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Abstract. In this report, we present the BOBILib, a collection of more than 2500 in-
stances of mixed integer linear bilevel optimization problems. The goal of this library is
to make a large and well-curated set of test instances freely available for the research
community so that new and existing algorithms in bilevel optimization can be tested and
compared in a standardized way. The library is sub-divided into instances of different
types and also contains a benchmark instance set. Moreover, we present a new data
format for mixed integer linear bilevel problems that is less error-prone compared to
an older format that will now be deprecated. We provide numerical results for all
instances of the library using available bilevel solvers. Based on these numerical results,
we select the benchmark instance set, which provides a meaningful basis for experimental
comparisons of solution methods in a moderate time. Each instance, together with a
solution file if a feasible point or an optimal solution is known, can be downloaded at
https://bobilib.org.

1. Introduction

Computational mixed integer bilevel optimization is a rather young field of research.
The first computational studies using small continuous linear-linear or linear-quadratic
bilevel problems were conducted only in the 1980s; see, e.g., Fortuny-Amat and McCarl
(1981), Bialas and Karwan (1984), or Bard and Moore (1990). A short time later, the first
branch-and-bound algorithm for mixed integer linear bilevel problems was proposed by
Moore and Bard (1990). However, all computational tests were conducted on very few and
very small academic instances. After almost 20 years without much computational progress,
DeNegre and Ralphs (2009) published the first general-purpose branch-and-cut algorithm
for pure integer linear bilevel problems, which can be seen as an extension of the work by
Moore and Bard (1990). Moreover, in his dissertation, DeNegre (2011) conducted a more
detailed computational analysis of the proposed branch-and-cut algorithm. These works
can be seen as tipping points in the history of computational (integer) bilevel optimization.
Since then, several works appeared that tackle mixed integer linear bilevel problems; see the
survey by Kleinert et al. (2021) for a rather comprehensive overview of approaches.

In the last decade, computational research on several special classes of bilevel problems
became increasingly popular. However, the community is still suffering from a lack of
well-curated and actively used instance libraries for testing new methods and for comparing
existing algorithms. Such libraries are rather standard in more established fields of com-
putational optimization; see, e.g., MIPLIB (Bixby et al. 1998; Koch et al. 2011b; Gleixner
et al. 2019) for mixed integer linear optimization, QPLIB (Furini et al. 2019) for quadratic
optimization, MINLPLIB (MINLPLib 2022) for mixed integer nonlinear optimization, or
GLOBALLib (Floudas et al. 1999) for global optimization, which has been integrated into
MINLPLIB in the last years.
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Even in the much younger field of bilevel optimization, first attempts have already been
made to publish curated instance libraries. There is BASBLib (Paulavicius and Adjiman
2017), see also https://github.com/basblsolver/BASBLib on GitHub, as well as BOLIB
(Zhou et al. 2018), see also https://biopt.github.io/bolib. Both collections only contain
continuous bilevel instances and both are coupled to proprietary software since BASBLib is
based on AMPL and BOLIB is based on Matlab. More recently, the solver package published
by Jungen et al. (2023) also contains a rather large set of test instances that are available at
https://git.rwth-aachen.de/avt-svt/public/libdips.

In addition to these existing libraries, there are the test problem generator for linear (and
continuous) bilevel optimization problems presented in Moshirvaziri et al. (1996) as well as
the test problem generator for quadratic and linear-quadratic bilevel optimization problems
discussed in Calamai and Vicente (1993) and Calamai and Vicente (1994).

First attempts for mixed integer bilevel instance collections have been made by Ralphs
(2016) and Sinnl (2020). With this report and the associated library, our aim is to streamline
and extend the existing attempts to collect and curate (mixed integer) bilevel optimization
instances and provide a detailed documentation of many bilevel instances from the literature.
All reported instances are publicly available for download at

https://bobilib.org.
This library contains more than 2500 instances together with detailed statistics on the
instances, as well as (best known) solutions for those instances for which we were able to
compute provably optimal solutions or feasible points using available mixed integer bilevel
solvers.

The remainder of this report is structured as follows. In Section 2, we provide some
basics on bilevel optimization and fix some notation. Then, in Section 3, we describe several
subsets of instances that are part of the BOBILib. The data format of all the instances is
introduced and explained in Section 4, where we also present a new format for solution
files. Afterward, we briefly present numerical results for all instances of the BOBILib in
Section 5. For compiling these results, we use the two solvers for mixed integer linear bilevel
optimization that are available today. The details are discussed in Section 5.1. In particular,
based on these numerical results, we also provide a benchmark instance set that we describe
in Section 5.4. In Section 6, we give a short overview about the content of the companion
website, before we discuss our future plans for this library in Section 7. Furthermore, we
provide detailed statistics about each instance set in the appendix.

2. Bilevel Optimization in a Nutshell

We consider (mixed) integer linear bilevel instances of the form

min
x,y

c>u x+ d>u y (1a)

s.t. Ax+By ≥ a, (1b)

xi ∈ Z ∩ [x−i , x
+
i ] for all i ∈ Iu ⊆ {1, . . . , nx}, (1c)

y ∈ S(x), (1d)

where for a fixed x, S(x) is the set of globally optimal solutions of the problem

min
y

d>l y (2a)

s.t. Cx+Dy ≥ b, (2b)

yi ∈ Z ∩ [y−i , y
+
i ] for all i ∈ Il ⊆ {1, . . . , ny}. (2c)

Here, the problem data is given by the objective vectors cu ∈ Rnx , du, dl ∈ Rny ; the matrices
A ∈ Rmu×nx , B ∈ Rmu×ny , C ∈ Rml×nx , D ∈ Rml×ny ; and the right-hand side vectors
a ∈ Rmu and b ∈ Rml .

https://github.com/basblsolver/BASBLib
https://biopt.github.io/bolib
https://git.rwth-aachen.de/avt-svt/public/libdips
https://bobilib.org
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Table 1. Overview of MILP-MILP instance classes w.r.t. number of vari-
ables and constraints (B = binary, I = integer, MI = mixed-integer).

Total UL Variables LL Variables UL Constraints LL Constraints

Min Max Type Min Max Type Min Max Min Max

interdiction
assignment 24 25 25 B 25 25 B 1 1 45 45
clique 220 19 1593 B 8 1653 B 1 1 28 3363
generalized 90 40 50 B 40 50 MI 20 20 30 50
knapsack 599 10 500 B 10 500 I 1 1 11 501
multidimensional-

knapsack 954 10 500 B 10 500 B 1 29 11 529

network 72 22 79 B 44 158 B 1 1 41 974
general-bilevel

mixed-integer 489 10 714 549 MI 10 714 549 MI 0 480 585 4 961 170
pure-integer 146 1 78 734 I 1 78 733 I 0 2 3 4944

Problem (1) is called the upper-level or leader’s problem, whereas Problem (2) is called
the lower-level or follower’s problem. We consider bilevel problems for which both levels are
mixed integer linear optimization problems. For discussing the instances in our test set, we
make use of the following two notions. First, we call upper-level constraints in (1a) coupling
constraints if they involve lower-level variables y. Second, upper-level variables that appear
in the lower-level constraints (2b) are called linking variables.

We note that in the typical case in which there are alternative optimal solutions to (2) for
a given x, different assumptions can be made regarding the follower’s behavior in choosing a
member of S(x). By putting both x and y below the “min” in (1), we are implicitly assuming
that the follower selects among alternative optima the one of greatest benefit to the leader.
This is the so-called optimistic version of the bilevel problem. The primary alternative is
the pessimistic bilevel problem (see, e.g., the seminal textbook by Dempe (2002) for more
details), where the assumption is the opposite: the follower chooses among the alternatives
the one that is worst for the leader. Although the instances in the library are appropriate
for benchmarking solution methods for either of these cases, we only consider the optimistic
case in the analysis in this paper. Moreover, the library only contains instances that are
deterministic, i.e., all problem data is certain.

Finally, we refer to Moore and Bard (1990), Vicente et al. (1996), and Köppe et al. (2010)
for the study of existence of solutions, as well to Hansen et al. (1992) and Jeroslow (1985)
for studies on the formal worst-case computational complexity of (mixed integer) linear
bilevel problems.

3. Description of the Instances

In this section, we describe the two main classes of mixed integer bilevel optimization
problems that currently appear in the library: (mixed integer) interdiction problems (of
which there are a number of subclasses) and general mixed integer instances, divided into the
pure integer case and the general mixed integer case. Table 1 presents a general overview.

3.1. Interdiction Instances. We start by discussing the interdiction instances; see, e.g.,
Kleinert et al. (2021) for a general discussion of this problem class.

3.1.1. Assignment Interdiction. This problem class contains instances in which the goal of
the upper-level decision maker is to maximize the minimum cost achievable by the lower-level
player by fixing a subset of the lower-level variables to zero. Each interdiction decision is
associated with a cost. The upper level contains a single knapsack constraint that represents
the interdiction budget. The lower-level problem is an assignment problem. DeNegre
(2011) generated 25 instances from bicriteria assignment problems contained in the Multiple
Criteria Decision Making Numerical Instances Library by Figueira, which, unfortunately,
is no longer available on the web. The first objective function of the original problem is
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used as the lower-level objective function and the second objective function serves as the
budget constraint of the upper level. Each instance consists of nx = ny = 25 upper- and
lower-level variables, a single upper-level interdiction constraint, and 45 lower-level inequality
constraints. From the 25 original instances, we excluded the invalid instance 2AP05-12,
which results in 24 instances in the set inter-assig.

