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Abstract

Given a simple graph G = (V,E) with vertex set V and edge set E, the minimum biclique
cover problem seeks to cover all edges of the graph with a minimum number of bicliques (i.e.,
complete bipartite subgraphs). This paper proposes two compact mixed integer programming
(MIP) formulations for solving the minimum biclique cover problem on general graphs: (i) a
natural formulation in the edge space and (ii) an extended formulation in the edge and vertex
spaces. Despite the exponential-size natural MIP formulation of Cornaz and Fonlupt (Discrete
Mathematics, 2006), our natural formulation employs only a polysize number of their exponential
“no-good” cuts, along with another set of polysize valid inequalities. We also employ bounding
and variable fixing procedures that help solve most of our social network instances, which are
not solvable to optimality in a one-hour time limit without the bounding and fixing procedures.

1 Introduction

Given a simple graph G = (V,E) with n := |V | vertices and m := |E| edges, the minimum biclique
cover problem seeks to cover all edges of the graph with a minimum number of bicliques (i.e.,
complete bipartite subgraphs). This problem has a wide range of motivations and applications in
disjunctive programming [1, 2, 3], combinatorial geometry [4], matrix completion [5], the min-cut
max-flow ratio for the multicommodity flow problems [6], the role minimization problems [7], and
finite automata [8]. The minimum biclique cover problem is NP-hard, even if G is bipartite [9]
or chordal bipartite [10]. However, the problem is polytime solvable on complete graphs [11], grid
graphs [12], C4-free graphs [10], and domino-free graphs [13]. Furthermore, Chalermsook et al. [14]
show that it is hard to approximate the problem within a factor of n1−ϵ. Figure 1 illustrates a 3× 3
grid graph and a corresponding minimum biclique cover of it.
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Figure 1: (Left) a 3× 3 grid graph G; (Right) a biclique cover of G with the minimum size of 4.

Let bc(G) be the biclique number of G; i.e., the minimum number of bicliques that are needed
to cover all edges of graph G. While finding bc(G) is hard, there are multiple existing upper
bounds of the bc(G) that can also provide a feasible solution to the problem. Tuza [15] proves that
n − ⌊log2 n⌋ + 1 is an upper bound for the bc(G). Furthermore, any feasible solution of the vertex
cover problem is a feasible solution for the biclique cover problem. While the vertex cover is among
the six basic NP-hard problems [16], it can be solved efficiently with the existing state-of-the-art
solvers. In this paper, we employ vertex cover to find an upper bound for bc(G) as (i) the bound
found by vertex cover is tighter than that of Tuza [15], and (ii) it is computationally efficient.

Regarding the lower bound of bc(G), Jukna and Kulikov [17] prove that bc(G) is bounded below
by ν(G)2/m with ν(G) be the matching number of graph G. Harary et al. [18] show that bc(G) can
be bounded below by ⌈log2(χ(G))⌉ with χ(G) be the chromatic number of G. Lyu and Hicks [19]
provide a lower bound of ⌈log2(mc(Gc))⌉, where mc(Gc) is the number of maximal cliques in the
complement graph of G, and prove that their proposed bound is tighter than that of Harary et
al. [18], i.e., they prove mc(Gc) ≥ χ(G). Furthermore, Monson et al. [5] show that an independent
set of edges (i.e., edges with no common endpoints) that are not contained in any 4-cycle can provide
a lower bound for bc(G). In this paper, we propose an efficient MIP formulation for the independent
edge set idea of Monson et al. [5] and show its effectiveness in not only lower bounding bc(G),
but also fixing decision variables in our proposed compact MIP formulations of the biclique cover
problem.

Despite a rich literature on bounds of bc(G), there is only one paper on solving the problem to
optimality via MIP to our knowledge: Cornaz and Fonlupt [20]. They propose a MIP formulation
with exponentially many “no-good” constraints for solving the problem to optimality. While they
prove their separation problem can be solved in polytime, they conduct no computational experi-
ments on their proposed formulation. This paper proposes a stronger version of the MIP formulation
of Cornaz and Fonlupt [20] and shows that the separation problem corresponding to the stronger
formulation is NP-hard. Furthermore, we show that only a polysize number of the “no-good” cuts,
along with a set of coupling constraints, provides a correct compact formulation of the problem. We
also propose an extended compact MIP formulation of the problem that has a competitive compu-
tational performance in comparison with the compact one containing “no-good” cuts. To further
accelerate the solving process of the extended formulation, we propose a variable fixing procedure
for both compact formulations.
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Our contributions and outline. In this paper, Section 2 reviews an existing MIP formulation
with exponentially many “no-good” inequalities and proposes two new compact MIP formulations
for solving the minimum biclique cover problem: (i) a natural formulation in the edge space and (ii)
an extended formulation in the vertex and edge spaces. Section 3 proposes a bounding framework
along with a fixing procedure for both compact MIP formulations and assesses their impact on a set
of social network instances. Section 4 concludes the paper and provides future research directions
for the exact solution methods of the biclique cover problem.

