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Abstract

We consider a two-stage stochastic program with continuous recourse, where the distribu-
tion of the random parameters depends on the decisions. Assuming a finite sample space, we
study a distributionally robust approach to this problem, where the decision-dependent distri-
butional ambiguity is modeled with a polyhedral ambiguity set. We consider cases where the
recourse function and the ambiguity set are either generic or have a special convex/nonconvex
structure. We reformulate the resulting problem as a nonconvex two-stage stochastic program,
including a bilinearly-constrained bilinear program and a concave minimization problem. We
propose finitely-convergent decomposition-based cutting plane algorithms to solve the resulting
problems optimally (or near-optimally). The proposed algorithm may also be used to solve
two-stage stochastic programs with a random decision-dependent recourse matrix (i.e., bilinear
stochasticity on the left-hand side) or a bilinear objective function. We illustrate computa-
tional comparative results for joint pricing and stocking decisions on a stylized multiproduct
newsvendor problem with price-dependent demand.

Keywords: Distributionally robust optimization Decision-dependent uncertainty Noncon-
vex optimization Bilinear stochasticity

1 Introduction

Many problems arising in various domains, such as transportation [49] and defense [59, 61], require
decisions made before uncertain parameters are realized. Stochastic programming (SP) [14, 65] and
robust optimization (RO) [8, 11] are two common frameworks to handle such problems, assuming a
full distributional information and only support set information, respectively. Given that a decision-
maker may have some partial distributional information about uncertain parameters, a modeling
paradigm, referred to as distributionally robust optimization (DRO), has recently attracted much
attention [6, 33, 54]. DRO unifies SP and RO and protects the decision-maker from ambiguity in
the underlying probability. Despite theoretical and algorithmic advances in SP, RO, and DRO,
most research often assumes (i) uncertain parameters (or their distributions) are known a priori or
belong to a set and (ii) are exogenous. In other words, uncertain parameters or their distributions are
decision-independent. However, these assumptions rarely hold in practice, and uncertain parameters
may endogenously depend on the decisions.
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In this paper, we study a DRO framework for decision-making under uncertainty, where deci-
sions impact the probability distribution of uncertain parameters. More specifically, we consider a
DRO problem with a decision-dependent ambiguity set as follows:

min
x∈X

max
P∈P(x)

EP [h(x, ξ)] , (1)

where x ∈ X ⊆ Rn is the decision vector in a nonempty and bounded mixed-integer deterministic
feasible region X := {x ∈ Zn1 × Rn−n1 |Ax ≥ d,x ≥ 0}. We define a random vector ξ ∈ Rd

on a measurable space (Ξ,F), where Ξ ⊂ Rd is the support of ξ and F is a Borel σ-algebra.
Moreover, h(x, ξ) : X × Ξ 7→ R is a random cost function. For a given x ∈ X , P(x) is a decision-
dependent ambiguity set of probability distributions, with P as an element of this set. We have
P(x) ⊆ P (Ξ,F), where P (Ξ,F) is the set of all probability distributions defined on (Ξ,F). For a
fixed x ∈ X , the inner maximization problem in (1) finds the worst-case expected cost over P(x).

Problem (1) contains a wide range of problems, including decision-dependent distributionally
robust two-stage mixed-integer stochastic programs with continuous recourse, where

h(x, ξ) = min
y∈Y(x,ξ)

ψ0(x,y, ξ), (2)

and
Y(x, ξ) := {y ∈ Rm |Dy ≥ Bx+ b, y ≥ 0}, (3)

with matrices D and B, and vector b of appropriate dimensions. Problem (2) involves uncertain
parameters in both the objective function and feasible region (3). In this paper, we are especially
interested in problems where

ψ0(x,y, ξ) = c⊤x+ q⊤y, (4)

or
ψ0(x,y, ξ) = c⊤x+ q⊤y + x⊤Ly. (5)

Here, ξ includes vectors c, q, b and matrices D, B, and L. Note that for a fixed ξ ∈ Ξ, (4) and
(5) result in a convex and nonconvex recourse function, respectively. We assume that

A1 (Finite Sample Space) Each distribution P ∈ P(x) has a decision-independent finite sup-
port Ξ = {ξω}Nω=1, for all x ∈ X , where N is the fixed number of scenarios.

A2 (Complete Recourse) For x ∈ Rn and ω ∈ [N ], we have a complete recourse for problem
h(x, ξω), defined in (2), and Y(x, ξω), defined in (3), is a bounded set.

Remark 1. Assumption (A2) implies relatively complete recourse; that is, Y(x, ξω) is feasible for
any x ∈ X . Thus, h(x, ξω) is bounded from above and

{
π ≥ 0

∣∣π⊤Dω ≤ 0⊤, π⊤(Bωx+ bω) ≥ 0
}
=

{0} by Farkas Lamma. Hence, an optimal solution to the corresponding dual problem of (2)
is attained at an extreme point; showing that h(x, ξω) is bounded from below (by weak dual-
ity). In addition, given that we have a complete recourse for every x ∈ Rn, we must have{
π ≥ 0

∣∣π⊤Dω ≤ 0⊤
}
= {0}; hence, the set of optimal dual solutions is bounded.

Given Assumption (A1), we have F = 2Ξ. For any P ∈ P (Ξ,F), we let {p1, . . . , pN} be
the probabilities of the corresponding elementary events. As a shorthand notation, we might use
p = [p1, . . . , pN ]T ∈ RN .
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1.1 Decision-Dependent Ambiguity Set of Probability Distributions

In this paper, we consider a general polyhedral decision-dependent ambiguity set of probability
distributions, although there are various ways to model the distributional ambiguity. Following
the terminology in [54], there are four main groups of ambiguity sets studied in the literature: (i)
discrepancy-based ambiguity sets, (ii) moment-based ambiguity sets, (iii) shape-preserving ambigu-
ity sets, and (iv) kernel-based ambiguity sets. A discrepancy-based ambiguity set is constructed by
considering all probability distributions that are close to a nominal probability distribution in the
sense of a discrepancy measure, e.g., probability metric. Optimal transport discrepancy, see, e.g.,
[15, 22, 23, 24, 30, 35, 40, 75], and ϕ-divergences [6, 7] with its special cases such as total variation
distance, see, e.g., [31, 50, 51, 52, 63], are well studied. Moment-based models contain all probabil-
ity distributions whose moments satisfy certain properties, especially the first two moments, see,
e.g., [19, 62, 73]. For a more in-depth review of DRO and various ambiguity sets, interested readers
are referred to [54].

Instead of focusing on a particular type of ambiguity set, e.g., a discrepancy-based or moment-
based model, we consider a polyhedral ambiguity set, which subsumes some classes of both models.
More precisely, we study a decision-dependent ambiguity set with a generalized moment and mea-
sure inequalities [54] as follows:

P(x) :=
{
p ≥ 0

∣∣∣∣ pω ≤ pω ≤ pω, ω ∈ [N ],∑
ω∈[N ] pωg

i(ξω) ≤ ϑi(x), i ∈ [s]

}
, (6)

for x ∈ X , where gi : Ξ 7→ R, i ∈ [s], with s ≥ 1. We might use g = [g1, . . . , gs] and ϑ(x) =
[ϑ1(x), . . . , ϑs(x)] as a shorthand notation. The first set of constraints in (6) enforce a preference
relationship between probability distributions, i.e., lower and upper bounds on the probabilities. To
ensure that p is a probability distribution, we set ϑ1(x) = 1, g1 = 1, ϑ2(x) = −1, and g2 = −1, in
the above definition of P(x), for all x ∈ X . The authors in [64] proposed the decision-independent
version of (6), and its special cases appear in [3, 12, 28, 38, 45, 46], among others. We further
assume that

A3 (Nonempty Ambiguity Set) For a fixed x ∈ X , the ambiguity set P(x), defined in (6), is
nonempty.

Examples of Ambiguity Sets
A polyhedral ambiguity set in the form of (6) subsumes a wide range of ambiguity sets studied

in the DRO literature. An ambiguity set based on Wasserstein distance of order 1, or Kantorovich
distance, is represented as:

P(x) =

p ≥ 0

∣∣∣∣∣∣∣
∃z s.t.

∑
ω∈[N ]

∑
ω′∈[N ]

zωω′∥ξω − ξω′∥ ≤ τ(x),
∑

ω∈[N ]

pω = 1,∑
ω∈[N ]

zωω′ = pω,
∑

ω′∈[N ]

zωω′ = qω, ω ∈ [N ]

 ,

where τ(x) denotes a decision-dependent radius on the Wasserstein distance between a candidate
probability distribution p and an empirical probability distribution q.

A total variation ambiguity set is represented as:

P(x) =
{
p ≥ 0

∣∣∣ 1
2

∑
ω∈[N ] |pω − qω| ≤ τ(x),

∑
ω∈[N ] pω = 1

}
,

where τ(x) denotes a decision-dependent radius on the total variation distance between a candidate
probability distribution p and an empirical probability distribution q.
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A moment-based ambiguity set may be represented as:

P(x) =

p ≥ 0

∣∣∣∣∣∣∣∣∣∣

(1− τ1)µ0(x) ≤
∑

ω∈[N ]

pωξω ≤ (1 + τ1)µ0(x),

τ2
(
σ0(x)

2 + µ0(x)
2
)
≤

∑
ω∈[N ]

pωξ
2
ω ≤ τ2

(
σ0(x)

2 + µ0(x)
2
)
,∑

ω∈[N ]

pω = 1

 , (7)

where µ0(x) and σ0(x)
2 denote the vector of (empirical) decision-dependent mean and variance

of the random vector ξ. Moreover, τ1, τ2, and τ2 determine the maximum allowable deviations on
the empirical first- and second-order moments.

1.2 Contributions

We consider a distributionally robust two-stage stochastic mixed-integer program with continuous
recourse, where the distributional ambiguity is modeled with a decision-dependent ambiguity set of
probability distributions. We investigate cases where the recourse function and the ambiguity set
are either generic or have a special convex/nonconvex structure. Our main goals in this paper are
to provide reformulations and finitely-convergent decomposition-based cutting plane algorithms to
solve them optimally (or near-optimality). Here is a list of cases and our contributions:

• Generic recourse function and generic decision-dependent ambiguity set: We reformulate the
problem as a two-stage stochastic mixed-integer nonlinear program (MINLP), where the non-
linearity in the first stage is due to the decision dependency. When the recourse function is
convex, for instance, with an objective function in the form of (4), we develop a decomposition-
based cutting plane algorithm in virtue of L-shaped algorithm [9, 69] (Section 3.1). When
the recourse function is nonconvex, with an objective function in the form of (5), we develop
a disjunctive cutting plane algorithm, where the restricted master problem involves solving
a noncovex minimization problem (Section 3.2). This algorithm is of independent interest to
solve two-stage stochastic programs with a random decision-dependent recourse matrix (i.e.,
bilinear stochasticity on the left-hand side) or a bilinear objective function (see Remark 6).