3.1.2. Edge Clique Interdiction. In these instances, the follower solves a maximum cardinality
clique problem on an undirected graph G = (V,E) with the set of nodes V and the set of
edges E. The leader can interdict (i.e., remove) at most k edges from the graph G with
the goal to minimize the size of the maximum clique in the remaining graph. Tang et al.
(2015) introduced instances using graphs with |V | ∈ {8, 10, 12, 15} and density d ∈ {0.7, 0.9},
which leads to |E| = bd|V |(|V | − 1)/2c many edges. Every potential edge has the same
probability of being created. The interdiction budget is set to k = d|E|/4e resulting in a
total of 80 instances in the set bcpins. For these instances, Fischetti et al. (2018b) consider an
extended formulation of the lower-level problem with an additional family of valid inequalities
that strengthen the LP relaxation of the lower-level problem. These new instances are
collected in the set plusbcpins. In the same way, Fischetti et al. (2018b) generated 60 larger
instances with |V | ∈ {40, 50, 60} but without the additional constraints; see the instance set
clique. Due to the problem structure, every instance has a single upper-level constraint and
several lower-level constraints. In addition, all upper- and lower-level variables are binary
variables.

3.1.3. Generalized Interdiction. Fischetti et al. (2018b) introduce randomly generated gener-
alized interdiction instances. Here, the upper-level player can interdict certain non-negative
variables of the lower-level player by setting its upper bound to zero. The instances are
constructed in the following way. We start with a first set of upper-level variables x and lower-
level variables y that are binary. All coefficients of the objective functions and constraints
are taken uniformly random as integers in [−50, 50]. Every instance has 20 upper-level
constraints on x and y and 20 lower-level constraints on y, all in ≤ form. The right-hand
side of each constraint is given by b α100cΣ, where α is an integer taken uniformly random
in [25, 75] and Σ is either the sum of all positive or negative coefficients of the currently
considered row, both with 50 % probability. In addition, for every upper-level constraint
additional upper-level binary slack variables and for every lower-level constraint additional
lower-level continuous slack variables are introduced to avoid feasibility problems. Hence, the
upper-level problem stays a binary one, whereas the lower-level problem is a mixed integer
problem. Finally, the lower level has N interdiction constraints. Each such interdiction
constraint may set the upper bound of a lower-level variable y to zero via a binary variable x
of the upper level. Fischetti et al. (2018b) generated 10 instances for every feasible combi-
nation of nx ∈ {20, 30}, ny ∈ {20, 30}, and N ∈ {10, 20, 30}. Note that N ≤ min{nx, ny}
must hold. In addition to the N interdiction constraints, the upper and lower level contain
20 more constraints each. In total, 90 instances are generated and are summarized in the
instance set generalized.

3.1.4. Knapsack Interdiction. There are several sets of interdiction instances, in which the
follower has a single knapsack constraint, or in which both, the leader and the follower may
have multiple knapsack constraints.

DeNegre (2011) introduced such instances based on bicriteria instances of the Multiple
Criteria Decision Making Numerical Instances Library by Figueira. The first objective of
the bicriteria problem is used to define the lower-level objective function, while the second
objective defines the left-hand side of the interdiction budget constraint of the upper level.
The interdiction budget equals

⌈∑ny

i=1 ai/2
⌉
, where ai denotes the costs of interdicting the

ith lower-level variable. The instances have nx = ny = n ∈ {10, 20, 30, 40, 50} variables and
n+ 2 constraints. There are 20 instances per size n, which makes a total of 100 instances.
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In the library, 99 of these 100 instances are included in the set inter-kp since we excluded
the instance K5010W01 that is not available for us in the used mps-aux file format.

Caprara et al. (2016) introduced knapsack interdiction instances for which the follower’s
problem is generated by the knapsack generator of Martello et al. (1999). The profits and
weights of the knapsack are taken from the interval [0, 100] in an uncorrelated way. For each
number of items n ∈ {35, 40, 45, 50, 55}, the authors generated 10 instances; see the instance
set cclw. In the same way, Fischetti et al. (2018b) generated 90 instances for each number of
items n ∈ {100, 200, 300, 400, 500} giving a total of 450 instances, which are all part of the
instance set kp. Thus, we do not exclude 9 “trivial” instances as in Fischetti et al. (2018b).

3.1.5. Multidimensional Knapsack Interdiction. Fischetti et al. (2019) introduce multidimen-
sional knapsack interdiction instances that are based on the SAC-94 library that contains
multidimensional knapsack instances; see Khuri et al. (1995). The original instances have
2 to 30 knapsack constraints and 10 to 90 items. Thus, in the converted interdiction instances,
the dimensions nx = ny match the number of items. For each item, there is a lower-level
interdiction-type constraint with which the upper-level player can set a lower-level variable
to zero. For each instance, the knapsack constraints are distributed in three different ways:
(i) the first knapsack constraint as an upper-level constraint and the remaining knapsack
constraints as follower constraints, (ii) the first 50 % of the constraints (rounded up) as
upper-level constraints and the remaining ones as lower-level constraints, and (iii) all but
the last constraint as upper-level constraints. In the cases (i) and (ii), the follower problem
is a multidimensional knapsack problem, while in case of (iii) each lower level has a single
knapsack constraint. When the underlying multidimensional knapsack instance has just
two constraints, all three transformations give the same instance with one leader and one
follower constraint. This results in 54 instances of type (i), 50 instances of type (ii), and 45
instances of type (iii), i.e., we have a total of 144 instances in the set imkp.

The same authors also use multidimensional knapsack instances from Chu and Beasley
(1998) to construct interdiction variants thereof. The original single-level instances have
n ∈ {100, 250, 500} variables per level. In addition, there are m ∈ {5, 10, 30} knapsack
constraints. The coefficients for the knapsack constraints were drawn uniformly from [0, 1000].
The right-hand side of each knapsack constraint was computed as the sum of all coefficients
weighted by α ∈ {0.25, 0.5, 0.75}. For each combination of n, m, and α, Chu and Beasley
(1998) created 10 instances, which makes 270 instances. Fischetti et al. (2019) converted
these instances to interdiction problems by adding nx = n upper-level variables that can set
the ny = n lower-level variables to zero. This results in n lower-level interdiction constraints.
In addition, the m knapsack constraints are distributed in three different ways: (i) all but
one of the m knapsack constraint belong to the upper level, (ii) the knapsack constraints
are distributed equally among the two levels (rounded up in favor of the upper level), and
(iii) all but one knapsack constraints belong to the lower level. This makes a total of 810
interdiction instances in the set or.

3.1.6. Network Interdiction. Baggio et al. (2021) propose 72 randomly generated instances
arising from a trilevel context, in which one has to defend a given network against possible
attacks. More precisely, the original trilevel instances are of the max-min-max form and
consider a defender-attacker-defender structure. The defender is not only able to adopt
preventive strategies but also to defend the network after an attack takes place. The networks
considered in the instances are trees and general graphs with n ∈ {25, 50, 80} nodes. The
instances that we consider for this library are the second- and third-level problems, i.e., the
lower-bilevel problems of the original trilevel problems as they are used in Fischetti et al.
(2017). These instance are collected in the set inter-fire.
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3.2. General Bilevel Instances.

3.2.1. Mixed Integer Instances. Xu and Wang (2014) proposed mixed integer bilevel instances.
The instances have nx = ny = n ∈ {10, 60, 110, 160, 210, 260, 310, 360, 410, 460} variables.
The upper-level variables are constrained to be integer but some of the lower-level variables
are continuous. The number of upper-level as well as lower-level constraints is 0.4n. All
matrices, vectors, right-hand sides, etc. are uniformly distributed integers. The constraint
matrices A, B, C, and D have entries in [0, 10], the objective vectors cu, du, and dl have
entries in [−50, 50], the upper-level right-hand side vector a has entries in [30, 130], and the
lower-level right-hand side vector b has entries in [10, 110]. There are 10 instances for every
value of n, which gives a total of 100 instances in the set xuwang. Fischetti et al. (2017)
used the exact same procedure to construct larger instances of the same structure. For each
size nx = ny = n ∈ {500, 600, 700, 800, 900, 1000}, the authors generated 10 instances, which
gives a total of 60 additional instances. The latter can be found in the instance set xularge.

Kleinert and Schmidt (2021) converted the 87 benchmark instances of MIPLIB2010 (Koch
et al. 2011b) and the 240 benchmark instances of MIPLIB2017 (Gleixner et al. 2019) into
mixed integer linear bilevel problems. For every single-level instance, three bilevel variants
have been generated: (i) all constraints belong to the upper level, (ii) the first 50 % (rounded
up) of the constraints belong to the upper level, the rest to the lower level, and (iii) all
constraints belong to the lower level. In all three variants, the first 50 % of the variables
(rounded up) are upper-level variables. Further, the original objective function is the
upper-level objective function, while the lower-level objective function is set to the original
objective function multiplied by −1. From these 261 instances belonging to MIPLIB2010
and 720 instances belonging to MIPLIB2017, we excluded all instances that are based on
infeasible original instances, that contain range constraints, that have a zero objective
function in the lower level, or that contain no linking variables. In addition, we excluded all
instances in the instance set based on MIPLIB2017 that are also included in the instance
set based on MIPLIB2010. This results in 102 bilevel instances derived from MIPLIB2010
and 227 instances derived from MIPLIB2017. The resulting bilevel instance sets are called
miplib2010 and miplib2017, respectively.

