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Abstract

This paper considers a consensus optimization problem, where all the nodes in a network, with

access to the zeroth-order information of its local objective function only, attempt to cooperatively

achieve a common minimizer of the sum of their local objectives. To address this problem,

we develop ZoPro, a zeroth-order proximal algorithm, which incorporates a zeroth-order oracle

for approximating Hessian and gradient into a recently proposed, high-performance distributed

second-order proximal algorithm. We show that the proposed ZoPro algorithm, equipped with a

dynamic stepsize, converges linearly to a neighborhood of the optimum in expectation, provided

that each local objective function is strongly convex and smooth.

Keywords: Consensus Optimization, Zeroth-Order Algorithm, Distributed Optimization, Second-
Order Approximation

1 Introduction

This paper considers a widely studied distributed optimization problem, i.e., consensus optimiza-
tion, where all the nodes in a network aim at reaching a consensus that minimizes the sum of
their local cost functions. This problem arises in many real-world applications such as distributed
machine learning [XHXW16] and resource allocation [BNOT14].

To date, a variety of distributed algorithms for convex consensus optimization have been pro-
posed, in which each node only has access to certain information of its convex local cost function
and can only communicate with its neighbors determined by the network topology. Most exist-
ing distributed optimization algorithms are first-order methods, which typically include primal
(sub-)gradient methods [SLWY15a, SLWY15b, LT12, XK17, XXK17] and dual/primal-dual (sub-
)gradient methods [BHI15, MO17, CNS14]. These methods essentially require the nodes compute
the (sub-)gradients of their primal or dual objectives.

The second-order methods, such as the Decentralized Broyden-Fletcher-Goldfarb-Shanno method
(D-BFGS) [EMR17], the Exact Second-Order Method (ESOM) [MSLR16a], the Decentralized
Quadratically Approximated ADMM (DQM) [MSLR16b] and the Second-Order Proximal Algo-
rithm (SoPro) [WQL20], employ the objective Hessian matrices in addition to the objective gradi-
ents, potentially leading to faster convergence due to their more accurate approximations of some
global objectives. Recently, Wu et al. have proposed a distributed second-order proximal algorithm
called SoPro [WQL20]. SoPro originates from the classic Method of Multipliers [ADX10], while it
replaces the augmented Lagrangian function of the problem with its second-order approximation
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and introduces a separable quadratic proximal term to decouple the problem. SoPro achieves linear
convergence under strong convexity and smoothness, and exhibits superior practical performance.

All of the aforementioned algorithms are required to compute at least the first-order infor-
mation (i.e., (sub-)gradients) and even the second-order information (i.e., Hessian matrices) of
the problem. However, these pieces of information could be unavailable or too time-consuming
to obtain in big data and large-scale network scenarios. Under such circumstances, zeroth-order
algorithms [TZL20, YZY+21, HZ18, HHG19, YHX15, PH19, YHF+18, YHY21] are e↵ective ap-
proaches, whose updates only involve sampled function values instead of the exact (sub-)gradients
and Hessian matrices. Various zeroth-order algorithms have been developed so far, which uti-
lize zeroth-order estimators with di↵erent batch sizes to estimate the (sub-)gradients in some dis-
tributed first-order methods, including zeroth-order gradient tracking method [TZL20], zeroth-order
primal-dual methods [YZY+21, HZ18], zeroth-order decentralized (sub-)gradient descent [TZL20],
zeroth-order method with approximate projection [YHX15], distributed zeroth-order projected gra-
dient descent [PH19], distributed randomized zeroth-order mirror descent method [YHY21], etc.
To the best of our knowledge, zeroth-order Hessian estimators have barely been considered in dis-
tributed optimization. As distributed second-order algorithms often outperform the first-order ones
in both accuracy and convergence rate, introducing zeroth-order oracles for Hessian estimation to
distributed second-order methods is a promising direction.

In this paper, we propose a distributed zeroth-order proximal algorithm, referred to as ZoPro,
for solving convex consensus optimization. ZoPro replaces the exact objective gradients and Hes-
sian matrices in the distributed second-order algorithm SoPro [WQL20] with their zeroth-order
estimates, so that it significantly reduces the computational cost of SoPro and is applicable to the
scenarios where the objective gradients and Hessian matrices are inaccessible or too costly to com-
pute. ZoPro also inherits the appealing convergence performance of SoPro. It is shown to achieve
a linear rate of convergence to a neighborhood of the optimal solution when the objective functions
are strongly convex and smooth.

The rest of the paper is organized as follows: Section 2 describes the problem formulation,
Section 3 develops the proposed ZoPro algorithm, Section 4 provides convergence result and proofs,
and Section 5 concludes the paper.

