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Abstract

We consider a two-stage stochastic program with continuous recourse, where the distribu-
tion of the random parameters depends on the decisions. Assuming a finite sample space, we
study a distributionally robust approach to this problem, where the decision-dependent distri-
butional ambiguity is modeled with a polyhedral ambiguity set. We consider cases where the
recourse function and the ambiguity set are either generic or have a special convex/nonconvex
structure. We reformulate the resulting problem as a nonconvex two-stage stochastic program,
including a bilinearly-constrained bilinear program and a concave minimization problem. We
propose finitely-convergent decomposition-based cutting plane algorithms to solve the resulting
problems optimally (or near-optimally). The proposed algorithm may also be used to solve
two-stage stochastic programs with a random decision-dependent recourse matrix (i.e., bilinear
stochasticity on the left-hand side) or a bilinear objective function. We illustrate computa-
tional comparative results for joint pricing and stocking decisions on a stylized multiproduct
newsvendor problem with price-dependent demand.

Keywords: Distributionally robust optimization Decision-dependent uncertainty Noncon-
vex optimization Bilinear stochasticity

1 Introduction

Many problems arising in various domains, such as transportation [49] and defense [59, 61], require
decisions made before uncertain parameters are realized. Stochastic programming (SP) [14, 65] and
robust optimization (RO) [8, 11] are two common frameworks to handle such problems, assuming a
full distributional information and only support set information, respectively. Given that a decision-
maker may have some partial distributional information about uncertain parameters, a modeling
paradigm, referred to as distributionally robust optimization (DRO), has recently attracted much
attention [6, 33, 54]. DRO unifies SP and RO and protects the decision-maker from ambiguity in
the underlying probability. Despite theoretical and algorithmic advances in SP, RO, and DRO,
most research often assumes (i) uncertain parameters (or their distributions) are known a priori or
belong to a set and (ii) are ezogenous. In other words, uncertain parameters or their distributions are
decision-independent. However, these assumptions rarely hold in practice, and uncertain parameters
may endogenously depend on the decisions.
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In this paper, we study a DRO framework for decision-making under uncertainty, where deci-
sions impact the probability distribution of uncertain parameters. More specifically, we consider a
DRO problem with a decision-dependent ambiguity set as follows:

. Eplh 1
min max plh(z,€)], (1)

where x € X C R"” is the decision vector in a nonempty and bounded mixed-integer deterministic
feasible region X := {x € Z™ x R* ™ | Az > d,x > 0}. We define a random vector & € RY
on a measurable space (Z,F), where Z C R? is the support of & and F is a Borel o-algebra.
Moreover, h(xz,€) : X X E +— R is a random cost function. For a given € X', P(x) is a decision-
dependent ambiguity set of probability distributions, with P as an element of this set. We have
P(x) CP(=,F), where B (2, F) is the set of all probability distributions defined on (=, F). For a
fixed & € X, the inner maximization problem in (1) finds the worst-case expected cost over P(x).

Problem (1) contains a wide range of problems, including decision-dependent distributionally
robust two-stage mixed-integer stochastic programs with continuous recourse, where

h(w,ﬁ) = yEI;l(i:Ilzl,ﬁ) ¢0($7ya£)7 (2)
and
Y(x,§) :={y eR"|Dy > Bx +b, y >0}, (3)

with matrices D and B, and vector b of appropriate dimensions. Problem (2) involves uncertain
parameters in both the objective function and feasible region (3). In this paper, we are especially
interested in problems where

wO(mv Yy, S) = ch + qu7 (4)
or
Yo(w,y,§) =c'z+q y+z'Ly. (5)

Here, & includes vectors ¢, g, b and matrices D, B, and L. Note that for a fixed £ € Z, (4) and
(5) result in a convex and nonconvex recourse function, respectively. We assume that

A1l (Finite Sample Space) Each distribution P € P(x) has a decision-independent finite sup-
port Z = {¢,}N_,, for all z € X, where N is the fixed number of scenarios.

A2 (Complete Recourse) For € R"” and w € [N], we have a complete recourse for problem
h(x,€,,), defined in (2), and Y(x, &), defined in (3), is a bounded set.

Remark 1. Assumption (A2) implies relatively complete recourse; that is, Y(x,&,,) is feasible for
anyx € X. Thus, h(z,£,) is bounded from above and {w > 0|7 D, <07, n" (B,x + b,) > 0} =
{0} by Farkas Lamma. Hence, an optimal solution to the corresponding dual problem of (2)
is attained at an extreme point; showing that h(x,€,) is bounded from below (by weak dual-
ity). In addition, given that we have a complete recourse for every x € R™, we must have
{71' >0 ‘ w' D, < OT} = {0}; hence, the set of optimal dual solutions is bounded.

Given Assumption (A1), we have F = 25. For any P € B (Z,F), we let {p1,...,pn} be
the probabilities of the corresponding elementary events. As a shorthand notation, we might use
p= [pla o 7pN]T € RN



1.1 Decision-Dependent Ambiguity Set of Probability Distributions

In this paper, we consider a general polyhedral decision-dependent ambiguity set of probability
distributions, although there are various ways to model the distributional ambiguity. Following
the terminology in [54], there are four main groups of ambiguity sets studied in the literature: (i)
discrepancy-based ambiguity sets, (ii) moment-based ambiguity sets, (iii) shape-preserving ambigu-
ity sets, and (iv) kernel-based ambiguity sets. A discrepancy-based ambiguity set is constructed by
considering all probability distributions that are close to a nominal probability distribution in the
sense of a discrepancy measure, e.g., probability metric. Optimal transport discrepancy, see, e.g.,
[15, 22, 23, 24, 30, 35, 40, 75], and ¢-divergences [6, 7] with its special cases such as total variation
distance, see, e.g., [31, 50, 51, 52, 63|, are well studied. Moment-based models contain all probabil-
ity distributions whose moments satisfy certain properties, especially the first two moments, see,
e.g., [19, 62, 73]. For a more in-depth review of DRO and various ambiguity sets, interested readers
are referred to [54].

Instead of focusing on a particular type of ambiguity set, e.g., a discrepancy-based or moment-
based model, we consider a polyhedral ambiguity set, which subsumes some classes of both models.
More precisely, we study a decision-dependent ambiguity set with a generalized moment and mea-
sure inequalities [54] as follows:

(6)

L ngpwgpwawe[N]a
P(x) := {p > 0' Zwe[N] pogi(€,) < Vi(x), i€ [s] } ]

for x € X, where ¢ : =+ R, i € [s], with s > 1. We might use g = [¢},...,¢°] and 9(x) =
[91(x),...,9%(x)] as a shorthand notation. The first set of constraints in (6) enforce a preference
relationship between probability distributions, i.e., lower and upper bounds on the probabilities. To
ensure that p is a probability distribution, we set ¥!(x) =1, ¢' = 1, 9?(x) = —1, and ¢®> = —1, in
the above definition of P(x), for all € € X'. The authors in [64] proposed the decision-independent
version of (6), and its special cases appear in [3, 12, 28, 38, 45, 46], among others. We further
assume that

A3 (Nonempty Ambiguity Set) For a fixed @ € X', the ambiguity set P(x), defined in (6), is
nonempty.

Examples of Ambiguity Sets

A polyhedral ambiguity set in the form of (6) subsumes a wide range of ambiguity sets studied
in the DRO literature. An ambiguity set based on Wasserstein distance of order 1, or Kantorovich
distance, is represented as:

Jz s.t. Z Z ZWW’HE(JJ - £w’|| < T($), Z Pw =1,

wE[N] w'€[N] w€|[N]

Z Zww! = Pws Z Zow' = Qu, W E [N} ’
w€[N] w'€[N]

P(x)=4qp=0

where 7(x) denotes a decision-dependent radius on the Wasserstein distance between a candidate
probability distribution p and an empirical probability distribution q.
A total variation ambiguity set is represented as:

P(x) = {p> 0| § Loepm 1P — @l < 7@), Toepype =1 },

where 7(x) denotes a decision-dependent radius on the total variation distance between a candidate
probability distribution p and an empirical probability distribution gq.



A moment-based ambiguity set may be represented as:

(I=m)po(x) < >0 Py, < (1+711)p(x),

w€E[N]
P(x)=<{p>0| T2 (o0(x)* + po(x)?) < WGZ[N] Pl < T2 (oo(x)? + po(x)?), : (7)
Z Puw = 1
w€E[N]

where py(z) and og(x)? denote the vector of (empirical) decision-dependent mean and variance
of the random vector . Moreover, 71, 75, and 7o determine the maximum allowable deviations on
the empirical first- and second-order moments.