3.2.2. Pure Integer Instances. The set denegre contains 50 randomly generated instances.
These instances were created using a publicly available generator1 and the majority are part of
a benchmark set introduced by DeNegre (2011). Each instance has 20 lower-level constraints
and no leader constraints. All coefficients in the objective functions and constraints are
random integers in the range [−50, 50]. Moreover, the number of upper-level and lower-level
variables varies within {5, 10, 15}. For details about how the instaces were generated, please
consult the source code.

Fischetti et al. (2016) and Fischetti et al. (2018a) introduced instances that are based
on 19 binary instances of the MIPLIB3.0; see Bixby et al. (1998). The instances have been
transformed into bilevel problems by considering the first k% of the variables as lower-level
variables (rounded up) and the remaining ones as upper-level variables. For each instance,
three variants have been generated with k ∈ {10, 50, 90}. All constraints are assumed to
be lower-level constraints. The original objective function is set as the leader’s objective,
while the follower’s objective function is set to d>l y = −d>u x. This makes a total of 57
instances. In addition, the provided instance set miplib3 also contains 3 more instances
based on another instance of the MIPLIB3.0, which are analogously created.

We further consider 30 instances of pure integer bilevel problems introduced as Testbed 1
in Ozaltin and Zhang (2017). These instances contain between 50 to 90 upper-level variables
and 70 to 110 lower-level variables. They can be found in the instance set zhang. Moreover,
we included 6 instances of the literature on computational bilevel optimization; see the

1https://github.com/tkralphs/MIBLPInstanceGenerator

https://github.com/tkralphs/MIBLPInstanceGenerator
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Table 2. Keywords in the auxiliary file.

Keyword Meaning

@NUMVARS Next line contains number of the lower-level variables
@NUMCONSTR Next line contains number of the lower-level constraints
@VARSBEGIN Marks the beginning of the variables section
@VARSEND Marks the end of the variables section
@CONSTRBEGIN Marks the beginning of the constraints section
@CONSTREND Marks the end of the constraints section
@NAME Next line contains the name of the instance (optional)
@MPS Next line contains the name of the MPS file

corresponding to this auxiliary file
@LP Next line contains the name of the LP file

corresponding to this auxiliary file

set misc.2 In particular, we added the instances moore90 and moore90_2 that model the
Examples 1 and 2 of Moore and Bard (1990) with the adaption of additional variable bounds.

4. Data Formats

We now discuss the data format used to represent the bilevel instances in Section 4.1,
followed by specifying a corresponding solution format in Section 4.2.

4.1. Instance Files. Every instance is given as a pair of files. The first file describes the
MILP obtained by omitting the requirement of lower-level optimality.3 In other words, it
is comprised of all upper- and lower-level variables, all upper- and lower-level constraints,
and the upper-level objective function. This file can be either in lp or mps format and is
called the “instance file” in the following. For the library, we use .mps or .mps.gz, created
using CPLEX 22.1 (IBM ILOG CPLEX Optimizer 2024) as formats for the instance files.
For more details regarding the mps format, we refer to Nazareth (1987).

The second file is the “auxiliary file” (.aux) that specifies which variables and constraints
are associated with the lower-level problem. In addition, it contains the coefficients of the
lower-level objective function. We now explain the structure of such an auxiliary file in
more detail. The auxiliary file contains different keywords that start with the @-symbol. All
keywords are summarized in Table 2. Typically, an auxiliary file starts with the keyword
@NUMVARS followed by a line specifying the number of lower-level variables. Analogously,
the number of lower-level constraints is given below the @NUMCONSTR keyword. The
beginning and end of the variable section is indicated by @VARSBEGIN and @VARSEND.
In between of these two keywords, each line consists of the name of one of the lower-level
variables followed by its objective coefficient in the lower-level problem (separated by a space).
The variable names must match the corresponding variable names of the associated instance
file. Analogously, the constraints section is bracketed by the keywords @CONSTRBEGIN and
@CONSTREND. Each row in between consists of the name of one of the constraints from the
instance file that is a lower-level constraint. Note that in general, bounds on the lower-level
variables can be interpreted as either constraints of the upper or lower-level problem. In
our format, such bounds belong to the lower-level problem by default. To indicate that
they are upper-level, the bounds should be imposed explicitly as named constraints in the
instance and then excluded from the list of lower-level constraints. The instance file itself

2We note that the origin cannot be conclusively determined for all of these instances.
3This is the relaxation that is usually called “high-point relaxation” in the literature and to which we

simply refer as “MILP relaxation” in what follows.
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Table 3. Keywords, respectively keys, of the solution file, which is given
in a json format.

Keywords Value

name name of the instance
bilevel_type optimistic or pessimistic
status optimal, infeasible, open with feasible point, or open
difficulty easy (≤ 180 s) or hard
objective_value objective value
upper_level_decisions values of the upper-level decisions
lower_level_decisions values of the lower-level decisions

can be either in MPS or LP format, so exactly one of the keywords @MPS or @LP appears
in the auxiliary file. Specifying a name using the @NAME keyword is optional. Note that in
the presented format the number of variables (@NUMVARS) and the number of constraints
(@NUMCONSTR) has to be specified before the section of variable and constraint names
begins.

Let us emphasize that, in order to increase consistency, all problems in the library have
been converted to min-min bilevel problems (and then to the new format as described above
from an older pre-existing format that is deprecated). The format presented here supports
only min-min problems. Obviously, this is without loss of generality.

As an example, Figure 1 shows the mps and aux files for the famous Example 2 in Moore
and Bard (1990), which after reformulation as a min-min instance, is given by

(−) min
x,y

F (x, y) = x+ 2y

s.t. y ∈ S(x),

where, for a fixed x ∈ R, S(x) denotes the set of optimal solutions of the integer linear
problem

(−) min
y

f(x, y) = −y

s.t. − x+ 2.5y ≤ 3.75,

x+ 2.5y ≥ 3.75,

2.5x+ y ≤ 8.75,

x, y ≥ 0,

x, y ∈ Z.

The corresponding aux and mps file (with additional bounds x ≤ 3 and y ∈ [1, 2] and
reformulating all constraints as ≤) is given in Figure 1.

4.2. Solution Files. For each instance, we also provide a solution file given in json format
if a provably optimal solution or feasible point is known for the respective instance. The
allowable keywords and values are specified in Table 3 and we now briefly outline the
structure of such a file. The solution file starts with specifying the name of the instance
and the bilevel type for which the solution is computed, i.e., it either equals optimistic or
pessimistic. We note that the instance data (instance and auxiliary file) do not depend on
the bilevel type and we currently only provide solutions for the optimistic case.

On the website described in Section 6, we report the current status of the instance, which
indicates if an optimal solution (optimal) or only a feasible point without proof of optimality
(open with feasible point) is provided. If infeasibility of the instance is proven, we set the
status to infeasible. Moreover, if none of the three previous cases applies, we set the status
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* ENCODING=ISO-8859-1
NAME moore90_2
ROWS
N R0004
L R0001
L R0002
L R0003

COLUMNS
MARK0000 ’MARKER’ ’INTORG’
C0001 R0004 1
C0001 R0001 -1
C0001 R0002 -1
C0001 R0003 2.5
C0002 R0004 2
C0002 R0001 2.5
C0002 R0002 -2.5
C0002 R0003 1
MARK0001 ’MARKER’ ’INTEND’

RHS
rhs R0001 3.75
rhs R0002 -3.75
rhs R0003 8.75

BOUNDS
UP bnd C0001 3
LO bnd C0002 1
UP bnd C0002 2

ENDATA

@NUMVARS
1
@NUMCONSTRS
3
@VARSBEGIN
C0002 -1.
@VARSEND
@CONSTRSBEGIN
R0001
R0002
R0003
@CONSTRSEND
@NAME
moore90_2
@MPS
moore90_2.mps

Figure 1. The mps (top) and aux (bottom) file of the example by Moore
and Bard (1990)
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{
"name": "moore90_2",
"bilevel_type": "optimistic",
"status": "optimal",
"difficulty": "easy",
"objective_value": 5.0,
"upper_level_decisions": {

"C0001": 3.0
},
"lower_level_decisions": {

"C0002": 1.0
}

}

Figure 2. The solution file moore90_2.res.json of the example by Moore
and Bard (1990)

to open. We further classify the difficulty of an instance as easy if it can be solved by each of
the used solvers (see the next section for more details) within 180 s. Otherwise, this instance
is considered as hard. Finally, we provide the objective value (objective_value), the upper-
level decisions (upper_level_decisions), and the lower-level decisions (lower_level_decisions).
If the status of the instance is optimal or open with feasible point, the latter values contain
the best known feasible point together with its objective function value. Otherwise, these
values are null.

As an example, we state the solution file for the previously presented example by Moore
and Bard (1990) in Figure 2.

5. Numerical Results

In order to provide feasible points or optimal solutions to the instances of the library, we
use the two currently available bilevel solvers. Based on the obtained results, we compile
a benchmark set of instances. This set provides a basis for conducting computational
comparisons of different solution methods in a reasonable time. We first outline the used
bilevel solvers and the corresponding computational setup in Section 5.1. Afterward, we
discuss the procedure to verify bilevel feasibility of computed points in Section 5.2. We
give a short overview regarding the numerical results w.r.t. the entire library in Section 5.3.
Finally, we discuss the benchmark instance set and present corresponding numerical results
in Section 5.4.

