
A Subgradient Projection Method with Outer

Approximation for Solving Semidefinite

Programming Problems

Nagisa Sugishita1 and Miguel F. Anjos1*

1*School of Mathematics, University of Edinburgh, James Clerk Maxwell
Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.

*Corresponding author(s). E-mail(s): anjos@stanfordalumni.org;
Contributing authors: nsugishi@ed.ac.uk;

Abstract

We explore the combination of subgradient projection with outer approxima-
tion to solve semidefinite programming problems. We compare several ways
to construct outer approximations using the problem structure. The result-
ing approach enjoys the strengths of both subgradient projection and outer
approximation methods. Preliminary computational results on the semidefi-
nite programming relaxations of graph partitioning and max-cut show that our
approach is competitive for solving large-scale instances.
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1 Introduction

In the last few decades, semidefinite programming (SDP) has become useful in mod-
elling various important applications, ranging from optimal control [6] to combinatorial
optimization [13]. A comprehensive list of applications of SDP can be found in the sur-
vey paper by Vandenberghe and Boyd [32] and the handbook by Anjos and Lasserre
[3].

The main workhorse to solve SDP problems has been the interior point method
(IPM) approach [22]. Given a tolerance, an IPM finds a near-optimal solution within
a polynomial number of iterations. However, IPMs require the solution of large linear
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systems of equations, which makes it challenging to solve a large-scale problem in
practice.

To overcome this difficulty, many alternative algorithms have been proposed
[19]. First-order methods are typical examples in this direction. The Burer-Monteiro
method [8] reformulates an SDP problem by factorising the decision variable (matrix)
as the product of low-rank matrices. The reformulated problem is non-convex and
is solved heuristically using an augmented Lagrangian method and a quasi-Newton
method. Helmberg and Rendl [15] study the use of a bundle method. When feasible
solutions have a constant, known trace, the SDP problem can be reformulated as an
unconstrained eigenvalue optimization problem, which can be solved using a bundle
method. Also, there is an emerging interest in applying augmented Lagrangian meth-
ods to SDP, such as the boundary point studied by Povh et al [27]. O’Donoghue et al
[25] and Garstka et al [12] use an alternating direction method of multipliers (ADMM)
to solve SDP. Under mild conditions, the objective value of the iterates converges to
the optimal objective value, which follows from standard results for ADMM [7].

Another family of approaches uses an outer approximation of the feasible set. The
positive definiteness constraint is replaced with cheaper constraints that are often
referred to as cuts. The cutting-plane method of Krishnan and Mitchell [16] is an
example of how to replace the feasible set with a polyhedral cone, namely a system
of linear inequalities. Similarly, Ahmadi et al [1] use second-order cones as an outer
approximation of the feasible set. In those methods, the outer approximation is tight-
ened successively by adding new cuts. A major drawback of these approaches is the
lack of a convergence guarantee unless the number of cuts can grow arbitrarily. Ana-
lytic centre cutting-plane methods (ACCPM) are variants of cutting-plane methods
that compute new cuts based on the analytic centre of the current outer approxi-
mation. ACCPM was first developed for linear programming by [14], and extended
by Oskoorouchi and Mitchell [24] to solve SDP. Unlike other cutting-plane methods,
ACCPM only requires a polynomial number of cuts. However, before generating each
cutting-plane, the analytic centre of the current outer approximation must be com-
puted. This can be expensive, particularly when the number of constraints is large, as
discussed in [24].

In this paper, we study the combination of subgradient projection methods and
outer approximation. Subgradient methods have played a crucial role in convex opti-
mization [4]. These methods can handle a simple constraint by means of projection.
By simple we mean that it is easy to project a point onto the feasible set. More pre-
cisely, after each iteration, the subgradient step is projected onto the feasible set and
the projection is used as the next iterate.

However, when it is difficult to find the projection onto the feasible set, this
approach becomes impractical. Recently, there has been some work to overcome this
difficulty. For instance, Nedic [20], Neto and de Pierro [23] and Nesterov [21] study
the use of subgradient projection methods [26] together with subgradient methods.
In their methods, the projection in subgradient methods is replaced with a cheaper
operation, the subgradient projection.

We propose to combine subgradient projection methods with outer approximation
of the feasible set. We examine effective ways to construct outer approximations of the
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feasible set of a SDP problem to significantly improve the performance of subgradient
projection methods. The performance of the proposed approach is shown on SDP
relaxations of SDPLIB instances and of large-scale instances of the graph partitioning
problem and the max-cut problem.

The remainder of the paper is structured as follows. In Section 2.1 we introduce our
notation and subgradient projection methods. In Section 2.2 we present our idea to
combine subgradient projection methods with outer approximation. In Section 2.3 we
state the convergence analysis of the algorithm using diminishing step sizes. In Section
2.4, we consider the application of the algorithm to SDP and examine approaches for
constructing outer approximations of the feasible region. In Section 2.5, we present our
proposed algorithms for constructing outer approximations. In Section 3 we describe
the setup and report the results of our computational experiments to evaluate the
performance of our method. Section 4 concludes the paper.

2 Existing and Proposed Approaches

2.1 Subgradient Projection Methods

Consider the general convex optimization problem

min
x∈Rn

f(x) (1)

s.t. g(x) ≤ 0,

where f and g are real-valued, convex functions. We assume that problem (1) has an
optimal solution.