• Convex recourse function and an ambiguity set with either nonnegative convex or nonpositive
concave decision-dependency: We reformulate the problem as a two-stage stochastic mixed-
integer concave minimization program. We develop a decomposition-based cutting plane
algorithm in virtue of L-shaped algorithm, where the restricted master problem involves
solving a concave minimization problem (Section 3.2).

• We provide computational experiments for joint pricing and stocking decisions on a stylized
multiproduct newsvendor problem with price-dependent demand involving a nonconvex re-
course function. We compare the performance of the proposed decomposition-based cutting
plane algorithm with solving the extensive formulation using a commercial nonconvex solver.

1.3 Literature Review

Decision-making problems with endogenous uncertainty are studied in the context of stochastic
programming [20, 25], robust optimization [70, 71], and DRO [36, 43], with applications including
offshore oilfield exploitation [32], clinical trial planning [17], radiation therapy [41], network design
and facility location [1, 5, 44], and power capacity expansion [4]. Following the earlier work of
[21], two distinct classes of endogenous uncertainty were identified in [26], depending on whether
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the decisions affect the temporal revelation of uncertainty or its probability distribution—with the
possibility of affecting the set of possible outcomes in both classes [42]. Given that our studied
stochastic program involves a decision-dependent probability distribution, we limit our literature
review to this class of problems.

Unlike models with temporal endogenous uncertainty, the literature on models where decisions
affect the probability distribution is sparse. Various discrepancy-based DRO approaches were de-
veloped in [36], where to model decision-dependent probability distributions, the maximum allowed
distance from a nominal distribution is assumed to be decision-dependent. The authors in [43] con-
sidered a DRO approach, where the decision-dependent distributional ambiguity is modeled via
Wasserstein distance around a decision-dependent nominal distribution. Similarly, the authors in
[4] studied a DRO approach to a facility location problem, where the distributional ambiguity of
decision-dependent demand is captured with moments around a decision-dependent nominal mo-
ment. A similar problem to the one in [4] was studied in a multistage setting in [74]. The authors
in [34, 37] studied a service center location problem, where utility gains upon receiving service are
location-dependent and assumed to be ambiguously described by moment-based sets. A joint stock-
ing and pricing problem for a product without knowing the price-dependent demand was studied
in [29]. The authors introduced a functionally robust approach to hedge against various classes of
decreasing convex or concave functions to model price-dependent demand. A DRO problem with
a decision-dependent ambiguity set was studied in [57], where the preference relationship between
probability distributions is formed via the decision-dependent cumulative distribution functions.

Similar to the existing models on DRO problems where decisions impact the probability dis-
tribution of random parameters, we capture the decision dependency with a decision-dependent
ambiguity set. Nevertheless, instead of focusing on a particular type of ambiguity set, e.g., a
discrepancy-based or moment-based model, we consider a polyhedral ambiguity set, which subsumes
some classes of both models. When the polyhedral ambiguity set (6) subsumes a discrepancy-based
model, we allow for a decision-dependent radius, whereas when it subsumes a moment-based model,
we allow for decision-dependent nominal parameters.

1.4 Organization

The rest of this paper is outlined as follows. In Section 2, we present reformulations for a gen-
eral DRO problem with a decision-dependent ambiguity set and special cases of convex/nonconvex
recourse functions as well as convex/nonconvex decision-dependency. In Section 3, we propose
finitely-convergent decomposition-based cutting plane algorithms to solve the resulting DRO prob-
lems optimally (or near-optimally). We then present numerical experiments to test the efficacy
of solution algorithms in Section 4. We end with conclusions and a discussion of future work in
Section 5.

Notation and Definitions: Throughout this paper, vectors are denoted by boldface lowercase
letters and matrices are denoted by boldface uppercase letters. Sets are denoted by calligraphic
uppercase letters. All sets in this paper are subsets of a finite-dimensional Euclidean space Rd.
For a set B ⊆ Rd, conv (B) denote the convex hull of B. Let ei be the i-th unit vector and e be
a vector of ones in Rd. A random function g : Ξ 7→ R has N outcomes {g(ξ1), . . . , g(ξN )} with
probabilities {p1, . . . , pN}. A set-valued function t 7→ F (t) : D ⇒ R is upper semicontinuous (u.s.c.)
at t ∈ D if limv→∞ tv = t, yv ∈ F (tv), and limv→∞ yv = y imply that y ∈ F (t). A real-valued
function t 7→ F (t) : D → R is lower semicontinuous (l.s.c.) at t ∈ D if limv→∞ tv = t implies that
lim infv→∞ F (tv) = F (t). For a ∈ R, (a)+ denotes max{0, a}.
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2 Reformulations

In this section, we provide reformulations for problem (1) with a decision-dependent polyhedral
ambiguity set in the form of (6). In Section 2.1, we focus on a generic recourse function and an
ambiguity set with a generic decision dependency. In Section 2.2, we focus on a convex recourse
function and an ambiguity set with a convex or concave decision-dependency. We suppose that
Assumptions (A1)–(A3) hold throughput the paper.

2.1 Generic Recourse Function and Ambiguity Set with Generic Decision De-
pendency

In this section, we suppose that h(x, ξ), defined in (2), is a generic function in x (convex or
nonconvex) for a fixed ξ ∈ Ξ. Moreover, we do not impose any additional structure on the ambiguity
set (6). Theorem 1 states a nonlinear reformulation of (1).

Theorem 1. Suppose that Assumptions (A1)–(A3) hold. Then, (1) can be written as the optimal
value of the following nonlinear program:

min
x,λ

λ⊤ϑ(x) +
∑
ω∈[N ]

Gω(x,λ)

s.t. x ∈ X , λ ≥ 0,

(8)

where
Gω(x,λ) := φω

[
h(x, ξω)− λ⊤g(ξω)

]
, (9)

with
φω[z] = pω(z)+ − pω(−z)+. (10)

Proof. Let us defineM :=
{
p ≥ 0

∣∣∣ p
ω
≤ pω ≤ pω, ω ∈ [N ]

}
. For a fixed x ∈ X , by dualizing the

second set of constraints in (6), a Lagrangian function of problem maxp∈P(x) Ep [h(x, ξ)] can be
written as:

L(x,p,λ) = λ⊤ϑ(x) +
∑
ω∈[N ]

pω

(
h(x, ξω)− λ⊤g(ξω)

)
.

Hence, the Lagrangian dual of problem maxp∈P(x) Ep [h(x, ξ)] is

min
λ

max
p∈M

L(x,p,λ)

s.t. λ ≥ 0.

Observe that

−λ⊤ϑ(x) + max
p∈M

L(x,p,λ)

=
∑
ω∈[N ]

pω

(
h(x, ξω)− λ⊤g(ξω)

)
+
−

∑
ω∈[N ]

p
ω

(
− h(x, ξω) + λ⊤g(ξω)

)
+

=
∑
ω∈[N ]

pω

(
h(x, ξω)− λ⊤g(ξω)

)
+
− p

ω

(
− h(x, ξω) + λ⊤g(ξω)

)
+

=
∑
ω∈[N ]

φω

[
h(x, ξω)− λ⊤g(ξω)

]
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=
∑
ω∈[N ]

Gω(x,λ),

where Gω(x,λ) and φω(·) are defined in (9) and (10), respectively. We concluded the second

equality above by the fact that either
(
h(x, ξω) − λ⊤g(ξω)

)
+

or
(
− h(x, ξω) + λ⊤g(ξω)

)
+

is

positive. Now, because maxp∈P(x) Ep [h(x, ξ)] is a linear program and by Assumption (A3), there
is no duality gap. Combining the resulting dual problem with the outer minimization problem
derives the reformulation in the statement of the theorem.

Note that Gω(x,λ), defined in (9), is well-defined by the finiteness of h(x, ξω) (see Remark
1). In Lemma 1, we establish that φω[z] is a convex function, and using this lemma, we derive a
two-stage reformulation of (1) in Corollary 1.

Lemma 1. Consider function φω[z], defined in (10), for ω ∈ [N ]. Then, φω[z] is convex and
monotonically nondecreasing in z.

Proof. Observe that φω[z] can rewritten as φω[z] = p
ω
z+ε(z)+, where ε ≥ 0 is such that pω = p

ω
+ε.

Hence, φω[z] is monotonically nondecreasing in z. Because (z)+ is convex in z, then, it follows that
φω[z] is convex in z.

Corollary 1. Suppose that Assumptions (A1)–(A3) hold. Then, (1) can be written as the optimal
value of the following two-stage stochastic mixed-integer nonlinear program (MINLP):

min
x,λ

λ⊤ϑ(x) +
∑
ω∈[N ]

Gω(x,λ)

s.t. x ∈ X , λ ≥ 0,

(11)

where
Gω(x,λ) = min

y,µ,γ
γpω − µpω
γ − µ ≥ ψ0(x,y, ξω)− λ⊤g(ξω),

y ∈ Y(x, ξω),
γ, µ ≥ 0.

(12)

Proof. By Lemma 1, φω[z], defined in (10), is monotonically nondecreasing in z. Hence,

Gω(x,λ) =φω

[
h(x, ξω)− λ⊤g(ξω)

]
= min

y∈Y(x,ξω)
φω

[
ψ0(x,y, ξω)− λ⊤g(ξω)

]
.

Now, linearization of φω[·] by introducing additional variables γ and µ, yields (12). Theorem 1
completes the proof.

Remark 2. It is evident from (11) that once decision variables (x,λ) are fixed, the problem becomes
decomposable in ω ∈ [N ]. In particular, one can interpret (11) as a two-stage stochastic program,
where (x,λ) are the first-stage decisions and (yω, µω, γω), ω ∈ [N ], are the second-stage decisions.
In particular, observe that in the case that P(x) is decision-independent, i.e., ϑ(x) is a constant,
problem (11) reduces to a two-stage stochastic mixed-integer program.

We end this section by presenting an extensive deterministic equivalent formulation (DEF) of
(11) in Corollary 2.
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Corollary 2. Suppose that Assumptions (A1)–(A3) hold. Then, (1) can be written as the optimal
value of the following MINLP:

min
x,λ,y1,...,yN ,γ,µ

λ⊤ϑ(x) +
∑
ω∈[N ]

(γωpω − µωpω)

s.t. x ∈ X , λ ≥ 0,

γω − µω ≥ ψ0(x,yω, ξω)− λ⊤g(ξω), ω ∈ [N ],

yω ∈ Y(x, ξω), ω ∈ [N ],

γ,µ ≥ 0.

(13)

2.2 Convex Recourse Function and Ambiguity Set with Convex/Concave De-
cision Dependency

Throughout this section, we suppose that h(x, ξ), defined in (2), is a convex function in x for a
fixed ξ ∈ Ξ; for instance ψ0(x,y, ξ) = c⊤x + q⊤y as in (4). Proposition 1 states that in this
case, Gω(x,λ), defined in (9), is convex in (x,λ). Then, Corollary 3 below states that under
certain conditions on the ambiguity set P(x), problem (11) can be stated as a two-stage stochastic
mixed-integer concave minimization problem.