Notations and definitions. For any di↵erentiable function f : Rd ! R, rf(x) represents its
gradient at x 2 Rd and if f is twice-di↵erentiable, r2

f(x) represents its Hessian matrix. Od and
Id represent the d ⇥ d zero matrix and identity matrix, respectively, and 0d and 1d represent the
d-dimensional all-zero and all-one vectors, respectively. Define Z+ and N as the sets of positive
integers and non-negative integers, respectively. Also, ⌦ denotes the Kronecker product, k · k
denotes the L2 norm and h·, ·i denote the inner product. Besides, diag(A1, . . . , An) represents the
block diagonal matrix consisting of the diagonal blocks A1, . . . , An. [P ]ij denotes the (i, j)-entry of
matrix P . Given A = A

T 2 Rd⇥d and x 2 Rd, kxk2
A
= x

T
Ax. �min(A) and �max(A) represent A’s

smallest and largest eigenvalues, respectively. A
† denotes A’s pseudo-inverse and A

? represents
the orthogonal complement of A. v ⇠ N (µ,⌃) represents a Gaussian random vector v with mean
µ and covariance matrix ⌃. A function f : Rd ! R is µ-strongly convex if f is di↵erentiable and

f(y) � f(x) +rf(x)T (y � x) +
µ

2
ky � xk2 8x, y 2 Rd

for some µ > 0. f is L-smooth if f is di↵erentiable and

krf(x)�rf(y)k  Lkx� yk 8x, y 2 Rd
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for some L > 0. Finally, the directional derivative of f at point x along direction d is denoted by
f
0(x; d) = lim↵!0

f(x+↵d)�f(x)
↵

.

2 Problem Formulation

We consider solving

minimize
x2Rd

X

i2V
fi(x) (1)

over a network modeled as a connected and undirected graph G = (V, E), where V = {1, 2, . . . , N}
is the set of nodes and E ✓ {{i, j} ✓ V ⇥ V | i 6= j} is the set of the bidirectional links. For each
i 2 V, we denote the set of its neighbors by Ni = {j 2 V | {i, j} 2 E}. Here, fi : Rd ! R is the
local cost/objective function associated with node i 2 V and each node i only communicates with
its neighbors in Ni.

Let xi 2 Rd be node i’s local copy of the global optimization variable x and x be the concate-
nation of all the xi’s, i.e. x = (xT1 , . . . , x

T

N
)T 2 RNd. Let P = P

T be a weight matrix corresponding
to the network G given by

[P ]ij =

8
<

:

P
s2Ni

pis i = j

�pij j 2 Ni

0 otherwise
8i, j 2 V

where pij = pji > 0 8 {i, j} 2 E .
Due to the fact that G is connected, the null space of P is span{1N}, so that we can rewrite

problem (1) as

minimize
x2RNd

f(x) =
X

i2V
fi(xi)

subject to W
1
2x = 0Nd (2)

where W = P ⌦Id ⌫ ONd and the equality constraint means that x1, . . . , xn are identical [WQL20].
We impose the following assumption on problem (1).

Assumption 1. Each fi is mi-strongly convex, twice continuously di↵erentiable and Mi-smooth,
where mi, Mi > 0.

Note that Assumption 1 guarantees the uniqueness of the optimal solution x
⇤ to problem (1).

3 Algorithm Development

In this section, we develop a distributed zeroth-order algorithm for solving problem (2).

3.1 SoPro Algorithm

We first quickly review the second-order proximal (SoPro) algorithm proposed in [WQL20].
SoPro solves (2) in a primal-dual fashion as follows:

x
k+1 = x

k � (O2
f(xk) +D)�1(Of(xk) + ⇢Wx

k + q
k) (3)
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q
k+1 = q

k + ⇢Wx
k+1 (4)

with the initialization q
0 = 0Nd, where x

k is the global primal variable and q
k = W

1
2v

k is a
change of variable with v

k being the dual variable associated with the constraint in (2). The
primal update (3) intends to minimize an augmented-Lagrangian-like function constructed in the

following way: The augmented Lagrangian function of (2) with penalty ⇢

2kW
1
2xk2, ⇢ > 0 is first

replaced by its second-order approximation at xk to reduce computational cost. Then, a separable
quadratic proximal term 1

2(x�x
k)T (r2

f(xk)+D)(x�x
k) is employed as a substitute for the non-

separable term in the above approximate augmented Lagrangian function to enable fully distributed
implementation, where D = diag(D1, . . . , DN ) is a symmetric block diagonal matrix with each
Di 2 Rd⇥d satisfying r2

f(xk) +D � ONd. The dual update (4) emulates dual gradient ascent.
Observe that the updates (3) and (4) of SoPro require calculating accurate first-order and

second-order information of the objective function f , which could be a tough challenge when han-
dling big data and large-scale problems. The high computational complexity of SoPro motivates the
development of zeroth-order oracles for e�ciently estimating the gradients and Hessian in SoPro.