1.2 Contributions

We consider a distributionally robust two-stage stochastic mixed-integer program with continuous
recourse, where the distributional ambiguity is modeled with a decision-dependent ambiguity set of
probability distributions. We investigate cases where the recourse function and the ambiguity set
are either generic or have a special convex/nonconvex structure. Our main goals in this paper are
to provide reformulations and finitely-convergent decomposition-based cutting plane algorithms to
solve them optimally (or near-optimality). Here is a list of cases and our contributions:

e (Generic recourse function and generic decision-dependent ambiguity set: We reformulate the
problem as a two-stage stochastic mixed-integer nonlinear program (MINLP), where the non-
linearity in the first stage is due to the decision dependency. When the recourse function is
convex, for instance, with an objective function in the form of (4), we develop a decomposition-
based cutting plane algorithm in virtue of L-shaped algorithm [9, 69] (Section 3.1). When
the recourse function is nonconvex, with an objective function in the form of (5), we develop
a disjunctive cutting plane algorithm, where the restricted master problem involves solving
a noncovex minimization problem (Section 3.2). This algorithm is of independent interest to
solve two-stage stochastic programs with a random decision-dependent recourse matrix (i.e.,
bilinear stochasticity on the left-hand side) or a bilinear objective function (see Remark 6).

o Converx recourse function and an ambiguity set with either nonnegative convex or nonpositive
concave decision-dependency: We reformulate the problem as a two-stage stochastic mixed-
integer concave minimization program. We develop a decomposition-based cutting plane
algorithm in virtue of L-shaped algorithm, where the restricted master problem involves
solving a concave minimization problem (Section 3.2).

e We provide computational experiments for joint pricing and stocking decisions on a stylized
multiproduct newsvendor problem with price-dependent demand involving a nonconvex re-
course function. We compare the performance of the proposed decomposition-based cutting
plane algorithm with solving the extensive formulation using a commercial nonconvex solver.

1.3 Literature Review

Decision-making problems with endogenous uncertainty are studied in the context of stochastic
programming [20, 25], robust optimization [70, 71], and DRO [36, 43], with applications including
offshore oilfield exploitation [32], clinical trial planning [17], radiation therapy [41], network design
and facility location [1, 5, 44], and power capacity expansion [4]. Following the earlier work of
[21], two distinct classes of endogenous uncertainty were identified in [26], depending on whether



the decisions affect the temporal revelation of uncertainty or its probability distribution—with the
possibility of affecting the set of possible outcomes in both classes [42]. Given that our studied
stochastic program involves a decision-dependent probability distribution, we limit our literature
review to this class of problems.

Unlike models with temporal endogenous uncertainty, the literature on models where decisions
affect the probability distribution is sparse. Various discrepancy-based DRO approaches were de-
veloped in [36], where to model decision-dependent probability distributions, the maximum allowed
distance from a nominal distribution is assumed to be decision-dependent. The authors in [43] con-
sidered a DRO approach, where the decision-dependent distributional ambiguity is modeled via
Wasserstein distance around a decision-dependent nominal distribution. Similarly, the authors in
[4] studied a DRO approach to a facility location problem, where the distributional ambiguity of
decision-dependent demand is captured with moments around a decision-dependent nominal mo-
ment. A similar problem to the one in [4] was studied in a multistage setting in [74]. The authors
in [34, 37] studied a service center location problem, where utility gains upon receiving service are
location-dependent and assumed to be ambiguously described by moment-based sets. A joint stock-
ing and pricing problem for a product without knowing the price-dependent demand was studied
in [29]. The authors introduced a functionally robust approach to hedge against various classes of
decreasing convex or concave functions to model price-dependent demand. A DRO problem with
a decision-dependent ambiguity set was studied in [57], where the preference relationship between
probability distributions is formed via the decision-dependent cumulative distribution functions.

Similar to the existing models on DRO problems where decisions impact the probability dis-
tribution of random parameters, we capture the decision dependency with a decision-dependent
ambiguity set. Nevertheless, instead of focusing on a particular type of ambiguity set, e.g., a
discrepancy-based or moment-based model, we consider a polyhedral ambiguity set, which subsumes
some classes of both models. When the polyhedral ambiguity set (6) subsumes a discrepancy-based
model, we allow for a decision-dependent radius, whereas when it subsumes a moment-based model,
we allow for decision-dependent nominal parameters.

1.4 Organization

The rest of this paper is outlined as follows. In Section 2, we present reformulations for a gen-
eral DRO problem with a decision-dependent ambiguity set and special cases of convex/nonconvex
recourse functions as well as convex/nonconvex decision-dependency. In Section 3, we propose
finitely-convergent decomposition-based cutting plane algorithms to solve the resulting DRO prob-
lems optimally (or near-optimally). We then present numerical experiments to test the efficacy
of solution algorithms in Section 4. We end with conclusions and a discussion of future work in
Section 5.

Notation and Definitions: Throughout this paper, vectors are denoted by boldface lowercase
letters and matrices are denoted by boldface uppercase letters. Sets are denoted by calligraphic
uppercase letters. All sets in this paper are subsets of a finite-dimensional Euclidean space RZ.
For a set B C RY, conv (B) denote the convex hull of B. Let e; be the i-th unit vector and e be
a vector of ones in R%. A random function g : Z — R has N outcomes {g(¢),...,g(€™)} with
probabilities {p1,...,pn}. A set-valued function ¢ — F(t) : D = R is upper semicontinuous (u.s.c.)
at t € D if imy_yooty = t, yy € F(ty), and limy,_,o0 3, = y imply that y € F(t). A real-valued
function ¢ — F(t) : D — R is lower semicontinuous (l.s.c.) at ¢ € D if lim,_,~ t, = ¢ implies that
liminf, o F(ty) = F(t). For a € R, (a)+ denotes max{0,a}.



2 Reformulations

In this section, we provide reformulations for problem (1) with a decision-dependent polyhedral
ambiguity set in the form of (6). In Section 2.1, we focus on a generic recourse function and an
ambiguity set with a generic decision dependency. In Section 2.2, we focus on a convex recourse
function and an ambiguity set with a convex or concave decision-dependency. We suppose that
Assumptions (A1)—(A3) hold throughput the paper.

2.1 Generic Recourse Function and Ambiguity Set with Generic Decision De-
pendency

In this section, we suppose that h(x,&), defined in (2), is a generic function in x (convex or
nonconvex) for a fixed £ € Z. Moreover, we do not impose any additional structure on the ambiguity
set (6). Theorem 1 states a nonlinear reformulation of (1).

Theorem 1. Suppose that Assumptions (A1)—(A3) hold. Then, (1) can be written as the optimal
value of the following nonlinear program:

min A9 (x Z Golx,\)
w€[N] (8)
s.t. xe X, A>0,
where
Gul@,A) = | h(@,€,) = ATg(€)] (9)
with
Yulz] =Pu(2)+ —p_(—2)+. (10)

Proof. Let us define M := {p >0 ‘Eu <py <P, WE [N]} For a fixed « € X, by dualizing the

second set of constraints in (6), a Lagrangian function of problem max,cp(z) Ep [h(x,£)] can be
written as:

Li@,p,A) = AT0(@) + Y po(h(@,€,) - ATg(€,)).

w€[N]
Hence, the Lagrangian dual of problem maxycp(z) Ep [h(x,§)] is
i L A
min max (z,p, A)
s.t. A>0.
Observe that

“AT9(x) + max L(xz,p,\)

= > B(h@e) -ATg€)) > p,( k@) FATgE),

WEIN] welN]

=3 pw<h(a:,€w) —)\TQ(Ew)>+ _Qw<_ M, &) + A" g(&, )>+
wE[N]

=3 v [h(a:,éw) —ATg(Ew)]
w€E[N]



where G, (x,\) and ¢, (-) are defined in (9) and (10), respectively. We concluded the second

equality above by the fact that either (h(m,éw) — )\Tg(éw)) or ( — h(x,&,) + )\Tg(éw)) is
+ +

positive. Now, because maxpepz) Ep [h(x,£)] is a linear program and by Assumption (A3), there

is no duality gap. Combining the resulting dual problem with the outer minimization problem
derives the reformulation in the statement of the theorem. O

Note that G, (x,A), defined in (9), is well-defined by the finiteness of h(x,€,) (see Remark
1). In Lemma 1, we establish that ¢,[z] is a convex function, and using this lemma, we derive a
two-stage reformulation of (1) in Corollary 1.

Lemma 1. Consider function ¢,[z], defined in (10), for w € [N]. Then, p,z] is conver and
monotonically nondecreasing in z.

Proof. Observe that ¢,,[z] can rewritten as ¢,[z] = P, z+e(z)4, where e > 0 is such that p, = p e
Hence, ¢, [z] is monotonically nondecreasing in z. Because (z)4 is convex in z, then, it follows that
Yw(z] is convex in z. -

Corollary 1. Suppose that Assumptions (A1)—(A3) hold. Then, (1) can be written as the optimal
value of the following two-stage stochastic mized-integer nonlinear program (MINLP):

s 3T
win ATO(@)+ ) Gulz, N
welN] (11)
s.t. xeX, A>0,

where

Gu(@, A) = min 4p, — pup,,

v = > wo(a:,y,fw) - ATQ(&w)’ (12)
(TS y(£7£w)’
Y, = 0.

Proof. By Lemma 1, ¢,[z], defined in (10), is monotonically nondecreasing in z. Hence,

Gu(@, A) =g | h(@,€,) = AT g(€,)]

= min Pw |:¢0(:B7 Yy, Ew) - ATQ(&Q)) .
yeV(z£,)

Now, linearization of ¢, [-] by introducing additional variables v and pu, yields (12). Theorem 1

completes the proof. O

Remark 2. [t is evident from (11) that once decision variables (x, X) are fixed, the problem becomes
decomposable in w € [N]. In particular, one can interpret (11) as a two-stage stochastic program,
where (¢, X) are the first-stage decisions and (Y, pw,Vw), w € [N], are the second-stage decisions.
In particular, observe that in the case that P(x) is decision-independent, i.e., ¥(x) is a constant,
problem (11) reduces to a two-stage stochastic mized-integer program.