Proposition 1. Suppose that Assumptions (A1)–(A3) hold. If h(x, ξω) is convex in x for ω ∈ [N ],
then Gω(x,λ), defined in (9), is convex in (x,λ) for ω ∈ [N ].

Proof. Observe that h(x, ξω) − λ⊤g(ξω) is convex in (x,λ). Hence, Gω(x,λ) is convex in (x,λ)
because φω(·) preserves convexity.

To state the main result in this section, we make the following assumption on the ambiguity
set.

A4 (Convex/Concave Decision-Dependent Ambiguity Set) For the ambiguity set P(x),
defined in (6), ϑi(x), is either a nonnegative convex function in x or a nonpositive concave
function in x, for i ∈ [s].

Corollary 3. Suppose that Assumptions (A1)–(A4) hold. For ω ∈ [N ], suppose that h(x, ξω) is
a convex recourse function defined in (2). Then, (1) can be written as the optimal value of the
following two-stage stochastic mixed-integer concave minimization problem:

min
x,λ,θ,Ψ

Ψ+
∑
ω∈[N ]

θω −
1

2

∑
i∈C+

(
λ2i + ϑi(x)2

)
− 1

2

∑
i∈C−

(
λi − ϑi(x)

)2
s.t. θω ≥ Gω(x,λ), ω ∈ [N ],

Ψ ≥ 1

2

∑
i∈C+

(
λi + ϑi(x))2 +

1

2

∑
i∈C−

(
λ2i + ϑi(x)2

)
x ∈ X , λ ≥ 0,

(14)

where Gω(x,λ) is defined as in (12), C+ :=
{
i ∈ [s]

∣∣ϑi(x) ≥ 0 and convex in x
}
, and C− :={

i ∈ [s]
∣∣ϑi(x) ≤ 0 and concave in x

}
.

Proof. Note that 2ab = (a+b)2−(a2+b2). Using this identity, we can write 2λiϑ
i(x) as the difference

of two convex functions as follows 2λiϑ
i(x) =

(
λi + ϑi(x)

)2 − (
λ2i + ϑi(x)2) for i ∈ C+. Similarly,
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we can write 2λiϑ
i(x) =

(
λ2i + ϑi(x)2

)
−

(
λi − ϑi(x))2 for i ∈ C−, which is again the difference

of two convex functions. Problem (14) is then obtained from (11), where the concave terms are
kept in the objective function and the convex terms are moved to the constraints by introducing
additional variables θ and Ψ. Because the objective function is concave and the constraints induce
a convex feasible region, the problem is a two-stage stochastic mixed-integer concave minimization
problem.

3 Solution Algorithms

The two-stage structure makes problem (11) amenable to decomposition-based algorithms. This
section investigates decomposition-based cutting plane approaches to obtain an optimal (or near-
optimal) solution to (11) under different assumptions on the recourse function and the decision-
dependent ambiguity set. These cases will involve solving a nonconvex problem; hence, we assume
that there is an oracle that solves this problem to ϵ-optimality as follows.

A5 (ϵ-Optimal Global Solver) For any ϵ > 0, there is an oracle that solves a nonconvex
problem z∗ = min(x,λ,θ)∈S λ⊤ϑ(x)+ θ to ϵ-optimality. That is, it obtains a solution (x̂, λ̂, θ̂)

such that ϑ(x̂)⊤λ̂+ θ̂ ≤ z∗ + ϵ.

3.1 Convex Recourse Function and Ambiguity Set with Generic Decision De-
pendency

Throughout this section, we suppose that h(x, ξω) is a convex function in x, ω ∈ [N ]. Before
presenting an algorithm for solving (1) with a generic decision-dependent ambiguity set (6), we
review such an algorithm for a decision-independent ambiguity set.

Recall that when h(x, ξω) is a convex function in x, Gω(x,λ), defined in (9), is convex in (x,λ),
ω ∈ [N ] (Proposition 1). In addition, when the ambiguity set P(x) is decision-independent, i.e.,
ϑi(x) = ϑi, i ∈ [s], (11) reduces to a convex program. Consequently, by exploiting the convex
structure of Gω(x,λ), one can iteratively obtain outer approximations to Gω(x,λ) for ω ∈ [N ]
using subgradient information. These, in turn, lead to a lower bound on the optimal value. Below,
we first present subdifferential of Gω(x,λ), ω ∈ [N ]. Then, we discuss the general framework of
such a cutting plane scheme.

Proposition 2. Suppose that Assumptions (A1)–(A3) hold. For ω ∈ [N ], suppose that h(x, ξω)
is a convex recourse function defined in (2). Then, for Gω(x,λ), defined in (9), we have

∂Gω(x,λ) =


pω∂h(x, ξω)× {−g(ξω)} if h(x, ξω)− λ⊤g(ξω) > 0,

p
ω
∂h(x, ξω)× {−g(ξω)} if h(x, ξω)− λ⊤g(ξω) < 0,⋃

η∈[p
ω
,pω ]

η∂h(x, ξω)× {−g(ξω)} if h(x, ξω)− λ⊤g(ξω) = 0,
(15)

where × denotes the Cartesian product.

Proof. Observe that by Proposition 1, Gω(x,λ) is convex in (x,λ). Thus, the subdifferential (15)
follows immediately from (9).

Given x̂ ∈ X and λ̂ ≥ 0, observe that by using the subgradient inequality, we have

Gω(x,λ) ≥ Gω(x̂, λ̂) + ζ⊤x,ω(x− x̂) + ζ⊤λ,ω(λ− λ̂), (16)
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where ζω := (ζ⊤x,ω, ζ
⊤
λ,ω)

⊤ ∈ ∂Gω(x̂, λ̂). Hence, for the epigraph

Qω := {(x,λ, θω) |Gω(x,λ) ≤ θω, x ∈ X , λ ≥ 0},

we can obtain supporting hyperplanes to separate point (x̂, λ̂) from the epigraph. The supporting
hyperplanes are of the form

θω ≥ Gω(x̂, λ̂) + ζ⊤x,ω(x− x̂) + ζ⊤λ,ω(λ− λ̂). (17)

Therefore, one can obtain a restricted master problem for (1) after t iterations as follows:

zt = min
(x,λ,θ)∈St

λ⊤ϑ+
∑
ω∈[N ]

θω, (18)

where

St =

(x,λ,θ)

∣∣∣∣∣∣
Ax ≥ d, x ≥ 0, λ ≥ 0,

θω ≥ Gω(x
k,λk) + (x− xk)⊤ζkx,ω+

(λ− λk)⊤ζkλ,ω, ω ∈ [N ], k ∈ {0} ∪ [t− 1]

 , (19)

(xt,λt,θt) is a solution obtained from solving (18) at iteration t, and ζk are the corresponding
subgradient of Gω(x

k,λk), ω ∈ [N ] and k ∈ {0} ∪ [t − 1]. Note that S0 is the initial set, with no
optimality cuts.

It is clear that
∑

ω∈[N ]Qω(x,λ) is also convex in (x,λ). Hence, one can also obtain a lower

approximation to (8) where one generates cuts of the form θ ≥
∑

ω∈[N ]

(
Gω(x̂, λ̂) + ζ⊤x,ω(x− x̂) +

ζ⊤λ,ω(λ− λ̂)
)
.

When h(x, ξ) is defined with objective function ψ0(x,y, ξ) = c⊤x + q⊤y, as in (4), we have
that Gω(x,λ) as the optimal value of a linear program as follows:

Gω(x,λ) = min
y,µ,γ

γpω − µpω (20a)

γ − µ− q⊤ωy ≥ c⊤ωx− λ⊤g(ξω), (20b)

Dωy ≥ Bωx+ bω, (20c)

y ≥ 0, γ, µ ≥ 0. (20d)

By taking the dual of (20), we have

Gω(x,λ) = max
π,σ

σ
(
c⊤ωx− λ⊤g(ξω)

)
+ π⊤(Bωx+ bω)

s.t. p
ω
≤ σ ≤ pω,

− σq⊤ω + π⊤Dω ≤ 0⊤,

π ≥ 0, σ ≥ 0.

(21)

where σ and π are the dual vectors corresponding to (20b) and (20c), respectively. Let
(
σ̂ω(x̂, λ̂), π̂ω(x̂, λ̂)

)
be an optimal dual multiplier to problem (21) at (x̂, λ̂). Then, an optimality cut in the form of
(17) can be written as:

θω ≥ σ̂ω(x̂, λ̂)
(
c⊤ωx− λ⊤g(ξω)

)
+ π̂ω(x̂, λ̂)

⊤(Bωx+ bω). (22)

For simplicity, we let
αx,ω(x̂, λ̂) := B⊤

ω π̂ω(x̂, λ̂) + cωσ̂ω(x̂, λ̂)

αλ,ω(x̂, λ̂) := −g(ξω)σ̂ω(x̂, λ̂)
ρω(x̂, λ̂) := b⊤ω π̂ω(x̂, λ̂).

(23)
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Algorithm 1: Cutting-plane algorithm for problem (1) with a convex recourse function
and a decision-independent ambiguity set.

Input: An initial solution (x0,λ0).
Output: An optimal solution and the optimal value.

1 Initialization: Set t← 1, LB← −∞, UB← +∞. Add initial cuts (e.g., θω ≥ 0), if
available, to S0.

2 while UB > LB do
3 for each ω ∈ [N ] do
4 Obtain Gω(x

t−1,λt−1) by solving (12) and subgradients ζω ∈ ∂Gω(x
t−1,λt−1)

using (15).
5 end

6 UB← min{UB,ϑ⊤λt−1 +
∑

ω∈[N ]Gω(x
t−1,λt−1)}.

7 Let St =
St−1 ∩

{
(x,λ,θ)

∣∣ θω ≥ Gω(x
t−1,λt−1) + ζ⊤x,ω(x− xt−1) + ζ⊤λ,ω(λ− λt−1), ω ∈ [N ]

}
.

8 Solve restricted master problem (18) using St and obtain an optimal solution
(xt,λt,θt).

9 Let LB← ϑ⊤λt +
∑

ω∈[N ] θ
t
ω.

10 Set t← t+ 1.

11 end
12 return (xt,λt) and UB.

Hence,
θω ≥ x⊤αx,ω(x̂, λ̂) + λ⊤αλ,ω(x̂, λ̂) + ρω(x̂, λ̂) (24)

is a valid inequality in the form of (17).
A general framework of a finitely-convergent cutting plane scheme to solve (11) with a convex

recourse function and a decision-independent ambiguity set is given in Algorithm 1.

Theorem 2. Suppose that Assumptions (A1)–(A3) hold. For ω ∈ [N ], suppose that h(x, ξω) is a
convex recourse function defined in (2). Moreover, P(x), defined in (6), is decision-independent.
Then, Algorithm 1 generates an optimal solution to (1) in a finite number of iterations.

Proof. To prove the finite convergence of Algorithm 1, we need to show that the “while” loop
terminates in a finite number of iterations, generating an optimal solution to (1).