5.1. Solvers and Computational Setup. Compared to the multiple solvers for single-level
mixed integer linear optimization (Gleixner et al. 2019), the development of general-purpose
solvers for mixed integer bilevel problems is still in its infancy. For our computational study,
we use two different bilevel solvers.

The first one is the open-source solver MibS 1.2.1 that is freely available; see DeNegre et al.
(2024). MibS can solve general mixed integer linear bilevel problems. For the mathematical
details we refer to DeNegre and Ralphs (2009) and Tahernejad and Ralphs (2020). Different
single-level solvers can be included in MibS to solve the mixed integer linear subproblems
that occur in the course of the solution process. By default, MibS uses the open-source
mixed integer linear solver SYMPHONY; see Ralphs and Güzelsoy (2005). However, in our
computational study, we use CPLEX 22.1.1 (IBM ILOG CPLEX Optimizer 2024) as the
underlying MIP solver.
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The second bilevel solver we use is the mixed integer linear bilevel solver by Fischetti et al.
(2024), which is available as a pre-compiled binary and which can be used after requesting a
license file from the authors. This solver uses CPLEX 12.7 as the underlying MIP solver.
Moreover, the latter solver only supports the older and deprecated format for the auxiliary
files.4 For this solver, different settings are available that allow to solve instances of different
types. We do not conduct a specific tuning of these settings for each instance. Instead,
we start with the default setting 4 (MIX++) and if this is not applicable, we apply the
setting 99 (HC++).

The computations are carried out on a single node of a server5 with Intel XEON SP 6126
CPUs. For both solvers and each instance, we use a time limit of 1 h, we set a memory limit
of 32 GB, and limit the number of threads to 4.

5.2. Verifying Feasibility. Checking the bilevel feasibility of a given point consists of
multiple steps. First of all, a feasible point has to satisfy all upper- and lower-level constraints.
However, for bilevel feasibility it is also necessary that the part of the solution associated
with the follower is optimal for the follower’s problem (2) with the part of the solution
associated with the leader fixed to the given values. Further, in the optimistic setting it has
to be guaranteed that the best solution (in terms of the leader’s objective function) of the
lower-level problem is chosen. For the provided bilevel feasible points, respectively solutions,
we ensure that these conditions are satisfied by applying the following procedure in which
we use Gurobi 10.0.3 (Gurobi Optimization, LLC 2023) to solve the occurring optimization
problems.

(i) We solve the MILP relaxation and stop after the first feasible point is found. This
step serves as a simple check for infeasibility of the considered bilevel problem.
Note that the MILP relaxation is contained in the instance file and its infeasibility
directly proves infeasibility of the bilevel problem.

(ii) Next, we verify that the point of the solution file, consisting of upper-level and
lower-level decisions, satisfies all constraints, integer restrictions w.r.t. the variables,
and that the upper-level objective value matches. To this end, we consider the
MILP relaxation, which is a MIP, and apply the feasibility checker (version 1.0.3)
of the MIPLIB2017 (Gleixner et al. 2019) with the default tolerance of 10−4 for
the linear constraints and for the integer restrictions. We note that this checker
only checks for the feasibility and not for the optimality of any solution. For the
technical details of this feasibility checker, we refer to Koch et al. (2011a) and
Gleixner et al. (2019).

(iii) Afterward, we check that the lower-level problem is solved to optimality by the given
point. To this end, we consider the lower-level problem in which the upper-level
variables are fixed to the corresponding decisions of the provided point. Then,
we solve this lower-level problem to global optimality. Afterward, we compare
the obtained objective value (ϕcheck) with the lower-level objective value (ϕsol)
corresponding to the given point. We check for optimality up to a tolerance of 10−4

by evaluating |ϕsol −ϕcheck|/(10−10 +ϕcheck) ≤ 10−4. The left-hand side is derived
from the relative MIP gap definition of CPLEX.6

(iv) In the final step, it is left to show that for fixed upper-level decisions, the given
lower-level decision is a best lower-level optimal solution in terms of the upper-level
objective function. We implement this by considering the MILP relaxation, fixing
all upper-level decisions, and adding the additional constraint f(x, y) ≤ ϕsol that

4The instances of the library are also available to the authors in the older format to which this solver
was then applied.

5https://hpc.rz.rptu.de/elwetritsch/hardware.shtml
6https://www.ibm.com/docs/en/icos/22.1.1?topic=parameters-relative-mip-gap-tolerance

https://hpc.rz.rptu.de/elwetritsch/hardware.shtml
https://www.ibm.com/docs/en/icos/22.1.1?topic=parameters-relative-mip-gap-tolerance


12 J. THÜRAUF, T. KLEINERT, I. LJUBIĆ, T. RALPHS, M. SCHMIDT

Table 4. Statistics for the number of variables and constraints in the entire collection.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 1 64 250 500 714 549
Integer 0 0 0 0 77 626
Binary 0 45 100 400 636 923
Continuous 0 0 0 0 399 808

LL Variables 1 71 250 500 714 549
Integer 0 0 0 80 40 180
Binary 0 0 64 250 674 369
Continuous 0 0 0 0 399 608

Linking Variables 1 60 250 500 714 549
Integer 0 0 0 0 77 626
Binary 0 40 100 400 636 923
Continuous 0 0 0 0 394 447

UL Constraints 0 1 1 9 480 585
LL Constraints 3 84 201 501 961 170
Coupling Constraints 0 0 0 0 356 461

Table 5. Number of solved and open problems for the entire collection
with timelimit of 1 h.

Total Optimal Infeasible Open with feasible point Open

2594 990 33 1141 430

restricts the lower-level objective value to the optimal one. Then, we solve this
model and compare the obtained objective value with the corresponding objective
value of the solution file. We again conduct this comparison up to the tolerance as
in the third step.

5.3. Numerical Overview. We now give a brief overview of the numerical results for the
entire collection. Detailed numerical results for each single instance set can be found in the
appendix. In the following, we only consider the best results of the solvers that pass the
feasibility check of Section 5.2. Moreover, we consider a so-called “virtual best solver” that
for each instance returns the best available result and the corresponding fastest runtime of
the two considered bilevel solvers.

First, we provide some statistical properties of the collection in Table 4. This overview
shows that the instance set is rather diverse and contains instances with different types
of variables and different sizes. In particular, the collection contains instances with and
without coupling constraints and instances with different types of linking variables.

As summarized in Table 5, around 38 % of the instances can be solved to global optimality
by at least one solver within 1 h. In addition, for another nearly 44 % of the instances,
at least one solver provides a feasible point without optimality proof. Of the remaining
instances, approximately 1 % are proven to be infeasible and the status of the rest is open,
i.e., it is unknown if the instances are feasible or infeasible.

In Figure 3 and Table 6 and 7, we summarize the runtimes of the virtual best solver w.r.t.
all instances solved to global optimality. The overall picture shows that the majority of
these instances can be solved with a moderate runtime. In particular, Table 7 shows that a
large number of the instances can be solved rather quickly (within 10 s). Instances whose
solution time exceeds 10 s are evidently more difficult for current bilevel solvers to solve to
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Figure 3. Number of solved instances over time [0, 3600] seconds w.r.t.
the virtual best solver and the entire collection.

Table 6. Statistics about the runtimes (s) of the virtual best solver for
the entire collection (only for instances solved to optimality).

Min 1st Quartile Median 3rd Quartile Max

0.01 0.42 2.68 32.18 3475.75

Table 7. Number of solved instances of the entire collection within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

636 211 109 34

optimality. Nevertheless, for a large number of instances, a feasible point is known (status is
open with feasible point), but there is no proof of optimality; see Table 5. Thus, it is proving
optimality (i.e., improving the dual bound) that seems to be the main challenge. As a result,
the library mainly contains instances that are either easy or difficult. Consequently, there is
a need to increase the number of instances of moderate difficulty in the future. Moreover,
we note that all instances with continuous linking variables are open because none of the
solvers currently supports this type of linking variables.

5.4. Benchmark Instance Set. For developing optimization methods and software, it has
proven useful to have a curated set of benchmark instances that serves as a meaningful basis
for experimental comparison. Motivated by this and the success of the benchmark sets of
MIPLIB2010 and MIPLIB2017, we also selected a subset of instances that we refer to as the
benchmark instance set. To this end, we include each instance of the library that satisfies all
of the following properties:

(i) The instance can be solved by both solvers within 1400 s;
(ii) It requires at least 10 s for each solver to solve the instance;
(iii) The instance is either infeasible or has a finite optimum;
(iv) The results of both solvers are consistent and pass the feasibility check; see Sec-

tion 5.2.
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Figure 4. Number of solved instances over time [10, 1400] seconds w.r.t.
the virtual best solver and the benchmark instance set.

Table 8. Statistics about the runtimes (s) of the virtual best solver for
the benchmark instance set.

Min 1st Quartile Median 3rd Quartile Max

10.51 19.03 33.85 83.84 664.73

Condition (i) ensures that each benchmark instance can be solved in a reasonable time
by today’s solvers. We exclude instances that are too easy (≤ 10 s) for both solvers by
Condition (ii). Moreover, we only consider instances for which both solvers either prove
infeasibility or compute a global optimal solution; see Condition (iii). Finally, we only
include instances for which both solvers provide consistent results, i.e., both solvers have the
same status (infeasible or optimal) and the corresponding optimal objective values F 1 and F 2

satisfy |F 1 − F 2|/(10−10 + |F 2|) ≤ 10−4; similar to the feasibility check in Section 5.2. One
further goal while compiling the benchmark instance set was to have a rather balanced set
regarding the different types of the instances.

