic method that
transforms a non-adaptive solution for the classic setting into a solution for the more general
batched setting, while incurring only an additive 1√

2
loss in the approximation ratio. Combined

with previously-known approximation algorithms in the classic setting, we obtain batched algo-
rithms for AND, k-of-n and score-classification functions with approximation ratios 1.707, 2.618
and 6.371 respectively. Our algorithm is also very efficient, running in O(n2) time for all the
aforementioned functions. Finally, we evaluate the practical performance of our algorithm on
random instances and observe that it performs very well in comparison to an exact (exponential
time) dynamic programming method.

1 Introduction

Consider a complex system consisting of n stochastic components, where the state of the system
is given by some function of the states of its individual components. The state (working or faulty)
of each component is unknown, although the failure probabilities are known upfront. In order
to determine the state of any component, one needs to perform a test which also incurs some
cost. Often, the system state can be determined by testing just a subset of components. For
example, if the system requires all components to be working, a single faulty component immediately
determines the system status (irrespective of the status of other components). This motivates
sequential testing problems, where the goal is to test components sequentially until the system
state is determined. Such problems arise in a variety of applications in manufacturing, healthcare
and artificial intelligence; see [Mor82] and [Ünl04] for surveys.

The classic setting in sequential testing involves performing tests one by one. Exact or approxi-
mation algorithms are known for several types of systems/functions in this setting. Some commonly
studied cases are AND-functions or series-systems (determine whether all components are working),

∗Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, USA. Research sup-
ported in part by NSF grants CMMI-1940766 and CCF-2006778.

†Computer Science and Engineering, Department of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor, USA.

1

k-of-n systems (determine if at least k components are working) and score-classification (determine
a risk category based on the number of working components). We will discuss these systems in
more detail later.

Solutions to sequential testing problems may generally be adaptive, i.e., the next test to perform
may depend on the results of all previous tests. Nevertheless, for many problems there are good
“non adaptive” solutions, that involve performing tests in an a priori fixed order until the function
is evaluated. Although non-adaptive solutions are more restrictive, they are often preferable in
practice because they are faster to implement. Moreover, for all the systems mentioned above,
there are non-adaptive algorithms that achieve constant-factor approximations relative to optimal
adaptive solutions.

In this paper, we study sequential testing problems in the more general batched setting, that
was introduced by [Dal+17]. Here, several tests may be performed simultaneously while incurring
an extra setup cost. This setting is motivated by applications in healthcare and manufacturing
where one can exploit economies of scale in testing. For example, conducting medical diagnostic
tests typically involve significant setup costs related to administering the tests and transporting
samples to a laboratory; so it is preferable to aggregate tests in order to avoid paying these setup
costs repeatedly. Our main result is an approximation algorithm for batched sequential testing (for
any system) that leverages any non-adaptive approximation algorithm for the classical sequential
testing problem. Our approximation ratio for the batched setting is only a small constant more than
the classical (unbatched) setting. Combined with previously-known approximation algorithms in
the classic setting, we obtain small constant-factor approximation algorithms for batched sequential
testing for series-systems, k-of-n and score-classification.

1.1 Problem Definition

An instance of the sequential testing problem consists of a system with n stochastic components,
indexed [n] := {1, . . . , n}. Each component i ∈ [n] is “working” independently with probability pi,
and is “faulty” otherwise. The state of any component i ∈ [n] is represented by a random variable
(r.v.) Xi ∈ {0, 1} where Xi = 1 if i is working and Xi = 0 if it is faulty. All the probabilities
{pi}ni=1 are known a priori. However, the status Xi of each component i can only be determined
by testing it. The overall state of the system is given by a function f : {0, 1}n → Z+, and the goal
is to evaluate f(X1, . . . Xn). It is important to note that we may not need to test all components
in order to determine the function value.

Unbatched sequential testing (UST). In the classical setting, denoted UST, components are
tested individually. Testing any component i ∈ [n] incurs cost ci. The goal is to evaluate function
f at the minimum expected cost.

Batched sequential testing (BST). In the batched setting that we consider, multiple components
may be tested simultaneously. A batch refers to any subset of components that get tested together.
Testing any batch incurs an additional setup cost of β (even if the batch consists of a single
component). So, the cost to test any batch S ⊆ [n] is c(S) := β+

∑
i∈S ci. There are no restrictions

on which components may be tested together in a batch. Again, the goal is to evaluate f at the
minimum expected cost. Observe that setting β = 0 in BST recovers the classical setting (UST).

Policies for sequential testing. A solution for BST corresponds to a policy that at every step,
determines the next batch to test based on the statuses of all previously tested components. Such
policies are called adaptive because the sequence of tests performed depends on the random out-
comes Xi. A simpler class of policies that we consider in this paper are non-adaptive policies: such
a policy is described by a fixed sequence B = (B1, . . . ,Bm) of batches, where the Bj ’s partition

2

[n]. The non-adaptive policy B tests batches in the fixed order B1,B2, . . . until the function f is
evaluated. If policy B terminates after testing K batches (which itself is a random variable) then

its cost is
∑K

j=1 c(Bj). So, the expected cost of policy B is Cexp(B) := EK

[∑K
j=1 c(Bj)

]
. In the

special case of UST, any policy is just given by a sequence of singleton batches (i.e., each batch has
a single component). We will also work with randomized non-adaptive policies. Such a policy is
specified by a distribution D over batch-sequences, and involves first selecting a random sequence
B = (B1, . . . ,Bm) according to D and then testing batches in this fixed order.