First, note that at each iteration t, Gω(x
t−1,λt−1) is finite, ω ∈ [N ]. Now, after solving (18)

using St and obtaining an optimal solution (xt,λt,θt), either (1) θtω ≥ Gω(x
t,λt) for all ω ∈ [N ]

or (2) θtω < Gω(x
t,λt) for some ω ∈ [N ]. If case (1) happens, we have

LB = ϑ⊤λt +
∑
ω∈[N ]

θtω ≥ ϑ⊤λt +
∑
ω∈[N ]

Gω(x
t, λt) = UB.

Hence, the termination criterion is satisfied, and Algorithm 1 returns the optimal value UB, with
the corresponding optimal solution (xt,λt).

Now, suppose that case (2) happens. It can be verified that solution (xt,λt,θt) is not feasible
to the epigraphic reformulation of problem (1) for some ω ∈ [N ], because θtω < Gω(x

t,λt). Also,
we have

LB = ϑ⊤λt +
∑
ω∈[N ]

θtω < ϑ⊤λt +
∑
ω∈[N ]

Gω(x
t, λt) = UB.

11



Because the termination criterion is not satisfied, we derive optimality cut θω ≥ Gω(x
t,λt) +

ζ⊤x,ω(x−xt)+ζ⊤λ,ω(λ−λt). Now, we show that case (2) happens a finite number of iterations. Note

that θtω < Gω(x
t,λt) implies that none of the previously generated cuts enforce θω ≥ Gω(x,λ) at

(xt,λt). Therefore, a new subgradient ζω = (ζ⊤x,ω, ζ
⊤
λ,ω)

⊤ of function Gω(x,λ) at (x
t,λt) is needed

to cut off the point (xt,λt,θt). Observe that ζx,ω corresponds to one of the finitely many dual

bases of h(xt, ξω); that is,
{
π ≥ 0

∣∣π⊤Dω ≤ qω
⊤}. Hence, there are finitely many optimality cuts.

Consequently, case (2) can only happen a finite number of times. This completes the proof.

Remark 3. Algorithm 1 can be used for the cases where there are integer variables in the first stage,
i.e., n1 > 0, and the finite-convergence analysis remains valid where one solves the corresponding
mixed-integer master problem to optimality at each iteration of Algorithm 1. Alternatively, one can
use a branch-and-cut procedure, where a linear relaxation of the master problem is solved with the
standard branch-and-bound procedure. Then, a globally valid optimality cut is obtained whenever
an integer feasible solution to the restricted master problem violates any of the previously generated
optimality cuts. By the finiteness of the branch-and-bound, it is straightforward to prove the finite
convergence of this adjusted version of Algorithm 1.

When the ambiguity set P(x) is decision-dependent, similar to the construction for the decision-
independent case, one can form a restricted master problem for (1) after t iterations as follows:

zt = min
(x,λ,θ)∈St

λ⊤ϑ(x) +
∑
ω∈[N ]

θω, (25)

where

St =

(x,λ,θ)

∣∣∣∣∣∣
Ax ≥ d, x ≥ 0, λ ≥ 0,

θω ≥ Gω(x
k,λk) + (x− xk)⊤ζkx,ω+

(λ− λk)⊤ζkλ,ω, ω ∈ [N ], k ∈ {0} ∪ [t− 1]

 , (26)

(xt,λt,θt) is a solution obtained from solving (25) at iteration t, and ζk are the corresponding
subgradient ofGω(x

k,λk), ω ∈ [N ] and k ∈ {0}∪[t−1]. A general framework of a finitely-convergent
cutting plane scheme to solve (1) with a convex recourse function and a generic decision-dependent
ambiguity set is given in Algorithm 2.

Theorem 3. Suppose that Assumptions (A1)–(A3) and (A5) hold. For ω ∈ [N ], suppose that
h(x, ξω) is a convex recourse function defined in (2). Then, Algorithm 2 generates an ϵ-optimal
solution to (1) in a finite number of iterations.

Proof. Using a similar argument as that in the proof of Theorem 2, after a finite number of iterations
t, we have θtω ≥ Gω(x

t,λt) for all ω ∈ [N ]. This implies that

LB = ϑ(xt)⊤λt +
∑
ω∈[N ]

θtω ≥ ϑ(xt)⊤λt +
∑
ω∈[N ]

Gω(x
t, λt) = UB.

Hence, the termination criterion is satisfied. On the other hand, given Assumption (A5), we have
LB ≤ zt + ϵ. Thus, Algorithm 2 returns the ϵ-optimal value UB, because UB ≤ zt + ϵ, with the
corresponding ϵ-optimal solution (xt,λt).

Remark 4. A challenge in obtaining the lower bound at each iteration of Algorithm 2 is the
nonlinear product term λ⊤ϑ(x). Various techniques are developed for the global optimization and
relaxation of nonconvex nonlinear programs, see, e.g., [13, 18, 53, 55, 60, 66, 67] for a finitely-
convergent cutting plane algorithm to obtain an ϵ-optimal solution to nonconvex bilinear programs.

12



Algorithm 2: Cutting-plane algorithm for problem (1) with a convex recourse function
and a generic decision-dependent ambiguity set.

Input: An initial solution (x0,λ0) and ϵ > 0 for the optimality tolerance.
Output: An ϵ-optimal solution and the ϵ-optimal value.

1 Initialization: Set t← 1, LB← −∞, UB← +∞. Add initial cuts (e.g., θω ≥ 0), if
available, to S0.

2 while UB > LB do
3 for each ω ∈ [N ] do
4 Obtain Gω(x

t−1,λt−1) by solving (12) and subgradients ζω ∈ ∂Gω(x
t−1,λt−1)

using (15).
5 end

6 UB← min{UB,ϑ(xt−1)⊤λt−1 +
∑

ω∈[N ]Gω(x
t−1,λt−1)}.

7 Let St =
St−1 ∩

{
(x,λ,θ)

∣∣ θω ≥ Gω(x
t−1,λt−1) + ζ⊤x,ω(x− xt−1) + ζ⊤λ,ω(λ− λt−1), ω ∈ [N ]

}
.

8 Solve restricted master problem (25) using St and obtain an ϵ-optimal solution
(xt,λt,θt).

9 Let LB← ϑ(xt)⊤λt +
∑

ω∈[N ] θ
t
ω.

10 Set t← t+ 1.

11 end
12 return (xt,λt) and UB.

These cutting plane-based algorithms have found applications in several branch-and-bound schemes,
see, e.g., [66] for a reformulation-linearization technique (RLT)-based branch-and-bound algorithm,
and [58, 68] for a spatial branch-and-bound algorithm. For a comprehensive review of such global
optimization techniques, interested readers are referred to [16]. In the context of DRO with a
decision-dependent ambiguity set, the authors in [4, 74] used McCormick inequalities to obtain an
exact reformulation of bilinear terms due to the multiplication of a binary and a continuous variable.
Given that many of these global optimization and relaxation techniques are implemented in some
commercial nonconvex solvers, we directly leverage them in our numerical experiments in Section
4,

3.2 Convex Recourse Function and Ambiguity Set with Convex/Concave De-
cision Dependency

We now turn our attention to problem (14), where h(x, ξω) is a convex function in x, ω ∈ [N ], and
Assumption (A4) holds for the decision-dependent ambiguity set.

By a similar argument as in Section 3.1, one can obtain lower bounding approximations to (14).
To solve this problem, a restricted master problem for (1) after t iterations is as follows:

zt = min
(x,λ,θ,Ψ)∈St

Ψ+
∑
ω∈[N ]

θω −
1

2

∑
i∈C+

(
λ2i + ϑi(x)2

)
− 1

2

∑
i∈C−

(
λi − ϑi(x)

)2
, (27)

where

St =

(x,λ, θ,Ψ)

∣∣∣∣∣∣∣∣∣
Ax ≥ d, x ≥ 0, λ ≥ 0,

Ψ ≥ 1
2

∑
i∈C+

(
λi + ϑi(x)

)2
+ 1

2

∑
i∈C−

(
λ2i + ϑi(x)2

)
,

θω ≥ Qω(x
k,λk) + (x− xk)⊤ζkx,ω+

(λ− λk)⊤ζkλ,ω, ω ∈ [N ], k ∈ {0} ∪ [t− 1]

 , (28)
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Algorithm 3: Cutting-plane algorithm for problem (1) with a convex recourse function
and a convex/concave decision-dependent ambiguity set.

Input: An initial solution (x0,λ0) and ϵ > 0 for the optimality tolerance.
Output: An ϵ-optimal solution and the ϵ-optimal value.

1 Initialization: Set t← 1, LB← −∞, UB← +∞. Add initial cuts (e.g., θω ≥ 0), if
available, to S0.

2 while UB > LB do
3 for each ω ∈ [N ] do
4 Obtain Gω(x

t−1,λt−1) by solving (12) and subgradients ζω ∈ ∂Gω(x
t−1,λt−1)

using (15).
5 end

6 UB← min{UB,Ψt−1 +
∑

ω∈[N ]Gω(x
t−1,λt−1)− 1

2

∑
i∈C+

(
(λt−1

i )2 + (ϑi(xt−1))2
)
−

1
2

∑
i∈C−

(
λt−1
i − ϑi(xt−1)

)2}.
7 Let St =

St−1 ∩
{
(x,λ,θ)

∣∣ θω ≥ Gω(x
t−1,λt−1) + ζ⊤x,ω(x− xt−1) + ζ⊤λ,ω(λ− λt−1), ω ∈ [N ]

}
.

8 Solve restricted master problem (27) using St and obtain an ϵ-optimal solution
(xt,λt,θt,Ψt).

9 Let LB← Ψt +
∑

ω∈[N ] θ
t
ω − 1

2

∑
i∈C+

(
(λti)

2 + (ϑi(xt))2
)
− 1

2

∑
i∈C−

(
λti − ϑi(xt)

)2
.

10 Set t← t+ 1.

11 end
12 return (xt,λt) and UB.

(xt,λt,θt,Ψt) is an (extreme point) solution obtained from solving (27) at iteration t, and ζk are
the corresponding subgradient of Gω(x

k,λk), ω ∈ [N ] and k ∈ {0} ∪ [t− 1]. A general framework
of a finitely-convergent cutting plane scheme to solve (14) is given in Algorithm 3.

Theorem 4. Suppose that Assumptions (A1)–(A5) hold. For ω ∈ [N ], suppose that h(x, ξω) is a
convex recourse function defined in (2). Then, Algorithm 3 generates an ϵ-optimal solution to (1)
in a finite number of iterations.

Proof. Using a similar argument as that in the proof of Theorem 2, after a finite number of iterations
t, we have θtω ≥ Gω(x

t,λt) for all ω ∈ [N ]. This implies that

LB = Ψt +
∑
ω∈[N ]

θtω −
1

2

∑
i∈C+

(
(λti)

2 + (ϑi(xt))2
)
− 1

2

∑
i∈C−

(
λti − ϑi(xt)

)2
≥ Ψt +

∑
ω∈[N ]

Gω(x
t,λt)− 1

2

∑
i∈C+

(
(λti)

2 + (ϑi(xt))2
)
− 1

2

∑
i∈C−

(
λti − ϑi(xt)

)2
= UB.