Applying the described conditions to all instances of the library leads to a benchmark
instance set consisting of 122 instances. Out of these instances, 60 instances are considered
as easy, i.e., they can be solved by both solvers within 180 s. Consequently, 62 instances
of the benchmark set are classified as hard. We note that the virtual best solver can solve
110 benchmark instances within 180 s. Consequently, 12 instances are hard for each of the
solvers. Moreover, all of these instances are feasible and solved to global optimality within
1400 s by both solvers.

We now discuss and analyze the benchmark instance set in terms of runtimes and specific
properties of instances in more detail. In Figure 4 and Table 8 and 9, we display the runtimes
of the virtual best solver w.r.t. the benchmark instances. The majority of the instances can
be solved within 180 s. Furthermore, the runtimes of the instances that are solved in the
interval between 10 s and 180 s are rather evenly distributed. In the remaining time interval,
12 more instances can be solved by the virtual best solver. Consequently, the benchmark
set contains instances that are rather easy to solve for the current bilevel solvers as well as
some more challenging instances that still can be solved in reasonable time.

Next, we consider the distribution of the benchmark instances regarding the different
instance sets of the library. To this end, we give an overview of the classes of bilevel problems
that are part of the benchmark set in Table 10. A little less than half of the benchmark
instances are interdiction problems. In addition, the benchmark set contains 63 mixed integer
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Table 9. Number of benchmark instances solved within specific time ranges
(only for instances solved to optimality by the virtual best solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

0 96 26 0

Table 10. Overview of the classes of bilevel problems that are part of the
benchmark instance set.

Sets BOBILib Benchmark Set

collection 2594 122
interdiction 1959 53

generalized 90 27
assignment 24 0
knapsack 599 9
multidimensional-knapsack 954 0
clique 220 0
network 72 17

general-bilevel 635 69
mixed-integer 489 63
pure-integer 146 6

and 6 pure integer instances. Overall, the detailed numerical results (given in the appendix)
show that the mixed integer instances—in particular MIPLIB2010 and MIPLIB2017—are
especially challenging. We provide the detailed Table 12 in the appendix that gives an
overview to which instance set each single benchmark instance belongs to.

Finally, we provide some statistics of bilevel properties of the benchmark instances such
as the number of upper- and lower-level variables and constraints in Table 11. This overview
particularly shows that the chosen benchmark instances cover different classes of bilevel
problems such as problems with and without coupling constraints as well as with binary,
integer, or mixed integer decisions. Consequently, the benchmark set is well suited to provide
a meaningful basis for experimental comparisons of different solution methods or solvers.

6. The BOBILib Website

Besides this report, we have also set up a website for the BOBILib. On this website, the
user can download the overall set of BOBILib instances, as well as all subsets of instances
and the benchmark set described in Section 5.4. All instances are licensed under the Creative
Commons CC BY-SA 4.0 license.7

Moreover, the website contains two tables (one for the entire collection and one for the
benchmark instances only) of all instances that can be filtered and sorted according to
different statistics of the instances such as the number of upper-/lower-level variables or
constraints, the presence of coupling constraints, etc. Using these tables, the user can also
reach a separate sub-page for each instance on which we provide more detailed information
about the instance (compared to what is given in the table of all instances). Additionally, a
solution file (in json format; see Section 4.2) can be downloaded on these sub-pages for all
instances for which a solution or at least a feasible point is known.

Finally, the website contains a collection of links to other code repositories that provide
additional functionality that can be used in combination with the BOBILib instances but

7https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/
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Table 11. Statistics for the number of variables and constraints of the
benchmark instances.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 5 50 360 700 2258
Integer 0 0 10 600 1000
Binary 0 0 0 50 2258
Continuous 0 0 0 0 0

LL Variables 10 50 360 700 2258
Integer 0 10 170 315 512
Binary 0 0 0 20 2258
Continuous 0 0 20 308 527

Linking Variables 5 40 360 700 2258
Integer 0 0 10 600 1000
Binary 0 0 0 40 2258
Continuous 0 0 0 0 0

UL Constraints 0 1 20 240 400
LL Constraints 7 40 184 280 3664
Coupling Constraints 0 0 20 240 400

which is not part of the library itself. An example is a code to create quadratic matrices
with certain properties to turn mixed integer linear into mixed integer quadratic instances.
Another example is the feasibility checker as described in Section 5.2.

7. Future Plans

With the BOBILib, we compiled more than 2500 instances of mixed integer linear bilevel
optimization problems. Since such a structured and well-curated library was missing so far
in the field of computational mixed integer bilevel optimization, we hope that this helps to
further propel this young field of research.

We emphasize that the current library is only a starting point and we intend to actively
develop and maintain it over time. In particular, there are at least five aspects that we
would like to improve over the next months and years. First, the impact of the library can
still increase a lot if we could collect more instances of real-world bilevel problems and,
second, more instances that are not of some kind of interdiction type. Consequently, we
hope that we will be able to produce a more balanced set of instances since right now, we
have very many rather easy and very many rather hard instances but still lack instances
of medium hardness—which is our third goal. Moreover, our numerical experiments reveal
that for almost all infeasible instances the solvers prove infeasibility at the beginning of
the solution process although the MILP relaxation is feasible. Hence, fourth, it would be a
significant improvement to also include non-trivial infeasible instances. Fifth and finally, the
extension of the library towards pessimistic bilevel problems is a reasonable direction for
the future development of the BOBILib.

Hence, we are open to submission of new instances from members of the community so
that this collection can grow. Moreover, the website will include a mechanism for submitting
new best-known solutions for all instances in the solution format of Section 4.2. The statuses
of all instances will be tracked and updated over time so that progress in the field can be
easily followed. The respective contact data can be found on the library’s website

https://bobilib.org.
We look forward to seeing how the community utilizes this data and also to seeing how the
existence of a benchmark helps to move research in this field forward.

https://bobilib.org
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Appendix

Detailed Numerical Results: Distribution of the Benchmark Instance Set

Table 12. Detailed distribution of the benchmark instance set. The sets
printed in sans-serif style actually contain instances while the other rows of
the table are used to structure the overall library, which also mirrors the
folder-file structure of the library itself.

Sets BOBILib Benchmark Set

collection 2594 122
interdiction 1959 53

generalized 90 27
generalized 90 27

assignment 24 0
inter-assig 24 0

knapsack 599 9
cclw 50 3
inter-kp 99 1
kp 450 5

multidimensional-knapsack 954 0
or 810 0
imkp 144 0

clique 220 0
bcpins 80 0
clique 60 0
plusbcpins 80 0

network 72 17
inter-fire 72 17

general-bilevel 635 69
mixed-integer 489 63

miplib2017 227 1
xuwang 100 15
miplib2010 102 2
xularge 60 45

pure-integer 146 6
misc 6 0
miplib3 60 0
denegre 50 3
zhang 30 3
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Detailed Numerical Results: Overview Easy and Hard Instances

Table 13. Detailed overview of the number of easy and hard instances per
instance set. The sets printed in sans-serif style actually contain instances
while the other rows of the table are used to structure the overall library,
which also mirrors the folder-file structure of the library itself.

Set Easy Hard Total

collection 432 2162 2594
interdiction 203 1756 1959

generalized 24 66 90
generalized 24 66 90

assignment 24 0 24
inter-assig 24 0 24

knapsack 85 514 599
cclw 11 39 50
inter-kp 34 65 99
kp 40 410 450

multidimensional-knapsack 14 940 954
or 0 810 810
imkp 14 130 144

clique 20 200 220
bcpins 10 70 80
clique 0 60 60
plusbcpins 10 70 80

network 36 36 72
inter-fire 36 36 72

general-bilevel 229 406 635
mixed-integer 138 351 489

miplib2017 2 225 227
xuwang 99 1 100
miplib2010 2 100 102
xularge 35 25 60

pure-integer 91 55 146
misc 4 2 6
miplib3 15 45 60
denegre 48 2 50
zhang 24 6 30
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Detailed Numerical Results: interdiction

Table 14. Number of solved and open problems for the instance set
interdiction with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

1959 653 0 1061 245

Table 15. Statistics for the number of variables and constraints in instance
set interdiction.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 10 55 100 400 1593
Integer 0 0 0 0 0
Binary 10 55 100 400 1593
Continuous 0 0 0 0 0

LL Variables 8 55 154 400 1653
Integer 0 0 0 20 500
Binary 0 8 70 250 1653
Continuous 0 0 0 0 20

Linking Variables 10 55 100 400 1593
Integer 0 0 0 0 0
Binary 10 55 100 400 1593
Continuous 0 0 0 0 0

UL Constraints 1 1 1 4 29
LL Constraints 11 86 201 401 3363
Coupling Constraints 0 0 0 0 20

Table 16. Statistics about the runtimes (s) of the virtual best solver for
instance set interdiction with timelimit of 3600 s (only for instances solved
to optimality).