We end this section by presenting an extensive deterministic equivalent formulation (DEF) of
(11) in Corollary 2.



Corollary 2. Suppose that Assumptions (A1)—-(A3) hold. Then, (1) can be written as the optimal
value of the following MINLP:

min A9 (x) + Z (VP — Hwp,)
TN Y1 YNV welN]

st. xe X, A>0,

Yoo — b = Yo, Y, E,) — X g(€,), we[N],
Yy, € V(x,€,), weN],
.1 > 0.

2.2 Convex Recourse Function and Ambiguity Set with Convex/Concave De-
cision Dependency

Throughout this section, we suppose that h(x, &), defined in (2), is a convex function in x for a
fixed & € E; for instance g(x,y,€) = c'x + q'y as in (4). Proposition 1 states that in this
case, G(x,A), defined in (9), is convex in (x,A). Then, Corollary 3 below states that under
certain conditions on the ambiguity set P(x), problem (11) can be stated as a two-stage stochastic
mixed-integer concave minimization problem.

Proposition 1. Suppose that Assumptions (A1)—-(A3) hold. If h(x,&,,) is convex in x forw € [N],
then Gy, (x, X), defined in (9), is convex in (x,A) for w € [N].

Proof. Observe that h(x,€,) — AT g(€,) is convex in (z,A). Hence, G, (x,\) is convex in (x, )
because @, (+) preserves convexity. O

To state the main result in this section, we make the following assumption on the ambiguity
set.

A4 (Convex/Concave Decision-Dependent Ambiguity Set) For the ambiguity set P(x),
defined in (6), ¥*(x), is either a nonnegative convex function in & or a nonpositive concave
function in x, for i € [s].

Corollary 3. Suppose that Assumptions (A1)—(A4) hold. For w € [N], suppose that h(x,&,) is
a convex recourse function defined in (2). Then, (1) can be written as the optimal value of the
following two-stage stochastic mixed-integer concave minimization problem:

min ¥+ Z 0., —% Z (A2 + v'(x)?) 7% Z (N —ﬁi(w))Q

x,\,0,U
w€[N] ieCt 1€C™
s.t. 0, >Gu(x,N), we][N],

1 ‘ 1 ‘ (14)
V> Z (X + 9 (x))? + 3 Z (A2 + 9 (x)?)
ieCt i€C—
reX, A>0,

where Gy,(z, ) is defined as in (12), Ct = {i € [s]|¥"(x) > 0 and convez in x}, and C~ :=
{i € [s]|V'(x) <0 and concave in x}.

Proof. Note that 2ab = (a+b)?—(a?+b?). Using this identity, we can write 2\;9(z) as the difference
of two convex functions as follows 2X;9"(z) = (A; + 19’(:1:))2 — (A7 + 0(x)?) for i € C*. Similarly,



we can write 209 (x) = (A? + 9(x)?) — (A — ¥'(x))? for i € C~, which is again the difference
of two convex functions. Problem (14) is then obtained from (11), where the concave terms are
kept in the objective function and the convex terms are moved to the constraints by introducing
additional variables # and W. Because the objective function is concave and the constraints induce
a convex feasible region, the problem is a two-stage stochastic mixed-integer concave minimization
problem. O

3 Solution Algorithms

The two-stage structure makes problem (11) amenable to decomposition-based algorithms. This
section investigates decomposition-based cutting plane approaches to obtain an optimal (or near-
optimal) solution to (11) under different assumptions on the recourse function and the decision-
dependent ambiguity set. These cases will involve solving a nonconvex problem; hence, we assume
that there is an oracle that solves this problem to e-optimality as follows.

A5 (e-Optimal Global Solver) For any € > 0, there is an oracle that solves a nonconvex
problem 2* = min » g)es AT9(x) 4 6 to e-optimality. That is, it obtains a solution (&, X, 6)
such that 9(&)TA+0 < z* +e.

3.1 Convex Recourse Function and Ambiguity Set with Generic Decision De-
pendency

Throughout this section, we suppose that h(x,€,) is a convex function in x, w € [N]. Before
presenting an algorithm for solving (1) with a generic decision-dependent ambiguity set (6), we
review such an algorithm for a decision-independent ambiguity set.

Recall that when h(x, €,,) is a convex function in &, G, (x, A), defined in (9), is convex in (x, A),
w € [N] (Proposition 1). In addition, when the ambiguity set P(x) is decision-independent, i.e.,
Vi(xz) = 9%, i € [s], (11) reduces to a convex program. Consequently, by exploiting the convex
structure of Gy (x,A), one can iteratively obtain outer approximations to G (x, ) for w € [N]
using subgradient information. These, in turn, lead to a lower bound on the optimal value. Below,
we first present subdifferential of G (x,A), w € [N]. Then, we discuss the general framework of
such a cutting plane scheme.

Proposition 2. Suppose that Assumptions (A1)—-(A3) hold. For w € [N], suppose that h(x,&,)
is a convex recourse function defined in (2). Then, for G,(x,\), defined in (9), we have

P,Oh(x,§,) x {—g(£,)} if h(z,€,) —A"g(€,) >0,
8Gw(az,)\) = Bwah(xvéw) X {_g(Ew)} if h(mvé'w) - )‘Tg(gw) <0, (15)
[pU* ]nah($7£w) X {_g(ﬁw)} if h(wagw) - ATg(gw) =0,
nElp P

where X denotes the Cartesian product.

Proof. Observe that by Proposition 1, G, (@, A) is convex in (@, A). Thus, the subdifferential (15)
follows immediately from (9). O

Given & € X and A > 0, observe that by using the subgradient inequality, we have

Gw(wv A) > Gw(:%v 5‘) + C;:r,w(w - i) + CI,w(A - X)? (16)



where ¢, := (C;}w, C;w)T € G, (&, A). Hence, for the epigraph
Dw = {(m7A7 Qw) ‘ Gw(il),)\) S 90-“ T < X’ A Z 0}7

we can obtain supporting hyperplanes to separate point (Z, 5\) from the epigraph. The supporting
hyperplanes are of the form

O > Gu(,A) + (@ — ) + (oA = A). (17)
Therefore, one can obtain a restricted master problem for (1) after ¢ iterations as follows:
t - T
z'= min A 9+ 0., 18
(2,2.0)€S! wez[;v] ¥ (18)

where
Ax>d, x>0, A >0,

S'=<(x,X,0)| 0o > Gu(x", N) + (. — ") T¢h + , (19)
A=A")TCK ., weN], ke {0}uUlt—1]
(xt, A!,8") is a solution obtained from solving (18) at iteration ¢, and ¢* are the corresponding
subgradient of G,,(x*,A¥), w € [N] and k € {0} U [t — 1]. Note that S° is the initial set, with no
optimality cuts.
It is clear that > c(y Qu(®, A) is also convex in (z,A). Hence, one can also obtain a lower

approximation to (8) where one generates cuts of the form 6 > - 1y (Gw(:ic, )+ Clw(:c —Z)+
CI,w ()‘ - 5‘))

When h(x, €) is defined with objective function vo(x,y,&) = c¢'x + q'y, as in (4), we have
that G, (x, A) as the optimal value of a linear program as follows:

Gw(ma A) = min VP — HP (20&)
Y -

V_N_quZCI:B_)‘Tg(Ew)v (20b)

D,y > B,x + b, (20c)

y>0, v, u>0. (20d)

By taking the dual of (20), we have
Gu(x,A) = max J(CZ:I) - )\Tg(ﬁw)) + 7 (Byx +by)
st. p <0=<Dy, (21)

where o and 7 are the dual vectors corresponding to (20b) and (20c), respectively. Let (&w (z, 5\), 7w (Z, 5\))
be an optimal dual multiplier to problem (21) at (z, ;\) Then, an optimality cut in the form of
(17) can be written as:

O > 6(2,N) (cfx — ATg(€,)) + 7u(@,N) T (Buz + by). (22)
For simplicity, we let R R X
Oz o(Z,N) i= Bl 7, (2, ) + c,0,(2,\)
axw(®,A) == —g(£,)0u(Z, A) (23)
Pu(Z, A) = b:l—ﬁ'w(i’ A)



Algorithm 1: Cutting-plane algorithm for problem (1) with a convex recourse function
and a decision-independent ambiguity set.

Input: An initial solution (z°, A°).
Output: An optimal solution and the optimal value.
1 Initialization: Set ¢t +— 1, LB + —o00, UB < +o00. Add initial cuts (e.g., 6, > 0), if
available, to SY.
2 while UB > LB do

3 for each w € [N] do
4 Obtain Gy (2!~ A1) by solving (12) and subgradients ¢, € 0G,(z!~1, A1)
using (15).
5 end
6 | UB« min{UB, 9" A"+ 1y Gox ™1, A"}
7 Let St =
SN {(x,A,0) |0, > Gu(a' 1A + C;w(x — 7 + C;w()\ —A'"h), we [N}
8 Solve restricted master problem (18) using S! and obtain an optimal solution
(xf, A, 0%).
9 | Let LB 9 A" + 3 n 0L
10 Set t <+t 4 1.

11 end
12 return (x!, \’) and UB.

Hence, A A A
O > @' Ot o (#, ) + AT ax (@, A) + pu(@, A) (24)

is a valid inequality in the form of (17).
A general framework of a finitely-convergent cutting plane scheme to solve (11) with a convex
recourse function and a decision-independent ambiguity set is given in Algorithm 1.