Hence, the termination criterion is satisfied. On the other hand, given Assumption (A5), we have
LB ≤ zt + ϵ. Thus, Algorithm 3 returns the ϵ-optimal value UB, because UB ≤ zt + ϵ, with the
corresponding ϵ-optimal solution (xt,λt).

Remark 5. A challenge in obtaining the lower bound at each iteration of Algorithm 3 is to solve a
concave minimization problem (27). Given that solution (xt,λt,θt,Ψt) obtained from solving (27)
at iteration t is an extreme point, a cutting plane algorithm can be developed, see, e.g., [47, 48].
We also refer to [10, 27] for a review of the global optimization of concave minimization problems.
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3.3 Nonconvex Recourse Function and Ambiguity Set with Generic Decision
Dependency

Throughout this section, we suppose that h(x, ξω) is a nonconvex function in x, ω ∈ [N ], un-
less otherwise stated. In particular, we assume that h(x, ξω) is defined with objective function
ψ0(x,y, ξω) = c⊤ωx+ q⊤ωy + x⊤Lωy, as in (5).

Observe that Gω(x,λ), defined in (12), is the optimal value of a linear program as follows:

Gω(x,λ) = min
y,µ,γ

γpω − µpω (29a)

γ − µ− q⊤ωy − x⊤Lωy ≥ c⊤ωx− λ⊤g(ξω), (29b)

Dωy ≥ Bωx+ bω, (29c)

y ≥ 0, γ, µ ≥ 0. (29d)

Let σ and π be the Lagrange multipliers corresponding to (29b) and (29c), respectively. Moreover,
πy, πγ , and πµ are the Lagrange multipliers corresponding to y ≥ 0, γ ≥ 0, and µ ≥ 0. The
Lagrangian function can be written as:

Lω(x,λ,y, µ, γ, σ,π,πy, πγ , πµ)

= γpω − µpω + σ(c⊤ωx− λ⊤g(ξω)− γ + µ+ q⊤ωy + x⊤Lωy)+

π⊤(Bωx+ bω −Dωy)− π⊤
y y − πγγ − πµµ

= σ
(
c⊤ωx− λ⊤g(ξω)

)
+ π⊤(Bωx+ bω) + γ(pω − πγ − σ)− µ(pω + πµ − σ)

+ (σq⊤ω − π⊤
y − π⊤Dω + σx⊤Lω)y.

By weak duality, we have

Qω(x,λ, σ,π,πy, πγ , πµ) := min
y,µ,γ

Lω(x,λ,y, µ, γ, σ,π,πy, πγ , πµ) ≤ Gω(x,λ),

for all π,πy ≥ 0 and σ, πγ , πµ ≥ 0. Thus, problem (11) can be reformulated as:

min
x,λ,θ

λ⊤ϑ(x) +
∑
ω∈[N ]

θω

s.t. x ∈ X , λ ≥ 0,

θω ≥ Qω(x,λ, σ,π,πy, πγ , πµ), ω ∈ [N ], ∀π,πy ≥ 0, σ, πγ , πµ ≥ 0.

(30)

Let us consider the Lagrangian dual problem

Gω(x,λ) = max
π,πy≥0,σ,πγ ,πµ≥0

Qω(x,λ, σ,π,πy, πγ , πµ)

= max
π,πy≥0,σ,πγ ,πµ≥0

{
σ
(
c⊤ωx− λ⊤g(ξω)

)
+ π⊤(Bωx+ bω)+

min
y,µ,γ

γ(pω − πγ − σ)− µ(pω + πµ − σ) + (σq⊤ω − π⊤
y − π⊤Dω + σx⊤Lω)y

}
= max

π,πy≥0,σ,πγ ,πµ≥0
σ
(
c⊤ωx− λ⊤g(ξω)

)
+ π⊤(Bωx+ bω)

s.t. pω − πγ − σ = 0,

p
ω
+ πµ − σ = 0,

σq⊤ω − π⊤
y − π⊤Dω + σx⊤Lω = 0⊤.

(31)
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= max
π≥0,σ≥0

σ
(
c⊤ωx− λ⊤g(ξω)

)
+ π⊤(Bωx+ bω)

s.t. p
ω
≤ σ ≤ pω,

− σq⊤ω + π⊤Dω − σx⊤Lω ≤ 0⊤.

(32)

Given x̂ ∈ X and λ̂ ≥ 0, let (σ̂, π̂, π̂y, π̂γ , π̂µ) be a corresponding optimal Lagrange multipliers to
Lagrangian dual problem (31) with zero duality gap. Hence, for ω ∈ [N ], we have

Lω(x,λ,y, µ, γ, σ̂, π̂, π̂y, π̂γ , π̂µ)

= σ̂
(
c⊤ωx− λ⊤g(ξω)

)
+ π̂⊤(Bωx+ bω) + γ(pω − π̂γ − σ̂)− µ(pω + π̂µ − σ̂)

+ (σ̂q⊤ω − π̂⊤
y − π̂⊤Dω + σ̂x⊤Lω)y

= σ̂
(
c⊤ωx− λ⊤g(ξω)

)
+ π̂⊤(Bωx+ bω) + σ̂(x− x̂)⊤Lωy,

where the second equality follows from the facts that pω − π̂γ − σ̂ = 0, p
ω
+ π̂µ− σ̂ = 0, and σ̂q⊤ω −

π̂⊤
y − π̂⊤Dω + σ̂x̂⊤Lω = 0⊤. Given that Lω(x,λ,y, µ, γ, σ̂, π̂, π̂y, π̂γ , π̂µ) only depends on primal

variables y and dual multipliers (σ̂, π̂), we suppress (µ, γ) and (π̂y, π̂γ , π̂µ) from the arguments
of Lω. Moreover, Lω depends on x̂ only through (σ̂, π̂). Hence, we add x̂ to the arguments of
Lω, i.e., Lω(x,λ,y, µ, γ, σ̂, π̂; x̂), when needed for clarity. Similarly, we write Qω(x,λ, σ̂, π̂; x̂).
Consequently, upon choosing (σ̂, π̂), the Lagrangian dual function can be written as:

Qω(x,λ, σ̂, π̂; x̂) = min
y

Lω(x,λ,y, σ̂, π̂; x̂)

= σ̂
(
c⊤ωx− λ⊤g(ξω)

)
+ π̂⊤(Bωx+ bω) + min

y
σ̂(x− x̂)⊤Lωy. (33)

Given x̂ ∈ X and λ̂ ≥ 0, and for the specific choice of (σ̂, π̂), an optimal solution of the La-
grangian dual function only depends on variables y, i.e., the variables that are bilinearly connected
to x in the description of the objective function ψ0(x,y, ξω) = c⊤ωx+ q⊤ωy + x⊤Lωy. Thus, given
that σ̂ ≥ 0, the condition

(x− x̂)⊤Lω(y − y∗
ω) ≥ 0, ∀y (34)

is sufficient and necessary for the optimality of y∗
ω to the Lagrangian dual function (33). Given

that σ̂(x − x̂)⊤Lωy is linear in y, an optimal y∗
ω is a boundary point of the space of y. Suppose

that Assumption (A2) holds and y
ω
≤ yω ≤ yω. Let lω,j be the j-th column of matrix Lω. Thus,

if (x− x̂)⊤lω,j ≥ 0, then y∗ω,j = y
ω,j

. Otherwise, if (x− x̂)⊤lω,j ≤ 0, then y∗ω,j = yω,j .

Let ŷω be a combination of such lower and upper bounds on variables yω that attains Lagrangian
dual function (33). Thus,

θω ≥ σ̂
(
c⊤ωx− λ⊤g(ξω)

)
+ π̂⊤(Bωx+ bω) + σ̂(x− x̂)⊤Lωŷω

is a valid linear inequality for (30) on

Sω :=

{
x

∣∣∣∣ (x− x̂)⊤lω,j ≥ 0, j ∈ J+
ω ,

(x− x̂)⊤lω,j ≤ 0, j ∈ J−
ω

}
, (35)

where J+
ω := {j : ŷω,j = y

ω,j
} and J−

ω := {j : ŷω,j = yω,j}. Let Q be a finite index set, enumerating

all combinations of such lower and upper bounds on variables yω. Appending the subscript q ∈ Q
to ŷ, J+

ω , and J−
ω , we define

Kω,q :=

(x,λ, θω)

∣∣∣∣∣∣∣∣∣∣

Ax ≥ d, x ≥ 0, λ ≥ 0,

θω ≥ σ̂
(
c⊤ωx− λ⊤g(ξω)

)
+

π̂⊤(Bωx+ bω) + σ̂(x− x̂)⊤Lωŷω,q,

(x− x̂)⊤lω,j ≥ 0, j ∈ J+
ω,q,

(x− x̂)⊤lω,j ≤ 0, j ∈ J−
ω,q

 . (36)
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Given that Lagrangian dual function (33) attains its optimal solution at ŷω,q for some q ∈ Q,
the feasible region of (30) is a subset of the following disjunctive set:

Tω :=

(x,λ, θω) :
⋃
q∈Q
Kω,q

 . (37)

Following Balas [2, Theorem 3.1], a valid inequality for the convex hull of Tω, conv (Tω), may
be represented in the form

α⊤
x,ωx+α⊤

λ,ωλ+ αθ,ωθω ≥ ρω, (38)

where (αx,ω,αλ,ω, αθ,ω, ρω) is an element of the following polyhedral set:

Wω :=



(αx,ω,αλ,ω, αθ,ω, ρω)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃ {δ+ω,j,q ≥ 0 : j ∈ J+
ω,q},

{δ−ω,j,q ≥ 0 : j ∈ J−
ω,q},

δθ,q ≥ 0, δx,q ≥ 0, q ∈ Q, s.t.
A⊤δx,q − δθ,qσ̂(c+Lωŷω,q)− δθ,qB⊤

ω π̂+∑
j∈J+

ω,q

δ+ω,j,qlω,j−∑
j∈J−

ω,q

δ−ω,j,qlω,j ≤ αx,ω, q ∈ Q,

δθ,qσ̂g(ξω) ≤ αλ,ω, q ∈ Q,
δθ,q ≤ αθ,ω, q ∈ Q,
δ⊤x,qd+ δθ,qπ̂

⊤bω − δθ,qσ̂x̂⊤Lωŷω,q+∑
j∈J+

ω,q

δ+ω,j,qx̂
⊤lω,j−∑

j∈J−
ω,q

δ−ω,j,qx̂
⊤lω,j ≥ ρω, q ∈ Q,



, (39)

The polyhedral set Wω is the reverse polar cone of conv (Tω), i.e., the cone characterizing all valid
inequalities for conv (Tω). Moreover, (38) is a facet of conv (Tω) if and only if (αx,ω,αλ,ω, αθ,ω, ρω)
is an extreme ray of Wω. Such a facet can be identified by solving the following cut-generation
linear program (CGLP):

min
(αx,ω ,αλ,ω ,αθ,ω ,ρω)∈Wω

α⊤
x,ωx̂+α⊤

λ,ωλ̂+ α⊤
θ,ω θ̂ω − ρω. (40)

If the optimal value of (40) is nonnegative, then (x̂, λ̂, θ̂ω) ∈ conv (Tω). Otherwise, if the opti-
mal value of (40) is negative and (αx,ω,αλ,ω, αθ,ω, ρω) is an optimal solution, then a disjunctive

inequality in the form of (38) is valid for conv (Tω), which cuts off (x̂, λ̂, θ̂ω).