Subgradient methods are iterative methods that, at each iteration, take a sub-
gradient step to improve the objective value followed by a projection step to restore
feasibility [4]. Let

F := {x ∈ Rn : g(x) ≤ 0}
be the feasible set of problem (1). Subgradient methods are defined as:

y(k) = x(k) − α(k)t(k),

x(k+1) = ΠF (y
(k)), for k ≥ 0, (2)

where t(k) ∈ ∂f(x(k)), ΠF (y
(k)) is the projection of y(k) onto F and α(k) is the step size.

Although algorithm (2) is conceptually simple, finding ΠF (y
(k)) can be computation-

ally expensive. For instance, in the application we consider later, F is a spectrahedron
and computing the projection onto F is as hard as solving (1).

In such a case, it is natural to replace the projection in algorithm (2) with the
subgradient projection [26]. Let [a]+ = max{a, 0} for a ∈ R. The method of Nedic
[20], Neto and de Pierro [23] is

y(k) = x(k) − α(k)t(k),
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x(k+1) = y(k) − [g(y(k))]+

∥d(k)∥2
d(k), for k ≥ 0, (3)

with d(k) chosen as d(k) ∈ ∂g(y(k)) if g(y(k)) > 0 and d(k) = d for some d ̸= 0 if
g(y(k)) ≤ 0. Nesterov [21] studies a method which takes only the subgradient projection
step when the constraint violation g(y(k)) is large, and the subgradient step otherwise.

2.2 Subgradient Projection Methods with Outer
Approximations

Algorithm (3) restores feasibility solely by the subgradient projection. If we have
outer approximations P (k) and Q(k) of F for k = 0, 1, . . ., we can use them to reduce
infeasibility:

y(k) = ΠP (k)(x(k) − α(k)t(k)),

x(k+1) = ΠQ(k)

(
y(k) − [g(y(k))]+

∥d(k)∥2
d(k)

)
, for k ≥ 0. (4)

Here, P (k) and Q(k) can be constructed using intermediate results obtained during the
execution of algorithm (3). For example, let ȳ ∈ Rn, s̄ ∈ ∂g(ȳ) and x ∈ F . Since g is
convex, we have g(ȳ) + s̄T (x − ȳ) ≤ g(x). Furthermore, since x is feasible, g(x) ≤ 0.
Combining these two relations, we obtain

g(ȳ) + s̄T (x− ȳ) ≤ 0 for x ∈ F . (5)

Thus, for k = 0, 1, . . ., we can obtain valid outer approximations of F as

Q
(k)
subgrad := {x ∈ Rn : g(y(i)) + (s(i))T (x− y(i)) ≤ 0, s(i) ∈ ∂g(y(i)), 0 ≤ i ≤ k},

P
(k)
subgrad := Q

(k−1)
subgrad, (6)

where we define Q
(−1)
subgrad as Rn.

2.3 Convergence Analysis

Algorithm (4) maintains the overall structure of algorithm (3). The difference is the
additional projections onto outer approximations P (k) and Q(k). Intuitively, since
the projection onto an outer approximation does not move the iterate further from
the feasible region, algorithm (4) inherits many convergence properties from (3). For
example, the convergence of the iterate with a diminishing step size can be shown
using a similar argument to that used by Nedic [20], under the following assumptions.

Assumption 1. Let the following hold:

1. f and g are real-valued, convex functions.
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2. The subgradients of f and g are uniformly bounded:

∥t∥ ≤ Cf , for all t ∈ ∂f(x), x ∈ Rn,

∥s∥ ≤ Cg, for all s ∈ ∂g(x), x ∈ Rn.

3. There exists a constant c > 0 such that

dist(x, F ) ≤ c[g(x)]+ for all x ∈ Rn. (7)

4. (1) has at least one optimal solution.

Condition (7) is known as the global error bound [18]. Under these assumptions, we
have the following result with diminishing step sizes.

Proposition 2. Suppose that Assumption 1 holds. If the step size is positive and
satisfies

∞∑
k=0

α(k) = ∞,

∞∑
k=0

(α(k))2 < ∞,

then {x(k)} converges to some optimal solution.
The proof of Proposition 2 is given in Appendix A.

2.4 Applications to SDP

In the remainder of the paper, we consider the application of algorithm (4) to the
following SDP problem:

min
x∈Rn

bTx (8)

s.t. S(x) :=

n∑
i=1

Aixi − C ⪰ 0,

where C, A1, . . . , An are m by m symmetric matrices and b ∈ Rn. For i = 1, . . . , n,
xi denotes the ith element of the vector x. Here, f(x) = bTx and g(x) is the negative
of the minimum eigenvalue of S(x), which is a convex function. In this case, we can
use Cf = ∥b∥ and Cg =

√
nmax1≤i≤n{∥Ai∥F }, where ∥Ai∥F is the Frobenius norm of

Ai [11]. The following proposition is helpful to find the constant c in the global error
bound [10].
Lemma 3. Let g(x) be the negative of the minimum eigenvalue of S(x). If there exists
a unit vector x such that

λmin

(
n∑

i=1

Aixi

)
= τ > 0, (9)

then (7) holds with c = 1
τ .
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In particular, the SDP relaxations of the max-cut and graph partitioning problems
satisfy Assumption 1. Thus, if the step size is decreased properly, algorithm (4) finds
an optimal solution in the limit.