Adaptivity Gap. While non-adaptive policies are much simpler to describe and implement than
adaptive ones, they may result in a worse objective value. The adaptivity gap, introduced by
[DGV08], quantifies this loss in objective. It is the worst-case (over all instances) of the ratio of the
optimal non-adaptive cost to the optimal adaptive cost. In this paper, we will focus on non-adaptive
policies. All our applications also have small constant-factor adaptivity gaps.

Specific functions studied. We apply our main result to the following common systems/functions.

• Series system. This is the simplest type of system, which corresponds to determining if all
components are working. That is, f(X1, · · ·Xn) = 1 when Xi = 1 for each i ∈ [n].

• k-of-n system. Here, the function evaluates to one if at least k components are working. That
is, f(X1, · · ·Xn) = 1 when

∑n
i=1Xi ≥ k and f(X1, · · ·Xn) = 0 otherwise.

• Score classification. This is a more general setting, where the function returns a categorical
output. There are m + 1 thresholds α0 = 0 < α1 < · · · < αm = n and the function value is
j ∈ {1, · · ·m} if the number of working components

∑n
i=1Xi lies between αj−1 and αj .

1.2 Results and Techniques

Our main result is the following “conversion” theorem that obtains an algorithm for batched se-
quential testing using any non-adaptive algorithm for the unbatched problem.

Theorem 1.1. Suppose that there is a non-adaptive ρ-approximation algorithm for unbatched
sequential testing (UST) for function f . Then, there is a randomized non-adaptive algo-
rithm for batched sequential testing (BST) for the same function f with approximation ratio
1
2

(
1 + ρ+

√
1 + ρ2

)
≤ ρ+ 1√

2
.

Our algorithm starts with a ρ-approximate solution U for the unbatched setting (UST). Using
the fact that this is non-adaptive, the tests in U can be ordered linearly on a timeline representing
cumulative testing cost. Then, we partition this timeline into batches of width depending on β
(setup cost) and ρ (approximation ratio for UST), which results in our batched solution for BST. In
order to optimize our approximation ratio, we choose the precise width carefully and also use a
random offset in forming batches. The runtime of our (randomized) batched algorithm is essentially
the same as the runtime of the underlying unbatched algorithm: we only incur additional O(n)
time to form the batches.

We also show that our unbatched-to-batched conversion method is nearly the best possible.
When we start with an optimal unbatched solution (i.e., ρ = 1 above), our unbatched-to-batched
conversion has approximation ratio 1.707. In this case, we show that any generic unbatched-to-
batched conversion must incur a ratio of at least 1.697. In order to show this, we formulate a
factor-revealing linear program (LP) that calculates the worst-case ratio (over all BST instances) of
the best unbatched-to-batched conversion method. This LP has an exponential number of variables
and we solve it numerically using column generation, to obtain the 1.697 lower boud. We note that

3

this limitation only applies to generic unbatched-to-batched conversions, and better approximation
ratios for specific BST problems may still be possible.

Combining Theorem 1.1 with previously-known non-adaptive algorithms for UST we obtain the
following batched sequential testing results.

• A 1.707-approximation algorithm for BST of series systems.

• A 2.618-approximation algorithm for BST of k-of-n systems.

• A 6.371-approximation algorithm for BST of score classification.

Our result for series-systems improves over the 6.829-approximation algorithm obtained in [Dal+16].
While [SS22] obtained an even better approximation ratio (a polynomial time approximation
scheme) for BST of series systems, our algorithm is much more efficient, requiring only O(n log n)
time. A (large) constant-factor approximation for batched testing of k-of-n systems and score
classification follows from the work of [GGN23] on the (more general) weighted score classification
problem. Our result provides algorithms with much smaller approximation ratios for BST of k-of-n
systems and score classification.

We also obtain a deterministic algorithm achieving the above approximation ratios. This in-
volves evaluating the expected cost of n different BST policies (corresponding to different offsets in
the randomized algorithm). For the batched score-classification problem, which is our most general
application, we obtain an O(n2) deterministic runtime using the fact that all n policies are derived
from the same unbatched policy.

Finally, we computationally evaluate our algorithm for batched series-systems, k-of-n and
SSClass. We use randomly-generated instances as in prior work of [SS22], which was only for
batched series-systems. We compare our algorithm to the optimal adaptive policy, which we com-
pute via dynamic programming. Our algorithm performs very well: its cost is typically within 25%
of the optimum and its runtime is faster by several orders of magnitude.

1.3 Related Work

The sequential testing problem is crucial in engineering systems and has been well studied, with
surveys by [Ünl04] and [Mor82]. There has been extensive work in the classical (unbatched) setting.
For series systems, the natural greedy algorithm that performs tests in non-decreasing order of cost
to failure-probability ratio is known to be optimal; see, [But72] and [Mit60]. The same algorithm
also works for “parallel systems” where the system is said to work if any one component is working.

For (unbatched) k-of-n systems, [Ben81] obtained an optimal adaptive algorithm.[Gke+18] ob-
tained a non-adaptive 2-approximation algorithm for k-of-n systems, relative to the optimal adap-
tive policy. Recently, [Gra+22] obtained an improved non-adaptive 1.5-approximation for unit cost
k-of-n systems; they also showed that the adaptivity gap is exactly 1.5 in this case.

The (unbatched) score classification problem was introduced by [Gke+18]. This paper obtained
two adaptive approximation algorithms with ratios O(log n) andm−1; the first algorithm was based
on a connection to stochastic submodular cover (see [INZ16] and [DHK16]) and the second algo-
rithm used the k-of-n algorithm from [Ben81]. Recently, [PS22] and [Liu22] obtained non-adaptive
approximation algorithms with ratios 5.828 and 6 respectively; both these results are relative to
the optimal adaptive policy (and hence bound the adaptivity gap). [Gra+22] considered the spe-
cial case of score classification with unit-cost tests and obtained a non-adaptive 2-approximation
algorithm (again, relative to the optimal adaptive policy). As observed in [Gke+22], algorithms
for score classification can also be used to evaluate any symmetric function f where the value only
depends on the number of components with Xi = 1.