As Wω is a cone, a normalizing constraint like
∑

q∈Q δθ,q = 1, or
∑

q∈Q

(∑
j∈J+

ω,q
δ+ω,j,q +∑

j∈J−
ω,q
δ−ω,j,q + δθ,q + δ⊤x,qe

)
= 1 can be added to Wω once solving the CGLP (40). Note that

if the normalizing constraint
∑

q∈Q δθ,q = 1 is used, then the CGLP allows for those facets of
conv (Tω) that have a positive coefficient αθ,ω for θω, as αθ,ω ≥ maxq∈Q δθ,q > 0 by the constraints
in Wω. Hence, a valid inequality is given by

θω +
[αx,ω

αθ,ω

]⊤
x+

[αλ,ω

αθ,ω

]⊤
λ ≥ ρω

αθ,ω
.

Putting these all together, one can form a restricted master problem for (1) after t iterations
as follows:

zt = min
(x,λ,θ)∈St

λ⊤ϑ(x) +
∑
ω∈[N ]

θω, (41)
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Algorithm 4: SepCuts(x̂, λ̂, θ̂ω; π̂, σ̂).

Input: (x̂, λ̂, θ̂ω) and (π̂, σ̂).
Output: (viol,αx,ω,αλ,ω, αθ,ω, ρω). If a valid inequality α⊤

x,ωx+α⊤
λ,ωλ+ αθ,ωθω ≥ ρω is

found that is violated by (x̂, λ̂, θ̂ω), then return viol=TRUE, αx,ω, αλ,ω, αθ,ω,
and ρω. Otherwise, return viol=FALSE, αx,ω = 0, αλ,ω = 0, αθ,ω = 0, and
ρω = 0.

1 Initialization: viol ← FALSE, αx,ω = 0, αλ,ω = 0, αθ,ω = 0, and ρω = 0.
2 Given (π̂, σ̂), form Wω as in (39), with a proper a normalization constraint.
3 Let (α∗

x,ω,α
∗
λ,ω, α

∗
θ,ω, ρ

∗
ω) be an optimal solution to the CGLP

ẑ = min
(αx,ω ,αλ,ω ,αθ,ω ,ρω)∈Wω

α⊤
x,ωx̂+α⊤

λ,ωλ̂+ α⊤
θ,ω θ̂ω − ρω.

4 if ẑ < 0 then
5 viol ← TRUE and let αx,ω = α∗

x,ω, αλ,ω = α∗
λ,ω, αθ,ω = α∗

θ,ω, and ρω = ρ∗ω.

6 end

where

St =

(x,λ,θ)

∣∣∣∣∣∣
Ax ≥ d, x ≥ 0, λ ≥ 0,

x⊤αk
x,ω + λ⊤αk

λ,ω+

θωα
k
θ,ω ≥ ρkω, ω ∈ [N ], k ∈ {0} ∪ [t− 1]

 . (42)

Here, (xt,λt,θt) is a solution obtained from solving (41) at iteration t, and (αk
x,ω,α

k
λ,ω, α

k
θ,ω, ρ

k
ω)

are the corresponding cut coefficients, ω ∈ [N ] and k ∈ {0} ∪ [t − 1]. A general framework of a
finitely-convergent disjunctive cutting plane scheme to solve (1) with a nonconvex recourse function
and a generic decision-dependent ambiguity set is given in Algorithm 5.

Theorem 5. Suppose that Assumptions (A1)–(A3) and (A5) hold. For ω ∈ [N ], suppose that
h(x, ξω) is a nonconvex recourse function defined in (2). Then, Algorithm 5 generates an ϵ-optimal
solution to (1) in a finite number of iterations.

To prove Theorem 5, we present some lemmas. The next two lemmas hold for problem (1) with
a generic recourse function (2).

Lemma 2. Suppose that Assumptions (A1)-(A3) hold. For a fixed x ∈ X and ω ∈ [N ], Gω(x,λ),
defined in (9), is a proper, convex, continuous function in λ on Rs.

Proof. Note that by the boundedness of h(x, ξω) (implied by Assumption A2), we have Gω(x,λ) >
−∞ for all λ ∈ Rs and there exists λ ∈ Rs with Gω(x,λ) < ∞, e.g., λ = 0; proving Gω(x, ·) is a
proper function. In addition, by the convexity of φω[·] from Lemma 1 and linearity of h(x, ξω) −
λ⊤g(ξω) in λ, Gω(x, ·) is a convex function, and hence, continuous on Rs.

Let L denote the set of optimal multipliers λ in problem (8). The next lemma establishes the
boundedness of L.

Lemma 3. Suppose that Assumptions (A1)–(A3) hold. Then, the set of optimal multipliers λ in
problem (8), L, is compact.

Proof. For a fixed x ∈ X , following the proof of Theorem 1, problem maxp∈P(x) Ep [h(x, ξ)] can

be reformulated as the minimization problem minλ≥0 λ⊤ϑ(x) +
∑

ω∈[N ]Gω(x,λ). Given that for
x ∈ X ,

∑
ω∈[N ]Gω(x, ·) is a proper, convex, continuous function by Lemma 2, the minimum of
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Algorithm 5: Cutting-plane algorithm for problem (1) with a nonconvex recourse function
and a generic decision-dependent ambiguity set.

Input: An initial solution (x0,λ0,θ0) and ϵ > 0 for the optimality tolerance.
Output: An ϵ-optimal solution and the ϵ-optimal value.

1 Initialization: Set t← 1, Ω← ∅, LB← −∞, UB← +∞. Add initial cuts (e.g., θω ≥ 0), if
available, to S0.

2 while UB− ϵ
2 > LB do

3 for each ω ∈ [N ] do
4 Obtain Gω(x

t−1,λt−1) by solving (29) and (πt−1
ω , σt−1

ω ) by solving (32) at

(xt−1,λt−1).
5 Call the procedure SepCuts(xt−1,λt−1, θt−1

ω ;πt−1
ω , σt−1

ω ) to obtain
(viol,αx,ω,αλ,ω, αθ,ω, ρω).

6 if viol=TRUE then
7 Ω← Ω ∪ {ω}.
8 end

9 end

10 UB← min{UB,ϑ(xt−1)⊤λt−1 +
∑

ω∈[N ]Gω(x
t−1,λt−1)}.

11 Let St ← St−1 ∩
{
(x,λ,θ)

∣∣∣α⊤
x,ωx+α⊤

λ,ωλ+ αθ,ωθω ≥ ρω, ω ∈ Ω
}
.

12 Solve restricted master problem (41) using St and obtain an ϵ
2 -optimal solution

(xt,λt,θt).
13 Let LB← ϑ(xt)⊤λt +

∑
ω∈[N ] θ

t
ω.

14 Set t← t+ 1, Ω← ∅.
15 end
16 return (xt,λt) and UB.

this convex minimization problem is attained on a finite 0 ≤ λ for all x ∈ X . This completes the
proof.

For ω ∈ [N ] and a fixed (x,λ) ∈ X ×L, let Fω(x,λ) and Eω(x,λ) denote the (primal) feasible
region of problem (29) and the (dual) feasible region of problem (32), respectively. Moreover, let
Dω(x,λ) denote the set of optimal solutions for problem (32).

Lemma 4. Suppose that Assumptions (A1)-(A3) hold. For ω ∈ [N ], we have:

i. Dω(x,λ) is compact for a fixed (x,λ) ∈ X × L,

ii. Fω(x,λ) is compact for a fixed (x,λ) ∈ X × L,

iii. The set-valued function Eω(x,λ) is continuous in (x,λ) on X × L,

iv. The real-valued function Gω(x,λ), as defined in (29), is l.s.c. in (x,λ) on X × L, and

v. The set-valued function Dω(x,λ) is u.s.c. in (x,λ) on X × L.

Proof. Consider a fixed (x,λ) ∈ X ×L. Recall that Gω(x,λ), defined in (9), is well defined. Thus,
Fω(x,λ) is nonempty. Consequently, by a similar argument as that in Remark 1, Dω(x,λ) is a
bounded (and closed) set. Now, note that for a fixed (x,λ) ∈ X×L, Fω(x,λ) is closed and bounded
given that Y(x, ξω) is bounded by Assumption (A2), and the fact that µ and γ are bounded by

19



|h(x, ξω)− λ⊤g(ξω)| from above. By the boundedness of Fω(x,λ) and a direct application of [72,
Corollary 11], Eω(x,λ) is continuous in (x,λ) on X × L. By the continuity of Eω(x,λ) and the
direct application of [72, Theorem 2], we have that Gω(x,λ) is l.s.c. in (x,λ) on X ×L. Moreover,
Dω(x,λ) is equivalent to{

(π, σ) ∈ Eω(x,λ)
∣∣∣Gω(x,λ) = σ

(
c⊤ωx− λ⊤g(ξω)

)
+ π⊤(Bωx+ bω)

}
.

Since the objective function of (32), σ
(
c⊤ωx−λ⊤g(ξω)

)
+π⊤(Bωx+bω), is continuous on Eω(x,λ)×

X × L and the set-valued function Eω(x,λ) is continuous on X × L, the direct application of [39,
Theorem 1.5] shows the set-valued function Dω(x,λ) is u.s.c. in (x,λ) on X × L.

of Theorem 5. To prove the finite convergence of Algorithm 5, we need to show that the “while”
loop terminates in a finite number of iterations, generating an ϵ-optimal solution to (1).

By contradiction, suppose that the “while” loop does not terminate in a finite number of
iterations. Let {(xt,λt,θt)} be the sequence of iterates generated in Line 12 and {(πt

ω, σ
t
ω) ∈

Dω(x
t,λt) : ω ∈ [N ]} be the sequence of dual multipliers generated in Line 4. We show that

θtω ≥ Gω(x
t,λt)− ϵ

2 , ω ∈ [N ], for all sufficiently large t. This implies that we have

LB = λtϑ(xt) +
∑
ω∈[N ]

θtω ≥ λtϑ(xt) +
∑
ω∈[N ]

Gω(x
t, λt)− ϵ

2
= UB− ϵ

2
,

contradicting that the “while” loop does not terminate in a finite number of iterations. Given
Assumption (A5), we have LB ≤ zt + ϵ

2 . Thus, Algorithm 5 returns the ϵ-optimal value UB
because UB ≤ zt + ϵ, with the corresponding ϵ-optimal solution (xt,λt).