Min 1st Quartile Median 3rd Quartile Max

0.03 0.57 2.86 38.82 3475.75

Table 17. Number of solved instances of the set interdiction within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

421 119 83 30
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Detailed Numerical Results: assignment

Table 18. Number of solved and open problems for the instance set
assignment with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

24 24 0 0 0

Table 19. Statistics for the number of variables and constraints in instance
set assignment.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 25 25 25 25 25
Integer 0 0 0 0 0
Binary 25 25 25 25 25
Continuous 0 0 0 0 0

LL Variables 25 25 25 25 25
Integer 0 0 0 0 0
Binary 25 25 25 25 25
Continuous 0 0 0 0 0

Linking Variables 25 25 25 25 25
Integer 0 0 0 0 0
Binary 25 25 25 25 25
Continuous 0 0 0 0 0

UL Constraints 1 1 1 1 1
LL Constraints 45 45 45 45 45
Coupling Constraints 0 0 0 0 0

Table 20. Statistics about the runtimes (s) of the virtual best solver for
instance set assignment with timelimit of 3600 s (only for instances solved
to optimality).

Min 1st Quartile Median 3rd Quartile Max

0.03 0.09 0.1 0.13 0.45

Table 21. Number of solved instances of the set assignment within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

24 0 0 0
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Detailed Numerical Results: clique

Table 22. Number of solved and open problems for the instance set clique-
class with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

220 159 0 61 0

Table 23. Statistics for the number of variables and constraints in instance
set clique-class.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 19 31 59 546 1593
Integer 0 0 0 0 0
Binary 19 31 59 546 1593
Continuous 0 0 0 0 0

LL Variables 8 12 50 586 1653
Integer 0 0 0 0 0
Binary 8 12 50 586 1653
Continuous 0 0 0 0 0

Linking Variables 19 31 59 546 1593
Integer 0 0 0 0 0
Binary 19 31 59 546 1593
Continuous 0 0 0 0 0

UL Constraints 1 1 1 1 1
LL Constraints 28 58 105 1326 3363
Coupling Constraints 0 0 0 0 0

Table 24. Statistics about the runtimes (s) of the virtual best solver for
instance set clique-class with timelimit of 3600 s (only for instances solved
to optimality).

Min 1st Quartile Median 3rd Quartile Max

0.06 0.2 0.59 1.65 496.06

Table 25. Number of solved instances of the set clique-class within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

146 11 2 0
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Detailed Numerical Results: bcpins

Table 26. Number of solved and open problems for the instance set bcpins
with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

80 80 0 0 0

Table 27. Statistics for the number of variables and constraints in instance
set bcpins.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 19 31 46 73 94
Integer 0 0 0 0 0
Binary 19 31 46 73 94
Continuous 0 0 0 0 0

LL Variables 8 10 12 15 15
Integer 0 0 0 0 0
Binary 8 10 12 15 15
Continuous 0 0 0 0 0

Linking Variables 19 31 46 73 94
Integer 0 0 0 0 0
Binary 19 31 46 73 94
Continuous 0 0 0 0 0

UL Constraints 1 1 1 1 1
LL Constraints 28 45 66 105 105
Coupling Constraints 0 0 0 0 0

Table 28. Statistics about the runtimes (s) of the virtual best solver for
instance set bcpins with timelimit of 3600 s (only for instances solved to
optimality).

Min 1st Quartile Median 3rd Quartile Max

0.06 0.17 0.5 1.43 496.06

Table 29. Number of solved instances of the set bcpins within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

74 5 1 0
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Detailed Numerical Results: clique (Instance Set)

Table 30. Number of solved and open problems for the instance set clique
with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

60 0 0 60 0

Table 31. Statistics for the number of variables and constraints in instance
set clique.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 546 702 1102 1239 1593
Integer 0 0 0 0 0
Binary 546 702 1102 1239 1593
Continuous 0 0 0 0 0

LL Variables 586 742 1152 1299 1653
Integer 0 0 0 0 0
Binary 586 742 1152 1299 1653
Continuous 0 0 0 0 0

Linking Variables 546 702 1102 1239 1593
Integer 0 0 0 0 0
Binary 546 702 1102 1239 1593
Continuous 0 0 0 0 0

UL Constraints 1 1 1 1 1
LL Constraints 1326 1482 2327 3009 3363
Coupling Constraints 0 0 0 0 0
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Detailed Numerical Results: plusbcpins

Table 32. Number of solved and open problems for the instance set
plusbcpins with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

80 79 0 1 0

Table 33. Statistics for the number of variables and constraints in instance
set plusbcpins.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 19 31 46 73 94
Integer 0 0 0 0 0
Binary 19 31 46 73 94
Continuous 0 0 0 0 0

LL Variables 27 41 58 88 109
Integer 0 0 0 0 0
Binary 27 41 58 88 109
Continuous 0 0 0 0 0

Linking Variables 19 31 46 73 94
Integer 0 0 0 0 0
Binary 19 31 46 73 94
Continuous 0 0 0 0 0

UL Constraints 1 1 1 1 1
LL Constraints 53 86 129 208 280
Coupling Constraints 0 0 0 0 0

Table 34. Statistics about the runtimes (s) of the virtual best solver for
instance set plusbcpins with timelimit of 3600 s (only for instances solved
to optimality).

Min 1st Quartile Median 3rd Quartile Max

0.06 0.22 0.65 2.64 105.42

Table 35. Number of solved instances of the set plusbcpins within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

72 6 1 0
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Detailed Numerical Results: generalized

Table 36. Number of solved and open problems for the instance set
generalized with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

90 85 0 5 0

Table 37. Statistics for the number of variables and constraints in instance
set generalized.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 40 40 50 50 50
Integer 0 0 0 0 0
Binary 40 40 50 50 50
Continuous 0 0 0 0 0

LL Variables 40 40 50 50 50
Integer 10 10 20 20 30
Binary 0 0 10 10 20
Continuous 20 20 20 20 20

Linking Variables 10 10 20 20 30
Integer 0 0 0 0 0
Binary 10 10 20 20 30
Continuous 0 0 0 0 0

UL Constraints 20 20 20 20 20
LL Constraints 30 30 40 40 50
Coupling Constraints 20 20 20 20 20

Table 38. Statistics about the runtimes (s) of the virtual best solver for
instance set generalized with timelimit of 3600 s (only for instances solved
to optimality).

Min 1st Quartile Median 3rd Quartile Max

0.29 3.77 25.42 215.37 2853.89

Table 39. Number of solved instances of the set generalized within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

29 24 23 9
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Detailed Numerical Results: knapsack

Table 40. Number of solved and open problems for the instance set
knapsack with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

599 214 0 362 23

Table 41. Statistics for the number of variables and constraints in instance
set knapsack.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 10 100 200 400 500
Integer 0 0 0 0 0
Binary 10 100 200 400 500
Continuous 0 0 0 0 0

LL Variables 10 100 200 400 500
Integer 0 100 200 400 500
Binary 0 0 0 0 55
Continuous 0 0 0 0 0

Linking Variables 10 100 200 400 500
Integer 0 0 0 0 0
Binary 10 100 200 400 500
Continuous 0 0 0 0 0

UL Constraints 1 1 1 1 1
LL Constraints 11 101 201 401 501
Coupling Constraints 0 0 0 0 0

Table 42. Statistics about the runtimes (s) of the virtual best solver for
instance set knapsack with timelimit of 3600 s (only for instances solved to
optimality).

Min 1st Quartile Median 3rd Quartile Max

0.04 0.83 3.74 42.9 3475.75

Table 43. Number of solved instances of the set knapsack within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

137 34 32 11
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Detailed Numerical Results: cclw

Table 44. Number of solved and open problems for the instance set cclw
with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

50 39 0 11 0

Table 45. Statistics for the number of variables and constraints in instance
set cclw.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 35 40 45 50 55
Integer 0 0 0 0 0
Binary 35 40 45 50 55
Continuous 0 0 0 0 0

LL Variables 35 40 45 50 55
Integer 0 0 0 0 0
Binary 35 40 45 50 55
Continuous 0 0 0 0 0

Linking Variables 35 40 45 50 55
Integer 0 0 0 0 0
Binary 35 40 45 50 55
Continuous 0 0 0 0 0

UL Constraints 1 1 1 1 1
LL Constraints 36 41 46 51 56
Coupling Constraints 0 0 0 0 0

Table 46. Statistics about the runtimes (s) of the virtual best solver for
instance set cclw with timelimit of 3600 s (only for instances solved to
optimality).

Min 1st Quartile Median 3rd Quartile Max

0.08 2.55 17.18 197.87 2734.63

Table 47. Number of solved instances of the set cclw within specific time
ranges (only for instances solved to optimality by the virtual best solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

16 11 8 4
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Detailed Numerical Results: inter-kp

Table 48. Number of solved and open problems for the instance set inter-
kp with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

99 75 0 24 0

Table 49. Statistics for the number of variables and constraints in instance
set inter-kp.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 10 20 30 40 50
Integer 0 0 0 0 0
Binary 10 20 30 40 50
Continuous 0 0 0 0 0

LL Variables 10 20 30 40 50
Integer 0 0 0 0 0
Binary 10 20 30 40 50
Continuous 0 0 0 0 0

Linking Variables 10 20 30 40 50
Integer 0 0 0 0 0
Binary 10 20 30 40 50
Continuous 0 0 0 0 0

UL Constraints 1 1 1 1 1
LL Constraints 11 21 31 41 51
Coupling Constraints 0 0 0 0 0

Table 50. Statistics about the runtimes (s) of the virtual best solver for
instance set inter-kp with timelimit of 3600 s (only for instances solved to
optimality).