A subgradient of g(x) can be obtained relatively easily. Let x ∈ Rn and v1(x) be
a normalised eigenvector associated with the minimum eigenvalue of S(x). Then, we
have (

−v1(x)
TA1v1(x), . . . ,−v1(x)

TAnv1(x)
)T ∈ ∂g(x),

for any x ∈ Rn [4].

Figure 1 shows the behaviour of algorithm (4) with outer approximations P
(k)
subgrad

and Q
(k)
subgrad (6) on an SDP problem given by n = 2, m = 3, c = (0, 1)T , C = I

and randomly generated A1 and A2 with entries independently sampled from the
normal distribution with mean 0 and standard deviation 1/

√
m. The feasible set is

shown in a thick line while the solid and open circles indicate the iterates x(k) and
y(k), respectively. The outer approximations are drawn in thin lines. We see that as
algorithm (4) makes progress, the outer approximation improves, and this helps the
algorithm find a near-optimal solution more quickly.

x(0)

x(1)

x(2)
x(3)

y(0)

y(1)
y(2)

Fig. 1 Behaviour of algorithm (4) on a simple example

We now focus on approaches for the construction of outer approximations of F
when algorithm (4) is applied to (8). Let x ∈ Rn be such that S(x) ⪰ 0. Then, for any
B ⪰ 0,

B • S(x) ≥ 0, (10)

where B •S(x) is the Hadamard product of B and S(x). In particular, for any b ∈ Rn,

bTS(x)b = (bbT ) • S(x) ≥ 0.
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By enforcing (10) for a finite number of matrices B1, . . . , Br ⪰ 0, we obtain an outer
approximation of F :

{x ∈ Rn : Bℓ • S(x) ≥ 0, ℓ = 1, . . . , r} ⊃ F.

We consider two alternatives to obtain a suitable set of Bℓ matrices.
Alternative 1: For j = 1, . . . ,m, denote by λj(x) the jth smallest eigenvalue of

S(x) and by vj(x) a normalised eigenvector associated with λj(x). Let x(k) ∈ Rn be
the kth iterate. If the smallest eigenvalue λ1(x

(k)) is negative, then

v1(x
(k))TS(x(k))v1(x

(k)) = λ1(x
(k)) < 0,

that is, the constraint
v1(x

(k))TS(x)v1(x
(k)) ≥ 0 (11)

cuts off x(k). These cuts are used in [1, 16].
We note that cut (11) is obtained from (5) with ȳ = x(k) and

s̄ =
(
−v1(x

(k))TA1v1(x
(k)), . . . ,−v1(x

(k))TAnv1(x
(k))
)T

∈ ∂g(x(k)),

where v1(x
(k)) is a normalised eigenvector associated with λ1(x

(k)). In fact, it follows
that

g(ȳ) + s̄T (x− ȳ) = −λ1(x
(k)) + s̄T (x− x(k))

= −λ1(x
(k))− v1(x

(k))T (S(x)− S(x(k)))v1(x
(k))

= −λ1(x
(k))− v1(x

(k))TS(x)v1(x
(k)) + v1(x

(k))TS(x(k))v1(x
(k))

= −λ1(x
(k))− v1(x

(k))TS(x)v1(x
(k)) + λ1(x

(k))

= −v1(x
(k))TS(x)v1(x

(k)) ≤ 0,

where we used g(ȳ) = g(x(k)) = −λ1(x
(k)) in the first line, and the definition of S(x)

in the second line.
Alternative 2: Let Sm×m

+ be the set of m × m symmetric positive semidefinite

matrices. The projection ΠSm×m
+

(S(x(k))) of S(x(k)) onto Sm×m
+ is given by

ΠSm×m
+

(S(x(k))) =

m∑
j=1

[λj(x
(k))]+vj(x

(k))vj(x
(k))T .

Let N(x(k)) := ΠSm×m
+

(S(x(k)))− S(x(k)). We have

N(x(k)) =

m∑
j=1

[−λj(x
(k))]+vj(x

(k))vj(x
(k))T , (12)
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and hence N(x(k)) ⪰ 0. When S(x(k)) ̸⪰ 0, N(x(k)) defines a supporting hyperplane
of Sm×m

+ at ΠSm×m
+

(S(x(k))). That is, for any S ⪰ 0,

N(x(k)) • (S −ΠSm×m
+

(S(x(k)))) ≥ 0,

and equality holds if S = ΠSm×m
+

(S(x(k))), for example. Because N(x(k)) •
ΠSm×m

+
(S(x(k))) = 0, we have equivalently

N(x(k)) • S ≥ 0.

Thus, for any x ∈ F , we have

N(x(k)) • S(x) ≥ 0. (13)

Constraint (13) cuts off the current iterate x(k) if S(x(k)) ̸⪰ 0, because in this case
λ1(x

(k)) < 0 and

N(x(k)) • S(x(k)) =

m∑
j=1

λj(x
(k))[−λj(x

(k))]+ ≤ −λ1(x
(k))2 < 0.