3.2 Zeroth-order Oracle

Next, we provide a zeroth-order oracle for estimating the gradients and Hessian matrices in SoPro’s
updates (3) and (4). To do so, consider the following smoothed approximation of the objective
function f :

fµ(x) ,
1

(2⇡)Nd/2

Z

RNd
f(x+ µu)e�

kuk2
2 du (5)

where u ⇠ (0, INd) 2 RNd is a Gaussian random vector and µ > 0 is a parameter to control the
smoothness level [NS17, Section 2]. Note that the smoothed approximation fµ is guaranteed to

be di↵erentiable. We will show more properties of fµ in Section 4. Let egµ and eHµ represent the
gradient and Hessian estimation of the above Gaussian smoothing function fµ, which are defined
according to [YHF+18] as follows:

egµ(x) =
1

b

bX

j=1

f(x+ µuj)� f(x)

µ
uj (6a)

eHµ(x) = diag
⇣
eHµ,1(x1), . . . , eHµ,N (xN )

⌘
(6b)

eHµ,i(xi) =
1

b

bX

j=1

fi(xi + µuj) + fi(xi � µuj)� 2fi(xi)

2µ2
uju

T

j 8i = 1, . . . , N (6c)

where b 2 Z+ is the batch size, uj ⇠ N (0, Id) 2 Rd, j = 1, . . . , b are Gaussian random vectors.
The zeroth-order oracle (6a)–(6b) for gradient and Hessian matrix estimation only needs to sample
(2b+ 1)N points from the local objective functions, which is much less costly than computing the
exact gradient and Hessian matrix. It can be verified that the zeroth-order gradient estimation
(6a) is an unbiased estimator for rfµ [HHG19], i.e., E [egµ(x)] = rfµ(x).

3.3 ZoPro Algorithm

In this subsection, we incorporate the zeroth-order oracle (6a)–(6b) into SoPro, yielding a zeroth-
order proximal algorithm, referred to as ZoPro.
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Algorithm 1 Zeroth-Order Proximal Algorithm (ZoPro)

1: Initialization: All the nodes agree on the batch size b 2 Z+, the smoothness parameter µ > 0, the
penalty parameter ⇢ > 0, and the stepsize control parameter c 2 (0, 1). Generate b random vectors
uj ⇠ N (0, Id) 8j = 1, . . . , b

2: Each node i 2 V chooses Di such that eHµ,i(x) +Di � Od 8x 2 Rd and sets the initial stepsize ↵
0
i = 1

3: Every pair of neighboring nodes {i, j} 2 E set pij = pji to some positive value
4: Each node i 2 V sets x0

i 2 Rd arbitrarily and q
0
i = 0d. Then, it sends x0

i to every neighbor j 2 Ni

5: Upon receiving x
0
j 8j 2 Ni, each node i 2 V sets y0i =

P
j2Ni

pij(x0
i � x

0
j )

6: for k � 0 do

7: Each node i 2 V computes Hessian estimate

eHµ,i(x
k
i ) = b

�1
bX

j=1

fi(xk
i + µuj) + fi(xk

i � µuj)� 2fi(xk
i )

2µ2
uju

T
j

8: Each node i 2 V computes gradient estimate egµ,i(xk
i ) =

1
b

Pb
j=1

fi(x
k
i +µuj)�fi(x

k
i )

µ uj

9: Each node i 2 V computes the search direction d
k
i = �( eHµ,i(xk

i ) +Di)�1(egµ,i(xk
i ) + ⇢y

k
i + q

k
i )

10: Each node i 2 V determines the stepsize ↵
k
i such that fi(xk

i + ↵
k
i d

k
i )  f(xk

i ) + c↵
k
i f

0
i(x

k
i ; d

k
i )

11: Each node i 2 V updates xk+1
i = x

k
i + ↵

k
i d

k
i and sends xk+1

i to every neighbor j 2 Ni

12: Upon receiving x
k+1
j 8j 2 Ni, each node i 2 V updates y

k+1
i =

P
j2Ni

pij(x
k+1
i � x

k+1
j ) and q

k+1
i =

q
k
i + ⇢y

k+1
i

13: end for

We first replace rf(xk) and r2
f(xk) in (3) and (4) with egµ(xk) and eHµ(xk), which gives

x
k+1 = x

k � ( eHµ(x
k) +D)�1(egµ(xk) + ⇢Wx

k + q
k) (7)

q
k+1 = q

k + ⇢Wx
k+1 (8)

where, similar to SoPro, D = diag(D1, . . . , DN ) 2 RNd⇥Nd is a symmetric block diagonal matrix
such that eHµ(x) + D � ONd 8x 2 RNd, or equivalently, eHµ,i(xi) + Di � 0d 8x 2 Rd 8i =
1, . . . , N . The starting point q

0 is set to q
0 2 S

?, where S =
�
x 2 RNd|x1 = · · · = xN

 
and

S
? =

�
x 2 RNd|x1 + · · ·+ xN = 0d

 
, so that q

k 2 S
? 8k � 0 due to (8). For simplicity, we set

q
0 = 0Nd.
Since egµ(xk) and eHµ(xk) are only estimated values of rf(xk) and r2

f(xk), (7) and (8) may not
converge to the exact optimum like SoPro. To overcome this issue, we introduce a backtracking line
search strategy with a dynamic stepsize to bound the sequence

�
x
k
 
. We set the search direction

to d
k = �( eHµ(xk) +D)�1(egµ(xk) + ⇢Wx

k + q
k), and then modify (7) to

x
k+1 = x

k +A
k
d
k (9)

Here, A
k = diag(↵k

1 ,↵
k

2 , . . . ,↵
k

N
) ⌦ Id 2 RNd⇥Nd and ↵

k

i
, i 2 V is the local stepsize of node i

determined by the Armijo condition [Arm66, Eq. (1)], i.e. fi(xki + ↵
k

i
d
k

i
)  f(xk

i
) + c↵

k

i
f
0
i
(xk

i
; dk

i
),

where c 2 (0, 1) is the stepsize control parameter, f 0
i
(xk

i
; dk

i
) is the directional derivative of fi at xki

along node i’s local search direction d
k

i
and d

k

i
is the i-th d-dimensional block of dk.

