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We introduce a novel exact approach for addressing a broad spectrum of optimization problems with robust

nonlinear constraints. These constraints are defined as sums of products of linear times concave (SLC)

functions with respect to the uncertain parameters. Our approach synergizes a cutting set method with

reformulation-perspectification techniques and branch and bound. We further extend the applicability of

our approach to robust convex optimization, which can be reformulated as a problem involving a sum of

linear times linear functions in the uncertain parameters, thus broadening the scope of existing literature.

Numerical experiments on a robust convex geometric optimization problem and a robust linear optimization

problem with data uncertainty and implementation error show that our approach can solve robust nonlinear

problems that cannot be solved by existing methods in the literature. Moreover, a numerical experiment on a

lot-sizing problem on a network demonstrates the efficiency of our method for two-stage ARO problems.

Key words : Reformulation-perspectification techniques, perspective functions, robust nonlinear optimization,

adaptive robust optimization.

1. Introduction

In the last two decades, robust optimization (RO) has become a popular approach for solving

optimization problems under uncertainty. Though introduced by Soyster (1973), the work of Ben-Tal

and Nemirovski (1999), El Ghaoui and Lebret (1997), and El Ghaoui et al. (1998) together with

improvements in efficient algorithms for conic and semidefinite optimization sparked significant

interest in the field of RO in the late nineties. In contrast to stochastic programming, which requires

the underlying probability distribution of uncertain parameters to be known or estimated, RO does

not necessitate any information about this distribution. Instead, it employs an uncertainty set — a

1



2

collection of scenarios where the solution is safeguarded. In RO, constraints are expected to hold

for all realizations of the uncertain parameters within this uncertainty set, e.g.,

f(x,z)≤ 0, ∀z ∈Z, (1)

where the vectors x and z denote the decision variable and the uncertain parameter, respectively,

and Z is the uncertainty set. For several types of constraint functions and uncertainty sets, this

semi-infinite constraint (1) can be reformulated into a finite set of convex constraints, also referred

to as the robust counterpart (RC). The first step in computing the RC is to rewrite (1) as:

sup
z∈Z

f(x,z)≤ 0. (2)

In cases where the set Z is compact and convex, and the function f is convex in x and concave

in z, a computationally tractable Robust Constraint (RC) of (2) may be derived, as finding the

worst-case scenario is equivalent to maximizing a concave function over Z. The authors in Ben-Tal

et al. (2015) proposed to calculate the support function of the uncertainty set and the concave

conjugate of the nonlinear constraint function. This leads to a reformulation of (2) into a finite set

of convex constraints.

If the function f is nonlinear and convex in both x and z, finding an equivalent tractable

reformulation is, in general, challenging since finding the worst-case scenario is equivalent to

maximizing a convex function. In Bertsimas et al. (2023c), the authors propose a Reformulation-

Perspectification Technique (RPT) based approach to solve such robust convex constraints with

convex uncertainty sets. First, they reformulate constraint (1) as an uncertain linear constraint

with bilinear uncertainty and nonconvex uncertainty set. Next, using partial or full RPT, they

derive several convex outer approximations of the uncertainty set, thereby obtaining a robust linear

constraint with a convex uncertainty set. Hence, well-established RO techniques (see Bertsimas and

den Hertog (2022)) can be applied to finally obtain a computationally tractable safe approximation

of (1). In this paper, we propose a method for computing the global optimal solution of robust

convex optimization problems, thereby extending the existing literature.

When the function f is neither convex nor concave in the uncertain parameter z, only for special

cases can a computationally tractable safe approximation be found in the literature. Ben-Tal et al.

(2015) show that if f(x,z) can be written as g(x)⊤h(z) in which h(z) is nonconcave or g(x)

attains both positive and negative values, then by parametrization of ζ =h(z), we may replace the

uncertainty set Z̄ = {(z,ζ) | z ∈Z,ζ =h(z)} by its convex hull. Hence, in cases where the convex

hull can be computed, a computationally tractable RC can be derived. One such example is a robust

nonconcave quadratic constraint with an ellipsoidal uncertainty set. For this case, Ben-Tal and
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Nemirovski (1998) derive an exact computationally tractable RC by showing that the convex hull

of the parametrized uncertainty set can be written as a Linear Matrix Inequality (LMI). Finally, in

the case of a conic quadratic inequality and structured norm-bounded uncertainty sets as well as

uncertainty sets described by finitely many ellipsoids, there exists a computationally tractable safe

approximation of the RC, see (Ben-Tal et al., 2009, Chapter 7). In this paper, we develop a method

for computing the global optimal solution of problems where f is neither convex nor concave in the

uncertain parameter z but sum of linear times concave (SLC).

In this paper, we propose a novel approach based on cutting sets as well as the Reformulation-

Perspectification Technique with Branch and Bound (RPT-BB), recently introduced by Bertsimas

et al. (2023a). Our approach is able to obtain the global optimal solution of optimization problems

containing robust constraints that are neither convex nor concave but SLC with respect to the

uncertain parameters z. Namely, we assume that f can be written as the sum of functions that

consist of the product of linear times a concave function with respect to the uncertain parameter z.

In RO, the decisions are assumed to be here-and-now variables, i.e., they have to be determined

before the uncertainty is realized. Adaptive robust optimization (ARO), introduced in Ben-Tal et al.

(2004), relaxes this assumption by also considering wait-and-see variables which can be determined

after more information on the uncertain parameters is known. A general fixed recourse two-stage

adaptive RO constraint is given by

a(z)⊤x+ s⊤y(z)− b(z)≤ 0, ∀z ∈Z, (3)

where x is the here-and-now decision variable, y(z) is the second-stage wait-and-see variable, and z

is the uncertain parameter taking values in an uncertainty set Z. In general, fixed recourse two-stage

RO problems are NP-hard (Ben-Tal et al., 2004).

Three approaches have been studied in the literature to make optimization problems containing

constraints in the form of (3) computationally tractable. The first approach is to approximate the

problem by restricting the wait-and-see variables, also called decision rules, to a certain class of

functions. Ben-Tal et al. (2004) introduce affine decision rules (ADRs), restricting the wait-and-see

variables to be affine functions of the uncertain parameters, and Xu and Burer (2018); Hanasusanto

and Kuhn (2018) extend it to quadratic decision rules. Observe that imposing a quadratic decision

rule to (3) leads to a static robust optimization constraint with quadratic uncertainty, in which

case the resulting problem can be solved to global optimality with our proposed approach, in

contrast to existing approaches that are only able to obtain an approximation (Xu and Burer, 2018;

Hanasusanto and Kuhn, 2018). The second and third approach seek to find an exact solution using

Bender’s decomposition method (Thiele et al., 2010; Bertsimas et al., 2013) and a column-and-

constraint generation procedure (Zeng and Zhao, 2013), respectively. Zeng and Zhao (2013) show
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that problems containing two-stage RO constraints can be reformulated into a static RO problem

with bilinear uncertainty. Hence, our approach can solve such problems to global optimality.

Contributions

Our main contributions can be summarized as follows:

1. We extend the existing literature by proposing an exact method for solving a broad class of

robust optimization problems including robust neither convex nor concave constraints, that are

SLC in the uncertain parameters. We prove that, under mild assumptions about the constraints

in the optimization problem, our method converges to the global optimum.

2. We apply our framework to robust convex optimization, which is a sub-class of problems

involving SLC functions in the uncertain parameters, thereby extending the work of Bertsimas

et al. (2023c) to obtain the exact optimal solution of robust convex optimization problems

instead of an approximation. Moreover, we apply our approach to solve exactly two-stage

adaptive optimization problems with general convex uncertainty set, by reformulating two-stage

RO constraints into static RO constraints with bilinear uncertainty.

3. We demonstrate the effectiveness of our approach by extensive numerical experiments on

problems that cannot be solved exactly by existing methods. More specifically, in terms of RO

problems, we consider a robust geometric optimization problem and a linear program with

data uncertainty and implementation error, and in terms of ARO problems, we consider a

lot-sizing problem on a network.

The rest of the paper is structured as follows: In Section 2, we illustrate the class of problems

that we address, in Section 3 we demonstrate the main building blocks of our method, in Section 4,

we present numerical results and finally we summarize our key findings in Section 5.

Notation. The calligraphic letters I, J , K, L and the corresponding capital Roman letters I,

J , K, L are reserved for finite index sets and their respective cardinalities, i.e, I = {1, . . . , I} etc.