4

[Gke+18] and [GGN23] studied a more general weighted score classification problem, where
each component has a weight and the thresholds αjs are applied to the total weight of working
components. [Gke+18] obtained an adaptive algorithm with a logarithmic approximation ratio.
Subsequently, [GGN23] obtained a non-adaptive constant-factor approximation algorithm (and
adaptivity gap). The weighted score classification problem with m = 2 classes is exactly the
halfspace-evaluation problem, for which an adaptive 3-approximation algorithm was obtained pre-
viously by [DHK16]; a non-adaptive algorithm with a much larger constant factor also follows from
the work of [Jia+20].

Sequential testing under batched costs was introduced by [Dal+17], together with efficient
heuristics for series systems (without performance guarantees). Then, [Dal+16] provided a 6.829+ε
approximation algorithm for batched series systems. Subsequently, [SS22] obtained a PTAS for this
problem. Note that adaptive and non-adaptive policies coincide for series systems: so the adaptivity
gap is one in this case.

[GGN23] also studied the weighted score classification problem under batched costs, and ob-
tained a constant-factor approximation algorithm; while they did not try to optimize their constant
factor, the resulting ratio is very large (over 1000). We note that their result for batched costs relies
on specific properties of their unbatched algorithm. So it does not provide any improved approx-
imation ratio for the batched versions of special cases such as k-of-n systems and unweighted
score-classification – even though much smaller approximation ratios are known in the unbatched
setting (as discussed above). In contrast, we provide a generic reduction from batched to unbatched
costs that works for any function f and unbatched algorithm: so we obtain small constant-factor
ratios for these special cases as well. Moreover, the increase in our approximation factor (going
from the unbatched to the batched setting) is at most 0.71, which is much smaller than what was
obtained in [GGN23] for weighted score classification.

2 Generic Algorithm for Batched Testing

In this section, we prove Theorem 1.1. We first describe the algorithm.

Step 1: using the unbatched algorithm. We apply the unbatched ρ-approximation algorithm
to the underlying UST instance, given by n components with probabilities {pi}ni=1, testing costs
{ci}ni=1 and the same function f . Basically, this step ignores the setup cost. Let U denote the
resulting non-adaptive unbatched policy; recall that U is just a sequence of components. By re-
numbering components, let U = ⟨1, 2, · · ·n⟩. We refer to the cumulative cost in policy U as time.
For each component i ∈ [n] we define its completion time as time(i) :=

∑i
j=1 cj , which is the total

cost of testing components until i (under policy U).
Step 2: forming batches. Next, we set the batch-width γ := rβ, where r is a constant (to be
optimized later) and β is the setup cost for the BST instance. We also choose a random offset ξ
uniformly from the interval [0, 1). For each j = 1, 2, · · · , we define the jth batch to consist of all
components with completion time between (j − 2 + ξ)γ and (j − 1 + ξ)γ, i.e.,

Bj := {i ∈ [n] : (j − 2 + ξ)γ < time(i) ≤ (j − 1 + ξ)γ} , ∀j ∈ Z+, j ≥ 1.

Empty batches are skipped. We denote the (randomized) batched policy generated above as B.
A small example is presented in Figure 1.
In the rest of this section, we prove that this algorithm achieves the approximation ratio stated

in Theorem 1.1. Let OPTb (resp. OPTu) denote the cost of the optimal batched (resp. unbatched)
policy.

5

Time

1 2 3 4 5 6 7

Unbatched policy

B1 B2 B3 B4 B5

ξγ (1 + ξ)γ (2 + ξ)γ (3 + ξ)γ (4 + ξ)γ

Figure 1: Example of the batching algorithm. The unbatched policy is placed onto a timeline and
partitioned into batches of fixed width γ (except the first batch which has a random width ξγ). In
this example B2 = {1, 2, 3}, B3 = {4, 5}, B3 = {6} and B4 = {7}. The empty interval B1 can be
skipped without incurring any setup cost.

Lemma 2.1. The optimal cost of the batched sequential testing instance is at least β more than
the optimum of the unbatched instance, i.e., OPTb ≥ β + OPTu.

Proof of Lemma 2.1. Let B∗ denote an optimal batched policy. We split the expected cost OPTb

of B∗ into its expected setup cost (which is the number of batches times β) plus its expected testing
cost (which accounts for the original costs ci of the tested components). With probability one,
B∗ performs at least one batch of tests: so its expected setup cost is at least β. From B∗, we
construct an induced unbatched policy Ū by testing components in the same order as B∗, ordering
tests within batches arbitrarily. This policy Ū always terminates no later than the batched policy
B∗: note that Ū may also terminate within a batch of B∗. So, the expected cost of the unbatched
policy Ū is at most the expected testing cost of B∗. Hence, the optimal unbatched cost OPTu is
also at most the expected testing cost of B∗ and the result follows.

Next, we upper bound the expected cost incurred by the randomized batched policy B in terms
of the unbatched policy U . In fact, we will prove such a bound for every realization.

Lemma 2.2. Conditioned on any realization of the r.v.s {Xi}ni=1, we have

Eξ[Cexp[B]] ≤
(
1 +

1

r

)
· Cexp[U] +

(r
2
+ 1
)
· β.