The primal update (9) and the dual update (8) with initialization q
0 = 0Nd constitute a zeroth-

order proximal algorithm, referred to as ZoPro, whose distributed implementation is described in
Algorithm 1.
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In Algorithm 1, each node i maintains a local primal variable x
k

i
2 Rd and a local dual variable

q
k

i
2 Rd, which are the i-th d-dimensional block of xk and q

k. Also, we let it maintain an auxiliary

variable y
k

i
2 Rd such that yk =

�
(yk1 )

T
, . . . , (yk

N
)T
�T

= Wx
k for better presentation.

The existing zeroth-order distributed optimization methods such as distributed zeroth-order
gradient tracking method [TZL20], distributed zeroth-order primal-dual method [YZY+21, HZ18],
distributed zeroth-order projected gradient descent [PH19] and distributed randomized zeroth-order
mirror descent method [YHY21] all use zeroth-order information to approximate the objective gra-
dients only. In contrast, ZoPro includes zeroth-order estimates for both gradients and Hessian
matrices. This may accelerate the convergence as ZoPro adopts potentially more accurate approx-
imations of the global objective than other zeroth-order methods.

4 Convergence Analysis

This section provides the convergence analysis of ZoPro. First, we analyze some properties of fi
and f

0
i
.

Proposition 1. Let fi : Rd ! R be a L-smooth function and let
�
x
k

i

 
be the sequence generated

by x
k+1
i

= x
k

i
+ ↵

k

i
d
k

i
, where ↵

k

i
is the stepsize determined by the backtracking line search and d

k

i
is

the corresponding search direction. Denote the directional derivative of fi as f
0
i
. Then one of the

following statements is true:
(i) fi(xki ) ! �1 as k ! 1.
(ii) The sequence

�
kdk

i
k
 
diverges.

(iii) For every infinite subsequence J ✓ N for which
�
d
k

i
: k 2 J

 
is bounded, we have

lim
k2J,k!1

f
0
i(x

k

i ; d
k

i ) = 0

Proof. See Section 4.1.

From Proposition 1, we have limk!1 f
0
i
(xk

i
; dk

i
) = 0 for fi, i 2 V , which indicates that either

the gradient rfi(xki ) and the search direction d
k

i
are orthogonal as k ! 1 or rfi(xki ) equals 0

as k ! 1, and both results can terminate the backtracking line search. From [AMA05, Theorem
3.2], backtracking line search method guarantees convergence of the generated sequence

�
x
k
 
. By

continuous mapping theorem,
�
rf(xk)

 
is convergent, and thus

�
krf(xk)k

 
is bounded. For

simplicity, we denote the upper bound as K.
Assumption 1 implies f is strongly convex for some m 2 (0,minimi] and smooth for some

M � maxiMi. [HHG19, Eq. (9)] derives a bound of the di↵erence between rfµ and egµ

E
⇥
kegµ(x)�rfµ(x)k2

⇤


2Nd
�
µ
2
M

2
Nd+K

2
�

b
, G

2
1 (10)

Besides, the di↵erence between rfµ and rf is also bounded in [NS17, Eq. (28)] as follows:

krfµ(x)�rf(x)k2  µ
2

4
M

2(Nd+ 3)3 , G
2
2 (11)

Moreover, let fµ,i be the smoothed approximation of function fi, i.e. fµ,i(xi) =
1

(2⇡)d/2

R
Rd f(x+

µui)e
� kuik

2

2 dui, where, similarly, ui ⇠ (0, Id) 2 Rd, i = 1, . . . , N is Gaussian random vectors. Ac-
cording to [NS17, Section 2], the smoothing function fµ,i can preserve all characteristics of fi.
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For example, fµ,i is guaranteed to be mi-strongly convex and Mi-smooth if fi is mi-strongly
convex and Mi-smooth. fµ,i is twice continuously di↵erentiable if fi is twice continuously dif-
ferentiable. Assumption 1 also implies miId � r2

fi(x) � MiId, i = 1, . . . , N 8x 2 Rd. Let
⇤m = diag(m1,m2, . . . ,mN ) ⌦ Id � ONd and ⇤M = diag(M1,M2, . . . ,MN ) ⌦ Id � ONd. Besides,
in order to provide a bound of the stepsize in backtracking line search, we define the smallest
stepsize in the whole process as ↵, i.e. ↵ = mini,k ↵k

i
> 0 for i = 1, . . . , N and k = 0, 1, . . . . We

have ↵ 2 (0, 1] since ↵
0
i
= 1. Let R = ↵

�1(⇤M+⇤m
2 + D) 2 RNd⇥Nd and Q = diag(⇢R, INd). For

simplicity, define H
k = eHµ(xk) +D.

Similar to [YHF+18, Eq. (3.1)], we impose another assumption to bound the di↵erence between
eHµ,i(xi) and r2

fi(xi).