Theorem 2. Suppose that Assumptions (A1)—(A3) hold. For w € [N], suppose that h(x,&,) is a
convex recourse function defined in (2). Moreover, P(x), defined in (6), is decision-independent.
Then, Algorithm 1 generates an optimal solution to (1) in a finite number of iterations.

Proof. To prove the finite convergence of Algorithm 1, we need to show that the “while” loop
terminates in a finite number of iterations, generating an optimal solution to (1).

First, note that at each iteration ¢, G,,(x!~', AX'™!) is finite, w € [N]. Now, after solving (18)
using S’ and obtaining an optimal solution (xf, X!, 8%), either (1) 0, > G, (x!, A) for all w € [N]
or (2) 0L, < G, (x', A!) for some w € [N]. If case (1) happens, we have

IB=9'X+ > 6L>9"A+ > Gu(a' \)=UB.
w€[N] w€[N]

Hence, the termination criterion is satisfied, and Algorithm 1 returns the optimal value UB, with
the corresponding optimal solution (!, A).

Now, suppose that case (2) happens. It can be verified that solution (!, X!, 8%) is not feasible
to the epigraphic reformulation of problem (1) for some w € [N], because 0!, < G, (x!, A"). Also,
we have

LB=9"A"+ > 0L <9TA + ) Gyu(a',\') = UB.
w€[N] w€|[N]

11



Because the termination criterion is not satisfied, we derive optimality cut 6, > G (z', A) +
C;w(m —zt) +CI7W(}\—)\t). Now, we show that case (2) happens a finite number of iterations. Note
that 6, < G, (x!, A\") implies that none of the previously generated cuts enforce 6, > G, (x,\) at
(xf, A). Therefore, a new subgradient ¢, = (C;w, C;\r’w)—r of function G, (x, A) at (x!, ") is needed
to cut off the point (!, A*,8"). Observe that ¢z corresponds to one of the finitely many dual
bases of h(x!, £,,); that is, {7r >0 | 7' D, < qu}. Hence, there are finitely many optimality cuts.
Consequently, case (2) can only happen a finite number of times. This completes the proof. O

Remark 3. Algorithm 1 can be used for the cases where there are integer variables in the first stage,
i.e., n1 > 0, and the finite-convergence analysis remains valid where one solves the corresponding
mixed-integer master problem to optimality at each iteration of Algorithm 1. Alternatively, one can
use a branch-and-cut procedure, where a linear relaxation of the master problem is solved with the
standard branch-and-bound procedure. Then, a globally valid optimality cut is obtained whenever
an integer feasible solution to the restricted master problem violates any of the previously generated
optimality cuts. By the finiteness of the branch-and-bound, it is straightforward to prove the finite
convergence of this adjusted version of Algorithm 1.

When the ambiguity set P(x) is decision-dependent, similar to the construction for the decision-
independent case, one can form a restricted master problem for (1) after ¢ iterations as follows:

t_ : AT 0., 25
© T @ades: (meezu:v] ’ -

where
Ax>d, x>0, A >0,

S'=1 (,X,0)| b > Gu(a®, ) + (x —a*) "¢+ , (26)
A=AT¢K ., weN], ke{o}ult—1]

(x!, X, 8") is a solution obtained from solving (25) at iteration ¢, and ¢* are the corresponding
subgradient of G, (z*, A¥), w € [N] and k € {0}U[t—1]. A general framework of a finitely-convergent
cutting plane scheme to solve (1) with a convex recourse function and a generic decision-dependent
ambiguity set is given in Algorithm 2.

Theorem 3. Suppose that Assumptions (A1)—(A3) and (A5) hold. For w € [N], suppose that
h(x,&,) is a conver recourse function defined in (2). Then, Algorithm 2 generates an e-optimal
solution to (1) in a finite number of iterations.

Proof. Using a similar argument as that in the proof of Theorem 2, after a finite number of iterations
t, we have 61, > G, (x!, \") for all w € [N]. This implies that

LB =) A+ Y 0, >0 A+ > G,(a' \') =UB.
w€[N] w€[N]

Hence, the termination criterion is satisfied. On the other hand, given Assumption (A5), we have
LB < 2! + €. Thus, Algorithm 2 returns the e-optimal value UB, because UB < 2! + ¢, with the
corresponding e-optimal solution (xf, A!). O

Remark 4. A challenge in obtaining the lower bound at each iteration of Algorithm 2 is the
nonlinear product term )\Tﬁ(:n). Various techniques are developed for the global optimization and
relazation of nonconver nonlinear programs, see, e.g., [13, 18, 53, 55, 60, 66, 67] for a finitely-
convergent cutting plane algorithm to obtain an e-optimal solution to nonconver bilinear programs.
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Algorithm 2: Cutting-plane algorithm for problem (1) with a convex recourse function
and a generic decision-dependent ambiguity set.

Input: An initial solution (2% A%) and € > 0 for the optimality tolerance.
Output: An e-optimal solution and the e-optimal value.
1 Initialization: Set ¢t +— 1, LB + —o00, UB < +o00. Add initial cuts (e.g., 0, > 0), if
available, to SY.
2 while UB > LB do

3 for each w € [N] do
4 Obtain Gy (2!~ A1) by solving (12) and subgradients ¢, € 0G,(z!~1, A1)
using (15).

5 end

6 | UB <« min{UB, (") TN+ 3 3 Gu(a' 1, A1)}

7 Let St =
SN {(x,X,0) [0, > Gu(x! LN + ¢ (@ — a7 + (L (A= AT, we [N]}

8 Solve restricted master problem (25) using S* and obtain an e-optimal solution
(xt, AL, 6Y).

9 | Let LB 9(z")TA" + 3 iy 0L
10 Set t < t+ 1.

11 end
12 return (x!, ") and UB.

These cutting plane-based algorithms have found applications in several branch-and-bound schemes,
see, e.g., [06] for a reformulation-linearization technique (RLT)-based branch-and-bound algorithm,
and [58, 68] for a spatial branch-and-bound algorithm. For a comprehensive review of such global
optimization techniques, interested readers are referred to [16]. In the context of DRO with a
decision-dependent ambiguity set, the authors in [4, 7/] used McCormick inequalities to obtain an
exact reformulation of bilinear terms due to the multiplication of a binary and a continuous variable.
Given that many of these global optimization and relazation techniques are implemented in some
commercial nonconvex solvers, we directly leverage them in our numerical experiments in Section

45

3.2 Convex Recourse Function and Ambiguity Set with Convex/Concave De-
cision Dependency

We now turn our attention to problem (14), where h(x, £,,) is a convex function in &, w € [N], and
Assumption (A4) holds for the decision-dependent ambiguity set.

By a similar argument as in Section 3.1, one can obtain lower bounding approximations to (14).
To solve this problem, a restricted master problem for (1) after ¢ iterations is as follows:

S —  min U+ Z 0, — % Z (A? + ﬁi(;c)2) _ % Z ()\Z» - ﬁi(m»?, (27)
w€E[N]

(2,2,0,0)St icc+ i€c”
where
Az >d, £ >0, A>0,
U > 1Yo it (@) + 5 Yo (A2 +9(@)?)
b 0T >3 iec+ i 2 ieC 7 ’ 28
S (, 2,0, T) O > Qu(xk N) + (x — xF)T¢h + | Y
A=A w €N ke {0} ULE 1]
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Algorithm 3: Cutting-plane algorithm for problem (1) with a convex recourse function
and a convex/concave decision-dependent ambiguity set.

Input: An initial solution (2, A°) and € > 0 for the optimality tolerance.
Output: An c-optimal solution and the e-optimal value.
1 Initialization: Set ¢ <— 1, LB - —o0o0, UB <— +o00. Add initial cuts (e.g., 0, > 0), if
available, to S°.
2 while UB > LB do
3 for each w € [N] do
4 Obtain Gy (z!~, A1) by solving (12) and subgradients ¢, € 0G,(z!~1, AI™1)
using (15).
5 end
6 UB + min{UB, P-4 ZwE[N] Gw(mt—l’ )\t—l) _ % Zie(H (()\11‘51)2 + (ﬁi(mt—l))Q) _

B ice- (A1 =i )")

7 Let St =
ST {(,X,0) [0, > Gu(@ N + ¢ (@ — 2" + ¢ (A= AT, w e [N]}.
8 Solve restricted master problem (27) using S* and obtain an e-optimal solution

(xf, A, 0%, Ut).
o | Let LB e Wt Sy 0 — 4 Ticer (02 + (@) = § e (4= 9'(a))”
10 Set t < t+ 1.

11 end
12 return (x!, ") and UB.

(2!, X, 8, T?) is an (extreme point) solution obtained from solving (27) at iteration ¢, and ¢* are
the corresponding subgradient of Gy, (x*, \¥), w € [N] and k € {0} U [t — 1]. A general framework
of a finitely-convergent cutting plane scheme to solve (14) is given in Algorithm 3.

Theorem 4. Suppose that Assumptions (A1)—(A5) hold. For w € [N], suppose that h(x,&,) is a
convex recourse function defined in (2). Then, Algorithm 3 generates an e-optimal solution to (1)
in a finite number of iterations.

Proof. Using a similar argument as that in the proof of Theorem 2, after a finite number of iterations
t, we have 6, > G, (x, \") for all w € [N]. This implies that

LB=w Y2 0~ 0 37 (07 + (@) — 5 3 (0~ (@)’
w€e[N] 1eCt i€eC—
S Y Gt ) -5 3 (07 ) 5 3 (- v (@)’
w€e[N] 1eCt i€eC—

= UB.