Hence, Eξ[Cexp[B]] ≤ max
{
1 + 1

r ,
r
2 + 1

}
· (Cexp[U] + ·β) .

Proof of lemma 2.2. We condition on a realization of the r.v.s {Xi}ni=1 throughout this proof. Sup-
pose that the unbatched solution U terminates at time t and tests items {1, 2, · · · i}. As the batched
solution B tests the components in the same sequence as U , it will test any component that U tests,
plus any additional components in the same batch as component i.

Let K be the number of batches that policy B performs. Then, the total setup cost of policy
B is β ·K. Moreover, the total cost of tested components is at most (K − 1 + ξ) · γ because the
batch containing component i ends at this time. Note that K is a random variable even though we
have conditioned on {Xi}ni=1 : this is because K also depends on the random offset ξ. In order to
bound the expected cost of B, it is convenient to decompose U ’s termination time as t = (k + q)γ
where k ∈ Z+ and q ∈ [0, 1). Then,

K =

{
k + 2 if ξ < q
k + 1 if ξ ≥ q

6

As ξ ∈ [0, 1) uniformly, Pr[ξ < q] = q and Eξ[K] = k + 1 + q. Therefore,

Eξ[Cexp[B]] = Eξ[β ·K + (K − 1 + ξ) · γ]
= (β + γ) · Eξ[K]− γ/2

= (β + γ) · (k + q) + β + γ/2

=

(
1 +

1

r

)
· t+

(r
2
+ 1
)
· β

The last equality uses γ = r · β and t = (k + q) · γ. This completes the proof of the lemma as
Cexp[U] = t (conditioned on the realization of Xis).

Using Lemma 2.2 and taking expectation over the realizations {Xi}ni=1,

Cexp[B] ≤
(
1 +

1

r

)
· Cexp[U] +

(r
2
+ 1
)
· β

≤ ρ

(
1 +

1

r

)
· OPTu +

(r
2
+ 1
)
· β (1)

≤ max

{
ρ

(
1 +

1

r

)
,
(r
2
+ 1
)}

· OPTb (2)

=
1

2

(
1 + ρ+

√
1 + ρ2

)
· OPTb. (3)

Inequality (1) uses the ρ-approximation ratio for the unbatched instance and (2) is by Lemma 2.1.
Finally, (3) is by choosing parameter r = ρ−1+

√
1 + ρ2 so that ρ

(
1 + 1

r

)
= r

2 +1. Also, note that

the approximation ratio 1
2

(
1 + ρ+

√
1 + ρ2

)
≤ ρ+ 1√

2
for all ρ ≥ 1. This completes the proof of

Theorem 1.1.

3 Lower bound on unbatched to batched conversion

In Section 2, we obtained a generic method applicable to any sequential testing problem that
converts a non-adaptive unbatched policy U into a batched policy B. By creating batches of a fixed
width rβ and using a uniformly random offset ξ, we showed in Lemma 2.2 that:

Cexp[B] ≤ max

{
1 +

1

r
,
r

2
+ 1

}
· (Cexp[U] + β). (4)

The best approximation ratio that our approach achieves for the unbatched-to-batched conversion
is 1 + 1√

2
≈ 1.707 (setting r =

√
2 above). A natural question that arises is whether a smaller

ratio can be obtained using a different unbatched-to-batched conversion scheme, e.g., by choosing
batches of variable widths or a different offset distribution. In order to address this question, we
first formalize what it means to be an unbatched-to-batched conversion method.

Given a non-adaptive unbatched policy U (which is a permutation of the n components), a
non-adaptive batched policy B = ⟨B1, · · · Bm⟩ is said to be U-consistent if, for every j ∈ [m], the
components

⋃j
ℓ=1 Bℓ in the first j batches form a prefix of U . In other words, a U-consistent batched

policy respects the relative ordering of components imposed by U . Any unbatched-to-batched
conversion scheme (applied to U) must return a U-consistent batched policy. An unbatched-to-
batched conversion scheme is said to have approximation ratio α if for any unbatched policy U ,
it returns a U-consistent batched policy B such that Cexp[B] ≤ α · (Cexp[U] + β). In this section,

7

we prove that any unbatched-to-batched conversion scheme has approximation ratio at least 1.697.
This shows that our 1.707 approximation ratio is nearly the best possible. We note that this “lower
bound” is only for general unbatched-to-batched conversions: better approximation ratios may
still be achievable for specific batched sequential testing problems (using methods that do not use
unbatched solutions in a black-box manner).

We derive the lower bound by setting up a “factor revealing” problem that finds an instance

of BST and an unbatched policy U where the ratio
Cexp[B]

Cexp[U]+β is high for every U-consistent batched
policy B.

max
BST instance

unbatched policy U

min
U−consistent

unbatched policy B

Cexp[B]
Cexp[U] + β

. (5)

Above, the inner minimization finds the best-possible batching of the given unbatched policy U .
The outer maximization finds the worst-case ratio over all BST instances (i.e., costs, probabilities
and function f) and all unbatched policies.

We will reformulate the factor-revealing problem (5) as a linear program (LP) and solve it
numerically. To this end, we first fix the setup cost β and a finite horizon T corresponding to an
upper limit on the total cost of components (we also restrict to instances with integer costs). In
order to find a larger lower-bound, the horizon T should be as large as practically possible. Next,
we use pt (for t = 1, 2, · · ·T) to denote the probability that policy U stops at time t; so

∑T
t=1 pt = 1.

Note that the pts depend on both the unbatched policy U and the function f to be evaluated. So,
the expected cost of the unbatched policy is Cexp[U] =

∑T
t=1 t ·pt and Cexp[U]+β =

∑T
t=1(t+β)pt.