2 MIP Formulations

This section reviews an existing MIP formulation with exponentially many “no-good” cuts for solving
the biclique cover problem to optimality. We show that the “no-good” cuts can be strengthened;
however, strengthening the formulation makes the separation problem NP-hard. Then, we show
that a polysize number of “no-good” cuts, along with a set of coupling constraints, is sufficient to
ensure the formulation’s correctness. Furthermore, we propose an extended compact formulation for
the problem with the same order in the number of decision variables. Our computational results in
Section 3 show that the extended formulation is quite competitive in comparison with the natural
compact formulation, which contains a polysize number of “no-good” cuts on challenging instances
of the problem. Before proceeding with MIP formulations, we provide a formal definition of biclique
that is employed in the proofs of this section.

Definition 1 (Biclique Definition (page 4 of Bondy and Murty [21])). A simple graph G = (V,E)
is a biclique graph if

1. its vertex set V can be partitioned into two subsets A and B such that every edge has one
endpoint in A and one endpoint in B; and

2. every vertex in A is joined to every vertex in B.

Lemma 1 provides an equivalent definition for a biclique that will be employed in a MIP formu-
lation correctness proof.

Lemma 1. A simple graph G = (V,E) is a biclique if and only if it satisfies the following properties:

1. the degree of every vertex is at least one;

2. the inclusion of edges {a, b} and {c, d} in G implies the inclusion of {a, c} ({a, d}) and {b, d}
({b, c}) in G; and

3. G contains no cycle of size 3 (i.e., C3).

Proof. ( =⇒ ) Since biclique is a bipartite graph, then it does not contain any odd cycle [22]. Thus,
G does not contain any cycle of size 3. Let sets A and B be the parts of V such that every vertex in
A is joined to every vertex in B. Since both A and B are not empty, the degree of every vertex is at
least one. Let {a, b} and {c, d} be two arbitrary edges in G. Without loss of generality, we assume
that a ∈ A and b ∈ B. If c ∈ A and d ∈ B, then {a, d} and {b, c} are edges in G. Otherwise, c ∈ B
and d ∈ A, which implies that {a, c} and {b, d} are edges in G.

( ⇐= ) We first prove that there are no odd cycles in G. By the third property, G has no cycle
of size 3. For contradiction purposes, suppose that G contains an odd cycle of length larger than
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3; i.e., (u1, u2, u3, · · · , uq, u1) with q ≥ 5. Then, we have edges {u1, u2} and {u3, u4} in G. Thus,
either edge {u1, u3} or edge {u1, u4} is in G by the second property. In the first case, there is a
3-cycle, which is a contradiction. In the second case, we find another odd cycle with length q−2; i.e.,
(u1, u4, · · · , uq, u1). Repeat the above procedure until we reach a 3-cycle. This is a contradiction.

Since G does not contain any odd cycles, it is a bipartite graph [22]. Now, it suffices to show that
G is a complete bipartite graph. Hence, the vertices of G can be partitioned into two subsets A and
B. Let a and b be two arbitrary vertices such that a ∈ A and b ∈ B. For contradiction purposes,
assume that {a, b} is not an edge in G. Since the degrees of a and b are both at least one, then there
exist vertices c ∈ B and d ∈ A such that both {a, c} and {b, d} are edges in G. Since a, d ∈ A, then
{a, d} is not an edge of G (as G is a bipartite graph). Thus, {a, b} must be an edge in G, which is
a contradiction.

2.1 An existing MIP formulation

To the best of our knowledge, Cornaz and Fonlupt [20] proposed the first MIP formulation with ex-
ponentially many “no-good” cuts for solving the problem on general graphs. They define dependent
and minimal dependent sets to propose their “no-good” cuts in their formulation (see Definition 2
below). Furthermore, Figure 2 provides an illustration of (minimal) dependent sets.