Moreover, we also use [N ], N ∈ N, to denote the set of running indices {1, . . . ,N}. Let Rm×n

denote the set of real m× n matrices. We generally use bold faced characters such as a ∈ Rn

and A∈Rm×n to represent vectors and matrices. We denote the vector of zeros by 0, the matrix

of zeros by O, and the vector of ones with e. The domain of a function f : Rnν → [−∞,+∞] is

defined as dom(f) = {ν ∈Rnν | f(ν)<+∞}. The function f is proper if f(ν)>−∞ for all ν ∈Rnν

and f(ν)<+∞ for at least one ν ∈Rnν , implying that dom(f) ̸= ∅. In addition, f is closed if f

is lower semicontinuous and either f(ν)>−∞ for all ν ∈Rnν or f(ν) =−∞ for all ν ∈Rnν . The

convex conjugate of a function f :Rnν → [−∞,+∞] is the function f∗ :Rnν → [−∞,+∞] defined

through f∗(w) = supν

{
ν⊤w− f(ν)

}
. The convex conjugate (f∗)∗ of f∗ is called the biconjugate

of f and is abbreviated as f∗∗. The concave conjugate of a function f : Rnν → [−∞,+∞] is the
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function f∗ :Rnν → [−∞,+∞] defined through f∗(w) = infν
{
ν⊤w− f(ν)

}
. The indicator function

δ(ν|S) = 0 for all ν ∈ S, and ∞ otherwise. Its convex conjugate form is known as the support function

of the set S, which is denoted as δ∗(y|S) and by definition, we have δ∗(y|S) = supν∈S{y⊤ν}. The

perspective h :Rnν ×R+ → [−∞,+∞] of a proper, closed and convex function f :Rnν → (−∞,+∞)

is defined for all ν ∈Rnν and t∈R+ as h(ν, t) = tf(ν/t) if t > 0, and h(ν,0) = δ∗dom(f∗)(ν), where

δ∗dom(f∗) denotes the recession function. For ease of exposition, we use tf(ν/t) to denote the

perspective function h(ν, t) for the rest of this paper.

2. Generic problem formulation

We consider the following generic robust nonlinear optimization problem

min
x

f0(x)

s.t. fk(x,z)≤ 0, ∀z ∈Zk, ∀k ∈K,
x∈X ,

(4)

where the objective function f0 :Rnx → (−∞,+∞] is proper, closed and convex, and each function

fk :Rnx+nz → (−∞,+∞] is given by

fk(x,z) = f0k(x,z)+
∑
i∈Ik

(qik −p⊤
ikz)fik(x,z), ∀k ∈K. (5)

Here, pik ∈Rnz , qik ∈R, and we assume that fik(x,z) is proper, closed and convex in x, and concave

in z for every i∈ {0}∪Ik, k ∈K. The uncertainty set Zk is nonempty, compact and convex, which

is given by

Zk =
{
z ∈Rnz |D⊤

k z ≤ dk, gjk(z)≤ 0, ∀j ∈Jk

}
, ∀k ∈K,

where Dk ∈Rnz×nd , dk ∈Rnd , and the function gjk :Rnz → (−∞,+∞] is proper, closed, nonlinear,

and convex for every j ∈Jk and k ∈K. Further, the set X is compact and convex, given by

X =
{
x∈Rnx |R⊤x≤ r, hj(x)≤ 0, ∀j ∈Jx

}
,

where R∈Rnx×np ,r ∈Rnp , and the nonlinear function hj :Rnx → (−∞,+∞] is proper, closed and

convex for all j ∈Jx. Moreover, we assume that (5) satisfies the following assumption:

Assumption 1. If fik(x,z) is nonlinear in z for some i∈ Ik and k ∈K, then qik −p⊤
ikz ≥ 0.

Observe that under Assumption 1 each function fk(x,z) is convex in x as a nonnegative linear

combination of convex functions is convex in x. Therefore, for any fixed z that satisfies Assumption

1, Problem (4) is a convex optimization problem with a finite number of constraints. We next

present examples of robust constraints that fit in problem format (4).
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Example 1 (Robust convex constraint). Consider the robust convex constraint

f(x,z) = h(T (x)z+ t(x))≤ 0, ∀z ∈Z,

where h :Rm → (−∞,+∞] is a proper, closed, and convex function, and T :Rnx →Rm×nz , t :Rnx →

Rnz are affine. Bertsimas et al. (2023c) show that this robust convex constraint can be equivalently

written as the following SLC function:

Tr
(
T (x)⊤wz⊤)+ t(x)⊤w−w0 ≤ 0, ∀(w,z)∈Λ,

where Λ = {(w0,w,z) | z ∈ Zk, w ∈ dom(h∗
k), h∗

k(w) ≤ w0}. Observe that a robust geometric

constraint, that is,

log
(
exp

(
(B1z−e)⊤x

)
+exp

(
(B2z−e)⊤x

))
≤ 0, ∀z ∈Z,

where the matrices B1 and B2 are known, fits into this class of problems. This case is treated in

the numerical experiment in Section 4.1. □

Example 2 (Robust quadratic nonconcave constraint). The quadratic constraint func-

tion

f(x,z) = z⊤T (x)z+ t(x)⊤z+ τ(x),

where T : Rnx → Rnz×nz , t : Rnx → Rnz , τ : Rnx → R are all affine in x, and T (x) not necessarily

positive semidefinite, can be written as a sum of linear times linear functions. Note that a linear

constraint with data uncertainty (z) and implementation error (v), that is,

(a+z)⊤(x+v)≤ b, ∀(z,v)∈Z,

fits into this class of problems. This case is treated in the numerical experiment in Section 4.2. □

Example 3 (Robust nonconcave constraints). Another example of a robust nonconcave

constraint is

f(x,z) =
∑
i∈I

(qi −p⊤
i z) log

(
1+x⊤ai(z)

)
,

where x∈Rnx
+ ,z ∈Rnz and ai(z)∈Rnx

+ is affine in z. □

We next provide examples of adaptive optimization problems that fit in problem format (5).
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Example 4 (Robust adaptive constraint with quadratic decision rules). Consider

the following two-stage adaptive constraint with fixed recourse

f(x,y,z) = a(z)⊤x+ s⊤y(z)≤ 0, ∀z ∈Zk,

where x ∈ Rnx is a here-and-now variable, y ∈ Rny is a wait-and-see variable and a(z) ∈ Rnx is

affine in z ∈Rnz . By imposing the quadratic decision rule yQ
i (z) = z⊤Piz+ρ⊤

i z+ νi, we obtain the

constraint

a(z)⊤x+

ny∑
i=1

si
(
z⊤Piz+ρ⊤

i z+ νi
)
≤ 0, ∀z ∈Z,

where Pi ∈Rnz×nz , ρi ∈Rnz , i∈ [ny], and ν ∈Rny . Observe that in this case, the constraint function

is the sum of linear times linear functions in z and therefore fits in problem format (5). □

Example 5 (Adaptive two-stage robust optimization problem). Consider the following

adaptive two-stage robust optimization problem

min
x∈X

max
z∈Z

min
y(·)≥0

c⊤x+ ζ⊤y(z)

s.t. A(z)x+Sy(z)≤ b(z), ∀z ∈Z,
(6)

where x ∈ Rnx denotes the here-and-now variable, y(z) ∈ Rny denotes the wait-and-see variable

and b(z) ∈ RL,A(z) ∈ RL×ny are both affine in z ∈ Rnz . Further, we have c ∈ Rnx ,ζ ∈ Rny , and

S ∈RL×ny . Dualizing (6) over y(·) we obtain

min
x∈X

c⊤x+ τ

s.t. µ⊤A(z)x−µ⊤b(z)≤ τ, ∀(µ,z)∈ U ,
(7)

where U = {z ∈Rnz ,µ∈RL
+ | z ∈Z, Sµ⊤+ζ ≥ 0}. Observe that in this case, the constraint function

is a disjoint bilinear constraint and therefore fits in problem format 4. We note that with the

additional assumption that Problem (6) has relatively complete resource, i.e., for all x∈X , z ∈Z

the inner linear optimization problem is feasible (see Xu and Burer (2018)), the primal problem is

feasible and thanks to strong duality the dual problem is bounded. □

3. Our approach

In this section, we describe our approach to obtaining the global optimal solution of Problem (4).

Our framework combines a cutting set method, as described in Mutapcic and Boyd (2009), with

RPT-BB. It comprises the following steps: First, we formulate the master problem as an instance

of Problem (4), imposing each robust constraint for a finite subset of scenarios Sk ⊆Zk, that is,

min
x

f0(x)

s.t. fk(x,z)≤ 0, ∀z ∈ Sk, ∀k ∈K,
x∈X .