Representing batched policies. Viewed this way, a U-consistent batched policy B is given by a
sequence ⟨t1, t2, · · · tm⟩ of times, where the jth batch contains all components that complete between
time tj and tj+1−1. For any such batched policy B and time t, let C(B, t) denote the cost incurred
by B when the unbatched policy U stops at time t; i.e.,

C(B, t) = β · |{j : tj ≤ t}|+min{tj − 1 : tj > t}.
The first term above is the setup cost of all batches so far (including the one containing t) and

the second term is the total testing cost in these batches. Note that Cexp[B] =
∑T

t=1C(B, t) · pt.
Let Σ denote the set of all U-consistent batched policies.

LP reformulation. With the above definitions, problem (5) can be rewritten as:

max
{pt}:probabilities

min
B∈Σ

∑T
t=1C(B, t) · pt∑T
t=1(β + t) · pt

.

We now replace the inner min operator with max, by using an auxiliary variable λ. Also, note
that the above ratio objective is homogenous in pt: so its value remains unchanged under any
uniform (positive) scaling of pt. So, we can linearize the ratio objective by re-scaling the pt and
adding a constraint for the denominator. Altogether, we obtain the following equivalent problem,
which is an LP.

max λ

s.t. λ ≤
T∑
t=1

C(B, t) · pt ∀B ∈ Σ,

T∑
t=1

(β + t) · pt ≤ 1,

p ≥ 0.

(P)

8

This LP has an exponential number of constraints, which makes it difficult to solve numerically.
Instead, we work with its dual, to which we can apply column generation. The dual linear program
is as follows.

min µ

s.t.
∑
B∈Σ

yB = 1,

(β + t) · µ−
∑
B∈Σ

C(B, t) · yB ≥ 0 ∀t ∈ [T],

µ, y ≥ 0.

(D)

In order to solve (D) by column generation, we need an efficient algorithm to solve the associated
“pricing problem”, defined as follows. Given (non negative) values {pt}Tt=1, find B ∈ Σ that
minimizes

∑T
t=1C(B, t) · pt. Any algorithm to solve the pricing problem can be used within the

column-generation method for solving (D). We provide a simple dynamic program to solve this
pricing problem.

Solving the pricing problem. We first calculate the “non completion” probabilities of the
unbatched solution U at all times, i.e.,

qt =
∑
t′≥t

pt, ∀t ∈ [T].

For each time ℓ, we compute the value function v(ℓ) that minimizes the expected cost contribution
from times {ℓ, ℓ+1, · · ·T} over all batched solutions B ∈ Σ. Note that v(1) is the optimal value of
the pricing problem. In order to calculate v(ℓ), the dynamic program tries all choices for the start
time z of the next batch, i.e., the first batch is {ℓ, ℓ+ 1, · · · z − 1}. Value v(ℓ) is therefore the sum
of contributions from the batch [ℓ, z − 1] and all future batches (which is just v(z)), that is:

v(ℓ) = min
ℓ+1≤z≤T+1

v(z) + β · qℓ︸ ︷︷ ︸
batch setup cost

+(z − ℓ− 1) · qℓ︸ ︷︷ ︸
batch testing cost

 .

We also have v(T + 1) = 0 as the base case.

Numerical computation. We run the factor program with time horizon T = 500 and β =
{10, 20, . . . , 500}. The runs were executed on an Apple M2 chip with 16GB of memory. The LP
took an average of 461 s to solve, and generated 1555 columns on average. The highest factor
achieved was 1.697 with β = 70, which took 1049 s and generated 2335 columns. The factor of
1.697 achieved is close to our 1.707 upper bound, suggesting that the general conversion algorithm
from Section 2 is almost tight.

4 Applications

In this section, we describe several applications of our result. In each of these cases, we obtain
(small) constant-factor approximation algorithms for the batched problem (BST) using Theorem 1.1
and previously-known non-adaptive algorithms for the unbatched problem (UST). We note that all
the approximation ratios are relative to optimal adaptive policies: so we also bound the adaptivity
gaps of all these batched testing problems. Figure 2 shows the relationships between the different
problems. Table 1 summarizes these results: it provides the unbatched and batched approximation
ratios as well as the running times. We note that the runtime of the (randomized) batched algorithm

9

SSClass

Unit cost SSClassk-of-n

Unit cost k-of-nSeries Unanimous vote function

Figure 2: Systems studied in this paper in decreasing generality

Table 1: Summary of results for specific systems
Problem Unbatched ratio ρ Runtime Batched ratio

Series system (AND) 1 O(n log n) 1.707

Unit cost k-of-n 1.5 O(n2) 2.151

k-of-n 2 O(n log n) 2.618

Unanimous vote 1.618 O(n2) 2.260

Unit cost SSClass 2 O(n log n) 2.618

SSClass 5.828 O(n log n) 6.371

in Theorem 1.1 is just the runtime of the unbatched algorithm: the unbatched-to-batched conversion
only takes linear time.