Definition 2 (Dependent and minimal dependent sets). Given graph G = (V,E), an edge set
F ⊆ E is a dependent set if for every biclique B ⊆ E, we have F ̸⊆ B. Furthermore, F is a minimal
dependent set if any proper subset of F can be contained in a biclique.

1 2

3 4

5 6

1 2

3 4

5 6

Figure 2: (Left) Graph G = (V,E); (Right) F =
{
{1, 2}, {5, 6}

}
is a (minimal) dependent set.

Let k be an upper bound for the biclique number. Then, we define [k] := {1, . . . , k}. For every
biclique i ∈ [k], we define zi as the binary decision variable for choosing biclique i. For every edge
e ∈ E and every biclique i ∈ [k], we define xi

e as the binary decision variable for assigning edge e to
biclique i. The MIP formulation of Cornaz and Fonlupt [20], which is called the natural formulation
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in this paper, is provided below.

min

k∑
i=1

zi (1a)

xi
e ≤ zi ∀e ∈ E, ∀i ∈ [k] (1b)

k∑
i=1

xi
e ≥ 1 ∀e ∈ E (1c)∑

e∈F

xi
e ≤ |F | − 1 ∀ minimal dependent F ∈ F(G), ∀i ∈ [k] (1d)

x ∈ {0, 1}mk. (1e)

Here, objective function (1a) minimizes the number of biclique covers. Constraints (1b) state that
if an edge is assigned to a biclique, then the biclique is selected. Constraints (1c) state that every
edge must be covered by at least one biclique. Constraints (1d) state that for every biclique i ∈ [k]
and every minimal dependent F ∈ F , the number of edges included in the biclique must be at most
|F | − 1. Furthermore, Cornaz and Fonlupt [20] show that the linear programming (LP) relaxation
of their formulation can be solved in polytime by proving the polytime solvability of the separation
problem for constraints (1d). In the next section, we propose a stronger variant of constraints (1d)
and prove that its corresponding separation problem is hard.

2.2 A compact natural formulation

This section proposes a compact natural formulation in the same space of MIP formulation (1).
Before proceeding with the compact natural formulation, the following remark provides a stronger
variant of constraints (1d).

Remark 1. A strengthened variant of “no-good” cuts (1d) are provided below.∑
e∈F

xi
e ≤ (|F | − 1)zi ∀ minimal dependent F ∈ F(G), ∀i ∈ [k]. (2)

Although constraints (2) are stronger than constraints (1d), the following theorem shows the
hardness of their corresponding separation problem.

Theorem 1. The (fractional) separation problem of constraints (2) is NP-hard.

Proof. Let (x̂, ẑ) ∈ (0, 1)mk×k be a fractional point that satisfies constraints (1b)-(1c) and let j ∈ [k]
be a biclique cover. The separation problem asks for the existence of a minimal dependent set F̂
such that ∑

e∈F̂

x̂j
e > (|F̂ | − 1)ẑj .

Equivalently, the separation problem asks for the existence of a minimal dependent set F̂ such that∑
e∈F̂

(x̂j
e − ẑj) > −ẑj .
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Hence, one needs to find a minimal dependent set of the maximum weight, where the weight of each
edge is x̂j

e− ẑj . Since (i) the maximum-size minimal dependent set problem is NP-hard by Theorem
19 of Cornaz and Fonlupt [20] and (ii) the maximum-weight minimal dependent set problem is
a generalization of the maximum-size minimal dependent set problem, the separation problem of
constraints (2) is NP-hard.

To propose our compact natural formulation, we first define the notion of crossing edges as
follows. Throughout the paper, we consider the endpoints of edges e and f as {a, b} and {c, d},
respectively.

Definition 3 (crossing edges). For every pair of vertex-disjoint edges e = {a, b} and f = {c, d} with
{a, b} ∩ {c, d} = ∅, we define the crossing sets CR1

ef and CR2
ef as follows.

CR1
ef :=

{
{a, d}, {b, c}

}
∩ E, CR2

ef :=
{
{a, c}, {b, d}

}
∩ E. (3)

Figure 3 provides an illustration of crossing edges for a vertex-disjoint pair of edges e and f .

a b

dc

e

f

a b

dc

e

f

Figure 3: (Left) a graph with CR1
ef :=

{
{a, d}, {b, c}

}
and CR2

ef := ∅; (Right) a graph with

CR1
ef := ∅ and CR2

ef :=
{
{a, c}, {b, d}

}
.