Now, we prove that θtω ≥ Gω(x
t,λt) − ϵ

2 , ω ∈ [N ], for all sufficiently large t. Note that {xt}
and {λt} are bounded by the compactness of X and L (by Lemma 3), respectively. Moreover, {θt}
is a nondecreasing bounded sequence from below given that θtω is an underestimator of Gω(x,λ),
ω ∈ [N ], and accumulation of constraints in St. In addition, {θt} is bounded from above given that
θtω ≤ Gω(x

t,λt), ω ∈ [N ]. Consequently, there is a convergent subsequence, say K, {(xt,λt,θt)}t∈K.
In addition, the associated sequence of optimal dual multipliers {(πt

ω, σ
t
ω) : ω ∈ [N ]}t∈K is bounded

by Lemma 4.i.; hence, there is a convergent subsequence on K′ ⊆ K. Let {(x,λ,θ)} ∈ X × L
(by closedness) and {(πω, σω) : ω ∈ [N ]} be limit point of {(xt,λt,θt)} and {(πt

ω, σ
t
ω) : ω ∈ [N ]}

on K′, respectively. As Dω(x,λ), ω ∈ [N ], is u.s.c. at (x,λ) by Lemma 4.v., we have that
(πω, σω) ∈ Dω(x,λ), ω ∈ [N ]. Let {(yt

ω, µ
t
ω, γ

t
ω) ∈ Fω(x

t,λt) : ω ∈ [N ]}, be the sequence of
associated optimal primal solutions to problem (29). Given that Fω(x

t,λt) is compact by Lemma
4.ii., there is a convergent subsequence on K′′ ⊆ K′ with a limit point {(yω, µω, γω) : ω ∈ [N ]} on
K′′.

We now claim that Lω(x,λ,yω,q, σω,πω;x) = Lω(x,λ,yω, σω,πω;x) for every q ∈ Q. Note

that for every (x,λ) ∈ X × L, we have limt→∞ Lω(x,λ,yω,q, σ
t
ω,π

t
ω;x

t) = σω
(
c⊤ωx− λ⊤g(ξω)

)
+

π⊤
ω (Bωx+bω)+σω(x−x)⊤Lωyω,q = Lω(x,λ,yω,q, σω,πω;x) by the continuity of Lω(x,λ,yω,q, σ̂, π̂; x̂)

at (σ̂, π̂; x̂). Thus, Lω(x,λ,yω,q, σω,πω;x) = σω
(
c⊤ωx−λ

⊤
g(ξω)

)
+π⊤

ω (Bωx+bω) = Lω(x,λ,yω, σω,πω;x)
for every q ∈ Q.

Given the validity of optimality cut generated at Line 5 for the corresponding set conv (Tω), we
have θω ≥ σtω

(
c⊤ωx−λ⊤g(ξω)

)
+(Bωx+ bω)

⊤πt
ω +σtω(x−xt)⊤Lωyω,q for some q ∈ Q. Moreover,

given the accumulation of cuts, we have θt+1
ω ≥ σtω

(
c⊤ωx

t+1 − g(ξω)
⊤λt+1

)
+ (Bωx

t+1 + bω)
⊤πt

ω +

σtω(x
t+1−xt)⊤Lωyω,q. Thus, taking the limit on K′′, we have θω ≥ Lω(x,λ,yω,q, σω,πω;x). And,

using the above claim yields θω ≥ Lω(x,λ,yω, σω,πω;x), ω ∈ [N ]. Now, given that {(πω, σω) ∈
Dω(x,λ) : ω ∈ [N ]}, by strong duality we have Gω(x,λ) = Lω(x,λ,yω, σω,πω;x). Hence, θω ≥
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Gω(x,λ). Finally, because Gω(x,λ) is l.s.c. by Lemma 4.iv., we have θtω ≥ Gω(x
t,λt)− ϵ

2 , ω ∈ [N ],
for all sufficiently large t. This completes the proof.

Recall that when P(x) is decision-independent, i.e., ϑ(x) = ϑ, problem (11) reduces to a two-
stage stochastic mixed-integer program with (convex or nonconvex) recourse. Thus, a modified
version of Algorithm 5, by just changing ϑ(x) to ϑ, yields a decomposition-based cutting plane
algorithm to solve the resulting DRO problem with a decision-independent ambiguity set to ϵ-
optimality. We end this section with a remark on how Algorithm 5 is of independent interest
to solve two-stage stochastic programs with a random decision-dependent recourse matrix (i.e.,
bilinear stochasticity on the left-hand side) or a bilinear objective function.

Remark 6. Following similar ideas as those presented to develop Algorithm 5, a modified algorithm
may be developed to find an ϵ-optimal solution to a two-stage stochastic mixed-integer linear program
with a nonconvex recourse as follows:

min
x∈X

Ep [h(x, ξ)] ,

where
h(x, ξω) = min

y
d⊤
ωy

s.t. q⊤ωy + x⊤Lωy ≥ c⊤ωx,

Dωy ≥ Bωx+ bω,

y ≥ 0,

(43)

or
h(x, ξω) = min

y
c⊤ωx+ q⊤ωy + x⊤Lωy

s.t. Dωy ≥ Bωx+ bω,

y ≥ 0.

Note that Gω(x,λ), defined in (29), has the same structure as (43), with bilinear stochasticity on
the left-hand side. We skip the details of the modified algorithm for brevity.

4 Numerical Experiments

In this section, we consider a problem with a nonconvex recourse and a generic decision-dependent
ambiguity set to illustrate the efficacy of disjunctive cuts. We provide computational comparative
results on the performance of Algorithm 5 and solving the extensive formulation using a commercial
nonconvex solver.

We note that as Algorithms 2 and 3 are developed using Benders’-type optimality cuts, we
do not present computational results for them. Not surprisingly and as extensively reported in
the literature, see, e.g., [56], our preliminary computational experiments showed the superiority
of the decomposition-based cutting plane algorithm over solving the extensive formulation using a
commercial nonconvex solver.

4.1 Multiproduct Newsvendor Problem with Price-Dependent Demand

For numerical experiments, we considered joint stocking and pricing decisions for a multiproduct
newsvendor problem with uncertain price-dependent demand. Let n denote the number of products.
For each i ∈ [n], suppose that ci denotes the per unit purchasing cost, si denotes the per unit salvage
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price, and bi denotes the per unit back-order cost. For a fixed order quantity qi ∈ R, a fixed per
unit selling price ri ∈ R, and demand ξi ∈ R, cost function hi(qi, ri, ξi) is defined as:

hi(qi, ri, ξi) = ciqi − rimin{qi, ξi} − si(qi − ξi)+ + bi(ξi − qi)+
= (ci − si)(qi − ξi)+ + (bi − ci + ri)(ξi − qi)+ − ξi(ri − ci).

Equivalently, we have

hi(qi, ri, ξi) = min
y+i ,y−i

(ci − si)y+i + (bi − ci + ri)y
−
i − ξi(ri − ci)

s.t. y+i − y
−
i ≥ qi − ξi,

y+i , y
−
i ≥ 0.

(44)

Let xi = (qi, ri), i ∈ [n], and h(x, ξ) =
∑

i∈[n] hi(xi, ξi). Moreover, let X = {x = (q, r) :∑
i∈[n] ciqi ≤ d, qi ≥ 0, qi ∈ Z, ri ≤ ri ≤ ri, i ∈ [n]}. We assume that for i ∈ [n], (i)

ci − si > 0, (ii) c < ri, and (iii) bi + ri > ci. We note that (i) and (iii) ensure that the critical ratio
0 < βi =

ci−si
bi−si+ri

< 1 is well defined. Hence, for any fixed price ri ≤ ri ≤ ri and without having

constraint
∑

i∈[n] ciqi ≤ d, the optimal order quantity qi will be the left βi-quantile with respect to
the distribution of ξi (see e.g., [50]).

We formulate a DRO problem in the form of (1), where P(x) is a price-dependent ambiguity
set in the form of (7), and

µ0,i(r) =µi
(
1 +

∑
j∈[n]

uµijrj
)
, (45)

σ0,i(r)
2 =σ2i

(
1 +

∑
j∈[n]

uσijrj
)
, (46)

µ0,i(r)
2 =µ2i

(
1 + 2

∑
j∈[n]

uµijrj +
∑
j∈[n]

(uµij)
2r2j + 2

∑
j∈[n]

∑
j′∈[j]

uµiju
µ
ij′rjrj′

)
,

for i ∈ [n]. Here, µ and σ indicate the vector of empirical mean and standard deviation of the
random demand ξ. We assume that uµii < 0, i ∈ [n], implying that an increase in the price of
product i leads to a decrease in the average demand for product i, ξi. Moreover, for i ∈ [n], uµij and
uσij , i ̸= j ∈ [n], capture the impact of other products’ price on the mean and standard deviation
of the demand for product i, ξi; emphasizing that the products may be substitutable. We refer to
the described ambiguity set as DD-A. We also consider two other ambiguity sets in the form of (7)
with increasingly further relaxation of price-dependency as follows:

• DD-B: µ0,i(r) is defined as (45) in the first set of constraints in (7), and µ0,i(r) = µi in the
second set of constraints in (7). Moreover, σ0,i(r)

2 is defined as (46).

• DD-C: Same as DD-B but σ0,i(r)
2 = σ2i .

Several points are in order. First, (44) is in the form of problem (2) with an objective function
in the form of (5), yielding a nonconvex recourse function. Second, in light of Lemma 3, we have
L = {λ : 0 ≤ λj ≤ max{(s + r)(q − ξ), b(ξ − q)}, j ∈ [s]}, where s = maxi∈[n] si, r = maxi∈[n] ri,

b = maxi∈[n] bi, ξ = maxi∈[n],ω∈[N ] ξ
ω
i , ξ = mini∈[n],ω∈[N ] ξ

ω
i , q = maxi∈[n] d/ci, and q = mini∈[n] d/ci.

Third, in light of the discussion in Section 3.3, we have 0 ≤ y+i ≤ qi and 0 ≤ y−i ≤ ξi in problem
(44). Finally, an optimal solution of the Lagrangian dual function in the form of (33) only depends
on y−i .
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4.2 Experiment Design

To conduct experiments, we first generated t = (c⊤, s⊤, b⊤, r⊤, r⊤)⊤ for a multiproduct newsven-
dor problem. We generated this information in a nested way so that a problem with a larger number
of products would contain all the information for a problem with a smaller number of products. We
set uµij = exp (−∥ti − tj∥) for i ̸= j, uµii = −0.3, i ∈ [n], and uµij = exp (−∥ti − tj∥/2), i, j ∈ [n]. We
generated realizations of the random demand ξi, i ∈ [n], independently from a folded normal distri-
bution with mean 6 and standard deviation 2. Again, these realizations were generated in a nested
way. We present the computational results for n ∈ {1, 2, 3} products, hyperparameters τ1 = τ2 = 0,
τ2 ∈ {1, 2} for the ambiguity set, and N ∈ {100, 200, 500, 1000, 2000, 3000, 5000, 10000, 20000} sce-
narios. We report the average results over five training sets {ξωi : i ∈ [n], ω ∈ [N ]}. Observe from
(7) that τ1 = 0 and τ2 = 1 enforce no deviation on the empirical first-order moment and no upper
deviation on the empirical second-order moment, respectively. Also, τ1 = 0 sets the lower bound
on the second-order moment to zero.