Series systems: The simplest systems are series systems, where f is the AND-function, i.e. we
need all components of the system to be working. Here, if any component fails then the state
of the system is 0, and testing stops. Otherwise, we continue to test until it is determined that
all components are working (in which case the system state is 1). It is well known that testing
components in increasing order of the ratio ci/(1−pi) is optimal for (unbatched) series systems, see
e.g., [But72]. This is clearly a non-adaptive algorithm: so Theorem 1.1 applies with ρ = 1. While
our approximation ratio of 1.707 is more that the 1 + ϵ ratio obtained in [SS22], our algorithm is
much simpler and its O(n log n) runtime is much better than the nO(1/ϵ) time in the previous paper.

k-of-n system: A k-of-n system works as long as the number of working components is at least
some threshold k. Setting k = n recovers the series system. For k-of-n systems, we can stop testing
once we have found k working components or n−k+1 failures. In the unbatched setting, an optimal
adaptive algorithm is known for k-of-n systems, but our result cannot be applied to this. However,
there is also a non-adaptive 2-approximation algorithm ([Gke+18]), to which Theorem 1.1 can be
applied.

In the special case of k-of-n with unit-cost tests (i.e., ci = 1 for all i), [Gra+22] obtained a
better non-adaptive algorithm with approximation ratio 1.5. They also showed that the adaptivity
gap is exactly 1.5 for unit-cost k-of-n.

Score classification (SSClass): This is a more general problem, introduced by [Gke+18], that
allows for categorical output. This models applications in healthcare for example, where patients
are often diagnosed as having {low, moderate, high etc.} susceptibility to a disease based on the
number of positive/negative test results. Similarly, in manufacturing, one may want to sort products
into different quality brackets based on the number of tests they pass. Formally, there are m + 1
thresholds α0 = 0 < α1 < · · · < αm = n, where the function evaluates to j if the number of working
components

∑n
i=1Xi is between αj−1 and αj . When m = 2, the SSClass problem reduces to k-of-

n. Recently, [PS22] and [Liu22] obtained non-adaptive approximation algorithms for (unbatched)
SSClass with approximation ratios 5.828 and 6 respectively. So, Theorem 1.1 can be applied to
this setting.

10

The special case of SSClass with unit-cost tests was also considered separately in [Gra+22],
where they obtained a better 2-approximation algorithm, again via a non-adaptive policy. So, using
Theorem 1.1 with this improved algorithm gives a better approximation ratio for batched SSClass in
the unit-cost case. [Gra+22] also considered a special case of unit-cost SSClass, namely unanimous
vote function. This problem has m = 3 classes where the categories correspond to

∑n
i=1Xi = 0

(all-negative), 1 ≤ ∑n
i=1Xi ≤ n − 1 (uncertain) and

∑n
i=1Xi = n (all-positive). [Gra+22] gave

a non-adaptive 1+
√
5

2 ≈ 1.618 approximation algorithm for (unbatched) unanimous vote function.
Combined with Theorem 1.1, we again obtain an (improved) approximation algorithm for the
batched version.

We note that [GGN23] obtained a constant-factor non-adaptive algorithm for the more general
weighted SSClass problem, where each component i has a weight wi and the thresholds are applied
to the total weight

∑n
i=1wiXi of working components. In fact, they also extended their result to

the batched setting. However, their approximation ratios for both unbatched and batched settings,
are large constants (over 1000). Theorem 1.1 can indeed be applied to the unbatched algorithm
from [GGN23] to get an improved approximation ratio for batched weighted SSClass: but the
resulting approximation ratio is still a large constant.

5 Deterministic Algorithm

In this section, we discuss how the (randomized) algorithm in Theorem 1.1 can be made determin-
istic.

Recall that the only randomized step in this algorithm is in choosing the random offset ξ. For
any fixed offset o, the resulting batched policy B(o) is deterministic. Moreover, the expected cost
of the randomized batch policy is Eξ[Cexp(B(ξ))]. In order to obtain a deterministic policy, we can
compute the batched policies B(o) for all offsets o, and return the one with the minimum objective.
The approximation ratio remains the same because

min
o

Cexp(B(o)) ≤ Eξ[Cexp(B(ξ))].

Although there are a large number of choices for the offset o, the number of distinct policies
B(o) is at most n + 1. So, we need to evaluate the objective of these O(n) policies in order to
determine the best one. A naive implementation requires n times the runtime of a single policy
evaluation. Below, we show that a better overall runtime can be obtained using the fact that these
n+ 1 batched policies are all derived from the same unbatched policy. For concreteness, we focus
on SSClass, which is our most general application.

Theorem 5.1. Suppose that there is a non-adaptive ρ-approximation algorithm for unbatched score

classification (SSClass) with runtime T (n). Then, there is a deterministic 1
2

(
1 + ρ+

√
1 + ρ2

)
-

approximation algorithm for batched SSClass with runtime O(T (n) + n2).

The first step in the algorithm just runs the unbatched approximation algorithm, which takes
T (n) time. We now analyze the runtime for the remaining steps. Recall that the non-adaptive
unbatched policy is denoted U = ⟨1, 2, · · ·n⟩. We first tabulate values {Ps,i : 0 ≤ s, i ≤ n} where
Ps,i = Pr[

∑i
ℓ=1Xℓ = s] is the probability of observing exactly s working components among

{1, 2, · · · i}. This can be done in O(n2) time using the following recurrence:

Ps,i = pi · Ps−1,i−1 + (1− pi−1) · Ps,i−1, ∀1 ≤ i ≤ n, 0 ≤ s ≤ n.

11

Using these values and the stopping criterion for SSClass, for each i ∈ [n], we can compute the
probability Q(i) that the unbatched policy U stops after testing the first i components. This can
also be implemented in O(n2) time.

We are now ready to evaluate the objective of any batched policy B = ⟨B1, · · · ,Bm⟩ derived
from U . Note that each batch Bj consists of a set of consecutive components; let ej denote the last
component in batch j. Then, the cost of batch j is c(Bj) = β +

∑ej
i=ej−1+1 ci. So, the objective

value of policy B is

Cexp(B) =
m∑
j=1

Q(ej−1) · c(Bj),

which can be computed in linear time. Finally, we only need to evaluate the objective of n+1 such
batched policies, which requires O(n2) time in total. This completes the proof of Theorem 5.1.