We now propose our compact natural MIP formulation as follows.

min

k∑
i=1

zi (4a)

xi
e ≤ zi ∀e ∈ E, ∀i ∈ [k] (4b)

k∑
i=1

xi
e ≥ 1 ∀e ∈ E (4c)

xi
e + xi

f ≤ zi

xi
e + xi

f ≤ zi ∀ disjoint e, f ∈ E with |CR1
ef | < 2, and |CR2

ef | < 2, ∀i ∈ [k] (4d)∑
e∈C3

xi
e ≤ 2zi ∀ cycle C3 ⊆ E, ∀i ∈ [k]. (4e)

Here, objective function (4a), constraints (4b) and covering constraints (4c) are similar to their
counterparts (1a), (1b) and (1c) in the MIP formulation of Cornaz and Fonlupt [20], respectively.
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Constraints (4d) state that two disjoint edges cannot belong to the same biclique if their crossing
numbers are less than 2. Constraints (4e) state that all edges of a cycle of size three cannot be
assigned to the same biclique. We note that constraints (4d) and (4e) are specific types of “no-
good” cuts (2) when dependent set F has sizes two and three, respectively.

We finally discuss the crossing constraints for disjoint edges that complete the compact natural
formulation. We recall that the endpoints of edges e and f are {a, b} and {c, d}, respectively.

xi
e + xi

f ≤ zi + xi
ad

xi
e + xi

f ≤ zi + xi
bc ∀ disjoint e, f ∈ E with |CR1

ef | = 2 and |CR2
ef | < 2, ∀i ∈ [k] (4f)

xi
e + xi

f ≤ zi + xi
ac

xi
e + xi

f ≤ zi + xi
bd ∀ disjoint e, f ∈ E with |CR1

ef | < 2 and |CR2
ef | = 2, ∀i ∈ [k] (4g)

xi
e + xi

f ≤ zi + xi
ac + xi

ad

xi
e + xi

f ≤ zi + xi
bc + xi

bd ∀ disjoint e, f ∈ E with |CR1
ef | = 2 and |CR2

ef | = 2, ∀i ∈ [k] (4h)

x ∈ {0, 1}mk, z ∈ [0, 1]k. (4i)

Constraints (4f) and (4g) state that if two disjoint edges are assigned to a biclique and the size
of exactly one set of their corresponding crossing edges is two, then both edges of the set must be
assigned to the biclique. Constraints (4h) state that if two disjoint edges are assigned to a biclique
and they are part of a clique K4, then the edges of at least one crossing set need to be assigned to
the biclique. Constraints (4i) state the bounds and integrality of x and z variables. We note that
the integrality of z variables can be relaxed as it is implied by constraints (4b).

Theorem 2. The biclique covering formulation (4) is correct.

Proof. Let (x̂, ẑ) ∈ {0, 1}k(m+1) be a binary point. We are to show that (x̂, ẑ) represents a biclique
covering if and only if it satisfies constraints of formulation (4).

( =⇒ ) Suppose that point (x̂, ẑ) represents a biclique covering of graph G. We are to show that
the point satisfies constraints of formulation (4). Because every non-empty biclique cover contains
at least one edge, the point satisfies constraints (4b). Because point (x̂, ẑ) represents a covering of
edges, every edge of graph G is covered by at least one biclique. So, (x̂, ẑ) satisfies constraints (4c).
Furthermore, (x̂, ẑ) satisfies constraints (4d)-(4e) by correctness of the MIP formulation (1). Finally,
(x̂, ẑ) satisfies constraints (4f)-(4h) because every vertex in a part of a biclique is connected to every
vertex in the other part.

( ⇐= ) Suppose that (x̂, ẑ) satisfies constraints of formulation (4). We are to show that (x̂, ẑ)
represents a biclique covering. Constraints (4b) imply that an edge cannot belong to a biclique if the
biclique is not selected. Constraints (4c) imply that every edge must belong to at least one biclique.
Constraints (4d)-(4h) imply that every cover forms a biclique by Lemma 1.

The next section provides an extended formulation for the biclique cover problem that compu-
tationally runs faster than the natural formulation.