2.5 Proposed Approaches

We consider three alternative approaches for refining outer approximations P (k) and
Q(k). The first approach is based on (11):

P
(k)
min := Q

(k−1)
min ∩ {x ∈ Rn : v1(x

(k))TS(x)v1(x
(k)) ≥ 0},

Q
(k)
min := P

(k−1)
min ∩ {x ∈ Rn : v1(y

(k))TS(x)v1(y
(k)) ≥ 0}, k = 0, 1, . . . , (14)

where we define Q
(−1)
min := Rn.

The second approach uses (12):

P
(k)
comb := Q

(k−1)
comb ∩ {x ∈ Rn : Nk(x

(k)) • S(x) ≥ 0},

Q
(k)
comb := P

(k)
comb ∩ {x ∈ Rn : Nk(y

(k)) • S(x) ≥ 0}, k = 0, 1, . . . , (15)

where Q
(−1)
comb := Rn.

The third approach is a combination of the other two approaches:

P
(k)
min+comb := P

(k)
min ∩ P

(k)
comb,

Q
(k)
min+comb := Q

(k)
min ∩Q

(k)
comb, k = 0, 1, . . . . (16)
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3 Computational Experiments

We consider two families of SDP problems: the SDP relaxations of the graph par-
titioning problem and of the max-cut problem. We use instances from the SDPLIB
benchmark set [5] and larger instances based on graphs generated using rudy1, a graph
generator by Giovanni Rinaldi. We note that we only solve the relaxations of the
problems and that we do not seek integer solutions as in [17, 28].

We ran algorithm (4) until we found a near-optimal solution x:

|f∗ − bTx| ≤ ε|f∗|, |g(x)| ≤ 10−3, (17)

where ε was set to 10−2 or 10−3 and f∗ was the optimal objective value of problem
(8). We tested these conditions using the optimal objective values f∗ known for the
benchmark instances. The output solution x almost satisfies the constraint of (8) in
the sense that the minimum eigenvalue of S(x) is −10−3 or greater.

We first compare the performance of algorithm (4) with the three approaches to
construct the outer approximations given in (14), (15) and (16). Pmin

k and Qmin
k only

require eigenvectors associated with the minimum eigenvalues of S(x(k)) and S(y(k)).
We could compute these using the Lanczos method [30]. However, we observed that
as the iterate approaches the solution, multiple eigenvalues of S(x(k)) and S(y(k)) get
close to 0 and the performance of the Lanczos method degrades considerably (the
convergence rate of the Lanczos method depends on the gap between the smallest and
second smallest eigenvalues). Thus, we instead used the dsyevd routine in LAPACK
[2] to compute all the eigenvectors of the iterates. Our method is implemented in
Python.2 The projection onto an outer approximation is formulated as a quadratic
programming problem and solved using the Gurobi Optimizer.3 The workstation used
to run the experiments has two Intel® Xeon® Gold 6226 Processors and 12 modules
of 32GB of RAM.

The step size α(k) was adjusted based on the progress of the algorithm. For each
iteration, we measured the constraint violation. If g(y(k)) > 10−3, call iteration k an
infeasible iteration, and otherwise a feasible iteration. If the current iteration was an
infeasible iteration, the step size was decreased by a factor of 0.8. If the iteration was a
feasible iteration, the objective value f(y(k)) was compared with those of the previous
feasible iterations. If the current iteration gave the best objective value, the step size
was increased by a factor of 1.2. Otherwise, it was decreased by a factor of 0.8. We used
α(0) = 1. The convergence analysis in Section 2.3 does not cover this adaptive step size
rule. However, adjusting the step size is crucial for ensuring the method’s robustness
and reducing its sensitivity to the initial step size choice. If necessary, one can decrease
the step size after a certain number of iterations to enforce the convergence of the
algorithm.

1https://www-user.tu-chemnitz.de/∼helmberg/rudy.tar.gz
2The source code to run the experiments is available at https://github.com/nsugishita/subgradient

projection for sdp.
3https://www.gurobi.com/
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3.1 Results on SDPLIB Instances

We first report results on the instances from SDPLIB. The sizes of these test instances
are given in Table 1.

Table 1 Size of the SDPLIB test instances

Instances n m
gpp250-1, gpp250-2, gpp250-3, gpp250-4 250 250
gpp500-1, gpp500-2, gpp500-3, gpp500-4 500 500
mcp250-1, mcp250-2, mcp250-3, mcp250-4 251 250
mcp500-1, mcp500-2, mcp500-3, mcp500-4 501 500

The computational time (all computational times in this paper are in wallclock
time) and the number of iterations required to solve the test instances are reported
in Tables 2 and 3, respectively. The best results in each line are highlighted in bold.
The outer approximations (14), (15) and (16) are labelled min, comb and min+comb,
respectively. min is worse than comb and min+comb by a large margin on all the test
instances both in terms of the computational time and the number of iterations. In
many cases, min+comb requires as many or slightly fewer iterations than comb. This is
expected since min+comb uses better approximations than comb. However, each step of
min+comb is more computationally expensive than that of comb since min+comb uses
more cuts than comb. The difference in the number of iterations is not large enough
and, as a result, min+comb often requires slightly more time to solve the test instances.