(8)
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We solve Problem (8) and obtain a solution x∗. Then, we solve each k-th subproblem, that is,

max
z∈Zk

fk(x
∗,z), (9)

utilizing RPT-BB, and obtain solution z∗
k. If the optimal objective value of the k-th subproblem is

positive, i.e., fk(x
∗,z∗

k)> 0, we add z∗
k to the finite subset of scenarios Sk. If the optimal objective

value of every subproblem is nonpositive, we conclude that x∗ is the optimal solution of Problem

(4) and terminate the method, else we repeat the previous steps. Our approach is presented in

Algorithm 1. In the remainder of this section, we discuss important aspects of Algorithm 1 including

how we solve every subproblem using RPT-BB in Section 3.1, the initialization in Section 3.2, and

the convergence in Section 3.3.

Algorithm 1 Cutting set method for solving Problem (4).

Input: S0
1 , . . . ,S0

K : Initial scenarios for each constraint.

Output: x∗: Optimal solution of Problem (4).

1: Initialize S1, . . . ,SK = S0
1 , . . . ,S0

K .

2: Solve the master problem (8) with input S1, . . . ,SK and obtain optimal solution x∗.

3: for k ∈K do

4: Solve the k-th subproblem (9) using RPT-BB with input x∗ and obtain optimal solution z∗
k.

5: if fk(x
∗,z∗

k)> 0 then

6: Sk = Sk ∪{z∗
k}.

7: end if

8: end for

9: if fk(x
∗,z∗

k)≤ 0, ∀k ∈K then

10: Return the optimal solution x∗.

11: else

12: Repeat Steps 2-8.

13: end if

3.1. RPT-BB for solving subproblems

We use the technique proposed in Bertsimas et al. (2023a) to perspectify (5) and obtain the following

equivalent reformulation

fk(x,z) = f0k(x,z)+
∑
i∈Ik

(qik −p⊤
ikz)fik

(
x,

qikz−zz⊤pik

qik −p⊤
ikz

)
. (10)
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Linearizing the product terms zz⊤ by a matrix U ∈ Snx , we obtain the following objective for the

k-th subproblem (9)

max
(z,U)∈Uk

f0k(x,z)+
∑
i∈Ik

(qik −p⊤
ikz)fik

(
x,

qikz−Upik

qik −p⊤
ikz

)
, (11)

where Uk =
{
z ∈Rnz | z ∈Zk, U = zz⊤

}
. Observe that the set Uk is not convex, since it contains

the quadratic equality constraint U = zz⊤. We can obtain a tractable convex outer approximation

Θk of Uk in the following way: We enlarge the set Zk by first generating additional constraints from

pairwise multiplications of the original constraints, and then, convexify all additional constraints

by reformulating them in their perspective form and subsequently substitute all product terms

zz⊤ by the newly introduced matrix U ∈ Snz . We refer to Bertsimas et al. (2023a) for the pairwise

multiplication of a linear with a convex inequality and to Bertsimas et al. (2023b) for the pairwise

multiplication of two cone inequalities. We finally obtain the following safe approximation for the

k-th subproblem (9), which is jointly concave in the uncertain parameters (z,U):

sup
(z,U)∈Θk

f0k(x
∗,z)+

∑
i∈Ik

(qik −p⊤
ikz)fik

(
x∗,

qikz−Upik

qik −p⊤
ikz

)
≤ 0. (12)

Observe that the embedded optimization problem in (12) gives us an upper bound for the optimal

objective value of Problem (9). Further, a lower bound can be obtained with local optimization

algorithms, e.g., the mountain climbing procedure Tao and An (1997). RPT-BB combines these

ways of obtaining good bounds with a branching mechanism leveraging the RPT solution, thus

allowing for fast computation of the global optimal solution. The branch and bound scheme involves

the generation of hyperplanes that bisect the feasible region. Subsequently, the root node is divided

into two child nodes. At each child node, we solve Problem (9) using RPT in which the uncertainty

set Zk is intersected with one of the closed half spaces defined by the generated hyperplane. Unless,

we have reached the optimal solution, the procedure is iteratively applied by selecting the node with

the highest upper bound and generating a new hyperplane. We refer to Bertsimas et al. (2023a) for

more details about the method.

3.2. Initializing Algorithm 1

An important part of Algorithm 1 is how to obtain the initial finite subset of scenarios S0
1 , . . . ,S0

K .

An obvious approach is to take random feasible scenarios for each k ∈K. In this section, we propose

an intuitive initialization scheme leveraging RPT, which consists of the following steps: First, we

apply RPT to each robust constraint and obtain in total K safe approximations that are concave

in the uncertain parameters with a convex uncertainty set, see Section 3.1. Then, we compute the

RC of the approximation by solving the embedded optimization problem in (12) for each k ∈K
using Theorem 1, for which we need the following assumption.



10

Assumption 2. For any k ∈K, we assume that

ri(domf0k)(x, ·)∩i∈I ri(domfik(x, ·)) ̸= ∅, ∀x∈X .

For ease of exposition, we define f̃ik(x,z,U) = (qik −p⊤
ikz)fik

(
x, qikz−Upik

qik−p⊤
ik

z

)
.

Theorem 1. If Assumption 2 holds, then x∈X satisfies (12) if and only if x∈X , v,wik ∈Rnz ,

V ,Wik ∈Rnz×nz , i∈ I0, satisfy the following system of convex constraints:

δ∗(v,V |Θk)− (f0k)∗ (x,w0k)+
∑
i∈I

(
q2ik

(Wik)11
(pik)21

− qik
(wik)1
(pik)1

)
≤ 0,∑

i∈I∪{0}
wik = v,∑

i∈I

Wik =V ,

(Wik)1
(pk)1

=
(Wik)j
(pk)j

, ∀i∈ I, ∀j ∈ [nz] \ {1},

qik
(Wik)11
(pik)21

− (wik)1
(pik)1

= qik
(Wik)1j

(pik)1(pik)j
− (wik)j

(pik)j
, ∀i∈ I, ∀j ∈ [nz] \ {1},

(fik)∗

(
x,

(Wik)1
(pik)1

)
+ qik

(Wik)11
(pik)21

− (wik)1
(pik)1

≤ 0, ∀i∈ I,

where (Wik)j denotes the j-th column of Wik, (wik)j, and (pik)j denotes the j-th entry of wik and

pik, respectively, and in the first and last constraint the concave conjugate operation only applies to

the second argument.

Proof. We have

sup
(z,U)∈Θk

{
f0k(x,z)+

∑
i∈Ik

f̃ik(x,z,U)

}
≤ 0

⇐⇒ sup
z,U

{
0⊤z+O⊤U + f0k(x,z)+

∑
i∈Ik

f̃ik(x,z,U)− δ(z,U |Θk)

}
≤ 0 (13a)

⇐⇒ inf
v,wik
V ,Wik

δ∗(v,V |Θk)− (f0k)∗ (x,w0k)

−
∑
i∈I

(f̃ik)∗(x,wik,Wik)

∣∣∣∣∣∣
∑
i∈I0

wik = v,∑
i∈I0

Wik =V

≤ 0 (13b)

⇐⇒


δ∗(v,V |Θk)≤ (f0k)∗ (x,w0k)+

∑
i∈I

(f̃ik)∗(x,wik,Wik),∑
i∈I0

wik = v,∑
i∈I0

Wik =V ,

(13c)

where (13a) follows from the definition of the support function. Meanwhile, (13b) follows from

(Rockafellar, 1970, Theorem 16.4), and its infimum is attained. This applies due to Assumption 2.

Consequently, (13c) holds because the infimum of (13b) is attained. Filling in the expression for

(f̃ik)∗ for all i∈ I, which can be obtained from Lemma 1, the proof follows.
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We refer to (Bertsimas and den Hertog, 2022, Chapter 2) for an overview of how to compute the

support function for several commonly used uncertainty sets.

Next, we solve Problem (4), with each robust constraint replaced by its tractable safe approx-

imation, and obtain a solution x∗. Then, for fixed x∗, we solve the approximation of each k-th

subproblem and obtain solutions (z̄k, Ūk). Finally, for each k ∈K, we create the finite subset of

scenarios S̄0

k given by

S̄0

k =

{
z̄k,

ūk
1

z̄k1
, . . . ,

ūk
nz

z̄knz

}
.