Min 1st Quartile Median 3rd Quartile Max

0.04 0.39 4.06 71.84 2079.72

Table 51. Number of solved instances of the set inter-kp within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

44 13 15 3
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Detailed Numerical Results: kp

Table 52. Number of solved and open problems for the instance set kp
with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

450 100 0 327 23

Table 53. Statistics for the number of variables and constraints in instance
set inter-kp.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 10 20 30 40 50
Integer 0 0 0 0 0
Binary 10 20 30 40 50
Continuous 0 0 0 0 0

LL Variables 10 20 30 40 50
Integer 0 0 0 0 0
Binary 10 20 30 40 50
Continuous 0 0 0 0 0

Linking Variables 10 20 30 40 50
Integer 0 0 0 0 0
Binary 10 20 30 40 50
Continuous 0 0 0 0 0

UL Constraints 1 1 1 1 1
LL Constraints 11 21 31 41 51
Coupling Constraints 0 0 0 0 0

Table 54. Statistics about the runtimes (s) of the virtual best solver for
instance set kp with timelimit of 3600 s (only for instances solved to opti-
mality).

Min 1st Quartile Median 3rd Quartile Max

0.2 1.22 2.85 8.5 3475.75

Table 55. Number of solved instances of the set kp within specific time
ranges (only for instances solved to optimality by the virtual best solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

77 10 9 4
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Detailed Numerical Results: multidimensional-knapsack

Table 56. Number of solved and open problems for the instance set
multidimensional-knapsack with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

954 99 0 633 222

Table 57. Statistics for the number of variables and constraints in instance
set multidimensional-knapsack.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 10 100 250 500 500
Integer 0 0 0 0 0
Binary 10 100 250 500 500
Continuous 0 0 0 0 0

LL Variables 10 100 250 500 500
Integer 0 0 0 0 0
Binary 10 100 250 500 500
Continuous 0 0 0 0 0

Linking Variables 10 100 250 500 500
Integer 0 0 0 0 0
Binary 10 100 250 500 500
Continuous 0 0 0 0 0

UL Constraints 1 1 4 9 29
LL Constraints 11 102 251 501 529
Coupling Constraints 0 0 0 0 0

Table 58. Statistics about the runtimes (s) of the virtual best solver for
instance set multidimensional-knapsack with timelimit of 3600 s (only for
instances solved to optimality).

Min 1st Quartile Median 3rd Quartile Max

0.06 2.4 25.61 95.16 3134.72

Table 59. Number of solved instances of the set multidimensional-knapsack
within specific time ranges (only for instances solved to optimality by the
virtual best solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

43 33 14 9
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Detailed Numerical Results: imkp

Table 60. Number of solved and open problems for the instance set imkp
with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

144 99 0 45 0

Table 61. Statistics for the number of variables and constraints in instance
set imkp.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 10 30 50 70 105
Integer 0 0 0 0 0
Binary 10 30 50 70 105
Continuous 0 0 0 0 0

LL Variables 10 30 50 70 105
Integer 0 0 0 0 0
Binary 10 30 50 70 105
Continuous 0 0 0 0 0

Linking Variables 10 30 50 70 105
Integer 0 0 0 0 0
Binary 10 30 50 70 105
Continuous 0 0 0 0 0

UL Constraints 1 1 3 4 29
LL Constraints 11 33 52 74 106
Coupling Constraints 0 0 0 0 0

Table 62. Statistics about the runtimes (s) of the virtual best solver for
instance set imkp with timelimit of 3600 s (only for instances solved to
optimality).

Min 1st Quartile Median 3rd Quartile Max

0.06 2.4 25.61 95.16 3134.72

Table 63. Number of solved instances of the set imkp within specific time
ranges (only for instances solved to optimality by the virtual best solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

43 33 14 9
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Detailed Numerical Results: or

Table 64. Number of solved and open problems for the instance set or
with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

810 0 0 588 222

Table 65. Statistics for the number of variables and constraints in instance
set or.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 100 100 250 500 500
Integer 0 0 0 0 0
Binary 100 100 250 500 500
Continuous 0 0 0 0 0

LL Variables 100 100 250 500 500
Integer 0 0 0 0 0
Binary 100 100 250 500 500
Continuous 0 0 0 0 0

Linking Variables 100 100 250 500 500
Integer 0 0 0 0 0
Binary 100 100 250 500 500
Continuous 0 0 0 0 0

UL Constraints 1 1 4 9 29
LL Constraints 101 109 254 501 529
Coupling Constraints 0 0 0 0 0
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Detailed Numerical Results: inter-fire

Table 66. Number of solved and open problems for the instance set inter-
fire with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

72 72 0 0 0

Table 67. Statistics for the number of variables and constraints in instance
set inter-fire.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 22 24 49 77 79
Integer 0 0 0 0 0
Binary 22 24 49 77 79
Continuous 0 0 0 0 0

LL Variables 44 48 98 154 158
Integer 0 0 0 0 0
Binary 44 48 98 154 158
Continuous 0 0 0 0 0

Linking Variables 22 24 49 77 79
Integer 0 0 0 0 0
Binary 22 24 49 77 79
Continuous 0 0 0 0 0

UL Constraints 1 1 1 1 1
LL Constraints 41 63 170 240 974
Coupling Constraints 0 0 0 0 0

Table 68. Statistics about the runtimes (s) of the virtual best solver for
instance set inter-fire with timelimit of 3600 s (only for instances solved to
optimality).

Min 1st Quartile Median 3rd Quartile Max

0.44 2.03 5.13 38.82 1512.0

Table 69. Number of solved instances of the set inter-fire within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

42 17 12 1
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Detailed Numerical Results: general-bilevel

Table 70. Number of solved and open problems for the instance set general-
bilevel with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

635 337 33 80 185

Table 71. Statistics for the number of variables and constraints in instance
set general-bilevel.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 1 135 700 5202 714 549
Integer 0 0 0 110 77 626
Binary 0 0 55 2000 636 923
Continuous 0 0 0 0 399 808

LL Variables 1 135 700 5202 714 549
Integer 0 0 4 110 40 180
Binary 0 0 50 2571 674 369
Continuous 0 0 0 199 399 608

Linking Variables 1 110 600 3844 714 549
Integer 0 0 0 72 77 626
Binary 0 0 50 1442 636 923
Continuous 0 0 0 0 394 447

UL Constraints 0 0 4 320 480 585
LL Constraints 3 64 342 3539 961 170
Coupling Constraints 0 0 4 280 356 461

Table 72. Statistics about the runtimes (s) of the virtual best solver for
instance set general-bilevel with timelimit of 3600 s (only for instances solved
to optimality).

Min 1st Quartile Median 3rd Quartile Max

0.01 0.23 2.04 22.43 2721.51

Table 73. Number of solved instances of the set general-bilevel within
specific time ranges (only for instances solved to optimality by the virtual
best solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

215 92 26 4
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Detailed Numerical Results: mixed-integer

Table 74. Number of solved and open problems for the instance set mixed-
integer with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

489 224 33 52 180

Table 75. Statistics for the number of variables and constraints in instance
set mixed-integer.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 10 360 1000 8632 714 549
Integer 0 0 0 210 77 626
Binary 0 0 75 3715 636 923
Continuous 0 0 0 127 399 808

LL Variables 10 360 1000 8632 714 549
Integer 0 0 0 170 40 180
Binary 0 0 129 4950 674 369
Continuous 0 0 27 302 399 608

Linking Variables 10 310 800 7027 714 549
Integer 0 0 0 210 77 626
Binary 0 0 50 2229 636 923
Continuous 0 0 0 50 394 447

UL Constraints 0 0 117 523 480 585
LL Constraints 4 164 765 5989 961 170
Coupling Constraints 0 0 100 400 356 461

Table 76. Statistics about the runtimes (s) of the virtual best solver for
instance set mixed-integer with timelimit of 3600 s (only for instances solved
to optimality).

Min 1st Quartile Median 3rd Quartile Max

0.01 0.82 8.11 38.97 1657.98

Table 77. Number of solved instances of the set mixed-integer within
specific time ranges (only for instances solved to optimality by the virtual
best solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

116 85 20 3
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Detailed Numerical Results: miplib2010

Table 78. Number of solved and open problems for the instance set
miplib2010 with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

102 32 11 17 42

Table 79. Statistics for the number of variables and constraints in instance
set miplib2010.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 50 548 1343 4507 64 590
Integer 0 0 0 0 236
Binary 0 100 760 4003 64 590
Continuous 0 0 0 199 5958

LL Variables 50 548 1342 4506 64 590
Integer 0 0 0 0 758
Binary 0 245 1011 4506 64 590
Continuous 0 0 0 9 4392

Linking Variables 25 335 1012 3680 64 590
Integer 0 0 0 0 236
Binary 0 100 450 2357 64 590
Continuous 0 0 0 105 5944

UL Constraints 0 0 16 1832 59 795
LL Constraints 16 618 2482 5996 119 589
Coupling Constraints 0 0 0 747 59 795

Table 80. Statistics about the runtimes (s) of the virtual best solver for
instance set miplib2010 with timelimit of 3600 s (only for instances solved
to optimality).