Table 2 Computational time (s) of algorithm (4) with the three different outer approximations
given in (14), (15) and (16)

ε = 10−2 ε = 10−3

Instance min comb min+comb min comb min+comb
gpp250-1 31.2 1.6 1.8 31.9 2.2 9.0
gpp250-2 34.5 1.2 1.4 37.3 1.5 1.7
gpp250-3 24.8 1.0 1.4 28.6 1.1 1.3
gpp250-4 10.4 1.1 1.2 15.3 1.1 1.2
gpp500-1 109.9 5.1 4.5 105.3 6.1 6.5
gpp500-2 115.5 3.6 4.1 121.8 3.9 4.4
gpp500-3 108.9 3.0 3.4 119.6 3.3 3.5
gpp500-4 63.6 2.9 3.3 79.0 2.9 3.3
mcp250-1 26.1 1.6 1.7 28.5 2.0 1.9
mcp250-2 35.7 1.2 1.3 39.2 1.3 1.3
mcp250-3 37.6 1.1 1.2 44.0 1.1 1.2
mcp250-4 41.4 1.0 1.2 48.9 1.0 1.3
mcp500-1 94.0 4.4 5.0 103.0 5.1 4.9
mcp500-2 111.5 4.0 3.8 127.8 3.9 3.6
mcp500-3 130.3 3.1 3.8 150.4 3.0 3.7
mcp500-4 145.7 3.2 3.4 182.4 3.0 3.3

Next, we compare the performance of algorithm (4) with the commercial IPM
solver MOSEK4, the open-source ADMM solver COSMO [12] and the open-source

4https://www.mosek.com/
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Table 3 The number of iterations of algorithm (4) with the three different outer approximations
given in (14), (15) and (16)

ε = 10−2 ε = 10−3

Instance min comb min+comb min comb min+comb
problem min comb both min comb both
gpp250-1 530 32 28 534 46 141
gpp250-2 580 23 23 596 29 27
gpp250-3 421 20 23 454 22 23
gpp250-4 183 22 21 255 22 21
gpp500-1 772 37 29 775 43 39
gpp500-2 831 25 24 846 28 27
gpp500-3 790 22 22 862 24 23
gpp500-4 466 21 22 567 21 22
mcp250-1 477 33 30 511 40 31
mcp250-2 621 25 23 677 25 23
mcp250-3 640 22 21 745 22 21
mcp250-4 710 22 22 821 22 22
mcp500-1 723 32 32 766 36 32
mcp500-2 832 28 24 904 28 24
mcp500-3 965 22 24 1058 22 24
mcp500-4 1061 22 22 1250 22 22

solver SDPNAL+ [31], which utilizes the augmented Lagrangian method. We set the
optimality tolerance to either 10−2 or 10−3, and the feasibility tolerance to 10−3.
SDPNAL+ was run until it found a solution meeting stopping criterion (17). When we
applied stopping criterion (17) to COSMO, it required a significantly longer computa-
tional time. We could not use (17) for MOSEK due to the lack of access to the iterate.
Therefore, COSMO and MOSEK were run using their default stopping criterion (with
suboptimality and infeasibility tolerances adjusted to ε and 10−3, respectively). The
computational time is reported in Table 4. MOSEK is the fastest across almost all
instances, followed by our method. SDPNAL+ consistently required more time com-
pared to our method. COSMO is faster than our method on the max-cut problem
when the tolerance is large (ε = 10−2). In other setups, however, it often requires
more computational time. It is particularly slower when it is applied to the graph
partitioning problem.

Interestingly, COSMO requires more iterations than our method, even on the max-
cut problem with ε = 10−2, where COSMO outperformed our method. For instance,
on mcp250-1 with ε = 10−2, COSMO requires 301 iterations while our method requires
only 33 iterations. Both COSMO and our method require the projection of the iterate
S(x(k)) onto the cone of the positive semidefinite matrices, which typically accounts for
a significant portion of the computational time. Therefore, it is somewhat surprising
that COSMO requires more iterations but less computational time. This superior
computational efficiency of COSMO is partly attributed to the chordal decomposition.
When we ran COSMO without the chordal decomposition feature, it often took more
time than our method. For example, COSMO without the chordal decomposition
required 2.1 seconds to solve mcp250-1 with ε = 10−2.

11



Table 4 Computational time (s) of the three methods on the test instances

ε = 10−2 ε = 10−3

Instance comb MOSEK COSMO SDPNAL+ comb MOSEK COSMO SDPNAL+
gpp250-1 1.6 0.5 39.1 3.0 2.2 0.5 106.8 3.0
gpp250-2 1.2 0.5 18.6 3.5 1.5 0.5 123.5 3.5
gpp250-3 1.0 0.5 29.3 3.4 1.1 0.5 77.8 3.4
gpp250-4 1.1 0.5 32.8 3.8 1.1 0.5 82.8 3.8
gpp500-1 5.1 3.4 154.7 12.6 6.1 3.4 1565.1 17.1
gpp500-2 3.6 3.6 294.7 14.4 3.9 3.6 766.4 14.4
gpp500-3 3.0 3.3 209.9 12.1 3.3 3.3 497.0 12.1
gpp500-4 2.9 3.3 81.2 12.1 2.9 3.3 632.5 12.1
mcp250-1 1.6 0.2 1.1 2.3 2.0 0.2 1.1 3.6
mcp250-2 1.2 0.2 0.8 2.6 1.2 0.2 2.4 2.6
mcp250-3 1.1 0.2 1.0 3.3 1.1 0.2 4.9 3.3
mcp250-4 1.0 0.2 0.7 3.1 1.0 0.2 5.9 3.1
mcp500-1 4.4 1.1 0.9 13.1 5.1 1.2 2.4 13.1
mcp500-2 4.0 0.9 1.7 11.1 4.0 1.2 8.8 11.1
mcp500-3 3.1 0.9 2.4 11.6 3.1 1.1 17.2 11.6
mcp500-4 3.2 0.9 2.9 11.9 3.2 1.2 18.3 11.9