4.3 Computational Results

In this section, we compare the computational performance of the decomposition-based disjunctive
cutting plane algorithm, proposed in Algorithm 5, denoted as DECOMPOSED, with solving the MINLP
deterministic equivalent formulation, presented in (13), using an off-the-shelf nonconvex solver. We
denote this as DEF. We implemented DECOMPOSED and DEF in Python and used GUROBI 9.1.2 as
a nonconvex solver. All experiments were performed on a Linux Ubuntu 20.04 environment using
one single core of a PC with an Intel Core i7-9700 3.00 GHz processor and 32.00 GB of RAM, with
a time limit of 3600 seconds.

Tables 1–3 reports the average computational results (over five training sets) to solve problem
(1) with the ambiguity sets DD-A to DD-C, respectively. The values under column “Gap (%)” show
the average gap for instances that could be solved optimally, and in parentheses, it shows the
average gap for instances that could not be solved optimally within the time limit. Also, the values
under column “Time (s)” show the average time (in seconds) for instances that could be solved
optimally, and in parentheses, it shows the number of instances (out of five) that could not be
solved optimally within the time limit.

Observe from Table 1 that DECOMPOSED found an optimal solution within the time limit for
all instances (for three instances, an optimal solution was obtained when the algorithm stopped
after finishing a current iteration beyond the time limit). Whereas DEF stopped with a nonzero
optimality gap in some cases, on average between 8.64-28.58 %. In addition, for instances that
could be solved optimally within the time limit with both approaches, DECOMPOSED often found
an optimal solution with less computational effort (in seconds). We especially observe that DEF

generally had a higher average computational time and optimality gap for instances with more
scenarios and products. Moreover, an increase of τ2 from 1 to 2—a wider range on the second-
order moment—led to generally easier problems to solve for both DECOMPOSED and DEF. Using
DD-B and partially relaxing the decision-dependency imposed in DD-A resulted in generally easier
problems for both DECOMPOSED and DEF (Table 2). In particular, DECOMPOSED and DEF could obtain
an optimal solution within the time limit in all instances, except for one instance for each. We still
observe that DEF generally had a higher average computational time than DECOMPOSED, especially
for instances with more scenarios and products. However, unlike the results with the ambiguity
set DD-A, an increase of τ2 from 1 to 2 led to generally more difficult problems to solve for both
DECOMPOSED and DEF. Further relaxing the ambiguity set by using DD-C made the resulting DRO
problem easier to solve for both DECOMPOSED and DEF (Table 3). Using this model resulted in similar
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Table 1: Comparison of DEF and DECOMPOSED for problem (1) with ambiguity set DD-A and τ1 =
τ2 = 0.

DECOMPOSED DEF

τ2 n N Gap (%) Time (s) Gap (%) Time (s)

1.0 1 100 0.0 0.07 0.0 0.05
200 0.0 0.34 0.0 0.1
500 0.0 0.34 0.0 0.22
1000 0.0 0.77 0.0 0.71
2000 0.0 1.46 0.0 1.68
3000 0.0 2.21 0.01 2.18
5000 0.0 2.57 0.01 7.37

2 100 0.0 1.81 0.01 0.98
200 0.0 6.53 0.01 25.04
500 0.0 17.78 0.01 76.06
1000 0.0 80.41 0.01 51.84
2000 0.0 225.8 0.01 136.89
3000 0.0 254.1 0.01 281.3
5000 0.0 589.7 0.01 632.25

3 100 0.0 78.66 0.13 28.51
200 0.0 359.03 0.03 60.98
500 0.0 74.54 0.01 469.85
1000 0.0 234.15 0.02 1632.64
2000 0.0 554.82 0.01 (21.15) 1825.09 (3)
3000 0.0 929.31 - (8.64) - (5)
5000 0.0 (0.0) 1469.6 (2) - (27.79) - (5)

2.0 1 100 0.0 0.07 0.0 0.04
200 0.0 0.35 0.0 0.11
500 0.0 0.32 0.0 0.2
1000 0.0 0.61 0.0 0.5
2000 0.0 1.35 0.0 1.16
3000 0.0 1.73 0.01 1.73
5000 0.0 2.1 0.0 3.51

2 100 0.0 1.71 0.01 0.83
200 0.0 6.95 0.01 2.48
500 0.0 16.99 0.01 8.62
1000 0.0 35.47 0.01 27.06
2000 0.0 115.7 0.01 101.71
3000 0.0 383.49 0.02 283.51
5000 0.0 281.05 0.02 414.13

3 100 0.0 74.26 0.68 28.37
200 0.0 309.6 0.32 54.13
500 0.0 72.03 0.05 503.4
1000 0.0 201.25 0.07 1654.14
2000 0.0 384.08 0.06 (22.12) 1139.24 (2)
3000 0.0 768.88 0.09 (17.67) 2084.86 (3)
5000 0.0 (0.0) 1351.46 (1) - (28.58) - (5)

trends as those observed using DD-B.

5 Conclusion

This paper studied a two-stage stochastic mixed-integer program with continuous recourse. We
assumed that the probability distribution of random parameters is unknown and depends on de-
cisions. We thus investigated a distributionally robust approach to this problem, where the dis-
tributional ambiguity is modeled with a polyhedral decision-dependent ambiguity set. We consid-
ered cases where the recourse function and the ambiguity set are either generic or have a special
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Table 2: Comparison of DEF and DECOMPOSED for problem (1) with ambiguity set DD-B and τ1 =
τ2 = 0.

DECOMPOSED DEF

τ2 n N Gap (%) Time (s) Gap (%) Time (s)

1.0 1 100 0.0 0.05 0.0 0.08
200 0.0 0.08 0.0 0.17
500 0.0 0.18 0.0 0.54
1000 0.0 0.43 0.01 1.23
2000 0.0 1.19 0.0 1.85
3000 0.0 1.76 0.01 3.31
5000 0.0 2.17 0.01 10.58

2 100 0.0 0.47 0.01 0.45
200 0.0 1.64 0.01 0.78
500 0.0 3.97 0.01 2.37
1000 0.0 9.33 0.01 6.33
2000 0.0 25.92 0.01 42.08
3000 0.0 36.29 0.01 71.75
5000 0.0 72.08 0.01 156.08

3 100 0.0 0.7 0.01 0.85
200 0.0 1.67 0.01 1.18
500 0.0 5.62 0.01 4.45
1000 0.0 11.01 0.01 12.59
2000 0.0 18.97 0.01 39.62
3000 0.0 28.06 0.01 87.55
5000 0.0 63.78 0.01 101.83

2.0 1 100 0.0 0.07 0.0 0.03
200 0.0 0.41 0.0 0.08
500 0.0 0.24 0.0 0.19
1000 0.0 0.54 0.0 0.34
2000 0.0 1.11 0.0 0.52
3000 0.0 1.78 0.0 0.71
5000 0.0 2.08 0.0 1.99

2 100 0.0 9.44 0.01 1.23
200 0.0 140.88 0.01 2.67
500 0.0 464.54 0.01 7.32
1000 0.0 22.26 0.01 36.82
2000 0.0 875.43 0.01 89.5
3000 0.0 121.92 0.01 233.59
5000 0.0 240.46 0.01 355.71

3 100 0.0 130.65 0.01 23.06
200 0.0 4.42 0.01 29.16
500 0.0 598.03 0.01 112.07
1000 0.0 (0.12) 24.21 (1) 0.01 267.23
2000 0.0 51.0 0.01 686.06
3000 0.0 76.77 0.01 1156.22
5000 0.0 123.76 0.01 (0.02) 1902.47 (1)

convex/nonconvex structure. We reformulated the resulting problem as a nonconvex two-stage
stochastic mixed-integer program. We proposed finitely-convergent decomposition-based cutting
plane algorithms to obtain an ϵ-optimal solution to the resulting problems. The proposed algo-
rithm for the case that the recourse function is nonconvex with a bilinear objective function is
of independent interest to solve two-stage stochastic programs with a random decision-dependent
recourse matrix (i.e., bilinear stochasticity on the left-hand side). We illustrated the efficacy of the
proposed algorithm when the recourse function is nonconvex on joint pricing and stocking decisions
for a multiproduct newsvendor problem with price-dependent demand.

This paper focused on a distributionally robust optimization problem with a finite sample
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Table 3: Comparison of DEF and DECOMPOSED for problem (1) with ambiguity set DD-C and τ1 =
τ2 = 0.

DECOMPOSED DEF

τ2 n N Gap (%) Time (s) Gap (%) Time (s)

1.0 1 100 0.0 0.03 0.0 0.07
200 0.0 0.04 0.0 0.13
500 0.0 0.17 0.0 0.48
1000 0.0 0.22 0.0 1.03
2000 0.0 0.43 0.01 2.43
3000 0.0 0.93 0.01 3.67
5000 0.0 0.97 0.01 9.46

2 100 0.0 0.12 0.01 0.24
200 0.0 0.3 0.0 0.39
500 0.0 0.74 0.01 0.92
1000 0.0 1.57 0.0 2.61
2000 0.0 3.13 0.0 8.38
3000 0.0 3.07 0.0 16.66
5000 0.0 5.26 0.0 38.67

3 100 0.0 0.51 0.0 0.14
200 0.0 1.14 0.0 0.32
500 0.0 2.74 0.0 1.42
1000 0.0 5.57 0.0 3.47
2000 0.0 9.67 0.0 9.26
3000 0.0 14.92 0.0 20.78
5000 0.0 25.55 0.0 35.8

2.0 1 100 0.0 0.06 0.0 0.06
200 0.0 0.58 0.0 0.08
500 0.0 0.29 0.0 0.27
1000 0.0 0.58 0.0 0.78
2000 0.0 1.11 0.0 0.62
3000 0.0 1.67 0.0 0.92
5000 0.0 2.26 0.0 1.82

2 100 0.0 6.17 0.01 0.65
200 0.0 14.31 0.01 1.26
500 0.0 108.12 0.01 7.57
1000 0.0 158.88 0.01 22.52
2000 0.0 189.79 0.01 81.37
3000 0.0 286.61 0.01 120.42
5000 0.0 72.93 0.01 370.42

3 100 0.0 0.5 0.0 0.99
200 0.0 1.01 0.01 1.32
500 0.0 3.1 0.01 4.13
1000 0.0 5.95 0.01 12.48
2000 0.0 9.43 0.01 38.79
3000 0.0 15.98 0.01 86.06
5000 0.0 30.47 0.0 322.41

space and a polyhedral ambiguity set. Using Lagrangian/linear programming duality, we obtained
reformulations that serve as a basis for the proposed decomposition-based cutting plane algorithms.
Future work includes investigating the case that the sample space is infinite. As in the DRO
literature with a decision-independent ambiguity set, more generalized forms of duality, e.g., conic
duality, are expected to be needed for reformulation. On the other hand, the reformulated problem
is expected to be a semi-infinite program. Especially for the case that the recourse function is
nonconvex, it would be interesting to explore how the proposed disjunctive cutting plane algorithm
may be extended. Another direction for future research is to investigate stochastic programs with
probabilistic constraints.
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