6 Computational Experiments

We carry out computational experiments to evaluate the performance of our deterministic batched
testing algorithm (Theorem 5.1). We implement this algorithm for three problem settings: series
systems, k-of-n, and SSClass. The code is implemented in Python 3.12.4 and is run on an Apple
M2 computer with 16GB of memory.

6.1 Instances

For series systems (which is the simplest problem), we use a previously-used instance generation
method from [SS22]. The costs are as follows:

• Testing cost c : Cost of testing any component i is set as ci ∼ Uniform(1, 10).

• Batch costs β : We consider three batch costs β = {n/4, n/2, n}. These batch costs are
calibrated so that the resulting batches are non-trivial.

There are two different scenarios for probabilities, which correspond to higher/lower likelihood of
failure. Scenario 1 has each pi ∼ Uniform(0.5, 1) and Scenario 2 has pi ∼ Uniform(0.9, 1). We
do not consider small pi values as such instances tend to be easy for series systems: note that it
suffices to observe just a single failure.

For the more complex settings of k-of-n and SSClass, we use the same testing/batch costs as
above. However, for the probabilities, we just set each pi uniformly from the range [0, 1]. For
k-of-n systems, we consider three choices for k = {⌊n/4⌋, ⌊n/2⌋, ⌈3n/4⌉}. For SSClass, we consider
m = {3, 4, 5} classes and choose the thresholds αj uniformly at random.

We consider instances with number of components n between 5 and 15. For each “configuration”
(choice of n, β, scenario, k etc.), we generate 10 instances.

6.2 Optimal adaptive policy

We compare the performance of our approximate policy to the optimal adaptive policy. The optimal
adaptive policy can be computed by dynamic programming (DP) in exponential time.

The state of the dynamic program is a tuple (T,w) where T is the set of tested components
and w is the number of working components in T . We note that this state-space encapsulates
all information required to evaluate function f for SSClass(and hence k-of-n and series systems).
In particular, at state (T,w) we know that the number of working components is between w and

12

w + n − |T |: if this range is contained in some score interval [αj−1, αj), then f returns j and the
policy stops. The DP value function v(T,w) equals the minimum (additional) expected cost to
evaluate function f , conditioned on being at state (T,w). We can compute this value function by
iterating over all possible batches of tests. Formally, the recurrence is:

v(T,w) = min
B⊆[n]\T

c(B) +

|B|∑
u=0

Pr

(∑
i∈B

Xi = u

)
· v(T ∪B,w + u)

 .

The first term above is the cost of the batch B tested at state (T,w), which is incurred with
probability one. The second term above is the expected cost of the optimal policy starting from
the next state (which depends on the outcomes of batch B).

In order to obtain an efficient implementation, we first precompute the probabilities
Pr
(∑

i∈B Xi = u
)
for all B ⊆ [n] and 0 ≤ u ≤ n, which takes time O(n · 2n). Then, evaluat-

ing value v(T,w) for any state requires O(n · 2n) time, which corresponds to trying all choices for
batch B. As the number of states is 2n × n, the overall time is O(n2 · 4n). In fact, a more careful
calculation shows that the runtime is O(n2 · 3n).

Our exact algorithm differs from that in [SS22] for series systems. The method in [SS22] iterates
through all n! permutations of unbatched policies σ, and finds the optimal batching for each σ. We
note that their approach only yields an optimal non-adaptive policy, whereas our approach finds
an optimal adaptive policy. While there is no benefit of adaptivity for batched series systems, for
the more complex settings (k-of-n and SSClass) adaptive policies may be strictly better than non-
adaptive: so it is important to compare to the adaptive optimum. Moreover, even for series systems,
our implementation is faster, since it does not require enumerating through n! permutations.

6.3 Results

We run our algorithm and the optimal adaptive algorithm with number of components n =
{5, . . . , 15}. The maximum size is capped at 15 to ensure that the optimal adaptive algorithm
can terminate in a reasonable amount of time. For each of the problem settings, we tabulate
the average and maximum empirical approximation ratio – the ratio of the cost achieved by our
algorithm to the optimal adaptive cost.

The results for series-systems, k-of-n and SSClass are tabulated in Tables 2, 3 and 4 respec-
tively. For series systems, for each n, we report the average and maximum ratios separately for
the two scenarios. Here, each reported value is an aggregate of 30 instances, comprising 3 different
batch-costs with 10 replications each. For k-of-n and SSClass, each reported value is an aggregate
of 90 instances, comprising 3 different batch-costs with 3 values of k or number of intervals (and
10 replications each).

Our algorithm’s performance was very good in each of the three systems: the empirical approx-
imation ratios for series-systems, k-of-n and SSClasswere at most 1.336, 1.821 and 1.827 respec-
tively. These bounds are much better than the theoretical bounds of 1.707, 2.618 and 6.371 for
these problems. The running time of our algorithm is also several orders of magnitude faster than
the exact approach, taking just 1.45milliseconds on average (for n = 15) compared to 183 seconds
for the exact method.