Hence, the termination criterion is satisfied. On the other hand, given Assumption (A5), we have
LB < 2! + €. Thus, Algorithm 3 returns the e-optimal value UB, because UB < 2! + ¢, with the
corresponding e-optimal solution (!, A"). O

Remark 5. A challenge in obtaining the lower bound at each iteration of Algorithm 3 is to solve a
concave minimization problem (27). Given that solution (', X', 0, ') obtained from solving (27)
at iteration t is an extreme point, a cutting plane algorithm can be developed, see, e.g., [47, 48].
We also refer to [10, 27] for a review of the global optimization of concave minimization problems.
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3.3 Nonconvex Recourse Function and Ambiguity Set with Generic Decision
Dependency

Throughout this section, we suppose that h(x,£,) is a nonconvex function in x, w € [N], un-
less otherwise stated. In particular, we assume that h(x, &) is defined with objective function

do(x,y.€,) = ez +qly+a' Loy, as in (5).
Observe that G, (x, A), defined in (12), is the optimal value of a linear program as follows:

Gu(@,A) = min 9p, — up, (29a)
YK qzy - mTLwy > sz - ATQ(SUJ)? (29b)
D,y > B,z + b, (29¢)
y>0, v,1>0. (29d)

Let o and 7 be the Lagrange multipliers corresponding to (29b) and (29¢), respectively. Moreover,
Ty, Ty, and 7, are the Lagrange multipliers corresponding to y > 0, v > 0, and > 0. The
Lagrangian function can be written as:
Lw(wa )‘7 y7 ,ua ’77 Ua 7‘-7 7ry7 7T'Y, 7T}L)
=P, —up, +o(c,z—A"g€,) —v+u+aly+x' Loy)+
7w (Byx + b, — D,y) — w;y — Y — Tpufh
=o(c,z—ATg(€,)) +n (Buz + by) + (P, — 1y — 0) — p(p, + 7p — 0)

+ (oq, — Tl'; — 7' D, +ox'L,)y.

By weak duality, we have

Qu(T, N\, 0,7, Ty, Ty, ) 1= ?1%111 Lo,(x, X\, y, pb, 7,0, 7, Ty, Ty, ) < Gy, A),

for all 7,y > 0 and o, 7, m, > 0. Thus, problem (11) can be reformulated as:

-
;nin Az Z 0.
w€E[N] (30)
st. xeX, A>0,
0o > Qu(x, X\, 0,7, Ty, 7y, T,), wE[N], VI, my >0, 0,7y, 7, > 0.
Let us consider the Lagrangian dual problem
Gu(x,A) = w,wyzﬂ?fffmmzo Qu(x, X\, 0,7, Ty, Ty, T,)
T T T
= el {olelz = NTg(e)) + 7T (Buw bt
min 5(p, — 7 —0) = plp,, + 7~ 0) + (0q, —my — 7' Dy, + awTLw)y}
T T T
g —_ Bw
G S o(c,®—X'g(§,)) +7 (Box+b,)
S.t. ﬁw - 7T»y — 0 = 07 (31)

p,+m—0o=0,

an — 71';— — wTDw + J:nTLw =0'.
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= max a(cT:c =Y g&,)) + 7w (Byx + b,,)

7>0,0>0
s.t. P, <o <D, (32)
— JqI + ﬂ'TDw — omTLw < o'.

Given & € X and A > 0, let (6,7, Ty, Ty, 7,) be a corresponding optimal Lagrange multipliers to
Lagrangian dual problem (31) with zero duality gap. Hence, for w € [N], we have

Le,(x, N, Yy, o, 7, 0, T, Ty, Ty, T

=5(cir—X'g(g,) + 7 (Buw +by) +v(B, — Fy — &) — plp, + 7 — 6)
—I—(qu—fry #' D, +6x L)y

=6(c,z—ATg(&,) + 7 (Box+b,)+6(x—2) Loy,

where the second equality follows from the facts that p,, — 7, — 6 =0, p,+Tu— 6=0,and 6q) —

fr; —#"Dy,+6& "L, =0". Given that Ly(x,\,y, 1,7, 0,7, Ty, Ty, 7,) only depends on primal
variables y and dual multipliers (&,7), we suppress (u,7) and (7ty, 71y, 7,) from the arguments
of L,. Moreover, L, depends on & only through (6,7). Hence, we add & to the arguments of
Ly, ie., Ly(x, N\, y,u,v,6,7; &), when needed for clarity. Similarly, we write Q. (x,\,d,7; ).
Consequently, upon choosing (6, 7), the Lagrangian dual function can be written as:

Qu(xz, N\, 0,7; &) =min Ly(x,\,y,0,7; &)
Y
=d(c,z—ATg(€,)) + 7 (Bux +b,) +min 6(x —2)' Lyy. (33)
Y

Given & € X and A\ > 0, and for the specific choice of (6, 7), an optimal solution of the La-
grangian dual function only depends on variables y, i.e., the variables that are bilinearly connected
to x in the description of the objective function (., y,€,) = ¢/« + ¢y + " L,y. Thus, given
that 6 > 0, the condition

(@ — &) Loy —y5) >0, Vy (34)
is sufficient and necessary for the optimality of y to the Lagrangian dual function (33). Given
that 6(x — :i:)TLwy is linear in y, an optimal y, is a boundary point of the space of y. Suppose
that Assumption (A2) holds and y <y, <¥,. Let L, ; be the j-th column of matrix L. Thus,
if (x—2)"l,; >0, then Yoj =Y, ;- Otherwise, if (z — #)"l,; <0, then Yoo i = Yo

Let y,, be a combination of such lower and upper bounds on variables y , that attains Lagrangian
dual function (33). Thus,

0. > 6(c,x—A"g(€,)) + 7" (Boz +by,) +6(x—2)" Luy,

is a valid linear inequality for (30) on

Sy = {w

where J == {j : ;= v, } and J; = {j : Jwj = Y ;}- Let Q be a finite index set, enumerating

(35)

(m—m)l >0, j€Jt,
(x—2)"l,;<0,jeJd; [’

all combinations of such lower and upper bounds on variables y,,. Appending the subscript ¢ € @
to ¢, JI, and J, we define

Ax > d, wZO, /\>0,
90-? 2 Y (cc—ur (gw))
Kug =13 (2,X,0,) # T (Byx + b )+ 6(x— &) Luby,, - (36)
A)led’ >0, j5¢€ JT
r)

—

w,q’

wi
(x — le,j§0 JE€ oy
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Given that Lagrangian dual function (33) attains its optimal solution at ¢, , for some ¢ € Q,
the feasible region of (30) is a subset of the following disjunctive set:

To =1 (@A 0,): | Kugp- (37)
q€Q
Following Balas [2, Theorem 3.1], a valid inequality for the convex hull of 7, conv (7,), may
be represented in the form
QT + 0 WA+ gl > pu, (38)

where (g, 0w, X0, Pu) is an element of the following polyhedral set:

3{05,,>0:7€ 0.},
{6qu =20:j€ ;q}’
59’(] >0,0z4>0,qg€cQ, s.t.
i —p q6(c+Lw@w7q) — 6pgBl 7+
2 5 w,j,q Lo j—

J€Idq
Z 5_,](1 ,] — acc,wa q G Q?
Wy = (am,un QN ws AYw), pw) J€Juq ) (39)
59 qé—g(éw) S a)\,wy q e Q7
50,(] > Qg w, q € Qa
8140+ 047 ? 507q&5zTngqu+
Z 5 7]‘1 l
JEJ:;q
— AT
Z 5w,j,qw le 2 IO(AM q € Q’
Jj€Juq )

The polyhedral set W, is the reverse polar cone of conv (7y), i.e., the cone characterizing all valid
inequalities for conv (7,,). Moreover, (38) is a facet of conv (7,) if and only if (0w, A w, 40w, Pu)
is an extreme ray of W,,. Such a facet can be identified by solving the following cut-generation
linear program (CGLP):

min a) &+ o A+ ag b, — po (40)

(am,wyak,wyaB,vaw)eWw ’ ’ ’

If the optimal value of (40) is nonnegative, then (ﬁ:,;\,éw) € conv (7,). Otherwise, if the opti-
mal value of (40) is negative and (ougw, Qxw, @9, pu) is an optimal solution, then a disjunctive
inequality in the form of (38) is valid for conv (7,,), which cuts off (z, X, 6,,).

As W, is a cone, a normalizing constraint like > 5dpq = 1, or 3 o (Ejerq (5:,j,q +

ZjeJ;, Ojig T 00, + 5$q ) = 1 can be added to W,, once solving the CGLP (40). Note that

if the normalizing constraint quQ 09, = 1 is used, then the CGLP allows for those facets of
conv (7,,) that have a positive coefficient ag,, for 6., as ag,, > maxseq dp,, > 0 by the constraints
in W,,. Hence, a valid inequality is given by

T o
0., + [O’m,w] x4 |: )\,wi| A > Pw '
Qg w Qg w Q9w

Putting these all together, one can form a restricted master problem for (1) after ¢ iterations
as follows:

t— i A9z 0., 41
& (m,;l}elr?est wEZ[N ’ (4D
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Algorithm 4: SepCuts(&, A, 0,; 7, 5).