Bertsimas et al. (2023a) shows that only if z ∈Rnz
+ , then S̄0

k ⊆Θk is guaranteed. Hence we take the

finite subset of feasible scenarios to be

S0
k =

{
zk ∈ S̄0

k | zk ∈Θk

}
.

We summarize our proposed initialization scheme in Algorithm 2.

Algorithm 2 Initialization scheme for Algorithm 1

Input: Problem (4)

Output: S0
1 , . . . ,S0

K : Initial scenarios for each constraint of Problem (4)

1: for k ∈K do

2: Apply RPT to (9) and obtain the safe approximation (12)

3: Apply Theorem 1 to obtain the RC of the embedded optimization problem in (12)

4: end for

5: Solve the reformulated problem and obtain a solution x∗

6: for k ∈K do

7: For fixed x∗ solve the embedded optimization problem in (12) and obtain zk,U
k

8: Take S0
k to be the finite subset of feasible scenarios

9: end for

10: Return S0
1 , . . . ,S0

K

If the support function δ∗(v,V |Θk), k ∈K, cannot be easily computed, we can use an alternative

approach based on Zhen et al. (2023) to compute the RC of the problem that arises when all

constraints in (4) are approximated by (12), i.e.,

min
x

f0(x)

s.t. f̃k(x,zk,Uk)≤ 0, ∀(zk,Uk)∈Θk, ∀k ∈K,
x∈X ,

(14)
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where f̃k(x,zk,Uk) = f0(x,zk)+
∑

i∈I f̃ik(x,zk,Uk). Recall that X = {x∈Rnx |R⊤x≤ r, hj(x)≤
0, ∀j ∈Jx}.

Theorem 2. If the feasible region of (14) is nonempty and Zk, ∀k ∈ K, admits a strict Slater

point, then (14) has the same optimal value as

sup
wk,y,η,µ,vk,Vk

− f∗
0 (w

0)−
∑
k∈K

ykf̃
∗
k

(
wk

yk
,
vk

yk
,
Vk

yk

)
−

∑
j∈Jx

ηjh
∗
j

(
wK+j

ηj

)
−µ⊤r

s.t.
∑
k∈K

wk +µ⊤R= 0,

ykδ

((
vk

yk
,
Vk

yk

)∣∣∣ Θk

)
≤ 0, k ∈K, (15)

y≥ 0, η≥ 0, µ≥ 0,

where K= {0,1, . . . ,K + Jx}, wk ∈ Rnx, k ∈ K, y ∈ RK
+ , η ∈ RJx, µ ∈ Rnp, vk ∈ Rnz ,Vk ∈ Rnz×nz ,

k ∈K, and the convex conjugate operation is only applied to the first argument in f̃k for all k ∈K.

Proof. Zhen et al. (2023, p. 4) show that the dual problem of (14) is given by

sup
wk,y,η,
µ,zk,Uk

−f∗
0 (w

0)−
∑
k∈K

ykf̃
∗
k

(
wk

yk
,zk,Uk

)
−

∑
j∈Jx

ηjh
∗
j

(
wK+j

ηj

)
−µ⊤r

s.t.
∑
k∈K

wk +µ⊤R= 0,

(zk,Uk)∈Θk, ∀k ∈K,
y≥ 0,η≥ 0,µ≥ 0,

(16)

where wk ∈Rnx , k ∈K, and the suprema of (14) and (16) coincide because the feasible region of

(14) is nonempty and bounded by assumption (Zhen et al., 2023, Theorem 2(ii)). Furthermore, we

know that the suprema of (16) and (15) coincide if (16) admits a strict Slater point (Zhen et al.,

2023, Proposition 2(ii)).

For the remainder of the proof, we show that (16) indeed admits a strict Slater point. First,

observe that Zk admits a strict Slater point zS
k by assumption. It can be verified that (zS

k ,z
S
k (z

S
k )

⊤)

is a strict Slater point of Θk for every k ∈K. Finally, it follows from (Zhen et al., 2023, Proposition

C.6) that there exists a ((wk)S,yS,ηS,µS) such that ((wk)S,yS,ηS,uS,zS
k ,z

S
k (z

S
k )

⊤) constitutes a

strict Slater point of (16).

Using Theorem 2, if the feasible region of (14) is nonempty, we can obtain the primal optimal

solution x∗ from the KKT conditions, which we can substitute in (12) to obtain an initial finite

subset of scenarios as done in Steps 6 to 9 in Algorithm 2. We summarize the new steps of our

initialization scheme in Algorithm 3. We note that Step 6 of Algorithm 3 is easily performed by

most solvers. Observe that, as this initialization scheme is based on the dual, Algorithm 3 cannot be

applied in the case we have integer variables. Hence, in that case, 2 has to be used as initialization

scheme.
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Algorithm 3 Initialization scheme for Algorithm 1 based on the dual

Input: Problem (4)

Output: S0
1 , . . . ,S0

K : Initial scenarios for each constraint of Problem (4)

1: for k ∈K do

2: Apply RPT to (9) and obtain the safe approximation (12)

3: end for

4: Solve the convex optimistic dual (14), and obtain a solution (y∗, (wk)∗,v∗
k, V

∗
k )

5: For fixed (y∗, (wk)∗,v∗
k, V

∗
k ), solve the KKT conditions and obtain x∗

6: Do Steps 6-9 of Algorithm 2

7: Return S0
1 , . . . ,S0

K

3.3. Convergence analysis of Algorithm 1

In this section, we prove the convergence of Algorithm 1 in case some additional assumptions are

satisfied. We make the following assumptions:

Assumption 3. The function fik(x,z) is Lipschitz continuous in x for fixed z, for every i∈ I0, k ∈

K.

We note that the sets X and Zk, k ∈K are bounded, since they are assumed to be compact.

Theorem 3. If Assumption 3 holds, Algorithm 1 converges to the global optimum of Problem (4).

Proof. The necessary conditions in order to have finite convergence are the following, see

Mutapcic and Boyd (2009), Kelley Jr (1960):

1. Each subproblem can be solved exactly.

2. The constraint functions fk(x,z) are uniformly Lipschitz continuous over x, i.e., there exists a

constant L such that for every k ∈K and every z ∈Zk it satisfies

|fk(x1,z)− fk(x2,z)| ≤L∥x1 −x2∥.

Observe that 1. is satisfied since RPT-BB is an exact method for computing the global optimal

solution (Bertsimas et al., 2023a, Theorem 2). We next show that 2. is also satisfied for Problem

(4). First observe that since each set Zk is bounded, there exists a constant Mk such that ∥z∥ ≤

Mk, ∀z ∈Zk. Thus we have

p⊤
ikz ≥−∥pik∥∥z∥ =⇒ −p⊤

ikz ≤ ∥pik∥∥z∥ ≤ ∥pik∥Mk.
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Let Lik denote the Lipschitz constant of the function fik. For any x1,x2 ∈ X , we have that

|fk(x1,z)− fk(x2,z)|=∣∣∣∣∣f0k(x1,z)− f0k(x2,z)+
∑
i∈Ik

(qik −p⊤
ikz)(fik(x1,z)− fik(x2,z))

∣∣∣∣∣
≤ |f0k(x1,z)− f0k(x2,z)|+

∣∣∣∣∣∑
i∈Ik

(qik −p⊤
ikz)(fik(x1,z)− fik(x2,z))

∣∣∣∣∣
≤L0k∥x1 −x2∥+

∑
i∈Ik

(qik −p⊤
ikz) |fik(x1,z)− fik(x2,z)|

≤L0k∥x1 −x2∥+
∑
i∈Ik

(qik −p⊤
ikz)Lik∥x1 −x2∥

≤L0k∥x1 −x2∥+
∑
i∈Ik

(qik + ∥pik∥Mk)Lik∥x1 −x2∥

= L̃k∥x1 −x2∥,

where L̃k =L0k +
∑

i∈Ik
(qik + ∥pik∥Mk)Lik. Let L=max

{
L̃1, . . . , L̃K

}
. We then obtain

|fk(x1,z)− fk(x2,z)| ≤ L̃k∥x1 −x2∥ ≤L∥x1 −x2∥.

We note that the examples discussed in Section 2 satisfy the uniform Lipschitz continuity assumption.