3.2 Results on Larger Instances

The next experiments use larger instances based on graphs generated using rudy. We
varied the graph sizes (number of nodes) from 1000 to 5000, while setting the edge
density to either 5% or 10%. For each combination of size and density, we generated
four graphs using different random seeds. Both the graph partitioning and max-cut
problems were formulated using the same graphs. The performance of our method and
of MOSEK are reported in Tables 5 and 6. The best results are highlighted in bold.

Since the two methods used different stopping criteria, we cannot compare their
computational times directly. However, across many configurations, we observe that
MOSEK’s computational time tends to grow more rapidly than that of our method. An
exception is the max-cut problem with a density of 10% for which the computational
time of our method to find a solution with a small suboptimality (0.1%) increases
more rapidly than that of MOSEK.

4 Conclusions

In this paper, we have studied the combination of the subgradient projection method
with outer approximations for semidefinite programming problems. We explored
several possibilities to construct the outer approximations. Our computational exper-
iments compared the performance of the proposed method with MOSEK, COSMO
and SDPNAL+. Our method finds near-optimal solutions to the SDP relaxations of
graph partitioning and max-cut problem in SDPLIB more quickly than COSMO and
SDPNAL+. However, MOSEK was even faster than our method. The results on larger
instances showed the seemingly superior scalability of our method compared with
MOSEK.

Although the proposed method uses significantly less memory than interior point
methods, it still requires the projection of each iterate onto the cone of positive
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Table 5 Computational time (s) of our method and MOSEK on the SDP relaxations of the graph
partitioning problems (note: our method and MOSEK use different stopping criteria)

Density: 5 Density: 10

ε = 10−2 ε = 10−3 ε = 10−2 ε = 10−3

Size Instance comb MOSEK comb MOSEK comb MOSEK comb MOSEK

1000 1 13.3 31.1 54.0 31.1 16.2 31.2 16.2 31.2
1000 2 12.9 29.4 12.9 29.4 16.5 30.9 16.5 30.9
1000 3 12.5 31.2 50.9 31.2 16.8 31.4 16.8 31.4
1000 4 13.0 31.2 60.5 31.2 16.9 30.7 16.9 30.7
2000 1 100.7 273.2 100.7 273.2 124.2 250.2 124.2 250.2
2000 2 99.5 259.2 99.5 259.2 136.7 263.0 136.7 263.0
2000 3 99.2 270.0 99.2 270.0 124.3 268.8 124.3 268.8
2000 4 101.0 263.4 101.0 263.4 134.9 264.7 134.9 264.7
3000 1 395.5 1006.9 395.5 1006.9 504.4 1211.2 504.4 1211.2
3000 2 409.3 1073.0 409.3 1073.0 508.0 1241.1 508.0 1241.1
3000 3 426.7 1116.5 426.7 1116.5 472.7 1129.1 472.7 1129.1
3000 4 420.0 1026.7 420.0 1026.7 514.4 1179.8 514.4 1179.8
4000 1 1102.5 2740.1 1102.5 2740.1 1290.7 2784.1 1290.7 2784.1
4000 2 1042.8 2736.8 1042.8 2736.8 1270.7 2631.7 1270.7 2631.7
4000 3 1034.0 2682.2 1034.0 2682.2 1298.0 2725.7 1298.0 2725.7
4000 4 1034.2 2737.1 1034.2 2737.1 1204.7 2866.4 1204.7 2866.4
5000 1 2195.7 5784.2 2195.7 5784.2 2460.7 5462.0 2460.7 5462.0
5000 2 2195.7 5460.1 2195.7 5460.1 2440.8 5719.2 2440.8 5719.2
5000 3 2023.7 5990.1 2023.7 5990.1 2380.0 5760.6 2380.0 5760.6
5000 4 2204.2 5187.3 2204.2 5187.3 2464.1 5763.7 2464.1 5763.7

Table 6 Computational time (s) of our method and MOSEK on the SDP relaxations of the
max-cut problems (note: our method and MOSEK use different stopping criteria)