Assumption 2. The estimated Hessian eHµ,i(xi) satisfies

✓ eHµ,i(xi) � r2
fi(xi) � (2� ✓) eHµ,i(xi)

for i = 1, . . . , N and some ✓ 2 (0, 1].

Parameter ✓ measures how accurate eHµ,i(xi) approximates r2
fi(xi). Specifically, eHµ,i(xi) re-

duces to the exact Hessian r2
fi(xi) when ✓ = 1. The way of constructing zeroth-order estimate

for Hessian (6b) may satisfy Assumption 2 with proper parameter values such as su�ciently large
b, small µ and evenly distributed uj .

From Assumption 1 and 2, we have

1

2� ✓
⇤m � 1

2� ✓
r2

f(x) � eHµ(x) �
1

✓
r2

f(x) � 1

✓
⇤M (12)

Let ⇤̄ = ↵
�1

⇣
1
✓
⇤M � ⇤M+⇤m

2

⌘
. The convergence analysis relies on the following condition

D �⇤M

2⌘
+ ⇢(W + INd) +

✓
2

✓
� 3

2

◆
⇤M � 3

2
⇤m +

✓
1

✓
⇤M � ⇤M + ⇤m

2

◆2

(13)

for any ⌘ > 1. With (13), it is guaranteed that eHµ(x)+D � ONd 8x 2 RNd since eHµ(x) ⌫ 1
2�✓

⇤m.

For better presentation, let z
k = ((xk)T , (vk)T )T and z

⇤ = ((x⇤)T , (v⇤)T )T . Also, let �W > 0
be the smallest nonzero eigenvalue of W . The main convergence result of ZoPro is provided below.

Theorem 1. Suppose Assumptions 1 and 2 hold. Assume (13) holds for some ⌘ > 1. Then, for

any � > ↵
�1 and � >

2m(⌘�1)+⌘+�

⌘�1 , zk converges linearly to a neighborhood of z⇤ in expectation,
i.e. there exists � 2 (0, 1) such that for each k � 0

E

���zk+1 � z
⇤
���
2

Q

�
 (1� �)E

���zk � z
⇤
���
2

Q

�
+G (14)

lim sup
k!1

E

���zk � z
⇤
���
2

Q

�
 G

�
(15)

In particular, given any c1 > 0, G = ⇢(⌘ + 1�⌘

�
)G2

2 + 2(G2
1 +G

2
2) +

2�(1+c1)(G1+G2)2

�W
and

� = sup
c1,c2>0

min

(
⇢�W�,⌘

2↵�2(1 + c1)
��1
✓
⇤M +D

��2
1

(1 + 1/c1)(1 + c2)
,

�c

�max(B/⇢)

)
(16)

in which B =
(1+1/c1)(1+1/c2)⇤2

M
�W

+ ⇢R, �c = (2m � �)(1 � ⌘) � ⌘ � � and �,⌘ = �min(R � ⇤M
2⌘ �

⇤̄2

�
� 2⇤̄� ⇢(INd +W )) > 0.
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Proof. See Section 4.2.

Subsequently, we discuss the influence of the objective function and the network topology on
the convergence rate of ZoPro. From (14), note that � mainly depends on M , m and �W . To see
this, let fi 8 i 2 V be identically strongly convex with parameter m and smooth with parameter
M such that 0 < m < M . Let W = INd �A⌦ Id, where A = A

T is a doubly stochastic matrix. It
can be shown that larger m, smaller M and larger �W (which suggests denser connectivity of G)
lead to larger � and a faster convergence speed of ZoPro.

Also, we discuss the factors that a↵ect the ultimate optimality error, i.e., the expected distance
between z

k and z
⇤ as k ! 1. From (15), this expected distance mainly depends on µ, b and

M . It can be shown that smaller µ (accurate smoothed approximation), larger b (enough sample
points for zeroth-order oracle) and smaller M (well-conditioned objective function) contribute to
a smaller expected error. However, we need to control b within a moderate range to avoid high
computational cost in constructing Hessian and gradient estimates.

4.1 Proof of Proposition 1

We assume that none of (i), (ii) and (iii) hold and establish a contradiction. Since (i) does not
occur, the decreasing sequence

�
fi(xki )

 
is bounded below and we have fi(xki ) ! f̄i as k ! 1 for

some f̄i. In particular, fi(x
k+1
i

) � fi(xki ) ! 0 as k ! 1. Next, since (ii) and (iii) do not occur,
there are a subsequence J ✓ N and a vector d̄i such that dk

i
! d̄i for k 2 J and

sup
k2J

f
0
i(x

k

i ; d
k

i ) =: �0 < 0

The Armijo condition and the fact that fi(x
k+1
i

)� fi(xki ) ! 0 as k ! 1 imply that

↵
k

i f
0
i(x

k

i ; d
k

i ) ! 0

Since f
0
i
(xk

i
; dk

i
)  �0 < 0 for k 2 J , we have ↵

k

i
! 0 as k ! 1. With no loss in generality, we

assume that ↵k

i
2 (0, 1) for all k 2 J . For ✏ 2 (0, 1), we have

✏�
�1
0 ↵

k

i f
0
i(x

k

i ; d
k

i ) < fi(x
k

i + ↵
k

i �
�1
0 d

k

i )� fi(x
k

i ) (17)

for all k 2 J , where �0 > 0 is the search control parameter. By the Mean Value Theorem, there
exists ✓0 2 (0, 1) for each k 2 J that

fi(x
k

i + ↵
k

i �
�1
0 d

k

i )� fi(x
k

i ) = ↵
k

i �
�1
0 f

0
i(x

k

i + ✓0↵
k

i �
�1
0 d

k

i ; d
k

i )