Input: (&,,0,) and (#,5).
Output: (viol, oy, Oxw, g, pu). If a valid inequality a;wm + aIw)\ + g b > po is

found that is violated by (&, X, éw), then return viol=TRUE, oz, axw, ¥,
and p,,. Otherwise, return viol=FALSE, oz, = 0, ay, = 0, ag,, = 0, and
pu = 0.

Initialization: viol <= FALSE, az ., =0, ax, =0, ag,, = 0, and p, = 0.

Given (A ), form W, as in (39), with a proper a normalization constraint.

N =

3 Let (ag . @}, 5, p5) be an optimal solution to the CGLP
zZ= min a;ww+a)\w)\+a9w9 — Pw-

(am,w SO\ wH XY w 7Pw)€Ww

4 if 2 <0 then

5 ‘ viol <~ TRUE and let az o = ag, ,, axy = a;w, g = a;M, and p,, = pJ,.

6 end
where

Ax >d, x>0, A >0,
St={(xz,\,0) z'ak, )\Ta)wﬂ- . (42)
Hwo/;w >pk we[N], ke {0}uUlt —1]

Here, (zt, X, 80) is a solution obtained from solving (41) at iteration ¢, and (o Qg a'ﬁ\w, algw,pw)
are the corresponding cut coefficients, w € [N] and k € {0} U [t — 1]. A general framework of a

finitely-convergent disjunctive cutting plane scheme to solve (1) with a nonconvex recourse function
and a generic decision-dependent ambiguity set is given in Algorithm 5.

Theorem 5. Suppose that Assumptions (A1)-(A3) and (A5) hold. For w € [N], suppose that
h(zx,€,,) is a nonconvex recourse function defined in (2). Then, Algorithm 5 generates an e-optimal
solution to (1) in a finite number of iterations.

To prove Theorem 5, we present some lemmas. The next two lemmas hold for problem (1) with
a generic recourse function (2).

Lemma 2. Suppose that Assumptions (A1)-(A3) hold. For a fired x € X and w € [N], G, (x, ),
defined in (9), is a proper, convex, continuous function in A on R®.

Proof. Note that by the boundedness of h(x, €,,) (implied by Assumption A2), we have G, (x, A) >
—oo for all A € R® and there exists A € R® with G, (x,A) < o0, e.g., A = 0; proving Gy (x,-) is a
proper function. In addition, by the convexity of ¢, [-] from Lemma 1 and linearity of h(x,&,) —

Tg(€,) in X, G, (x,-) is a convex function, and hence, continuous on R®. O

Let £ denote the set of optimal multipliers A in problem (8). The next lemma establishes the
boundedness of L.

Lemma 3. Suppose that Assumptions (A1)—(A3) hold. Then, the set of optimal multipliers X in
problem (8), L, is compact.

Proof. For a fixed ¢ € &, following the proof of Theorem 1, problem maxpep ) Ep [A(x, §)] can

be reformulated as the minimization problem miny>q A'9(z) + > we(n] Gu(@, A). leen that for
x e X, Zwe[N} G, (zx,-) is a proper, convex, continuous function by Lemma 2, the minimum of
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Algorithm 5: Cutting-plane algorithm for problem (1) with a nonconvex recourse function
and a generic decision-dependent ambiguity set.

Input: An initial solution (2, A%,0°) and e > 0 for the optimality tolerance.
Output: An e-optimal solution and the e-optimal value.
1 Initialization: Set ¢t < 1, Q + (), LB - —oo, UB «+ +o00. Add initial cuts (e.g., 6, > 0), if
available, to SY.
2 while UB - £ > LB do
3 for each w € [N] do

4 Obtain Gy (2=, A1) by solving (29) and (741, o%7!) by solving (32) at
(21, A1,
5 Call the procedure SepCuts(x!~!, X1 gL-1: wt-1 5t=1) to obtain

(ViO]-a Ay O Wy Of s ,Ow)

6 if vi0l=TRUFE then
7 | Q« QU{w}.

8 end

9

end
10 UB « mm{UB, ﬂ(%t_l)TAt_l + ZWE[N} Gw($t_1, )\t—l)}.

11| Let 8« St1n {(a:,)\, 9) ‘ al @+ al At ag by > po. w e Q}

12 Solve restricted master problem (41) using S* and obtain an §-optimal solution

(xf, X, 0%).

13 | Let LB« 9(z") TA" + 35 v 0L
14 Set t «t+1, Q« 0.

15 end

16 return (x!, \’) and UB.

this convex minimization problem is attained on a finite 0 < X for all @ € X'. This completes the
proof. O

For w € [N] and a fixed (z,A) € X x L, let F,,(x,A) and &,(x, A) denote the (primal) feasible
region of problem (29) and the (dual) feasible region of problem (32), respectively. Moreover, let
D, (x, A) denote the set of optimal solutions for problem (32).

Lemma 4. Suppose that Assumptions (A1)-(A3) hold. For w € [N], we have:
i. Dy(x, ) is compact for a fized (x, ) € X x L,
it. Fu(x,A) is compact for a fired (x,\) € X x L,
iti. The set-valued function &,(x, A) is continuous in (x,X) on X x L,
iv. The real-valued function Gy, (x, ), as defined in (29), is l.s.c. in (x,X) on X x L, and
v. The set-valued function Dy (x,A) is u.s.c. in (x,A) on X x L.

Proof. Consider a fixed (x,A) € X x L. Recall that G,,(x, A), defined in (9), is well defined. Thus,
Fu(x,A) is nonempty. Consequently, by a similar argument as that in Remark 1, D, (2, A) is a
bounded (and closed) set. Now, note that for a fixed (x, A\) € X x L, F,,(x, A) is closed and bounded
given that Y(x,&,,) is bounded by Assumption (A2), and the fact that p and « are bounded by
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|h(x,€,) — AT g(&,)| from above. By the boundedness of F,,(x,\) and a direct application of [72,
Corollary 11}, &,(x, A) is continuous in (x,A) on X x L. By the continuity of &,(x, A) and the
direct application of [72, Theorem 2], we have that G, (2, A) is Ls.c. in (&, X) on X x L. Moreover,
D, (x, A) is equivalent to

{(71', o) € E,(x,\) ‘ Go(@ ) =o(clz—ATgE,) + 7' (Boz + bw)}.

Since the objective function of (32), a(czm—}\—rg(.fw)) +7 T (Byz+b,), is continuous on &, (x, A) x
X x L and the set-valued function &, (x, A) is continuous on X x L, the direct application of [39,
Theorem 1.5] shows the set-valued function D, (x, A) is u.s.c. in (z,A) on X x L. O

of Theorem 5. To prove the finite convergence of Algorithm 5, we need to show that the “while”
loop terminates in a finite number of iterations, generating an e-optimal solution to (1).

By contradiction, suppose that the “while” loop does not terminate in a finite number of
iterations. Let {(z’,A’,0")} be the sequence of iterates generated in Line 12 and {(wl,o!) €
D,(x!,A") : w € [N]} be the sequence of dual multipliers generated in Line 4. We show that
0L, > G (x', A") — §, w € [N], for all sufficiently large ¢. This implies that we have

t9 t t9 t €
LB = \'9 Za>>\ ZGQ:/\ UB—5
wE[N] w€[N]

contradicting that the “while” loop does not terminate in a finite number of iterations. Given
Assumption (A5), we have LB < 2! + 5. Thus, Algorithm 5 returns the e-optimal value UB
because UB < 2! + ¢, with the corresponding e-optimal solution (!, A").

Now, we prove that 6%, > G,,(z',A") — §, w € [N], for all sufficiently large t. Note that {x'}
and {\'} are bounded by the compactness of X and £ (by Lemma 3), respectively. Moreover, {6'}
is a nondecreasing bounded sequence from below given that 67, is an underestimator of G (x, \),
w € [N], and accumulation of constraints in S*. In addition, {6'} is bounded from above given that
0! < G, (x', A", w € [N]. Consequently, there is a convergent subsequence, say K, {(x?, A, %) }iexc.

In addition, the associated sequence of optimal dual multipliers {(7(,,0(,) : w € [N]}sex is bounded

W) w

by Lemma 4.i.; hence, there is a convergent subsequence on K" C K. Let {(a: A0 e X xL
(by closedness) and {(7,,7,) : w € [N ]} be limit point of {(x!, A", 0")} and {(7!,0!): w € [N]}
on K’ respectively. As D, (zx, )\) € [N], is ws.c. at (Z,A) by Lemma 4.v., we have that
(Tw,0w) € Dy(T,A), w € [N]. Let {(yl,ul,") € ]:w(mt,)\t) :w € [N]}, be the sequence of
associated optimal primal solutions to problem (29). Given that F,(x!, A) is compact by Lemma
4.ii., there is a convergent subsequence on K” C K’ with a limit point {(¥,,, fi,,,7,) : w € [N]} on
IC//

We now claim that L (%, A, Yogr 0w, Ty T) = Ly (Z, N\, Y, 00, Tu; ®) for every ¢ € Q. Note
that for every (@, A) € X x L, we have im¢ o0 Loy (®, X, Y, 4, 05, 7s @t) = T (cfx — ATg(€,,)) +
7 (B,x+b,)+7, (m—E)TLwqu = Lu(®, A, Yy 45 0w, Tw; T) by the continuity of Ly, (x, A, y,, 4, 0, 7; )
at (6,7;&). Thus, L, (%, X, Y, 4, 0w, Tw; ) = 0 (cIf—XTg(gw))+fI(Bw§+bw) = L,(Z, X\, Y, 0w, T} E)
for every q € Q.