4. Numerical experiments

In this section, we first demonstrate the effectiveness of our approach on two robust nonlinear

problems that cannot be solved exactly by existing methods. To be more specific, we demonstrate

the effectiveness on a robust convex geometric optimization problem and a linear optimization

problem with data uncertainty and implementation error. Next, we demonstrate the efficiency of our

approach on the two-stage ARO lot-sizing problem on a network. The first numerical experiment

is performed on an Intel Core i7-8665U 1.90GHz Windows computer with 32.0GB of RAM. The

computations are implemented using YALMIP Löfberg (2004) in MATLAB (R2023a). The second

and third numerical experiment are performed on an Intel i9 2.3GHz CPU core with 16.0GB of

RAM. The computations are implemented in Julia 1.5.3 and the Julia package JuMP.jl version

0.21.6. All computations are conducted with MOSEK 9.3.18 (MOSEK ApS, 2024).

4.1. Robust convex geometric optimization

We consider the robust geometric optimization problem from Bertsimas et al. (2023c) which contains

robust geometric constraints. The problem is formulated as follows:

min
x

c⊤x

s.t. log
(
exp

(
(B

(1)
i z−e)⊤x

)
+exp

(
(B

(2)
i z−e)⊤x

))
≤ 0, ∀z ∈Z, i∈ I.

(17)
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We utilize the uncertainty set Z introduced in Bertsimas et al. (2023c), which is the intersection of

a hypercube and a norm ball uncertainty set, that is,

Z = {∥z∥∞ ≤ 1, ∥z∥2 ≤ γ},

where γ = L

√
2LΓ(L/2+1)

πL/2 and Γ denotes the gamma function, ensuring the volume of the hypercube

coincides with the volume of the norm ball. When applying the cutting plane method, the master-

problem is formulated as follows:

min
x

c⊤x

s.t. log
(
exp

(
(B

(1)
i z−e)⊤x

)
+exp

(
(B

(2)
i z−e)⊤x

))
≤ 0, ∀zi ∈ Si, i∈ I,

(18)

where the set Si contains a finite subset of scenarios for all i∈ I. The i-th subproblem, after applying

the biconjugate trick, is formulated as follows:

max
z,w

(z⊤B
(1)⊤
i x−e⊤x)w1 +(z⊤B

(2)⊤
i x−e⊤x)w2 −w0

s.t. w ∈W,
z ∈Z.

(19)

Let W1 = {w ∈R3 : w1,w2 ≥ 0, w1 +w2 = 1}. We have

W =

{
w ∈W1, t∈R2, t1 + t2 ≤w0, wi exp

(
−ti
wi

)
≤ 1, i∈ {1,2}

}
.

To ensure convergence of Algorithm 1, we impose the additional constraint ∥x∥2 ≤ 10,000. For

the RC of (17) and the RPT reformulation of (19) we refer to Appendix B.1. Moreover, Assumption

3 is satisfied, as is demonstrated in Appendix C.1.

In Table 1 we illustrate the results of our approach for Problem (17) where we initialize Algorithm

1 from the nominal feasible solution. Using Algorithm 2 resulted in a longer computational time,

as in this case the master problem takes longer to solve. We observe that the computational time

increases when the dimension of the uncertain parameters increases, as well as when the number of

robust constraints increases, as is also illustrated in Figure 2.

In Figure 1 we illustrate how the number of violated constraints changes in each iteration of

Algorithm 1. We observe a large reduction in the number of violated constraints in the first 3

iterations and a slower reduction afterwards.

Finally, in Figure 3 we show how the number of cutting planes generated in Algorithm 1 varies

with the dimension of uncertain parameters as well as the number of robust constraints. We

observe that the number of generated cutting planes increases when the dimension of the uncertain

parameters increases, while it does not change significantly when the number of robust constraints

increases.
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nz k nx Nom Obj
Approach with nominal scenario
Opt Time(s) Cut Pl

10 20 100 -2954.91 -2290.52 10.50 10.60
10 50 100 -2807.53 -2101.26 19.05 10.50
20 50 100 -2792.30 -1607.22 32.96 12.90
30 50 100 -2954.91 -1079.30 53.72 23.00
10 40 1000 -8952.08 -8375.16 37.39 10.90
20 40 1000 -8995.21 -7949.64 43.75 11.20

Table 1 Comparison of the nominal problem with Algorithm 1 initialized from the nominal feasible solution

(approach with nominal scenario), where the results reflect the average of 10 randomly generated instances. nx and nz

refer to the dimension of the optimization variables and uncertain parameters respectively, and k refers to the number

of uncertain constraints. Nom Obj denotes the objective value of the nominal problem without uncertainty, Opt

denotes the optimal value, Time denotes the computational time of Algorithm 1 in seconds and Cut Pl denotes the

number of cutting planes generated in Algorithm 1.
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Figure 1 Number of violated constraints in each iteration of Algorithm 1 applied to Problem (17). We utilize

nz = 10 and k= 50.

4.2. Linear optimization with data uncertainty and implementation error

We consider a linear optimization problem with data uncertainty along with implementation error,

formulated as follows:

min
x

c⊤x

s.t. a⊤
i x≤ bi, ∀i∈ [m1],

(ai +z)⊤(x+v)≤ bi, ∀i∈ [m2], ∀(z,v)∈Z,
x≥ 0.

(20)
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Figure 2 Computational time of Algorithm 1 applied to Problem (17), by varying nz with fixed k= 10 (left), as

well as by varying k with fixed nz = 10 (right).
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Figure 3 Number of cutting planes generated in Algorithm 1 applied to Problem (17), by varying nz with fixed

k= 10 (blue line) as well as varying k with fixed nz = 10 (orange line).

When applying Algorithm 1, we have the following master-problem:

min
x

c⊤x

s.t. a⊤
i x≤ bi, ∀i∈ [m1],

(ai +z)⊤(x+v)≤ bi, ∀i∈ [m2], ∀(z,v)∈ Si,
x≥ 0,

(21)

where Si denotes the list of finite scenarios for the i-th robust constraint. Moreover, we have the

following i-th subproblem:
max
z,v

a⊤
i x+a⊤

i v+z⊤x+z⊤v

s.t. (z,v)∈Z.
(22)
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We consider the uncertainty sets

Z1 = {(z,v) : ∥z∥∞ ≤ ρ, ∥v∥1 ≤ θ},

Z2 = {(z,v) : ∥z∥∞ ≤ ρ, ∥v∥∞ ≤ ρ, ∥v∥1 ≤ θ}.

Our proposed initialization scheme with Algorithm 2 is discussed in Appendix B.2. Moreover,

Assumption 3 is satisfied as is shown in Appendix C.2.

In Table 2, we illustrate results of our approach for Problem (20) using uncertainty set Z1 and

in Tables 3 and 4 using uncertainty set Z2 for different values of ρ and θ. We initialize Algorithm

1 either from a random feasible solution z0 or from Algorithm 2. In case of random initialization

we report the average result over 10 random choices of z0. The data are generated as ai ∼ [0,1]nx

and bi ∼ [10,20] and each entry consists of the average over 10 such randomly generated instances.

Throughout we take m1 = nx − k and m2 = k.

nz k nx Nom Obj Our Approach w random Our Approach w init
Opt Time(s) Cut Pl Opt Time(s) Cut Pl

10 5 10 -27.05 -16.91 2.45 6.28 -16.91 1.73 4.10
20 10 20 -26.72 -15.73 55.50 14.89 -15.73 49.51 12.11
30 15 30 -33.86 -18.86 982.83 39.19 -18.86 911.57 34.92
40 20 40 -31.62 -16.83 5211.67 57.33 -16.83 4556.77 44.50

Table 2 Algorithm 1 results for Problem (20) with uncertainty set Z1, initialized either from a random feasible

solution or from Algorithm 2, where the results reflect the average of 10 randomly generated instances. We fix

ρ= θ= 0.5. nx and nz refer to the dimension of the optimization variables and uncertain parameters, respectively,

and k refers to the number of uncertain constraints. Opt denotes the optimal value, Time denotes the computational

time of Algorithm 1 in seconds including the initialization and Cut Pl denotes the number of cutting planes generated

in Algorithm 1. Finally, Nom Obj denotes the optimal objective value of the nominal problem without uncertainty.

From Tables 2, 3 and 4, we observe that our approach is efficient in problems of dimensions

nz = 10,20,30. We notice a significant increase in computational time from nz = 30 to nz = 40.