Density: 5 Density: 10

ε = 10−2 ε = 10−3 ε = 10−2 ε = 10−3

Size Instance comb MOSEK comb MOSEK comb MOSEK comb MOSEK

1000 1 12.1 8.0 12.1 8.9 11.3 7.6 11.3 8.4
1000 2 11.9 8.1 11.9 8.8 11.7 7.6 11.7 8.3
1000 3 12.4 8.1 12.4 8.8 11.3 6.5 11.3 8.3
1000 4 11.8 8.1 11.8 8.8 10.4 6.7 10.4 8.6
2000 1 63.3 65.5 63.3 68.8 66.7 57.3 66.7 66.5
2000 2 65.0 62.1 65.0 69.5 67.0 62.8 67.0 67.5
2000 3 65.8 67.5 65.8 69.8 64.3 61.9 64.3 68.0
2000 4 65.6 62.0 65.6 71.5 64.5 63.2 64.5 62.8
3000 1 215.9 238.0 215.9 258.0 224.7 262.4 224.7 289.4
3000 2 235.9 240.8 235.9 254.5 228.5 263.0 228.5 278.8
3000 3 224.8 231.5 224.8 249.6 231.8 268.0 231.8 277.6
3000 4 241.4 236.0 241.4 249.3 222.3 258.0 222.3 284.7
4000 1 543.2 571.3 543.2 652.2 546.3 664.4 546.3 711.0
4000 2 479.8 562.6 479.8 595.4 528.0 661.9 528.0 684.0
4000 3 504.4 567.6 504.4 618.5 539.4 658.7 539.4 703.7
4000 4 564.9 566.3 564.9 636.6 545.5 659.5 545.5 719.7
5000 1 1062.7 1136.0 1062.7 1223.1 1007.8 1293.4 1629.2 1424.8
5000 2 934.3 1190.3 934.3 1207.7 1019.8 1348.3 1783.1 1397.3
5000 3 1061.5 1125.8 1061.5 1248.6 1064.2 1338.9 1739.3 1370.9
5000 4 992.5 1133.0 992.5 1221.8 990.1 1342.4 1088.6 1415.3
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semidefinite matrices. This could be prohibitively expensive when solving large-scale
problems. A similar limitation applies to ADMM, which requires the projection of the
iterate at each iteration [12]. Rontsis et al [29] show that the use of a faster, warm-
started routine to compute the projection of the iterate can speed up ADMM. It would
be of interest to consider a similar extension of the proposed method to solve very
large instances.

Another limitation of the proposed method is the lack of reliable stopping criteria.
Our computational experiments used the optimal objective values computed a priori.
However, in practice, these values are normally unknown, making it essential to develop
practical stopping criteria.

Finally, the analysis presented in this paper is asymptotic. It is of interest to study
the non-asymptotic convergence rate of the method.
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Appendix A Proof of Proposition 2

The proof of Proposition 2 is similar to the proofs in [20]. To make this paper self-
contained, it is provided in this appendix.

Throughout this appendix, we suppose Assumption 1 holds. In particular, Assump-
tion 1.2 implies Cf -Lipschitz continuity of f and Cg-Lipschitz continuity of g (Theorem
3.61 in [4]).
Lemma 4. For any x̄ ∈ F , z ∈ F and η > 0,

∥y(k) − x̄∥2 ≤ ∥x(k) − x̄∥2 + 2cCf [g(x
(k))]+α(k) − 2α(k)(f(z(k))− f(x̄)) + (α(k))2C2

f ,

where z(k) = ΠF (x
(k)).

Proof. For any x̄ ∈ F ∈ P (k), it follows that

∥y(k) − x̄∥2 ≤ ∥x(k) − α(k)t(k) − x̄∥2

= ∥x(k) − x̄∥2 − 2α(k)(t(k))T (x(k) − x̄) + (α(k))2∥t(k)∥2. (A1)

The convexity of f gives (t(k))T (x(k) − x̄) ≥ f(x(k))− f(x̄). Therefore,

∥y(k) − x̄∥2 ≤ ∥x(k) − x̄∥2 − 2α(k)(f(x(k))− f(x̄)) + (α(k))2C2
f .
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Let z(k) be the projection of x(k) onto F . Since f is Cf -Lipschitz continuous,

−2α(k)(f(x(k))− f(x̄)) = −2α(k)(f(x(k))− f(z(k)))− 2α(k)(f(z(k))− f(x̄))

≤ 2α(k)Cf∥x(k) − z(k)∥ − 2α(k)(f(z(k))− f(x̄))

≤ 2α(k)Cfdist(x
(k), F )− 2α(k)(f(z(k))− f(x̄))

≤ 2α(k)cCf [g(x
(k))]+ − 2α(k)(f(z(k))− f(x̄)),

where the last inequality follows from the global error bound. Combining with (A1)
gives the desired result.

Lemma 5. For any x̄ ∈ F and k ≥ 0,

∥x(k+1) − x̄∥2 ≤ ∥x(k) − x̄∥2 − 2α(k)(f(z(k))− f(x̄))− 1

2C2
g

([g(x(k))]+)2 +D(α(k))2,

where D = C2
f (2(cCg + 1)2 + 1) and z(k) = ΠF (x

(k)).

Proof. For any x̄ ∈ F , the definition of x(k+1) gives

∥x(k+1) − x̄∥2 ≤
∥∥∥∥y(k) − [g(y(k))]+

∥d(k)∥2
d(k) − x̄

∥∥∥∥2
≤ ∥y(k) − x̄∥2 − ([g(y(k))]+)2

∥dk∥2

≤ ∥y(k) − x̄∥2 − ([g(y(k))]+)2

C2
g

.

We have

([g(y(k))]+)2 = ([g(y(k))]+ − [g(x(k))]+ + [g(x(k))]+)2

≥ 2([g(y(k))]+ − [g(x(k))]+)[g(x(k))]+ + ([g(x(k))]+)2.