For better presentation, we define x̂
k

i
= x

k

i
+ ✓0↵

k

i
�
�1
0 d

k

i
. Now, since fi is L-smooth, we have

↵
k

i �
�1
0 f

0
i(x̂

k

i ; d
k

i ) = ↵
k

i �
�1
0 f

0
i(x

k

i ; d
k

i ) + ↵
k

i �
�1
0

⇣
f
0
i(x̂

k

i ; d
k

i )� f
0
i(x

k

i ; d
k

i )
⌘

= ↵
k

i �
�1
0 f

0
i(x

k

i ; d
k

i ) + ↵
k

i �
�1
0

⇣
rfi(x̂

k

i )�rfi(x
k

i )
⌘
T

d
k

i  ↵
k

i �
�1
0 f

0
i(x

k

i ; d
k

i ) + ↵
k

i �
�1
0 Lkx̂ki � x

k

i kkdki k

= ↵
k

i �
�1
0 f

0
i(x

k

i ; d
k

i ) + (↵k

i �
�1
0 )2L✓0kdki k2 (18)

Combining (17) and (18), we have

✏�
�1
0 ↵

k

i f
0
i(x

k

i ; d
k

i ) < ↵
k

i �
�1
0 f

0
i(x

k

i ; d
k

i ) + (↵k

i �
�1
0 )2L✓0kdki k2

8



which implies that
0 < (1� ✏)�0 + (↵k

i �
�1
0 )L✓0kdki k2 8k 2 J

Taking the limit over k 2 J , we obtain the contradiction

0  (1� ✏)�0 < 0

where the first inequality is due to the fact that ↵k

i
! 0 as k ! 1 and the second inequality results

from ✏ 2 (0, 1) and �0 < 0.

4.2 Proof of Theorem 1

Similar to [WQL20], since the dual optimum of problem (2) can be arbitrarily chosen such that

rf(x⇤) = �W
1
2v, we simply define

v
⇤ = �(W †)

1
2rf(x⇤) (19)

as a particular dual optimum. Besides, let vk = (W †)
1
2q

k and we have

v
⇤
,v

k
,v

k � v
⇤ 2

n
x 2 RNd|x1 + · · ·+ xn = 0d

o
(20)

First, we derive a lemma to bound the di↵erence between E

h
kzk � z

⇤k2
Q

i
and E

h
kzk+1 � z

⇤k2
Q

i
.

Lemma 1. Suppose Assumptions 1 and 2 hold. For each k � 0 and any ⌘,�, � > 0, we have

E

���zk � z
⇤
���
2

Q

�
�E

���zk+1 � z
⇤
���
2

Q

�

� ⇢�cE

���xk � x
⇤
���
2
�
+ ⇢

2
E

���xk

���
2

W

�
� ⇢(⌘ +

1� ⌘

�
)G2

2 � ⇢E

���xk+1 � x
k

���
2

A�,⌘+⇢W�R

�
� 2(G2

1 +G
2
2)

(21)

where A�,⌘ = ⇤M
2⌘ + ⇤̄2

�
+ 2⇤̄+ ⇢INd.

Proof. From (8) and q
k = W

1
2v

k, we have

v
k+1 = v

k + ⇢W
1
2x

k+1
. (22)

Using (22) and Wx
⇤ = 0Nd, we can derive
D
v
k � v

k+1
,v

k+1 � v
⇤
E
= �⇢

D
x
k+1 � x

⇤
,W

1
2 (vk+1 � v

⇤)
E

(23)

From (8) and (9)

W
1
2v

k+1 = W
1
2 (vk+1 � v

k) +W
1
2v

k =
⇣
⇢W � (Ak)�1

H
k

⌘
(xk+1 � x

k)� egµ(xk) (24)

Combining (19), (23) and (24), we have
D
v
k � v

k+1
,v

k+1 � v
⇤
E

= ⇢

D
x
k+1 � x

⇤
, egµ(xk)�rf(x⇤)

E
+ ⇢

D
x
k+1 � x

⇤
,

⇣
(Ak)�1

H
k � ⇢W

⌘
(xk+1 � x

k)
E

(25)

9



Moreover, since Wx
⇤ = 0Nd, it follows that

�
D
x
k+1 � x

⇤
,W (xk+1 � x

k)
E
+
���xk+1

���
2

W

=
1

2
(
���xk+1

���
2

W

+
���xk

���
2

W

�
���xk+1 � x

k

���
2

W

) (26)

We expand the left-hand side of (21) and obtain

E

���zk � z
⇤
���
2

Q

�
�E

���zk+1 � z
⇤
���
2

Q

�

= E

���zk � z
k+1

���
2

Q

�
+ 2E

h
⇢

D
x
k+1 � x

⇤
, R(xk � x

k+1)
Ei

+ 2E
hD

v
k � v

k+1
,v

k+1 � v
⇤
Ei

(27)