2.3 An extended formulation

This section provides an extended formulation in vertex and edge space. Let D = (V,A) be the

bidirected variant of graph G with A := ∪{u,v}∈E

{
(u, v)∪ (v, u)

}
. For every vertex u ∈ V and every
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biclique i ∈ [k], binary decision variable y1ui (y
2
ui) is one if vertex u is assigned to the first (second)

partition of biclique i. The extended MIP formulation is provided below.

min

k∑
i=1

zi (5a)

xi
uv ≤ y1ui

xi
uv ≤ y2vi ∀(u, v) ∈ A,∀i ∈ [k] (5b)

y1ui + y2vi ≤ zi + xi
uv ∀(u, v) ∈ A,∀i ∈ [k] (5c)

y1ui + y2ui ≤ zi ∀u ∈ V,∀i ∈ [k] (5d)

k∑
i=1

(xi
uv + xi

vu) ≥ 1 ∀{u, v} ∈ E (5e)

y1ui + y2vi ≤ zi

y1vi + y2ui ≤ zi ∀{u, v} ∈
(
V

2

)
\ E,∀i ∈ [k] (5f)

x ∈ {0, 1}mk, y ∈ {0, 1}2nk, z ∈ {0, 1}k. (5g)

Constraints (5b) state that for every biclique if arc (u, v) is assigned to the biclique, then vertex
u (vertex v) is assigned to the first (second) partition of the biclique. Constraints (5c) state that
for every biclique i and for every arc (u, v) if vertices u and v are assigned to the first partition
and the second partition of the biclique, respectively, then arc (u, v) must be assigned to biclique
i. Constraints (5d) state that every vertex can be assigned to at most one partition of a biclique.
Constraints (5e) state that every edge is covered by at least one biclique. Constraints (5f) state that
non-edge pairs of vertices cannot belong to different partitions of a biclique. Constraints (5g) impose
the integrality of decision variables. The following remark shows that constraints xi

uv +xi
vu ≤ zi are

implied for every biclique i ∈ [k] and every edge {u, v} ∈ E.

Remark 2. The following constraints are implied by MIP formulation (5).

xi
uv + xi

vu ≤ zi ∀{u, v} ∈ E,∀i ∈ [k]. (6)

Proof. Let (x̂, ŷ, ẑ) be a solution of MIP formulation (5). For any biclique i ∈ [k] and every edge
{u, v} ∈ E, we have

x̂i
uv + x̂i

vu ≤ ŷ1ui + ŷ2ui ≤ ẑi.

Here, the first inequality holds by constraints (5b). The second inequality holds by constraints (5d).

Before proving the correctness of MIP formulation (5), we provide a definition of the directed
biclique graph as follows.

Definition 4 (Directed Biclique Definition). A directed graph D = (V,A) is a directed biclique
graph if
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1. its vertex set V can be partitioned into two parts A and B such that every directed edge
(u, v) ∈ A has its tail (u) in A and its head (v) in B; and

2. every vertex in A is joined to every vertex in B.

The following theorem proves that the extended formulation (5) is correct.

Theorem 3. The extended formulation (5) is correct.

Proof. Let (x̂, ŷ, ẑ) ∈ {0, 1}mk+2nk+k be a binary point. We are to show that (x̂, ŷ, ẑ) represents a
directed biclique cover if and only if it satisfies constraints of formulation (5).

( =⇒ ) Suppose that (x̂, ŷ, ẑ) represents a directed biclique cover. We are to show that (x̂, ŷ, ẑ)
satisfies constraints of formulation (5). Because every arc (u, v) ∈ A that belongs to a biclique i ∈ [k]
has its tail in part 1 and its head in part 2 of biclique i, the point satisfies constraints (5b). For every
directed biclique i ∈ [k], if vertex u belongs to part 1 of the biclique and vertex v belongs to part 2
of the biclique, then arc (u, v) belongs to biclique i. So, (x̂, ŷ, ẑ) satisfies constraints (5c). For any
directed biclique i ∈ [k] and every vertex u in biclique i, vertex u does not belong to parts 1 and 2
simultaneously. So, (x̂, ŷ, ẑ) satisfies constraints (5d). Because (x̂, ŷ, ẑ) represents a directed biclique
cover, every arc (u, v) or (v, u) must belong to a biclique. Hence, (x̂, ŷ, ẑ) satisfies constraints (5e).
For any directed biclique i ∈ [k], no non-adjacent pair of vertices can belong to different parts of
biclique i. So, (x̂, ŷ, ẑ) satisfies constraints (5f).