Min 1st Quartile Median 3rd Quartile Max

0.05 0.83 5.73 50.66 192.21

Table 81. Number of solved instances of the set miplib2010 within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

17 10 5 0
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Detailed Numerical Results: miplib2017

Table 82. Number of solved and open problems for the instance set
miplib2017 with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

227 32 22 35 138

Table 83. Statistics for the number of variables and constraints in instance
set miplib2017.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 15 1275 7272 27 578 714 549
Integer 0 0 0 0 77 626
Binary 0 0 1392 12 101 636 923
Continuous 0 0 0 2002 399 808

LL Variables 15 1275 7272 27 578 714 549
Integer 0 0 0 20 40 180
Binary 0 90 2349 16 501 674 369
Continuous 0 0 0 394 399 608

Linking Variables 15 767 5067 23 908 714 549
Integer 0 0 0 0 77 626
Binary 0 0 896 10 058 636 923
Continuous 0 0 0 1493 394 447

UL Constraints 0 0 0 2317 480 585
LL Constraints 6 850 3705 21 340 961 170
Coupling Constraints 0 0 0 1621 356 461

Table 84. Statistics about the runtimes (s) of the virtual best solver for
instance set miplib2017 with timelimit of 3600 s (only for instances solved
to optimality).

Min 1st Quartile Median 3rd Quartile Max

0.01 0.25 1.17 96.66 1657.98

Table 85. Number of solved instances of the set miplib2017 within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

19 6 4 3
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Detailed Numerical Results: xularge

Table 86. Number of solved and open problems for the instance set xularge
with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

60 60 0 0 0

Table 87. Statistics for the number of variables and constraints in instance
set xularge.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 500 600 800 900 1000
Integer 500 600 800 900 1000
Binary 0 0 0 0 0
Continuous 0 0 0 0 0

LL Variables 500 600 800 900 1000
Integer 227 296 375 455 512
Binary 0 0 0 0 0
Continuous 226 305 372 446 527

Linking Variables 500 600 800 900 1000
Integer 500 600 800 900 1000
Binary 0 0 0 0 0
Continuous 0 0 0 0 0

UL Constraints 200 240 320 360 400
LL Constraints 200 240 320 360 400
Coupling Constraints 200 240 320 360 400

Table 88. Statistics about the runtimes (s) of the virtual best solver for
instance set xularge with timelimit of 3600 s (only for instances solved to
optimality).

Min 1st Quartile Median 3rd Quartile Max

4.55 27.86 50.93 93.7 163.26

Table 89. Number of solved instances of the set xularge within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

2 47 11 0
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Detailed Numerical Results: xuwang

Table 90. Number of solved and open problems for the instance set xuwang
with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

100 100 0 0 0

Table 91. Statistics for the number of variables and constraints in instance
set xuwang.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 10 110 260 360 460
Integer 10 110 260 360 460
Binary 0 0 0 0 0
Continuous 0 0 0 0 0

LL Variables 10 110 260 360 460
Integer 3 55 119 184 256
Binary 0 0 0 0 0
Continuous 4 56 114 179 244

Linking Variables 10 110 260 360 460
Integer 10 110 260 360 460
Binary 0 0 0 0 0
Continuous 0 0 0 0 0

UL Constraints 4 44 104 144 184
LL Constraints 4 44 104 144 184
Coupling Constraints 4 44 104 144 184

Table 92. Statistics about the runtimes (s) of the virtual best solver for
instance set xuwang with timelimit of 3600 s (only for instances solved to
optimality).

Min 1st Quartile Median 3rd Quartile Max

0.01 0.33 2.16 8.11 25.11

Table 93. Number of solved instances of the set xuwang within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

78 22 0 0



REFERENCES 43

Detailed Numerical Results: pure integer

Table 94. Number of solved and open problems for the instance set pure-
integer with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

146 113 0 28 5

Table 95. Statistics for the number of variables and constraints in instance
set pure-integer.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 1 10 50 254 78 734
Integer 0 0 0 5 15
Binary 0 0 50 254 78 734
Continuous 0 0 0 0 0

LL Variables 1 10 70 253 78 733
Integer 0 0 5 15 110
Binary 0 0 0 253 78 733
Continuous 0 0 0 0 0

Linking Variables 1 10 50 254 78 734
Integer 0 0 0 5 15
Binary 0 0 50 254 78 734
Continuous 0 0 0 0 0

UL Constraints 0 0 0 0 2
LL Constraints 3 16 20 124 4944
Coupling Constraints 0 0 0 0 0

Table 96. Statistics about the runtimes (s) of the virtual best solver for
instance set pure-integer with timelimit of 3600 s (only for instances solved
to optimality).

Min 1st Quartile Median 3rd Quartile Max

0.02 0.08 0.24 1.71 2721.51

Table 97. Number of solved instances of the set pure-integer within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

99 7 6 1
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Detailed Numerical Results: denegre

Table 98. Number of solved and open problems for the instance set denegre
with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

50 50 0 0 0

Table 99. Statistics for the number of variables and constraints in instance
set denegre.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 5 5 10 15 15
Integer 5 5 10 15 15
Binary 0 0 0 0 0
Continuous 0 0 0 0 0

LL Variables 5 5 10 10 15
Integer 5 5 10 10 15
Binary 0 0 0 0 0
Continuous 0 0 0 0 0

Linking Variables 5 5 10 15 15
Integer 5 5 10 15 15
Binary 0 0 0 0 0
Continuous 0 0 0 0 0

UL Constraints 0 0 0 0 0
LL Constraints 20 20 20 20 20
Coupling Constraints 0 0 0 0 0

Table 100. Statistics about the runtimes (s) of the virtual best solver for
instance set denegre with timelimit of 3600 s (only for instances solved to
optimality).

Min 1st Quartile Median 3rd Quartile Max

0.02 0.06 0.15 0.37 184.23

Table 101. Number of solved instances of the set denegre within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

47 2 1 0
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Detailed Numerical Results: miplib3

Table 102. Number of solved and open problems for the instance set
miplib3 with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

60 28 0 27 5

Table 103. Statistics for the number of variables and constraints in instance
set miplib3.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 3 55 686 3598 78 734
Integer 0 0 0 0 0
Binary 3 55 686 3598 78 734
Continuous 0 0 0 0 0

LL Variables 2 54 686 3597 78 733
Integer 0 0 0 0 0
Binary 2 54 686 3597 78 733
Continuous 0 0 0 0 0

Linking Variables 3 55 686 3598 78 734
Integer 0 0 0 0 0
Binary 3 55 686 3598 78 734
Continuous 0 0 0 0 0

UL Constraints 0 0 0 0 0
LL Constraints 16 112 176 755 4944
Coupling Constraints 0 0 0 0 0

Table 104. Statistics about the runtimes (s) of the virtual best solver for
instance set miplib3 with timelimit of 3600 s (only for instances solved to
optimality).

Min 1st Quartile Median 3rd Quartile Max

0.02 0.17 1.13 27.25 2721.51

Table 105. Number of solved instances of the set miplib3 within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

21 2 4 1
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Detailed Numerical Results: misc

Table 106. Number of solved and open problems for the instance set misc
with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

6 5 0 1 0

Table 107. Statistics for the number of variables and constraints in instance
set misc.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 1 4 7 10 10
Integer 0 1 1 10 10
Binary 0 0 0 4 7
Continuous 0 0 0 0 0

LL Variables 1 2 7 10 10
Integer 0 1 2 10 10
Binary 0 0 0 0 7
Continuous 0 0 0 0 0

Linking Variables 1 4 7 10 10
Integer 0 1 1 10 10
Binary 0 0 0 4 7
Continuous 0 0 0 0 0

UL Constraints 0 0 0 1 2
LL Constraints 3 4 4 8 10
Coupling Constraints 0 0 0 0 0

Table 108. Statistics about the runtimes (s) of the virtual best solver for
instance set misc with timelimit of 3600 s (only for instances solved to
optimality).

Min 1st Quartile Median 3rd Quartile Max

0.03 0.03 0.03 0.04 0.1

Table 109. Number of solved instances of the set misc within specific time
ranges (only for instances solved to optimality by the virtual best solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

5 0 0 0
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Detailed Numerical Results: zhang

Table 110. Number of solved and open problems for the instance set zhang
with timelimit of 3600 s.

Total Optimal Infeasible Open with feasible point Open

30 30 0 0 0

Table 111. Statistics for the number of variables and constraints in instance
set zhang.

Min 1st Quartile Median 3rd Quartile Max

UL Variables 50 60 70 80 90
Integer 0 0 0 0 0
Binary 50 60 70 80 90
Continuous 0 0 0 0 0

LL Variables 70 80 90 100 110
Integer 70 80 90 100 110
Binary 0 0 0 0 0
Continuous 0 0 0 0 0

Linking Variables 50 60 70 80 90
Integer 0 0 0 0 0
Binary 50 60 70 80 90
Continuous 0 0 0 0 0

UL Constraints 0 0 0 0 0
LL Constraints 6 6 7 7 7
Coupling Constraints 0 0 0 0 0

Table 112. Statistics about the runtimes (s) of the virtual best solver for
instance set zhang with timelimit of 3600 s (only for instances solved to
optimality).

Min 1st Quartile Median 3rd Quartile Max

0.06 0.24 0.59 6.59 265.69

Table 113. Number of solved instances of the set zhang within specific
time ranges (only for instances solved to optimality by the virtual best
solver).

[0, 10) [10, 100) [100, 1000) [1000, 3600)

26 3 1 0
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