Given the validity of optimality cut generated at Line 5 for the corresponding set conv (7,,), we
have 0, > of,(cfx — ATg(€,)) + (Bux + by) 'wl, + ol (x — ') T Lyy,, , for some ¢ € Q. Moreover,
given the accumulation of cuts, we have 65! > of (e[ z!™1 — g(&,) TA™!) + (Boz! ™ +b,) Tnt, +
ol ('™ —a") " Lyy, .. Thus, taking the limit on K", we have 6, > Ly, (%, X, Y, 4 0w, Tw; T). And,
using the above claim yields 0, > Ly (T, X, Y, 0w, Tw; T), W 6 [N]. Now, given that {(7,,7,) €
D,(Z, ) : w € [N]}, by strong duality we have G,(Z,X) = Ly (T, X, Y,,, 0w, Tw; T). Hence, §, >
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Gu(Z, A). Finally, because Gy, (z, M) is Ls.c. by Lemma 4.iv., we have 6!, > G,,(z', \") = §, w € [N],
for all sufficiently large t. This completes the proof. O

Recall that when P(x) is decision-independent, i.e., ¥(x) = ¢, problem (11) reduces to a two-
stage stochastic mixed-integer program with (convex or nonconvex) recourse. Thus, a modified
version of Algorithm 5, by just changing ¥(x) to 9, yields a decomposition-based cutting plane
algorithm to solve the resulting DRO problem with a decision-independent ambiguity set to e-
optimality. We end this section with a remark on how Algorithm 5 is of independent interest
to solve two-stage stochastic programs with a random decision-dependent recourse matrix (i.e.,
bilinear stochasticity on the left-hand side) or a bilinear objective function.

Remark 6. Following similar ideas as those presented to develop Algorithm 5, a modified algorithm
may be developed to find an e-optimal solution to a two-stage stochastic mized-integer linear program
with a nonconvex recourse as follows:

min Ep [h(w7 E)] )

xrxeX
where
Y
s.t. qu +ax'Lyy > ch, (43)
D,y > B,x + b,
y >0,
or

h(z,€,) =min ¢jx +qiy + = Loy
Yy

s.t. D,y > Byx+ b,
y=>0.

Note that G, (x,X), defined in (29), has the same structure as (43), with bilinear stochasticity on
the left-hand side. We skip the details of the modified algorithm for brevity.

4 Numerical Experiments

In this section, we consider a problem with a nonconvex recourse and a generic decision-dependent
ambiguity set to illustrate the efficacy of disjunctive cuts. We provide computational comparative
results on the performance of Algorithm 5 and solving the extensive formulation using a commercial
nonconvex solver.

We note that as Algorithms 2 and 3 are developed using Benders’-type optimality cuts, we
do not present computational results for them. Not surprisingly and as extensively reported in
the literature, see, e.g., [56], our preliminary computational experiments showed the superiority
of the decomposition-based cutting plane algorithm over solving the extensive formulation using a
commercial nonconvex solver.

4.1 Multiproduct Newsvendor Problem with Price-Dependent Demand

For numerical experiments, we considered joint stocking and pricing decisions for a multiproduct
newsvendor problem with uncertain price-dependent demand. Let n denote the number of products.
For each i € [n], suppose that ¢; denotes the per unit purchasing cost, s; denotes the per unit salvage
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price, and b; denotes the per unit back-order cost. For a fixed order quantity ¢; € R, a fixed per
unit selling price r; € R, and demand &; € R, cost function h;(q;, 7, &;) is defined as:

hi(gi,ri, &) = ciqi — rimin{q;, &} — si(qi — &)+ + 0i(& — @) +
= (ci = si)(qi — &)y + (i — i + 1) (& — @i)+ — &i(ri — ci).

Equivalently, we have

hi(gi,ri,&) = min (¢ — si)y + (b — ci +re)y; — &(ri — i)
Yi Y,
s.t. yf Y =aq =&, (44)

ylﬂyl >0

Let ; = (gi,mi), @ € [n], and h(wm,&) = > ;¢ hiwi, &). Moreover, let X = {x = (q,7) :
Diem €t = d, ¢ 20, ¢ € Z, r; <1y < Ty, @ € [n]}. We assume that for i € [n], (i)
ci—s; >0, (i) ¢ <1, and (iii) b; +r; > ¢;. We note that (i) and (iii) ensure that the critical ratio
0< pB; = bi‘f;fﬁr_ < 1 is well defined. Hence, for any fixed price r; < r; < 7; and without having
constraint Zie[;]l c;q; < d, the optimal order quantity ¢; will be the left 5;-quantile with respect to
the distribution of &; (see e.g., [50]).

We formulate a DRO problem in the form of (1), where P(x) is a price-dependent ambiguity

set in the form of (7), and

/'LOZ Mz 1+ Z U, (45)

Jj€ln]
O'O,i('r' :EZ 1 + Z u’Ljr] 5 (46)
j€ln]
:U’O,i( _Mz 1 +2 Z UZJTJ + Z ’Lj + 2 Z Z ul] Z]/TJT]
j€ln] Jj€ln] J€[n] 5'€ld]

for i € [n]. Here,  and & indicate the vector of empirical mean and standard deviation of the
random demand £. We assume that ug < 0, i € [n], implying that an increase in the price of
product ¢ leads to a decrease in the average demand for product i, &. Moreover, for i € [n], ufj and
(i # j € [n], capture the impact of other products’ price on the mean and standard deviation
of the demand for product i, &; emphasizing that the products may be substitutable. We refer to
the described ambiguity set as DD-A. We also consider two other ambiguity sets in the form of (7)
with increasingly further relaxation of price-dependency as follows:

e DD-B: 4i9(r) is defined as (45) in the first set of constraints in (7), and poi(r) = fi; in the
second set of constraints in (7). Moreover, o¢;(r)? is defined as (46).

e DD-C: Same as DD-B but 0¢,(r)? = 72.

Several points are in order. First, (44) is in the form of problem (2) with an objective function
in the form of (5), yielding a nonconvex recourse function. Second, in light of Lemma 3, we have
L={X:0< X <max{(5+7)(q—£),b( —q)}, j € [s]}, where 5 = max;cp,) si, T = max;ep, T,
b= maX;cin] bi, § = MaX;e[n) weN] &i s §= Mil;e ] we[N] §&ha= maX;c[n] d/c;, and ¢ = min;e, d/Cz
Third, in light of the discussion in Section 3.3, we have 0 < y;r <giand 0 <y, <& in problem
(44). Finally, an optimal solution of the Lagrangian dual function in the form of (33) only depends
on y; .
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4.2 Experiment Design

To conduct experiments, we first generated t = (cT, sT,b'", zT,FT)T for a multiproduct newsven-
dor problem. We generated this information in a nested way so that a problem with a larger number
of products would contain all the information for a problem with a smaller number of products. We
set uj; = exp (—||t; —t;]|) for i # j, uj; = —0.3, i € [n], and uj; = exp (—|[t; — t;]|/2), i, 7 € [n]. We
generated realizations of the random demand &;, ¢ € [n], independently from a folded normal distri-
bution with mean 6 and standard deviation 2. Again, these realizations were generated in a nested
way. We present the computational results for n € {1, 2,3} products, hyperparameters 71 = 75 = 0,
To € {1,2} for the ambiguity set, and N € {100,200, 500, 1000, 2000, 3000, 5000, 10000, 20000} sce-
narios. We report the average results over five training sets {{ : i € [n],w € [N]}. Observe from
(7) that 7 = 0 and T2 = 1 enforce no deviation on the empirical first-order moment and no upper
deviation on the empirical second-order moment, respectively. Also, 7; = 0 sets the lower bound
on the second-order moment to zero.

4.3 Computational Results

In this section, we compare the computational performance of the decomposition-based disjunctive
cutting plane algorithm, proposed in Algorithm 5, denoted as DECOMPOSED, with solving the MINLP
deterministic equivalent formulation, presented in (13), using an off-the-shelf nonconvex solver. We
denote this as DEF. We implemented DECOMPOSED and DEF in Python and used GUROBI 9.1.2 as
a nonconvex solver. All experiments were performed on a Linux Ubuntu 20.04 environment using
one single core of a PC with an Intel Core i7-9700 3.00 GHz processor and 32.00 GB of RAM, with
a time limit of 3600 seconds.

Tables 1-3 reports the average computational results (over five training sets) to solve problem
(1) with the ambiguity sets DD-A to DD-C, respectively. The values under column “Gap (%)” show
the average gap for instances that could be solved optimally, and in parentheses, it shows the
average gap for instances that could not be solved optimally within the time limit. Also, the values
under column “Time (s)” show the average time (in seconds) for instances that could be solved
optimally, and in parentheses, it shows the number of instances (out of five) that could not be
solved optimally within the time limit.