( ⇐= ) Suppose that (x̂, ŷ, ẑ) satisfies all the constraints of formulation (5). We are to show that
(x̂, ŷ, ẑ) represents a directed biclique cover. Constraints (5b)-(5c) and constraints (5f) imply that
distinct vertices u and v belong to parts 1 and 2 of a biclique, respectively, if and only if arc (u, v)
belongs to the biclique. Furthermore, constraints (5d) ensure that a vertex of a biclique cannot
belong to parts 1 and 2 of the biclique, simultaneously. Constraints (5e) and (6) imply that for
every edge {u, v} ∈ E, either arc (u, v) or (v, u) need to be covered by at least one biclique. Hence,
(x̂, ŷ, ẑ) forms a directed biclique cover in directed graph D = (V,A).

3 Computational Experiments

This section provides computational results for calculating upper and lower bounds as well as the
performance of our proposed compact formulations. We conduct our experiments on a machine
running Windows 11 Enterprise with an Intel Core i9-13900 processor (2.00 GHz base, 5.2 GHz
turbo) and 32 GB RAM. We employ Python programming language and Gurobi 11.0.0 to run our
experiments. The experiments are run on a set of social network instances. The code and instances
are available at https://github.com/bcburin/compact-mip-formulations-for-the-minimum-biclique-
cover-problem.

3.1 Upper bound

As the proposed MIP formulations depend on the value of k (i.e., an upper bound on the biclique
cover number), we test two existing methods for the value of k: (i) Tuza’s upper bound [15], and (ii)
the vertex cover number (folklore). While Tuza [15] suggests n−⌊log2 n⌋+1 as an upper bound for
the biclique cover number, the vertex cover number is obtained by solving the following optimization
problem with tv ∈ {0, 1} be the binary decision variable for selecting a vertex v ∈ V as a member
of a vertex cover.
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min
∑
v∈V

tv (7a)

tu + tv ≥ 1 ∀{u, v} ∈ E (7b)

t ∈ {0, 1}n. (7c)

Table 1 provides a comparison between Tuza’s and the vertex cover (VC) numbers. Both ap-
proaches find upper bounds in less than a second; however, the vertex cover number is consistently
smaller than Tuza’s number. Hence, we employ the vertex cover number as the value of k for our
final experiments with natural and extended MIP formulations because it provides a tighter bound
for the biclique cover number.

Table 1: A comparison between the vertex cover and Tuza’s numbers.

Tuza (1983) VC (folklore)
instance n m UB time UB time
ieee30 30 41 27 0.00 16 0.00
karate 34 78 30 0.00 14 0.00
surfers 43 336 39 0.00 32 0.00
ieee57 57 78 53 0.00 30 0.00
dolphins 62 159 58 0.00 34 0.00
lesmis76 77 254 72 0.00 42 0.00
adjnoun 112 425 107 0.00 59 0.01
football 115 613 110 0.00 94 0.01
ieee118 118 179 113 0.00 61 0.00
jazz 198 2,742 192 0.00 158 0.02
ieee300 300 409 293 0.00 136 0.02

3.2 Lower bound and a fixing procedure

This section provides computational results on the following existing lower bounds of the minimum
biclique cover problem and shows how the third lower bounding procedure provides an efficient fixing
procedure.

1. ν2(G)/m of Junka and Kulikov [17] with ν(G) be the matching number of G (JK (2009));

2. ⌈log2(mc(Gc))⌉ of Lyu and Hicks [19] with mc(Gc) be the number of maximal cliques in the
complement graph of G (LH (2024)); and

3. the number of independent edges with no crossings of Monson, Pullman, and Rees [5] (MPR
(1995)).

Furthermore, we propose an MIP formulation for the third procedure, which is provided below.
In this formulation, binary decision variable we ∈ {0, 1} is one if edge e ∈ E is selected as an
independent edge that is not paired with any other edge f ∈ E with |CR1

ef | = 2 or |CR2
ef | = 2.