By incorporating (26) into (25) and combining the resulting equation with (27), we have

E

���zk � z
⇤
���
2

Q

�
�E

���zk+1 � z
⇤
���
2

Q

�

= 2⇢E
hD

x
k+1 � x

⇤
, egµ(xk)�rf(x⇤)

Ei
+E


⇢
2
���xk

���
2

W

�

+ 2⇢E
hD

x
k+1 � x

⇤
,

⇣
(Ak)�1

H
k �R

⌘
(xk+1 � x

k)
Ei

+ ⇢E

���xk+1 � x
k

���
2

R�⇢W

�
(28)

Now, we need to bound the first and third terms of the right-hand side of (28). First, based on the
AM-GM inequality, (10) and (11), we provide a lower bound on the first term. For any ⌘ > 0, we
have

E

hD
x
k+1 � x

k
, egµ(xk)�rf(x⇤)

Ei

= E

hD
x
k+1 � x

k
,rf(xk)�rf(x⇤)

Ei

+E

hD
x
k+1 � x

k
, egµ(xk)�rfµ(x

k)
Ei

+E

hD
x
k+1 � x

k
,rfµ(x

k)�rf(xk)
Ei

� �⌘E

h
krf(xk)�rf(x⇤)k2⇤M�1

i
�

E

h
kxk+1 � x

kk2⇤M

i

4⌘
� 1

⇢
E

���egµ(xk)�rfµ(x
k)
���
2
�

� ⇢

4
E

���xk+1 � x
k

���
2
�
� 1

⇢
E

���rfµ(x
k)�rf(xk)

���
2
�
� ⇢

4
E

���xk+1 � x
k

���
2
�

� �⌘E

h
krf(xk)�rf(x⇤)k2⇤M�1

i
�E

"���xk+1 � x
k

���
2

⇤M
4⌘ +

⇢INd
2

#
� G

2
1 +G

2
2

⇢
(29)

Besides, due to the gradient Lipschitz of f and unbiasedness of egµ, we have

E

hD
x
k � x

⇤
, egµ(xk)�rf(x⇤)

Ei
+E

hD
x
k � x

⇤
,rf(xk)�rf(x⇤)

Ei

� E

h
krf(xk)�rf(x⇤)k2⇤M�1

i
� 1

2
E

���xk � x
⇤
���
2
�
� 1

2
E

���rfµ(x
k)�rf(xk)

���
2
�

� E

h
krf(xk)�rf(x⇤)k2⇤M�1

i
� 1

2
E

���xk � x
⇤
���
2
�
� 1

2
G

2
2
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Multiply this inequality by ⌘ and add it to (29). For any ⌘ > 0 and � > 0, we then have

E

hD
x
k+1 � x

⇤
, egµ(xk)�rf(x⇤)

Ei

� (1� ⌘)E
hD

x
k � x

⇤
,rf(xk)�rf(x⇤)

Ei
+ (1� ⌘)E

hD
x
k � x

⇤
,rfµ(x

k)�rf(xk)
Ei

�E

"���xk+1 � x
k

���
2

⇤M
4⌘ +

⇢INd
2

#
� 1

2
⌘E

���xk � x
⇤
���
2
�
� 1

2
⌘G

2
2 �

G
2
1 +G

2
2

⇢

� (1� ⌘)E
hD

x
k � x

⇤
,rf(xk)�rf(x⇤)

Ei
� 1

2
(1� ⌘)�E

���xk � x
⇤
���
2
�

� 1

2
(1� ⌘)

1

�
E

���rfµ(x
k)�rf(xk)

���
2
�
�E

"���xk+1 � x
k

���
2

⇤M
4⌘ +

⇢INd
2

#

� 1

2
⌘E

���xk � x
⇤
���
2
�
� 1

2
⌘G

2
2 �

G
2
1 +G

2
2

⇢

� (1� ⌘)E
hD

x
k � x

⇤
,rf(xk)�rf(x⇤)

Ei
�E

"���xk+1 � x
k

���
2

⇤M
4⌘ +

⇢INd
2

#

� 1

2
((1� ⌘)� + ⌘)E

���xk � x
⇤
���
2
�
� 1

2

✓
⌘ +

1� ⌘

�

◆
G

2
2 �

G
2
1 +G

2
2

⇢
(30)

In addition, we have (Ak)�1
H

k � R = (Ak)�1 eHµ(xk) + D
�
(Ak)�1 � ↵

�1
INd

�
� ↵

�1⇤m+⇤M
2 �

↵
�1 eHµ(xk)� ↵

�1⇤m+⇤M
2 . Due to (12), (Ak)�1

H
k �R � ⇤̄. For any � > 0, we obtain

E

hD
x
k+1 � x

⇤
,

⇣
(Ak)�1

H
k �R

⌘
(xk+1 � x

k)
Ei

= E

hD
x
k � x

⇤
,

⇣
(Ak)�1

H
k �R

⌘
(xk+1 � x

k)
Ei

+E

hD
x
k+1 � x

k
,

⇣
(Ak)�1

H
k �R

⌘
(xk+1 � x

k)
Ei

� ��

2
E

h
kxk � x

⇤k2
i
� 1

2�
E

h
kxk+1 � x

kk2⇤̄2

i
�E

h
kxk+1 � x

kk2⇤̄
i

(31)