Further, we note that additional experiments for nz = 50 have shown an increase in computational

time to more than 10000 seconds. We also observe that using Algorithm 2 for initialization can

improve the overall computational time, see for example instances nz = 20 and nz = 30 in Table 4,

however this is not always the case, see for example instances nz = 20,30 in Table 3. The reason is

that Algorithm 2 requires the solution of additional optimization problems which can increase the

overall computational time. Moreover, we notice that when initializing with Algorithm 2 the number

of cutting planes generated in Algorithm 1 is always smaller than the case of random initialization.
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nz k nx Nom Obj Our Approach w random Our Approach w init
Opt Time(s) Cut Pl Opt Time(s) Cut Pl

10 5 10 -27.05 -24.48 3.83 1.35 -24.48 2.95 0.31
20 10 20 -26.72 -23.97 63.75 4.06 -23.97 69.56 0.98
30 15 30 -33.86 -29.23 601.89 10.86 -29.23 765.11 4.82
40 20 40 -31.62 -26.77 4188.26 20.89 -26.77 2729.33 8.15

Table 3 Algorithm 1 results for Problem (20) with uncertainty set Z2, initialized either from a random feasible

solution or from Algorithm 2, where the results reflect the average of 10 randomly generated instances. We fix ρ= 0.1

and θ= 0.5. nx and nz refer to the dimension of the optimization variables and uncertain parameters, respectively,

and k refers to the number of uncertain constraints. Opt denotes the optimal value, Time denotes the computational

time of Algorithm 1 in seconds including the initialization and Cut Pl denotes the number of cutting planes generated

in Algorithm 1. Finally, Nom Obj denotes the optimal objective value of the nominal problem without uncertainty.

nz k nx Nom Obj Our Approach w random Our Approach w init
Opt Time(s) Cut Pl Opt Time(s) Cut Pl

10 5 10 -27.05 -18.20 6.53 4.74 18.20 5.24 2.81
20 10 20 -26.72 -16.71 90.68 12.97 -16.71 89.06 4.72
30 15 30 -33.86 -20.07 1299.55 30.41 -20.07 1210.03 18.01
40 20 40 -31.62 -18.78 6712.56 48.29 -18.78 7001.68 43.89

Table 4 Algorithm 1 results for Problem (20) with uncertainty set Z2, initialized either from a random feasible

solution or from Algorithm 2, where the results reflect the average of 10 randomly generated instances. We fix ρ= 0.4

and θ= 0.8. nx and nz refer to the dimension of the optimization variables and uncertain parameters, respectively,

and k refers to the number of uncertain constraints. Opt denotes the optimal value, Time denotes the computational

time of Algorithm 1 in seconds including the initialization and Cut Pl denotes the number of cutting planes generated

in Algorithm 1. Finally, Nom Obj denotes the optimal objective value of the nominal problem without uncertainty.

Next, in Figure 4 we illustrate how the number of violated constraints changes in each iteration

of Algorithm 1.

Further, in Figure 5 we illustrate how the computational time of Algorithm 1 varies with the

dimension of the uncertain parameters (nz), as well as the number of robust constraints (k). We

observe that the computational time increases in both cases, with that of nz being more significant.

More precisely, by varying nz from 10 to 40, we observe an increase in computational time from

approximately 10 seconds to approximately 5000 seconds, while by varying k from 10 to 40 we

observe an increase in computational time from approximately 10 seconds to approximately 50

seconds.

In Figure 6 we show how the number of cutting planes generated in Algorithm 1 varies with the

dimension of the uncertain parameters as well as the number of robust constraints. We observe that

the number of generated cutting planes increases when the dimension of the uncertain parameters
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Figure 4 Number of violated constraints in each iteration of Algorithm 1 for Problem (20) with uncertainty set

Z1 and nz = 40, k= 20, θ= 0.5, ρ= 0.5.
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Figure 5 Computational time of Algorithm 1 applied to Problem (20), by varying nz with fixed k= 10 (left), as

well as by varying k with fixed nz = 10 (right). We utilize uncertainty set Z2 and ρ= 0.5, θ= 1.

increases, while it does not change significantly when the number of robust constraints increases,

an observation that aligns with Figure 3.

Further, in Figures 7 and 8, we illustrate how the computational time and number of generated

cutting planes of Algorithm 1 vary with the size of the uncertainty set, respectively.

From Figures 7 and 8, we observe that both the computational time of Algorithm 1 and the

number of generated cutting planes increase, as the size of the uncertainty set increases.
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Figure 6 Number of cutting planes generated in Algorithm 1 applied to Problem (20), by varying nz with fixed

k= 10 (blue line) as well as by varying k with fixed nz = 10 (orange line). We utilize uncertainty set Z2

and ρ= 0.5, θ= 1.
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Figure 7 Computational time of Algorithm 1 for Problem (20) with ρ, for fixed θ= 2.

4.3. Adaptive lot sizing

In the classical lot sizing problem in a network we have variables xi, i ∈ [N ], encoding the stock

allocation, with unit cost ci and maximum capacity Vi, that have to be determined prior to knowing

the realization of the demand at each location. After realizing the demand z, we decide how much

stock to transport from store i to store j, denoted by yij , with unit cost tij , in order to meet demand.

The problem of minimizing total cost is formulated as follows Zhen et al. (2018), Xu and Burer



22

0.0 0.5 1.0 1.5
ρ

0

2

4

6

C
ut
 P
la
ne

s
nz=10

0.0 0.5 1.0 1.5
ρ

0

4

8

12

16

C
ut
 P
la
ne

s

nz=20

Figure 8 Number of cutting planes generated in Algorithm 1 for Problem (20) with ρ, for fixed θ= 2.

(2018):

min
x,y()

max
z∈Z

c⊤x+
∑
i,j

tijyij(z) (23a)

s.t.
∑
j

yji(z)−
∑
j

yij(z)≥ zi −xi, ∀z ∈Z, i∈ [N ], (23b)

yij(z)≥ 0, ∀z ∈Z, i, j ∈ [N ], (23c)

xi ≤ Vi, i∈ [N ], (23d)

xi ≥ 0, i∈ [N ]. (23e)

Let X = {x∈RN
+ : xi ≤ Vi, ∀i∈ [N ]}. We consider the following min-max-min formulation

min
x∈X

max
z∈Z

min
y≥0

c⊤x+
∑
i,j

tijyij (24a)

s.t.
∑
j

yji −
∑
j

yij ≥ zi −xi, ∀z ∈Z, i∈ [N ]. (24b)

We introduce an epigraph variable α for the second stage cost in the objective and obtain the

following problem:

min
x∈X ,α

max
z∈Z

min
y≥0

c⊤x+α (25a)

s.t.
∑
i,j

tijyij ≤ α, (25b)∑
j

yji −
∑
j

yij ≥ zi −xi, ∀z ∈Z, i∈ [N ]. (25c)

The dual of the inner minimization problem for y is as follows:

max
p≥0,s≥0

p⊤z−p⊤x− sα (26a)

s.t. stij + pi − pj ≥ 0, ∀i, j ∈ [N ], i ̸= j. (26b)
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Let P = {(p, s)≥ 0 : stij + pi − pj ≥ 0, ∀i, j ∈ [N ], i ̸= j}. We have the following problem:

min
x∈X ,α

max
z∈Z

max
(p,s)∈P

c⊤x+α+p⊤z−p⊤x− sα.

By combining the two maximization problems we obtain the following problem:

min
x≥0,α

c⊤x+α (27a)

s.t. p⊤z−p⊤x− sα≤ 0, ∀(z,p, s)∈Z ×P, (27b)

xi ≤ Vi, i∈ [N ]. (27c)

Observe that the constraints for the dual variables p̃= (p, s) can be written using vector notation

as Bp̃≤ 0 and therefore following the approach from Bertsimas and de Ruiter (2016), we can add

the constraint
∑n

i=1 pi + s= 1, at no additional cost. We assume the box-budget uncertainty set

with non-negativity constraints for z, that is, Z = {z ∈RN
+ : ∥z∥∞ ≤ ρ, ∥z∥1 ≤ θ}. The subproblem

that needs to be solved in order to add scenarios in this case, is as follows:

max
z,p,s

p⊤z−p⊤x− sα

s.t. stij + pi − pj ≥ 0, ∀i, j ∈ [N ], i ̸= j, (28a)
N∑
i=1

pi + s= 1, (28b)

zi ≤ ρ, ∀i∈ [N ], (28c)
N∑
i=1

zi ≤ θ, (28d)

z,p, s≥ 0. (28e)

Our proposed initialization scheme with Algorithm 2 is discussed in Appendix B.3. Moreover,

Assumption 3 is satisfied as is shown in Appendix C.3.

We next provide results for our approach as well as the LDR approach in Table 5. From Table 5,

we observe that our approach can efficiently solve problems up to N = 17 in less than one hour.

Further, we notice a significant change in the computational time when increasing N from 15 to 17.