Furthermore, δ(v) denotes the set of edges that are incident to vertex v.
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max
∑
e∈E

we (8a)

w(δ(v)) ≤ 1 ∀v ∈ V (8b)

we + wf ≤ 1 ∀ disjoint e, f ∈ E with |CR1
ef | = 2 or |CR2

ef | = 2 (8c)

w ∈ {0, 1}m. (8d)

Table 2 compares the listed lower bound procedures in terms of their values and calculation
times. We set a time limit of 3,600 seconds for all procedures. In this table, JK (2009), LH (2024),
and MPR (1995) represent the lower bounding procedures proposed by Junka and Kulikov [17], Lyu
and Hicks [19], and Monson, Pullman, and Rees [5], respectively. One can easily note that MIP
formulation (8), which is developed to capture the lower bounding idea of Monson, Pullman, and
Rees [5], outperforms the other lower bounding ideas by a considerable difference. Furthermore,
MIP formulation (8) solves all the benchmark instances in at most three minutes. We finally note
that the computational results for the lower bounding idea of Harary et al. [18] are skipped as their
proposed bound (i.e., ⌈log2(χ(G))⌉ with χ(G) be the chromatic number of G) is dominated by the
number of maximal cliques of the complementary graph G, i.e., mc(Gc) [19].

Theorem 4 (Lyu and Hicks [19]). Given a graph G, mc(Gc) ≥ χ(G).

The lower bounding idea of Monson, Pullman, and Rees [5], along with our proposed MIP
formulation (8), not only provides the tightest bound among the existing ones but also triggers
fixing binary decision variables in both natural and extended MIP formulations. Table 3 provides the
percentages of fixings for x, y, and z variables in both compact natural and extended formulations.
We will observe the effect of these variable fixings in next subsection.

Table 2: A performance comparison between lower bounding ideas of Junka and Kulikov [17] (JK
(2009)), Lyu and Hicks [19] (LH (2024)), and Monson, Pullman, and Rees [5] (MPR (1995)).

JK (2009) LH (2024) MPR (1995)
instance n m LB time LB time LB time
ieee30 30 41 6 0.00 12 0.01 14 0.00
karate 34 78 3 0.00 8 0.00 12 0.01
surfers 43 336 2 0.00 11 0.01 16 1.16
ieee57 57 78 11 0.00 22 8.43 28 0.01
dolphins 62 159 6 0.00 19 0.87 29 0.03
lesmis 77 254 5 0.00 21 1.29 24 0.06
adjnoun 112 425 7 0.01 30 3,289.88 54 0.11
football 115 613 6 0.01 30 2,057.60 57 0.49
ieee118 118 179 19 0.01 30 3,139.47 56 0.02
jazz 198 2,742 4 0.01 30 1,313.90 72 162.78
ieee300 300 409 44 0.01 30 2,787.73 130 0.06
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Table 3: Percentages of fixing for x, y , and z variables in compact natural and extended formulations.

Natural Fix (%) Extended Fix (%)
instance n m x z x y z
ieee30 30 41 29.88 87.50 29.88 40.83 87.50
karate 34 78 13.19 85.71 13.19 30.25 85.71
surfers 43 336 2.38 50.00 2.38 18.60 50.00
ieee57 57 78 33.50 93.33 33.50 45.85 93.33
dolphins 62 159 15.56 85.29 15.56 39.90 85.29
lesmis 77 254 5.40 57.14 5.40 17.81 57.14
adjnoun 112 425 11.63 91.53 11.63 44.13 91.53
football 115 613 5.64 60.64 5.64 30.06 60.64
ieee118 118 179 28.72 91.80 28.72 43.57 91.80
jazz 198 2,742 1.20 45.57 1.20 16.57 45.57
ieee300 300 409 30.38 95.59 30.38 41.42 95.59

3.3 Final experiments

We conclude this section by running the following sets of experiments to (i) assess the impact of the
proposed fixing procedure of Section 3.2 and (ii) provide a computational comparison between the
natural compact formulation (4) and extended compact formulation (5) on the benchmark instances
within a 3,600-second time limit:

1. Natural compact formulation (4) with and without lower bound fixing procedure of Section 3.2;
and

2. Extended compact formulation (5) with and without lower bound fixing procedure of Sec-
tion 3.2.

Table 4 shows the computational effect of the proposed variable fixing procedure on the perfor-
mance of the natural compact formulation (4). One can easily observe that the natural compact
formulation (4) without the edge fixing procedure solves only 3 out of 11 instances. In comparison,
the natural compact formulation (4) with the edge fixing procedure solves 7 out of 11 instances
within the one-hour time limit. Specifically, the natural compact formulation with the proposed
fixing procedure solves ieee118 and ieee300 in less than one minute, while they are not solvable to
optimality without applying the fixing procedure within the 1-hour time limit. Among the solved
instances under both with and without fixing circumstances (i.e., ieee30, karate, and ieee57), the
natural compact formulation with fixing procedure outperforms the natural compact formulation
without the fixing procedure in solving time.