Using Cg-Lipschitz continuity of g and the definition of y(k), we get

([g(y(k))]+)2 ≥ −2Cg∥y(k) − x(k)∥[g(x(k))]+ + ([g(x(k))]+)2

≥ −2Cgα
(k)Cf [g(x

(k))]+ + ([g(x(k))]+)2.

Thus,

∥x(k+1) − x̄∥2 ≤ ∥y(k) − x̄∥2 + 2Cf

Cg
α(k)[g(x(k))]+ − 1

C2
g

([g(x(k))]+)2.
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From Lemma 4 it follows that

∥x(k+1) − x̄∥2 ≤ ∥x(k) − x̄∥2 + 2α(k)Cfc[g(x
(k))]+ − 2α(k)(f(z(k))− f(x̄)) + (α(k))2C2

f

+
2Cf

Cg
α(k)[g(x(k))]+ − 1

C2
g

([g(x(k))]+)2

≤ ∥x(k) − x̄∥2 − 2α(k)(f(z(k))− f(x̄)) + (α(k))2C2
f

− 1

C2
g

([g(x(k))]+)2 + 2
Cf

Cg
(cCg + 1)α(k)[g(x(k))]+.

We can get an upper bound of the last term as

2
Cf

Cg
(cCg + 1)α(k)[g(x(k))]+

≤ 2
Cf

Cg
(cCg + 1)α(k)[g(x(k))]+ +

(√
2Cf (cCg + 1)α(k) − 1√

2Cg

[g(x(k))]+
)2

= 2C2
f (cCg + 1)2(α(k))2 +

1

2C2
g

([g(x(k))]+)2.

Combining the two inequalities gives the desired result.

Proof of Proposition 2. Let x∗ ∈ F be any optimal solution to (1). Invoking Lemma
5 repeatedly with x̄ = x∗ we get

∥x(k) − x∗∥ ≤ ∥x(0) − x∗∥+D

k−1∑
i=0

(α(i))2 ≤ ∥x(0) − x∗∥+D

∞∑
i=0

(α(i))2.

Therefore, {x(k)} is bounded. Since z(k) := ΠF (x
(k)), {z(k)} is also bounded.

Similarly, use Lemma 5 with x̄ = x∗ to get

∞∑
i=0

2α(i)(f(z(i))− f∗) ≤ ∥x(0) − x∗∥2 +D

∞∑
i=0

(α(i))2 < ∞,

where f∗ = f(x∗) is the optimal objective value of (1). In the light of
∑∞

i=0 α
(i) = ∞,

it follows that

lim inf
i→∞

(f(z(i))− f∗) = 0.

With the boundedness of {z(k)}, {z(k)} ⊂ F and the continuity of f , this implies that
z(k) has a subsequence converging to some optimal solution.

Use Lemma 5 again to get

∞∑
i=0

1

2C2
g

([g(x(i))]+)2 ≤ ∥x(0) − x∗∥2 +D

∞∑
i=0

(α(i))2 < ∞.
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Therefore,

lim
i→∞

[g(x(i))]+ = 0.

With the global error bound, we obtain that ∥x(k) − z(k)∥ = dist(x(k), F ) → 0 as
k → ∞. Thus, {x(k)} also has a subsequence converging to some optimal solution.
Now invoke Proposition 1.3 of Correa and Lemaréchal [9] to complete the proof.

References

[1] Ahmadi AA, Dash S, Hall G (2017) Optimization over structured subsets of
positive semidefinite matrices via column generation. Discrete Optimization
24:129–151. https://doi.org/https://doi.org/10.1016/j.disopt.2016.04.004

[2] Anderson E, Bai Z, Bischof C, et al (1999) LAPACK users’ guide, 3rd edn. Soft-
ware, environments, tools ; 9, Society for Industrial and Applied Mathematics
SIAM, Philadelphia, https://doi.org/https://doi.org/10.1137/1.9780898719604

[3] Anjos MF, Lasserre JB (2012) Handbook on Semidefinite, Conic and Polynomial
Optimization, International Series in Operations Research & Management Sci-
ence, vol 166. Springer Nature, New York, NY, https://doi.org/https://doi.org/
10.1007/978-1-4614-0769-0

[4] Beck A (2017) First-Order Methods in Optimization. Society for Industrial and
Applied Mathematics, Philadelphia, https://doi.org/10.1137/1.9781611974997

[5] Borchers B (1999) SDPLIB 1.2, a library of semidefinite programming test prob-
lems. Optimization Methods and Software 11(1-4):683–690. https://doi.org/10.
1080/10556789908805769

[6] Boyd S, El Ghaoui L, Feron E, et al (1994) Linear Matrix Inequalities in System
and Control Theory. SIAM studies in applied mathematics; vol. 15, Society for
Industrial and Applied Mathematics, Philadelphia, https://doi.org/https://doi.
org/10.1137/1.9781611970777

[7] Boyd S, Parikh N, Chu E, et al (2011) Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning 3(1):1–122. https://doi.org/https://doi.org/10.1007/
s12532-020-00178-3

[8] Burer S, Monteiro RDC (2003) A nonlinear programming algorithm for solv-
ing semidefinite programs via low-rank factorization. Mathematical programming
95(2):329–357. https://doi.org/https://doi.org/10.1007/s10107-002-0352-8
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