Observe from Table 1 that DECOMPOSED found an optimal solution within the time limit for
all instances (for three instances, an optimal solution was obtained when the algorithm stopped
after finishing a current iteration beyond the time limit). Whereas DEF stopped with a nonzero
optimality gap in some cases, on average between 8.64-28.58 %. In addition, for instances that
could be solved optimally within the time limit with both approaches, DECOMPOSED often found
an optimal solution with less computational effort (in seconds). We especially observe that DEF
generally had a higher average computational time and optimality gap for instances with more
scenarios and products. Moreover, an increase of 7o from 1 to 2—a wider range on the second-
order moment—Iled to generally easier problems to solve for both DECOMPOSED and DEF. Using
DD-B and partially relaxing the decision-dependency imposed in DD-A resulted in generally easier
problems for both DECOMPOSED and DEF (Table 2). In particular, DECOMPOSED and DEF could obtain
an optimal solution within the time limit in all instances, except for one instance for each. We still
observe that DEF generally had a higher average computational time than DECOMPOSED, especially
for instances with more scenarios and products. However, unlike the results with the ambiguity
set DD-A, an increase of 7o from 1 to 2 led to generally more difficult problems to solve for both
DECOMPOSED and DEF. Further relaxing the ambiguity set by using DD-C made the resulting DRO
problem easier to solve for both DECOMPOSED and DEF (Table 3). Using this model resulted in similar
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Table 1: Comparison of DEF and DECOMPOSED for problem (1) with ambiguity set DD-A and 71 =
To = 0.

DECOMPOSED DEF
T2 n N Gap (%) Time (s) Gap (%) Time (s)
1.0 1 100 0.0 0.07 0.0 0.05
200 0.0 0.34 0.0 0.1
500 0.0 0.34 0.0 0.22
1000 0.0 0.77 0.0 0.71
2000 0.0 1.46 0.0 1.68
3000 0.0 2.21 0.01 2.18
5000 0.0 2.57 0.01 7.37
2 100 0.0 1.81 0.01 0.98
200 0.0 6.53 0.01 25.04
500 0.0 17.78 0.01 76.06
1000 0.0 80.41 0.01 51.84
2000 0.0 225.8 0.01 136.89
3000 0.0 254.1 0.01 281.3
5000 0.0 589.7 0.01 632.25
3 100 0.0 78.66 0.13 28.51
200 0.0 359.03 0.03 60.98
500 0.0 74.54 0.01 469.85
1000 0.0 234.15 0.02 1632.64
2000 0.0 554.82 0.01 (21.15)  1825.09 (3)
3000 0.0 929.31 - (8.64) - (5)
5000 0.0 (0.0) 1469.6 (2) - (27.79) - (5)
20 1 100 0.0 0.07 0.0 0.04
200 0.0 0.35 0.0 0.11
500 0.0 0.32 0.0 0.2
1000 0.0 0.61 0.0 0.5
2000 0.0 1.35 0.0 1.16
3000 0.0 1.73 0.01 1.73
5000 0.0 2.1 0.0 3.51
2 100 0.0 1.71 0.01 0.83
200 0.0 6.95 0.01 2.48
500 0.0 16.99 0.01 8.62
1000 0.0 35.47 0.01 27.06
2000 0.0 115.7 0.01 101.71
3000 0.0 383.49 0.02 283.51
5000 0.0 281.05 0.02 414.13
3 100 0.0 74.26 0.68 28.37
200 0.0 309.6 0.32 54.13
500 0.0 72.03 0.05 503.4
1000 0.0 201.25 0.07 1654.14
2000 0.0 384.08 0.06 (22.12)  1139.24 (2)
3000 0.0 768.88 0.09 (17.67)  2084.86 (3)
5000 0.0 (0.0) 1351.46 (1) - (28.58) - (5)

trends as those observed using DD-B.

5 Conclusion

This paper studied a two-stage stochastic mixed-integer program with continuous recourse. We
assumed that the probability distribution of random parameters is unknown and depends on de-
cisions. We thus investigated a distributionally robust approach to this problem, where the dis-
tributional ambiguity is modeled with a polyhedral decision-dependent ambiguity set. We consid-
ered cases where the recourse function and the ambiguity set are either generic or have a special
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Table 2: Comparison of DEF and DECOMPOSED for problem (1) with ambiguity set DD-B and 71 =
To = 0.

DECOMPOSED DEF
T2 n N Gap (%)  Time (s) Gap (%) Time (s)
1.0 1 100 0.0 0.05 0.0 0.08
200 0.0 0.08 0.0 0.17
500 0.0 0.18 0.0 0.54
1000 0.0 0.43 0.01 1.23
2000 0.0 1.19 0.0 1.85
3000 0.0 1.76 0.01 3.31
5000 0.0 2.17 0.01 10.58
2 100 0.0 0.47 0.01 0.45
200 0.0 1.64 0.01 0.78
500 0.0 3.97 0.01 2.37
1000 0.0 9.33 0.01 6.33
2000 0.0 25.92 0.01 42.08
3000 0.0 36.29 0.01 71.75
5000 0.0 72.08 0.01 156.08
3 100 0.0 0.7 0.01 0.85
200 0.0 1.67 0.01 1.18
500 0.0 5.62 0.01 4.45
1000 0.0 11.01 0.01 12.59
2000 0.0 18.97 0.01 39.62
3000 0.0 28.06 0.01 87.55
5000 0.0 63.78 0.01 101.83
20 1 100 0.0 0.07 0.0 0.03
200 0.0 0.41 0.0 0.08
500 0.0 0.24 0.0 0.19
1000 0.0 0.54 0.0 0.34
2000 0.0 1.11 0.0 0.52
3000 0.0 1.78 0.0 0.71
5000 0.0 2.08 0.0 1.99
2 100 0.0 9.44 0.01 1.23
200 0.0 140.88 0.01 2.67
500 0.0 464.54 0.01 7.32
1000 0.0 22.26 0.01 36.82
2000 0.0 875.43 0.01 89.5
3000 0.0 121.92 0.01 233.59
5000 0.0 240.46 0.01 355.71
3 100 0.0 130.65 0.01 23.06
200 0.0 4.42 0.01 29.16
500 0.0 598.03 0.01 112.07
1000 0.0 (0.12) 24.21 (1) 0.01 267.23
2000 0.0 51.0 0.01 686.06
3000 0.0 76.77 0.01 1156.22
5000 0.0 12376 0.01 (0.02) 1902.47 (1)

convex/nonconvex structure. We reformulated the resulting problem as a nonconvex two-stage
stochastic mixed-integer program. We proposed finitely-convergent decomposition-based cutting
plane algorithms to obtain an e-optimal solution to the resulting problems. The proposed algo-
rithm for the case that the recourse function is nonconvex with a bilinear objective function is
of independent interest to solve two-stage stochastic programs with a random decision-dependent
recourse matrix (i.e., bilinear stochasticity on the left-hand side). We illustrated the efficacy of the
proposed algorithm when the recourse function is nonconvex on joint pricing and stocking decisions
for a multiproduct newsvendor problem with price-dependent demand.

This paper focused on a distributionally robust optimization problem with a finite sample
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Table 3: Comparison of DEF and DECOMPOSED for problem (1) with ambiguity set DD-C and 71 =

12:0.

DECOMPOSED DEF
T2 n N Gap (%) Time (s) Gap (%) Time (s)
1.0 1 100 0.0 0.03 0.0 0.07
200 0.0 0.04 0.0 0.13
500 0.0 0.17 0.0 0.48
1000 0.0 0.22 0.0 1.03
2000 0.0 0.43 0.01 2.43
3000 0.0 0.93 0.01 3.67
5000 0.0 0.97 0.01 9.46
2 100 0.0 0.12 0.01 0.24
200 0.0 0.3 0.0 0.39
500 0.0 0.74 0.01 0.92
1000 0.0 1.57 0.0 2.61
2000 0.0 3.13 0.0 8.38
3000 0.0 3.07 0.0 16.66
5000 0.0 5.26 0.0 38.67
3 100 0.0 0.51 0.0 0.14
200 0.0 1.14 0.0 0.32
500 0.0 2.74 0.0 1.42
1000 0.0 5.57 0.0 3.47
2000 0.0 9.67 0.0 9.26
3000 0.0 14.92 0.0 20.78
5000 0.0 25.55 0.0 35.8
20 1 100 0.0 0.06 0.0 0.06
200 0.0 0.58 0.0 0.08
500 0.0 0.29 0.0 0.27
1000 0.0 0.58 0.0 0.78
2000 0.0 1.11 0.0 0.62
3000 0.0 1.67 0.0 0.92
5000 0.0 2.26 0.0 1.82
2 100 0.0 6.17 0.01 0.65
200 0.0 14.31 0.01 1.26
500 0.0 108.12 0.01 7.57
1000 0.0 158.88 0.01 22.52
2000 0.0 189.79 0.01 81.37
3000 0.0 286.61 0.01 120.42
5000 0.0 72.93 0.01 370.42
3 100 0.0 0.5 0.0 0.99
200 0.0 1.01 0.01 1.32
500 0.0 3.1 0.01 4.13
1000 0.0 5.95 0.01 12.48
2000 0.0 9.43 0.01 38.79
3000 0.0 15.98 0.01 86.06
5000 0.0 30.47 0.0 322.41

space and a polyhedral ambiguity set.

probabilistic constraints.

Using Lagrangian/linear programming duality, we obtained
reformulations that serve as a basis for the proposed decomposition-based cutting plane algorithms.
Future work includes investigating the case that the sample space is infinite. As in the DRO
literature with a decision-independent ambiguity set, more generalized forms of duality, e.g., conic
duality, are expected to be needed for reformulation. On the other hand, the reformulated problem
is expected to be a semi-infinite program. Especially for the case that the recourse function is
nonconvex, it would be interesting to explore how the proposed disjunctive cutting plane algorithm
may be extended. Another direction for future research is to investigate stochastic programs with
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