Table 5 demonstrates the effect of the edge fixing procedure of Section 3.2 on the extended
compact formulation (5). The edge fixing procedure helps increase the number of solved instances
by the extended formulation from 2 to 7. Specifically, the extended formulation with the edge
fixing procedure solves ieee118 and ieee300 in less than two minutes while the memory crashes for
both instances when the fixing is not applied. For the benchmark instances that are solved by the
extended formulation with and without fixing (i.e., ieee30 and karate), the extended formulation
with fixing outperforms its basic version in solving time.

12



Table 4: The effect of variable fixing on the performance of the compact natural formulation (4)
within a time limit of 3,600 seconds. TL and MEM denote time limit reached and memory crash,
respectively.

Natural wo/ Fix Natural w/ Fix
instance n m LB UB time LB UB time
ieee30 30 41 15 15 0.14 15 15 0.03
karate 34 78 12 12 0.51 12 12 0.09
surfers 43 336 16 32 TL 17 30 TL
ieee57 57 78 30 30 71.55 30 30 0.26
dolphins 62 159 29 32 TL 32 32 12.85
lesmis 77 254 24 39 TL 28 32 TL
adjnoun 112 425 54 - TL 58 58 757.00
football 115 613 57 - TL 56 60 TL
ieee118 118 179 56 60 TL 60 60 10.31
jazz 198 2,742 - - MEM - - MEM
ieee300 300 409 130 - TL 134 134 59.27

Table 5: The effect of variable fixing on the performance of the compact extended formulation (5)
within a time limit of 3,600 seconds. TL and MEM denote time limit reached and memory crash,
respectively.

Extended wo/ Fix Extended w/ Fix
instance n m LB UB time LB UB time
ieee30 30 41 15 15 0.40 15 15 0.06
karate 34 78 12 12 0.86 12 12 0.08
surfers 43 336 16 25 TL 18 23 TL
ieee57 57 78 28 30 TL 30 30 0.64
dolphins 62 159 29 32 TL 32 32 6.39
lesmis 77 254 24 32 TL 30 32 TL
adjnoun 112 425 54 - TL 58 58 133.59
football 115 613 57 - TL 58 90 TL
ieee118 118 179 56 60 MEM 60 60 18.93
jazz 198 2,742 72 - TL 73 156 TL
ieee300 300 409 - - MEM 134 134 72.25

Finally, Table 6 summarizes our computational results with natural and extended compact for-
mulations with the edge fixing procedure. While both formulations solve the same instances to opti-
mality with the edge fixing procedure, and they are competitive in solving times, the extended for-
mulation generally1 provides better bounds for unsolved instances (i.e., surfers, lesmis, football,
and jazz). Specifically for jazz, the extended compact formulation provides lower and upper bounds
of 73 and 156, respectively, while the memory crashes with the natural formulation.

1For football, the natural formulation provides a better upper bound (60 vs. 90); however, the extended formu-
lation provides a better lower bound (58 vs. 56) after the one-hour time limit.
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Table 6: Computational comparisons between the natural and extended compact formulations. TL
and MEM denote time limit reached and memory crash, respectively.

Natural Extended
instance n m LB UB time LB UB time
ieee30 30 41 15 15 0.03 15 15 0.06
karate 34 78 12 12 0.09 12 12 0.08
surfers 43 336 17 30 TL 18 23 TL
ieee57 57 78 30 30 0.26 30 30 0.64
dolphins 62 159 32 32 12.85 32 32 6.39
lesmis 77 254 28 32 TL 30 32 TL
adjnoun 112 425 58 58 757.00 58 58 133.59
football 115 613 56 60 TL 58 90 TL
ieee118 118 179 60 60 10.31 60 60 18.93
jazz 198 2,742 - - MEM 73 156 TL
ieee300 300 409 134 134 59.27 134 134 72.25

4 Conclusion and Future Work

This paper proposes two compact MIP formulations for the minimum biclique cover problem on
general graph: (i) a natural MIP formulation in the edge space; and (ii) an extended MIP formulation
in the vertex and edge spaces. We prove that both proposed MIP formulations are correct and
propose a fixing procedure that accelerates the solving process of the problem on a set of social
network instances. As future work, one may propose MIP formulations with exponentially many
variables and explore employing large-scale optimization approaches (e.g., branch-and-price) for
solving the problem.
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