Combining (28), (30) and (31) yields the following inequality

E

���zk � z
⇤
���
2

Q

�
�E

���zk+1 � z
⇤
���
2

Q

�

� 2⇢(1� ⌘)E
hD

x
k � x

⇤
,rf(xk)�rf(x⇤)

Ei
+ ⇢

2
E

���xk

���
2

W

�
� ⇢E

���xk+1 � x
k

���
2

A�,⌘+⇢W�R

�

� ⇢ ((1� ⌘)� + ⌘ + �)E

���xk � x
⇤
���
2
�
� ⇢(⌘ +

1� ⌘

�
)G2

2 � 2(G2
1 +G

2
2) (32)

By the strong convexity of f , (21) holds.

Next, we provide an upper bound on E

h��zk � z
⇤��2

Q

i
. For any c1, c2 > 0, combining (9), (19),

11



(24), the smoothness of f and the fact that qk = W
1
2v

k together, we have

E[kvk � v
⇤k2] = E[k(W †)

1
2W

1
2 (vk � v

⇤)k2]

= E[k(W †)
1
2 ((Ak)�1

H
k(xk � x

k+1)� ⇢Wx
k � egµ(xk) +rf(x⇤))k2]

 (1 + c1)E[k(W †)
1
2 ((Ak)�1

H
k(xk � x

k+1)� egµ(xk) +rf(xk))k2]

+ (1 +
1

c1
)E

h
k(W †)

1
2 (⇢Wx

k +rf(xk)�rf(x⇤))k2
i

 2(1 + c1)

�W

E


kxk+1 � x

kk2
(Hk(Ak)�1)2

�

+ ⇢
2(1 +

1

c1
)(1 + c2)E

h
kxkk2W

i
+

2(1 + c1)(G1 +G2)2

�W

+
(1 + 1/c1)(1 + 1/c2)

�W

E

h
kxk � x

⇤k2⇤2
M

i

Since
�
H

k(Ak)�1
�2 �

�
↵
�1
�2

(1
✓
⇤M +D)2, we then have

E

���zk � z
⇤
���
2

Q

�
 2(1 + c1)

�W

E

���xk+1 � x
k

���
2

(↵�1)2( 1✓⇤M+D)2

�

+ ⇢
2(1 +

1

c1
)(1 + c2)E

���xk

���
2

W

�
+E

���xk � x
⇤
���
2

B

�
+

2(1 + c1)(G1 +G2)2

�W

(33)

Then, note from (21) and (33) that for any � 2 (0, 1)

(1� �)E

���zk � z
⇤
���
2

Q

�
�E

���zk+1 � z
⇤
���
2

Q

�

� ⇢�min

✓
�cINd �

�B
⇢

◆
E

���xk � x
⇤
���
2
�

+ (⇢2(1� �(1 + 1/c1)(1 + c2))E

���xk

���
2

W

�
�G�E

"���xk+1 � x
k

���
2

2↵�2�(1+c1)
�W

( 1✓⇤M+D)2+⇢(A�,⌘+⇢W�R)

#

In order to guarantee �c > 0 for some �, ⌘ and �, we need to bound these parameters more strictly.
To let 2m(1� ⌘)� ⌘ � � > 0, we impose ⌘ > 1 and � > ↵

�1
> 0. Then, set � >

2m(⌘�1)+⌘+�

⌘�1 such
that (� � 2m)(⌘ � 1) > ⌘ + �. To satisfy (14), it su�ces to let

�cINd �
�B
⇢

⌫ ONd (34a)

⇢
2(1� �(1 + c2)(1 + 1/c1)) � 0 (34b)

2↵�2
�(1 + c1)

�W

(
1

✓
⇤M +D)2 + ⇢(A�,⌘ + ⇢W �R) � ONd (34c)

From (34a)-(34c), to guarantee the existence of � 2 (0, 1), we need �,⌘ > 0. By (13) and the
fact that � > ↵

�1 and A � INd, we have A�,⌘ + ⇢W � R and thus �,⌘ > 0 always exists. In
conclusion, � 2 (0, 1) satisfying (34a)-(34c) is given by (16). Finally, from (14), for each k � 0 we
have

E

���zk � z
⇤
���
2

Q

�
 (1� �)kE

h��z0 � z
⇤��2

Q

i
+

k�1X

t=0

(1� �)tG

By taking the limit k ! 1, we show (15) holds.

12



5 Conclusion

We develop a zeroth-order proximal algorithm (ZoPro) for solving consensus optimization prob-
lems over undirected networks. ZoPro approximates exact gradients and Hessian matrices in a
powerful second-order method SoPro using a zeroth-order oracle, which significantly reduces the
computational complexity, particularly in solving large-scale problems. ZoPro inherits some appeal-
ing features of SoPro, including full decentralization and fast convergence. We show that ZoPro

achieves linear convergence to a neighborhood of the optimum in expectation when the problem is
strongly convex and smooth.
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