7 Conclusion

We considered the batched version of sequential testing, which allows for multiple tests to be
performed simultaneously. We obtained a generic batching algorithm that transforms any (non-

13

Table 2: Approximation ratio for series systems

Number of components n

5 6 7 8 9 10 11 12 13 14 15

Scenario 1
mean 1.031 1.029 1.021 1.018 1.020 1.018 1.023 1.015 1.019 1.015 1.015
max 1.116 1.133 1.082 1.074 1.077 1.060 1.084 1.037 1.075 1.047 1.045

Scenario 2
mean 1.146 1.159 1.182 1.191 1.199 1.201 1.188 1.201 1.206 1.211 1.195
max 1.304 1.285 1.283 1.294 1.279 1.297 1.280 1.336 1.279 1.312 1.295

Table 3: Approximation ratio for k-of-n

Number of components n

5 6 7 8 9 10 11 12 13 14 15

mean 1.182 1.193 1.209 1.231 1.298 1.295 1.297 1.303 1.301 1.327 1.319
max 1.712 1.749 1.668 1.626 1.777 1.731 1.703 1.648 1.821 1.741 1.622

Table 4: Approximation ratio for SSClass

Number of components n

5 6 7 8 9 10 11 12 13 14 15

mean 1.038 1.057 1.065 1.100 1.090 1.106 1.118 1.104 1.137 1.146 1.154
max 1.226 1.481 1.414 1.509 1.469 1.827 1.603 1.713 1.535 1.645 1.523

adaptive) unbatched solution into a batched solution, while increasing the approximation ratio by
a small amount. We also showed that our approximation ratio is nearly the best possible for any
unbatched-to-batched conversion. Combined with existing results for the unbatched setting, our
result provides a unified approximation algorithm for several batched testing problems, such as
series systems, k-of-n systems and score classification.

References

[Ben81] Yosi Ben-Dov. “Optimal Testing Procedures for Special Structures of Coherent Sys-
tems”. In: Management Science 27.12 (1981), pp. 1410–1420.

[But72] Richard Butterworth. “Some Reliability Fault-Testing Models”. In: Operations Research
20.2 (1972), pp. 335–343.

[Dal+16] Rebi Daldal et al. “Approximation algorithms for sequential batch-testing of series
systems”. In: Naval Research Logistics 63.4 (2016), pp. 275–286.

[Dal+17] Rebi Daldal et al. “Sequential testing in batches”. In: Annals of Operations Research
253.1 (2017), pp. 97–116.

[DGV08] Brian C. Dean, Michel X. Goemans, and Jan Vondrák. “Approximating the Stochastic
Knapsack Problem: The Benefit of Adaptivity”. In:Mathematics of Operations Research
33.4 (2008), pp. 945–964.

14

[DHK16] Amol Deshpande, Lisa Hellerstein, and Devorah Kletenik. “Approximation Algorithms
for Stochastic Submodular Set Cover with Applications to Boolean Function Evaluation
and Min-Knapsack”. In: ACM Transactions on Algorithms 12.3 (2016), 42:1–42:28.

[GGN23] Rohan Ghuge, Anupam Gupta, and Viswanath Nagarajan. “Non-Adaptive Stochastic
Score Classification and Explainable Halfspace Evaluation”. In: Operations Research
(to appear) (2023).

[Gke+18] Dimitrios Gkenosis et al. “The Stochastic Score Classification Problem”. In: 26th Annual
European Symposium on Algorithms. Ed. by Yossi Azar, Hannah Bast, and Grzegorz
Herman. Vol. 112. LIPIcs. 2018, 36:1–36:14.

[Gke+22] Dimitrios Gkenosis et al. “The Stochastic Boolean Function Evaluation Problem for
Symmetric Boolean Functions”. In: Discrete Applied Mathematics 309 (2022), pp. 269–
277.

[Gra+22] Nathaniel Grammel et al. “Algorithms for the Unit-Cost Stochastic Score Classification
Problem”. In: Algorithmica 84.10 (2022), pp. 3054–3074.

[INZ16] Sungjin Im, Viswanath Nagarajan, and Ruben Van Der Zwaan. “Minimum Latency
Submodular Cover”. In: ACM Transactions on Algorithms 13.1 (2016), 13:1–13:28.

[Jia+20] Haotian Jiang et al. “Algorithms and Adaptivity Gaps for Stochastic k-TSP”. In: 11th
Innovations in Theoretical Computer Science Conference. Vol. 151. 2020, 45:1–45:25.

[Liu22] Naifeng Liu. Two 6-approximation Algorithms for the Stochastic Score Classification
Problem. 2022. url: http://arxiv.org/abs/2212.02370.

[Mit60] L. Mitten. “An analytic solution to the least cost testing sequence problem”. In: Journal
of Industrial Engineering 11.1 (1960), p. 17.

[Mor82] Bernard M. E. Moret. “Decision Trees and Diagrams”. In: ACM Computing Surveys
14.4 (1982), pp. 593–623.

[PS22] Benedikt M. Plank and Kevin Schewior. Simple Algorithms for Stochastic Score Clas-
sification with Small Approximation Ratios. 2022. url: http://arxiv.org/abs/2211.
14082.

[SS22] Danny Segev and Yaron Shaposhnik. “A Polynomial-Time Approximation Scheme for
Sequential Batch Testing of Series Systems”. In: Operations Research 70.2 (2022),
pp. 1153–1165.

[Ünl04] Tonguç Ünlüyurt. “Sequential testing of complex systems: a review”. In: Discrete Ap-
plied Mathematics 142.1-3 (2004), pp. 189–205.

15

http://arxiv.org/abs/2212.02370
http://arxiv.org/abs/2211.14082
http://arxiv.org/abs/2211.14082

	Introduction
	Problem Definition
	Results and Techniques
	Related Work

	Generic Algorithm for Batched Testing
	Lower bound on unbatched to batched conversion
	Applications
	Deterministic Algorithm
	Computational Experiments
	Instances
	Optimal adaptive policy
	Results

	Conclusion