We note that for N ≥ 18 the computational time increases to more than one hour. The efficiency

of our proposed method aligns with the Column-and-Constraint Generation (CCG) approach by

Zeng and Zhao (2013). For a detailed examination of the CCG-based approach’s efficiency, we

refer to Zhen and de Ruiter (2019). Our study did not incorporate the CCG approach, as it is

primarily designed for two-stage robust linear problems with polyhedral uncertainties, which makes

it unsuitable for nonlinear problems. In contrast, our method is adaptable and effectively addresses

two-stage nonlinear problems, even when dealing with non-polyhedral uncertainty sets.
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N LDR Our Approach
Opt Time(s) Cut Pl

5 1170.72 974.31 6.31 5.30
10 1790.71 1337.69 264.85 7.60
15 2363.22 1661.83 1661.51 6.70
17 2535.32 1669.34 2985.58 6.40

Table 5 Algorithm 1 results for Problem (23) with uncertainty set Z, initialized from Algorithm 2, where the

results reflect the average of 10 randomly generated instances. Opt denotes the optimal value, Time denotes the

computational time of Algorithm 1 in seconds including the initialization and Cut Pl denotes the number of cutting

planes generated in Algorithm 1. Finally, LDR denotes the optimal objective value of the problem solved with linear

decision rules.

5. Conclusions

In summary, we have developed a method for globally solving optimization problems containing

robust constraints, which are SLC with respect to uncertain parameters. By utilizing a cutting

set method, we apply the RPT-BB approach of Bertsimas et al. (2023a) to solve each subproblem

exactly. Our method is further extended to two-stage ARO problems with fixed recourse. We have

demonstrated that our approach converges to the global optimum under mild assumptions and

proposed various initialization strategies that leverage the problem’s structure. The effectiveness

of our method is confirmed through numerical experiments on diverse problems, including a

robust geometric optimization problem, a linear optimization problem with data uncertainty and

implementation error, and an adaptive robust lot-sizing problem on a network. We found that our

approach is computationally feasible for practical-sized instances across all considered problems.

Additionally, our proposed initialization schemes frequently enhance the computational efficiency of

our method. A disadvantage of our approach is that the number of uncertain parameters is squared.

An interesting topic for further research is to develop variants of the RPT-BB approach that avoid

this increase in the number of variables.
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Appendix

A. Lemma A.1

Lemma 1. Let

f̃ik(z,U) = (qik −p⊤
ikz)fik

(
qikz−Upik
qik −p⊤

ikz

)
.

Then the conjugate of f̃ik, (f̃ik)∗(w,W ), equals−q2ik
W11

(pik)21
+ qik

w1

(pik)1

∣∣∣∣∣∣∣∣
W1

(pik)1
=

Wj

(pik)j
, j ∈ [n

′
z],

qk
W11

(pik)
2
1
− w1

(pik)1
= qik

W1j

(pik)1(pik)j
− wj

(pik)j
, j ∈ [n

′
z],

(fik)∗

(
W1

(pik)1

)
+ qik

W11

(pik)
2
1
− w1

(pik)1
≤ 0

 ,

where [n
′
z] = [nz] \ {1}.

Proof. We have that (f̃ik)∗(v,V ) =

inf
z,U

{
v⊤z+Tr(UV ⊤)− (qik −p⊤

ikz)fik

(
qikz−Upik

qik −p⊤
ikz

)}
= inf

z,U
(qik −p⊤

ikz)

{
v⊤z

qik −p⊤
ikz

+
Tr(UV ⊤)

qik −p⊤
ikz

− fik

(
qikz−Upik

qik −p⊤
ikz

)}
= inf

z,U ,tik

{
tik

(
v⊤z

tik
+

Tr(UV ⊤)

tik
− fik

(
qikz−Upik

tik

)) ∣∣∣∣ qik −p⊤
ikz = tik

}
= inf

z,U ,tik,wik

{
tik

(
v⊤z

tik
+

Tr(UV ⊤)

tik
− fik

(
wik

tik

)) ∣∣∣∣ qik −p⊤
ikz = tik,

qikz−Upik =wik

}
= sup

yik,λik

inf
z,U ,tik,wik

{
tik

(
v⊤z

tik
+

Tr(UV ⊤)

tik
− fik

(
wik

tik

))
−yik(qik −p⊤

ikz− tik)−λ⊤
ik (qikz−Upik −wik)

}
= sup

yik,λik

inf
z,U ,tik,ρik

{
tik

(
v⊤z

tik
+

Tr(UV ⊤)

tik
+λ⊤ρik − fik (ρik)

)
−y(qik −p⊤

ikz− tik)−λ⊤
ik (qikz−Upik)

}
= sup

yik,λik

inf
z,U ,tik,ρik

{
tik(

v⊤z

tik
+

Tr(UV ⊤)

tik
+λ⊤

ikρik − fik (ρik)+ yikp
⊤
ik

z

tik

−qikλ
⊤ z

tik
)− yik(qik − tik)+λ⊤

ikUpik

}
= sup

yik,λik

inf
rik,U ,tik,ρik

{
tik(v

⊤r+
Tr(UV ⊤)

tik
+λ⊤

ikρik − fik (ρik)+ yikp
⊤
ikrik

−qikλ
⊤rik)− yik(qik − tik)+λ⊤

ikUpik

}
= sup

yik,λik

inf
rik,U ,tik,ρik

{tik(v⊤rik +
Tr(UV ⊤)

tik
+λ⊤

ikρik − fik (ρik)+ yikp
⊤
ikrik

− qikλ
⊤
ikrik + yik)− yikqik +λ⊤

ikUpik}

= sup
yik,λik

inf
rik,Wik,tik,ρik

{tik(v⊤rik +Tr(WikV
⊤)+λ⊤ρik − fik (ρik)+ yikp

⊤
ikrik
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− qikλ
⊤
ikrik + yik +λ⊤

ikWikpik)− yikqik}

= sup
yik,λik

inf
rik,Wik,tik,ρik

{
tik(r

⊤
ik(v+ yikpik − qikλik)+Tr

(
Wik(V

⊤ +pikλ
⊤
ik)

)
+λ⊤

ikρik − fik(ρik)+ yik − yikqik
}

= sup
yik,λik

{
−yikqik

∣∣v+ yikpik = qikλik, V =−λikp
⊤
ik, (fik)∗(λik)+ yik ≥ 0

}

=

q2ik
V11

(pik)21
+ qik

v1
(pik)1

∣∣∣∣∣∣∣∣
V1

(pik)1
=

Vj

(pik)j
, j ∈ [n′

z]

qik
V11

(pik)
2
1
+ v1

(pik)1
= qik

V1j

(pik)1(pik)j
+

vj
(pik)j

, j ∈ [n′
z]

(fik)∗

(
−V1
(pik)1

)
− qik

V11

(pik)
2
1
− v1

(pik)1
≥ 0

 .

B. RC and RPT-formulation of numerical experiments

B.1. Robust convex geometric optimization

Bertsimas et al. (2023c) show that (17) can be approximated by

max
x

−c⊤x

s.t. (−ew1 +B
(1)
i v1)

⊤x+(−ew2 + B
(2)
i v2)

⊤x
−w0 ≤ 0, ∀(w,z,v1,v2,v0)∈Θ, ∀i∈ I,

(29)

where Θ is the approximated uncertainty set, given by (see Bertsimas et al. (2023c))

Θ=



w ∈R3,
t∈R2,

v1 ∈Rnz ,
v2 ∈Rnz ,
v0 ∈Rnz

z ∈Rnz ,
λ1 ∈Rnz ,
λ2 ∈Rnz ,

:

Dz ≤ d, ∥z∥2 ≤ γ,
w1 +w2 = 1, w1,w2 ≥ 0, t1 + t2 ≤w0,

wi exp
(

−ti
wi

)
≤ 1, i∈ {1,2},

Dvi ≤ dwi, ∥vi∥2 ≤wiγ, i∈ {1,2},
v1 +v2 = z,

(dℓw1 −Dℓv1) exp

(
−dℓt1 +Dℓλ1

dℓw1 −Dℓv1

)
≤ dℓ −Dℓz, ℓ∈L,

(dℓw2 −Dℓv2) exp

(
−dℓt2 +Dℓλ2

dℓw2 −Dℓv2

)
≤ dℓ −Dℓz, ℓ∈L,

D(v0 −λ1 −λ2)≤ d(w0 − t1 − t2),
∥v0 −λ1 −λ2∥2 ≤ γ(w0 − t1 − t2).


Here v0,v1,v2, λ1 and λ2 linearize the product terms w0z,w1z,w2z, t1z and t2z, respectively.

Bertsimas et al. (2023b) show that by utilizing the the Taylor expansion, the additional redundant

constraints 1≥w1 − t1, 1≥w2 − t2 can be generated and then multiplied with the constraints in Θ

to obtain a new approximated uncertainty set Θ′. To compute the RC of Problem (29) we take the

dual over x and obtain:

min
λ≥0,y≥0,w,v0,v1,v2,z

∑
i∈I

w0yi +αλ

s.t. ∥−c+
∑
i∈I

(
yiw1e+ yiw2e−B1

i yiv1 −B2
i yiv2

)
∥2 ≤ λ,

(w,z,v1,v2,v0)∈Θ′.
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By substituting the product terms yiw0, yiw1, yiw2, yiv0, yiv1, yiv2, yiz by pi0, p
i
1, p

i
2, q

i
0, q

i
1, q

i
2, s

i,

and taking the perspective function of all constraints with respect to yi we obtain the following

equivalent convex reformulation as done in Gorissen et al. (2022):

min
λ≥0,y≥0,w,v0,v1,v2,z

∑
i∈I

pi0 +αλ

s.t. ∥−c+
∑
i∈I

(
pi1e+ pi2e−B1

i q
i
1 −B2

i q
i
2

)
∥2 ≤ λ,

yigk

(
pi

yi
,
si

yi
,
qi
1

yi
,
qi
2

yi
,
qi
0

yi

)
≤ 0, i∈ I, k ∈K,

where gk represents the k-th constraint in the uncertainty set Θ′. After substituting gk with each

constraint and linearizing all product terms we obtain the final RC.

B.2. Linear optimization with data uncertainty and implementation error

Z =Z1 We linearize products among uncertain parameters in the LHS of each uncertain constraint

and multiply all constraints in Z. Observe that the constraint ∥z∥∞ ≤ ρ can be written as Cz ≤ d,

where C =

[
I
−I

]
and d =

[
ρe
ρe

]
. Further, the constraint ∥v∥1 ≤ θ can be linearized as

∑
i si ≤

θ, −s≤ v≤ s. We then multiply all constraints and add new variables to linearize products Z = zz⊤,

V = vv⊤, S = ss⊤, W = zv⊤, T = zs⊤ and P = vs⊤. We obtain the following i-th subproblem:

max
z,v

a⊤
i x+a⊤

i v+z⊤x+Tr(W )

s.t. Cz ≤ d,
∑
i

si ≤ θ, v≤ s, −v≤ s, (30a)

didj − dic
⊤
j z− djc

⊤
i z+ c⊤i Zcj ≥ 0, i, j ∈ [L], (30b)

θ2 − 2θ
∑
i

si +
∑
i,j

Sij ≥ 0, (30c)

θdi − θc⊤i z− di
∑
j

sj + c⊤i
∑
j

Tj ≥ 0, i∈ [L], (30d)

θvj −
∑
i

Pji ≤ θsj −
∑
i

Sij, j ∈ [n], (30e)∑
i

Pji − θvj ≤ θsj −
∑
i

Sij, j ∈ [n], (30f)

disj − divj + c⊤i Wj − c⊤i Tj ≥ 0, i∈ [L], j ∈ [n], (30g)

disj + divj − c⊤i Wj − c⊤i Tj ≥ 0, i∈ [L], j ∈ [n], (30h)

Sij +Pji −Pij −Vij ≥ 0, Sij −Pji −Pij +Vij ≥ 0, i, j ∈ [n], (30i)

Sij +Pji +Pij +Vij ≥ 0, i, j ∈ [n], . (30j)

The dual of Problem (30) is then derived. We then obtain the RC by replacing the LHS of each

constraint with the objective of the derived dual and further adding the dual constraints.



30

Z =Z2 The constraint ∥v∥1 ≤ θ can be linearized as
∑

i si ≤ θ, −s≤ v≤ s. We obtain the following

i-th subproblem:

max
z,v

a⊤
i x+a⊤

i v+z⊤x+Tr(W ) (31a)

s.t. (30a)− (30j), Cv≤ d, (31b)

didj − dic
⊤
j v− djc

⊤
i v+ c⊤i V cj ≥ 0, i, j ∈ [L], (31c)

didj − dic
⊤
j v− djc

⊤
i z+ c⊤i Wcj ≥ 0, i, j ∈ [L], (31d)

θdi − θc⊤i v− di
∑
j

sj + c⊤i
∑
j

Pj ≥ 0, i∈ [L], (31e)

disj − divj + c⊤i Vj − c⊤i Pj ≥ 0, i∈ [L], j ∈ [n], (31f)

disj + divj − c⊤i Vj − c⊤i Pj ≥ 0, i∈ [L], j ∈ [n]. (31g)

The dual of Problem (31) is then derived in order to obtain the final RC.

B.3. Adaptive lot sizing

Since z ≥ 0, the uncertainty set can be written as Z = {z ∈RN
+ :Cz ≤ d}, where C =

[
I
e⊤

]
and

d=

[
ρe
θ

]
. In addition, we use the notation p= (p, s), x= (x, α) and write the linear constraints

stij + pi − pj ≥ 0 as Ap≤ 0. We linearize zz⊤ with Z, pp⊤ with P and zp⊤ with W and obtain

max
z,p,Z,P ,W≥0

N∑
i=1

Wii −p⊤x (32a)

s.t. Ap≤ 0, Cz ≤ d, e⊤p= 1, (32b)

Awj ≤ 0, CZj ≤ zjd, j ∈ [N ], (32c)

APj ≤ 0, CWj ≤ pjd, j ∈ [N +1], (32d)

didj − dic
⊤
j z− djc

⊤
i z+ c⊤i Zcj ≥ 0, i, j ∈ [Lz], (32e)

a⊤
i Paj ≥ 0, i, j ∈ [Lp], (32f)

− dja
⊤
i p+ c⊤j Wai ≥ 0, i∈ [Lp], j ∈ [Lz], (32g)

We= z, Pe= p. (32h)

The dual of Problem (32) is then derived. We then obtain the RC by replacing the LHS of each

constraint with the objective of the derived dual and further adding the dual constraints.

C. Convergence conditions for numerical experiments

C.1. Robust convex geometric optimization

We note that by definition, all sets X ,Z,W are bounded. Moreover, in this problem we have

fi(x,z,w) =w1(B
(1)
i z−e)⊤x+w2(B

(2)
i z−e)⊤x−w0. We have

|fi(x1,z,w)− fi(x2,z,w)| ≤
∣∣∣w1(B

(1)
i z−e)⊤(x1 −x2)

∣∣∣
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+
∣∣∣w2(B

(2)
i z−e)⊤(x1 −x2)

∣∣∣≤ (w1∥B(1)
i z−e∥+w2∥B(2)

i z−e∥)∥x1 −x2∥

≤w1(γ∥B(1)
i ∥+ ∥e∥)∥x1 −x2∥+w2(γ∥B(2)

i ∥+ ∥e∥)∥x1 −x2∥.

Observe that in this case we have L= γmaxi

(
max

(
∥B(1)

i ∥,∥B(2)
i ∥

))
+ ∥e∥.

C.2. Linear optimization with data uncertainty and implementation error

Since the data are generated as ai ∼ [0,1] and bi ∼ [10,20] and x≥ 0 it follows that X is bounded.

Moreover, by definition, Z is also bounded. In this problem we have fi(x,z,v) = a⊤
i x+ a⊤

i v +

z⊤x+z⊤v. We then obtain

|fi(x1,z,v)− fi(x2,z,v)| ≤
∣∣a⊤

i (x1 −x2)
∣∣+ ∣∣z⊤(x1 −x2)

∣∣
≤ (∥ai∥+

√
n∥z∥∞)∥x1 −x2∥ ≤ (∥ai∥+ ρ

√
n)∥x1 −x2∥.

Observe that in this case we have L=maxi ∥ai∥+ ρ
√
n.

C.3. Adaptive lot sizing

Let x̃= (x, α) and p̃= (p, s). In this problem we have fi(x̃,z, p̃) = p̃⊤(z,0)− p̃⊤x̃. We then obtain

|fi(x̃1,z, p̃)− fi(x̃2,z, p̃)| ≤ ∥p̃∥2∥x̃1 − x̃2∥2 ≤ ∥p̃∥1∥x̃1 − x̃2∥2 ≤ ∥x̃1 − x̃2∥.

Observe that in this case we have L= 1.
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